1
|
Prajapati A, Palva A, von Ossowski I, Krishnan V. The crystal structure of the N-terminal domain of the backbone pilin LrpA reveals a new closure-and-twist motion for assembling dynamic pili in Ligilactobacillus ruminis. Acta Crystallogr D Struct Biol 2024; 80:474-492. [PMID: 38935340 DOI: 10.1107/s2059798324005114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Sortase-dependent pili are long surface appendages that mediate attachment, colonization and biofilm formation in certain genera and species of Gram-positive bacteria. Ligilactobacillus ruminis is an autochthonous gut commensal that relies on sortase-dependent LrpCBA pili for host adherence and persistence. X-ray crystal structure snapshots of the backbone pilin LrpA were captured in two atypical bent conformations leading to a zigzag morphology in the LrpCBA pilus structure. Small-angle X-ray scattering and structural analysis revealed that LrpA also adopts the typical linear conformation, resulting in an elongated pilus morphology. Various conformational analyses and biophysical experiments helped to demonstrate that a hinge region located at the end of the flexible N-terminal domain of LrpA facilitates a new closure-and-twist motion for assembling dynamic pili during the assembly process and host attachment. Further, the incongruent combination of flexible domain-driven conformational dynamics and rigid isopeptide bond-driven stability observed in the LrpCBA pilus might also extend to the sortase-dependent pili of other bacteria colonizing a host.
Collapse
Affiliation(s)
- Amar Prajapati
- Laboratory of Structural Microbiology, Regional Centre for Biotechnology, NCR, Biotech Science Cluster, Faridabad 121 001, India
| | - Airi Palva
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | | | - Vengadesan Krishnan
- Laboratory of Structural Microbiology, Regional Centre for Biotechnology, NCR, Biotech Science Cluster, Faridabad 121 001, India
| |
Collapse
|
2
|
Tyagi S, Yadav RK, Krishnan V. Determination of the Crystal Structure of the Cell Wall-Anchored Proteins and Pilins. Methods Mol Biol 2024; 2727:159-191. [PMID: 37815717 DOI: 10.1007/978-1-0716-3491-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Surface proteins and pili (or pilus) anchored on the Gram-positive bacterial cell wall play a vital role in adhesion, colonization, biofilm formation, and immunomodulation. The pilus consists of building blocks called pilins or pilus subunits. The surface proteins and pilins share some common sequences and structural features. They contain an N-terminal signal sequence and the C-terminal cell wall sorting region, enabling their transportation across the membrane and covalent attachment to the bacterial cell wall, respectively. The transpeptidase enzymes called sortases facilitate the covalent links between the pilins during the pilus assembly and between surface proteins or basal subunits of pili and peptidoglycan-bridge during the cell wall anchoring. Thus, elucidating three-dimensional structures for the surface proteins and pilins at the atomic level is essential for understanding the mechanism of adhesion, pilus assembly, and host interaction. This chapter aims to provide a general protocol for crystal structure determination of surface proteins and pilins anchored on the Gram-positive bacterial cell wall and substrates for sortases. The protocol involves the production of recombinant protein, crystallization, and structure determination by X-ray crystallography technique.
Collapse
Affiliation(s)
- Shivangi Tyagi
- Laboratory of Structural Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Rajnesh Kumari Yadav
- Laboratory of Structural Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Vengadesan Krishnan
- Laboratory of Structural Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India.
| |
Collapse
|
3
|
Sue CK, Cheung NA, Mahoney BJ, McConnell SA, Scully JM, Fu JY, Chang C, Ton-That H, Loo JA, Clubb RT. The basal and major pilins in the Corynebacterium diphtheriae SpaA pilus adopt similar structures that competitively react with the pilin polymerase. Biopolymers 2024; 115:e23539. [PMID: 37227047 PMCID: PMC11164409 DOI: 10.1002/bip.23539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/26/2023]
Abstract
Many species of pathogenic gram-positive bacteria display covalently crosslinked protein polymers (called pili or fimbriae) that mediate microbial adhesion to host tissues. These structures are assembled by pilus-specific sortase enzymes that join the pilin components together via lysine-isopeptide bonds. The archetypal SpaA pilus from Corynebacterium diphtheriae is built by the Cd SrtA pilus-specific sortase, which crosslinks lysine residues within the SpaA and SpaB pilins to build the shaft and base of the pilus, respectively. Here, we show that Cd SrtA crosslinks SpaB to SpaA via a K139(SpaB)-T494(SpaA) lysine-isopeptide bond. Despite sharing only limited sequence homology, an NMR structure of SpaB reveals striking similarities with the N-terminal domain of SpaA (N SpaA) that is also crosslinked by Cd SrtA. In particular, both pilins contain similarly positioned reactive lysine residues and adjacent disordered AB loops that are predicted to be involved in the recently proposed "latch" mechanism of isopeptide bond formation. Competition experiments using an inactive SpaB variant and additional NMR studies suggest that SpaB terminates SpaA polymerization by outcompeting N SpaA for access to a shared thioester enzyme-substrate reaction intermediate.
Collapse
Affiliation(s)
- Christopher K. Sue
- Department of Chemistry and Biochemistry
- UCLA-DOE Institute for Genomics and Proteomics
| | - Nicole A. Cheung
- UCLA-DOE Institute for Genomics and Proteomics
- Molecular Biology Institute
| | - Brendan J. Mahoney
- Department of Chemistry and Biochemistry
- UCLA-DOE Institute for Genomics and Proteomics
| | - Scott A. McConnell
- Department of Chemistry and Biochemistry
- UCLA-DOE Institute for Genomics and Proteomics
| | - Jack M. Scully
- Department of Chemistry and Biochemistry
- UCLA-DOE Institute for Genomics and Proteomics
| | - Janine Y. Fu
- Department of Chemistry and Biochemistry
- UCLA-DOE Institute for Genomics and Proteomics
| | - Chungyu Chang
- Molecular Biology Institute
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
| | - Hung Ton-That
- Molecular Biology Institute
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry
- UCLA-DOE Institute for Genomics and Proteomics
- Molecular Biology Institute
| | - Robert T. Clubb
- Department of Chemistry and Biochemistry
- UCLA-DOE Institute for Genomics and Proteomics
- Molecular Biology Institute
| |
Collapse
|
4
|
Yadav S, Parijat P, Krishnan V. The crystal structure of sortase C from an early colonizer of dental plaque, Streptococcus sanguinis, reveals an active open-lid conformation. Int J Biol Macromol 2023:125183. [PMID: 37276901 DOI: 10.1016/j.ijbiomac.2023.125183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
Dental plaque is a complex microbial biofilm community of many species and a major cause of oral infections and infectious endocarditis. Plaque development begins when primary colonizers attach to oral tissues and undergo coaggregation. Primary colonizers facilitate cellular attachment and inter-bacterial interactions through sortase-dependent pili (or fimbriae) extending out from their cell surface. Consequently, the sortase enzyme is viewed as a potential drug target for controlling biofilm formation and avoiding infection. Streptococcus sanguinis is a primary colonizing bacterium whose pili consist of three different pilin subunits that are assembled together by the pilus-specific (C-type) SsaSrtC sortase. Here, we report on the crystal structure determination of the recombinant wild-type and active-site mutant forms of SsaSrtC. Interestingly, the SsaSrtC structure exhibits an open-lid conformation, although a conserved DPX motif is lacking in the lid. Based on molecular docking and structural analysis, we identified the substrate-binding residues essential for pilin recognition and pilus assembly. We also demonstrated that while recombinant SsaSrtC is enzymatically active toward the five-residue LPNTG sorting motif peptide of the pilins, this activity is significantly reduced by the presence of zinc. We further showed that rutin and α-crocin are potential candidate inhibitors of the SsaSrtC sortase via structure-based virtual screening and inhibition assays. The structural knowledge gained from our study will provide the means to develop new approaches that target pilus-mediated attachment, thereby preventing oral biofilm growth and infection.
Collapse
Affiliation(s)
- Smita Yadav
- Laboratory of Structural Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Priyanka Parijat
- Laboratory of Structural Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Vengadesan Krishnan
- Laboratory of Structural Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121001, India.
| |
Collapse
|
5
|
Pecoraro C, Carbone D, Parrino B, Cascioferro S, Diana P. Recent Developments in the Inhibition of Bacterial Adhesion as Promising Anti-Virulence Strategy. Int J Mol Sci 2023; 24:ijms24054872. [PMID: 36902301 PMCID: PMC10002502 DOI: 10.3390/ijms24054872] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Infectious diseases caused by antimicrobial-resistant strains have become a serious threat to global health, with a high social and economic impact. Multi-resistant bacteria exhibit various mechanisms at both the cellular and microbial community levels. Among the different strategies proposed to fight antibiotic resistance, we reckon that the inhibition of bacterial adhesion to host surfaces represents one of the most valid approaches, since it hampers bacterial virulence without affecting cell viability. Many different structures and biomolecules involved in the adhesion of Gram-positive and Gram-negative pathogens can be considered valuable targets for the development of promising tools to enrich our arsenal against pathogens.
Collapse
|
6
|
Sue CK, Cheung NA, Mahoney BJ, McConnell SA, Scully JM, Fu JY, Chang C, Ton-That H, Loo JA, Clubb RT. The Basal and Major Pilins in the Corynebacterium diphtheriae SpaA Pilus Adopt Similar Structures that Competitively React with the Pilin Polymerase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529612. [PMID: 36865106 PMCID: PMC9980135 DOI: 10.1101/2023.02.23.529612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Many species of pathogenic gram-positive bacteria display covalently crosslinked protein polymers (called pili or fimbriae) that mediate microbial adhesion to host tissues. These structures are assembled by pilus-specific sortase enzymes that join the pilin components together via lysine-isopeptide bonds. The archetypal SpaA pilus from Corynebacterium diphtheriae is built by the Cd SrtA pilus-specific sortase, which crosslinks lysine residues within the SpaA and SpaB pilins to build the shaft and base of the pilus, respectively. Here, we show that Cd SrtA crosslinks SpaB to SpaA via a K139(SpaB)-T494(SpaA) lysine-isopeptide bond. Despite sharing only limited sequence homology, an NMR structure of SpaB reveals striking similarities with the N-terminal domain of SpaA ( N SpaA) that is also crosslinked by Cd SrtA. In particular, both pilins contain similarly positioned reactive lysine residues and adjacent disordered AB loops that are predicted to be involved in the recently proposed "latch" mechanism of isopeptide bond formation. Competition experiments using an inactive SpaB variant and additional NMR studies suggest that SpaB terminates SpaA polymerization by outcompeting N SpaA for access to a shared thioester enzyme-substrate reaction intermediate.
Collapse
|
7
|
Kumar V, Murmu S, Krishnan V. Deciphering the substrate specificity of housekeeping sortase A and pilus-specific sortase C of probiotic bacterium Lactococcus lactis. Biochimie 2022; 200:140-152. [PMID: 35654243 DOI: 10.1016/j.biochi.2022.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/25/2022] [Accepted: 05/26/2022] [Indexed: 11/02/2022]
Abstract
Several strains and species of lactic acid bacteria (LAB) are widely used in fermented foods, including dairy products and also as probiotics, because of their contribution to various health benefits in humans. Sortase enzymes decorate the bacterial cell wall with different surface proteins and pili for facilitating the interactions with host and environment for the colonization and beneficial effects. While the sortases and sortase anchored proteins from pathogens have been the prime focus of the research in the past, sortases from many non-pathogenic bacteria, including LAB strains, have attracted attention for their potential applications in vaccine delivery and other clinical interventions. Here, we report the purification and functional characterization of two sortases (housekeeping SrtA and pilus-specific SrtC) from a probiotic Lactococcus lactis. The purified sortases were found to be active against the putative LPXTG motif-based peptide substrates, albeit with differences. The in-silico analysis provides insights into the residues involved in substrate binding and specificity. Overall, this study sheds new light on the aspects of structure, substrate specificity, and function of sortases from non-pathogenic bacteria, which may have physiological ramifications as well as their applications in sortase-mediated protein bioconjugation.
Collapse
Affiliation(s)
- Vijay Kumar
- Laboratory of Structural Microbiology, Regional Centre for Biotechnology, NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, Haryana (NCR Delhi), India
| | - Sumit Murmu
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India; Regional Centre for Biotechnology, NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, Haryana (NCR Delhi), India
| | - Vengadesan Krishnan
- Laboratory of Structural Microbiology, Regional Centre for Biotechnology, NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, Haryana (NCR Delhi), India.
| |
Collapse
|
8
|
Prajapati A, Palva A, von Ossowski I, Krishnan V. LrpCBA pilus proteins of gut-dwelling Ligilactobacillus ruminis: crystallization and X-ray diffraction analysis. Acta Crystallogr F Struct Biol Commun 2021; 77:238-245. [PMID: 34341189 PMCID: PMC8329715 DOI: 10.1107/s2053230x21007263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/13/2021] [Indexed: 11/10/2022] Open
Abstract
Adhesion to host surfaces for bacterial survival and colonization involves a variety of molecular mechanisms. Ligilactobacillus ruminis, a strict anaerobe and gut autochthonous (indigenous) commensal, relies on sortase-dependent pili (LrpCBA) for adherence to the intestinal inner walls, thereby withstanding luminal content flow. Here, the LrpCBA pilus is a promiscuous binder to gut collagen, fibronectin and epithelial cells. Structurally, the LrpCBA pilus displays a representative hetero-oligomeric arrangement and consists of three types of pilin subunit, each with its own location and function, i.e. tip LrpC for adhesion, basal LrpB for anchoring and backbone LrpA for length. To provide further structural insights into the assembly, anchoring and functional mechanisms of sortase-dependent pili, each of the L. ruminis pilus proteins was produced recombinantly for crystallization and X-ray diffraction analysis. Crystals of LrpC, LrpB, LrpA and truncated LrpA generated by limited proteolysis were obtained and diffracted to resolutions of 3.0, 1.5, 2.2 and 1.4 Å, respectively. Anomalous data were also collected from crystals of selenomethionine-substituted LrpC and an iodide derivative of truncated LrpA. Successful strategies for protein production, crystallization and derivatization are reported.
Collapse
Affiliation(s)
- Amar Prajapati
- Laboratory of Structural Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121 001, India
| | - Airi Palva
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | | | - Vengadesan Krishnan
- Laboratory of Structural Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121 001, India
| |
Collapse
|
9
|
Exploiting pilus-mediated bacteria-host interactions for health benefits. Mol Aspects Med 2021; 81:100998. [PMID: 34294411 DOI: 10.1016/j.mam.2021.100998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/30/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023]
Abstract
Surface pili (or fimbriae) are an important but conspicuous adaptation of several genera and species of Gram-negative and Gram-positive bacteria. These long and non-flagellar multi-subunit adhesins mediate the initial contact that a bacterium has with a host or environment, and thus have come to be regarded as a key colonization factor for virulence activity in pathogens or niche adaptation in commensals. Pili in pathogenic bacteria are well recognized for their roles in the adhesion to host cells, colonization of tissues, and establishment of infection. As an 'anti-adhesive' ploy, targeting pilus-mediated attachment for disruption has become a potentially effective alternative to using antibiotics. In this review, we give a description of the several structurally distinct bacterial pilus types thus far characterized, and as well offer details about the intricacy of their individual structure, assembly, and function. With a molecular understanding of pilus biogenesis and pilus-mediated host interactions also provided, we go on to describe some of the emerging new approaches and compounds that have been recently developed to prevent the adhesion, colonization, and infection of piliated bacterial pathogens.
Collapse
|
10
|
Heidler TV, Ernits K, Ziolkowska A, Claesson R, Persson K. Porphyromonas gingivalis fimbrial protein Mfa5 contains a von Willebrand factor domain and an intramolecular isopeptide. Commun Biol 2021; 4:106. [PMID: 33495563 PMCID: PMC7835359 DOI: 10.1038/s42003-020-01621-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 12/18/2020] [Indexed: 01/30/2023] Open
Abstract
The Gram-negative bacterium Porphyromonas gingivalis is a secondary colonizer of the oral biofilm and is involved in the onset and progression of periodontitis. Its fimbriae, of type-V, are important for attachment to other microorganisms in the biofilm and for adhesion to host cells. The fimbriae are assembled from five proteins encoded by the mfa1 operon, of which Mfa5 is one of the ancillary tip proteins. Here we report the X-ray structure of the N-terminal half of Mfa5, which reveals a von Willebrand factor domain and two IgG-like domains. One of the IgG-like domains is stabilized by an intramolecular isopeptide bond, which is the first such bond observed in a Gram-negative bacterium. These features make Mfa5 structurally more related to streptococcal adhesins than to the other P. gingivalis Mfa proteins. The structure reported here indicates that horizontal gene transfer has occurred among the bacteria within the oral biofilm.
Collapse
Affiliation(s)
- Thomas V. Heidler
- grid.12650.300000 0001 1034 3451Department of Chemistry, Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
| | - Karin Ernits
- grid.12650.300000 0001 1034 3451Department of Chemistry, Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
| | - Agnieszka Ziolkowska
- grid.12650.300000 0001 1034 3451Department of Chemistry, Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
| | - Rolf Claesson
- grid.12650.300000 0001 1034 3451Department of Odontology, Umeå University, 90187 Umeå, Sweden
| | - Karina Persson
- grid.12650.300000 0001 1034 3451Department of Chemistry, Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
11
|
Dos Santos Morais R, El-Kirat-Chatel S, Burgain J, Simard B, Barrau S, Paris C, Borges F, Gaiani C. A Fast, Efficient and Easy to Implement Method to Purify Bacterial Pili From Lacticaseibacillus rhamnosus GG Based on Multimodal Chromatography. Front Microbiol 2020; 11:609880. [PMID: 33391233 PMCID: PMC7775309 DOI: 10.3389/fmicb.2020.609880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/24/2020] [Indexed: 01/02/2023] Open
Abstract
Pili are polymeric proteins located at the cell surface of bacteria. These filamentous proteins play a pivotal role in bacterial adhesion with the surrounding environment. They are found both in Gram-negative and Gram-positive bacteria but differ in their structural organization. Purifying these high molecular weight proteins is challenging and has certainly slowed down their characterization. Here, we propose a chromatography-based protocol, mainly relying on multimodal chromatography (core bead technology using Capto Core 700 resin), to purify sortase-dependent SpaCBA pili from the probiotic strain Lacticaseibacillus rhamnosus GG (LGG). Contrary to previously published methods, this purification protocol does not require specific antibodies nor complex laboratory equipment, including for the multimodal chromatography step, and provides high degree of protein purity. No other proteins were detectable by SDS-PAGE and the 260/280 nm ratio (∼0.6) of the UV spectrum confirmed the absence of any other co-purified macromolecules. One can obtain ∼50 μg of purified pili, starting from 1 L culture at OD600nm ≈ 1, in 2–3 working days. This simple protocol could be useful to numerous laboratories to purify pili from LGG easily. Therefore, the present work should boost specific studies dedicated to LGG SpaCBA pili and the characterization of the interactions occurring with their protein partners at the molecular level. Moreover, this straightforward purification process might be extended to the purification of sortase-dependant pili from other Gram-positive bacteria.
Collapse
Affiliation(s)
| | - Sofiane El-Kirat-Chatel
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, CNRS-Université de Lorraine, Nancy, France
| | - Jennifer Burgain
- Laboratoire d'Ingénierie des Biomolécules, Université de Lorraine, Nancy, France
| | - Blandine Simard
- Laboratoire d'Ingénierie des Biomolécules, Université de Lorraine, Nancy, France
| | - Sarah Barrau
- Laboratoire d'Ingénierie des Biomolécules, Université de Lorraine, Nancy, France
| | - Cédric Paris
- Laboratoire d'Ingénierie des Biomolécules, Université de Lorraine, Nancy, France
| | - Frédéric Borges
- Laboratoire d'Ingénierie des Biomolécules, Université de Lorraine, Nancy, France
| | - Claire Gaiani
- Laboratoire d'Ingénierie des Biomolécules, Université de Lorraine, Nancy, France.,Institut Universitaire de France, Parris, France
| |
Collapse
|
12
|
Megta AK, Pratap S, Kant A, Palva A, von Ossowski I, Krishnan V. Crystal structure of the atypically adhesive SpaB basal pilus subunit: Mechanistic insights about its incorporation in lactobacillar SpaCBA pili. Curr Res Struct Biol 2020; 2:229-238. [PMID: 34235482 PMCID: PMC8244301 DOI: 10.1016/j.crstbi.2020.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023] Open
Abstract
To successfully colonize a host or environment, certain genera and species of Gram-positive bacteria have evolved to utilize the so-called sortase-dependent pilus, a long multi-subunit and non-flagellar surface adhesin. One example of this is Lactobacillus rhamnosus GG, a gut-adapted probiotic strain that produces SpaCBA pili. These structures are covalent hetero-oligomers built from three types of pilin subunit, each with a specific location and function (i.e., backbone SpaA for length, tip SpaC for adhesion, and basal SpaB for anchoring). Functionally, the SpaCBA pilus exhibits a promiscuous affinity for components on intestinal surfaces (e.g., mucus, collagen, and epithelial cells), which is largely attributed to the SpaC subunit. Then again, the basal SpaB pilin, in addition to acting as the terminal subunit during pilus assembly, displays an out of character mucoadhesive function. To address the structural basis of this unusual dual functionality, we reveal the 2.39 Å resolution crystal structure of SpaB. SpaB consists of one immunoglobulin-like CnaB domain and contains a putative intermolecular isopeptide bond-linking lysine and internal isopeptide bond-asparagine in an FPKN pilin motif within the C-terminal end. Remarkably, we found that a C-terminal stretch of positively charged lysine and arginine residues likely accounts for the atypical mucoadhesiveness of SpaB. Although harboring an autocatalytic triad of residues for a potential internal isopeptide interaction, the SpaB crystal structure lacked the visible electron density for intact bond formation, yet its presence was subsequently confirmed by mass spectral analysis. Finally, we propose a structural model that captures the exclusive basal positioning of SpaB in the SpaCBA pilus.
Collapse
Key Words
- ABC, ammonium bicarbonate
- ACN, acetonitrile
- Cell-wall anchoring
- Cna, collagen adhesin
- ECM, extracellular matrix
- Ig, immunoglobulin
- Lactobacillus rhamnosus GG
- MD, molecular dynamics
- MS, mass spectrometry
- Mucus adhesion
- PDB, Protein Data Bank
- PEG, polyethylene glycol
- Probiotic
- Sortase-dependent SpaCBA pili
- SpaB basal pilin
- rmsd, root mean square deviation
Collapse
Affiliation(s)
- Abhin Kumar Megta
- Laboratory of Structural Microbiology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India.,School of Biotechnology, KIIT University, Odisha, 751024, India
| | - Shivendra Pratap
- Laboratory of Structural Microbiology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Abhiruchi Kant
- Laboratory of Structural Microbiology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India.,Department of Biotechnology, Manipal University, Karnataka, 576104, India
| | - Airi Palva
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, FIN-00014, Finland
| | - Ingemar von Ossowski
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, FIN-00014, Finland
| | - Vengadesan Krishnan
- Laboratory of Structural Microbiology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| |
Collapse
|
13
|
Xiong Y, Zhai Z, Lei Y, Xiao B, Hao Y. A Novel Major Pilin Subunit Protein FimM Is Involved in Adhesion of Bifidobacterium longum BBMN68 to Intestinal Epithelial Cells. Front Microbiol 2020; 11:590435. [PMID: 33329468 PMCID: PMC7719627 DOI: 10.3389/fmicb.2020.590435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/27/2020] [Indexed: 12/16/2022] Open
Abstract
Adhesion to the gastrointestinal tract is considered to be important for bifidobacteria to colonize the human gut and exert their probiotic effects. Some cell surface proteins of bifidobacteria, known as adhesins, play critical roles in the binding to host cells or the extracellular matrix (ECM). To elucidate the mechanisms associated with the adhesion of Bifidobacterium longum BBMN68, a centenarian originated potential probiotic, PSORTdb was employed to identify putative extracellular localized proteins in the B. longum BBMN68. Of the 560 predicted extracellular proteins, 21 were further identified as putative adhesion proteins using the conserved domain database of NCBI, and four were successfully overexpressed in the heterologous host, Lactococcus lactis NZ9000. Notably, a recombinant strain expressing FimM showed a significantly increased adhesive affinity for both HT-29 and mucus-secreting LS174T goblet cells (2.2- and 5.4-fold higher than that of the control strain, respectively). Amino acid sequence alignment showed that FimM is a major pilin subunit protein containing a Cna-B type domain and a C-terminal LPKTG sequence. However, in silico analysis of the fimM-coding cluster revealed that BBMN68_RS10200, encoding a pilus-specific class C sortase, was a pseudogene, indicating that FimM may function as a surface adhesin that cannot polymerize into a pili-like structure. Immunogold electron microscopy results further confirmed that FimM localized to the surface of L. lactis NZfimM and B. longum BBMN68 but did not assemble into pilus filaments. Moreover, the adhesive affinity of L. lactis NZfimM to fibronectin, fibrinogen, and mucin were 3.8-, 2.1-, and 3.1-fold higher than that of the control. The affinity of FimM for its attachment receptors was further verified through an inhibition assay using anti-FimM antibodies. In addition, homologs of FimM were found in Bifidobacterium bifidum 85B, Bifidobacterium gallinarum CACC 514, and 23 other B. longum strains by sequence similarity analysis using BLASTP. Our results suggested that FimM is a novel surface adhesin that is mainly present in B. longum strains.
Collapse
Affiliation(s)
- Yao Xiong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhengyuan Zhai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yuanqiu Lei
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Bingbing Xiao
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Yanling Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Kant A, Palva A, von Ossowski I, Krishnan V. Crystal structure of lactobacillar SpaC reveals an atypical five-domain pilus tip adhesin: Exposing its substrate-binding and assembly in SpaCBA pili. J Struct Biol 2020; 211:107571. [PMID: 32653644 DOI: 10.1016/j.jsb.2020.107571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/23/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022]
Abstract
Adhesion to cell surfaces is an essential and early prerequisite for successful host colonization by bacteria, and in most instances involves the specificities of various adhesins. Among bacterial Gram-positives, some genera and species mediate attachment to host cells by using long non-flagellar appendages called sortase-dependent pili. A case in point is the beneficial Lactobacillus rhamnosus GG gut-adapted strain that produces the so-called SpaCBA pilus, a structure noted for its promiscuous binding to intestinal mucus and collagen. Structurally, SpaCBA pili are heteropolymers of three different pilin-protein subunits, each with its own location and function in the pilus: backbone SpaA for length, basal SpaB for anchoring, and tip SpaC for adhesion. Previously, we solved the SpaA tertiary structure by X-ray crystallography and also reported on the crystallization of SpaB and SpaC. Here, we reveal the full-length high-resolution (1.9 Å) crystal structure of SpaC, a first for a sortase-dependent pilus-bearing commensal. The SpaC structure, unlike the representative four-domain architecture of other Gram-positive tip pilins, espouses an atypically longer five-domain arrangement that includes N-terminal 'binding' and C-terminal 'stalk' regions of two and three domains, respectively. With the prospect of establishing new mechanistic insights, we provide a structural basis for the multi-substrate binding nature of SpaC, as well as a structural model that reconciles its exclusive localization at the SpaCBA pilus tip.
Collapse
Affiliation(s)
- Abhiruchi Kant
- Laboratory of Structural Microbiology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 122016, India; Department of Biotechnology, Manipal University, Karnataka 576104, India
| | - Airi Palva
- Department of Veterinary Biosciences, University of Helsinki, Helsinki FIN-00014, Finland
| | - Ingemar von Ossowski
- Department of Veterinary Biosciences, University of Helsinki, Helsinki FIN-00014, Finland
| | - Vengadesan Krishnan
- Laboratory of Structural Microbiology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 122016, India.
| |
Collapse
|
15
|
Dramé I, Formosa-Dague C, Lafforgue C, Chapot-Chartier MP, Piard JC, Castelain M, Dague E. Analysis of Homotypic Interactions of Lactococcus lactis Pili Using Single-Cell Force Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21411-21423. [PMID: 32314572 DOI: 10.1021/acsami.0c03069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cell surface proteins of Gram-positive bacteria play crucial roles in their adhesion to abiotic and biotic surfaces. Pili are long and flexible proteinaceous filaments known to enhance bacterial initial adhesion. They promote surface colonization and are thus considered as essential factors in biofilm cohesion. Our hypothesis is that pili mediate interactions between cells and may thereby directly affect biofilm formation. In this study, we use single-cell force spectroscopy (SCFS) to quantify the force of the homotypic pili interactions between individual bacterial cells, using different Lactococcus lactis strains producing pili or not as model bacteria. Moreover the force-distance curves were analyzed to determine the physical and nanomechanical properties of L. lactis pili. The results for pili-devoided strains showed a weak adhesion between cells (adhesion forces and work in the range of 100 pN and 7 × 10-18 J, respectively). On the contrary, the piliated strains showed high adhesion levels with adhesion forces and adhesion work over 200 pN and 50 × 10-18 J, respectively. The force-extension curves showed multiple adhesion events, typical of the unfolding of macromolecules. These unfolding force peaks were fitted using the physical worm-like chain model to get fundamental knowledge on the pili nanomechanical properties. In addition, SCFS applied to a L. lactis isolate expressing both pili and mucus-binding protein at its surface and two derivative mutants revealed the capacity of pili to interact with other surface proteins including mucus-binding proteins. This study demonstrates that pili are involved in L. lactis homotypic interactions and thus can influence biofilm structuring.
Collapse
Affiliation(s)
- Ibrahima Dramé
- TBI, Université de Toulouse, INSA, INRAE, CNRS, 31000 Toulouse, France
- LAAS-CNRS, Université de Toulouse, CNRS, 31000 Toulouse, France
| | | | | | | | - Jean-Christophe Piard
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Mickaël Castelain
- TBI, Université de Toulouse, INSA, INRAE, CNRS, 31000 Toulouse, France
| | - Etienne Dague
- LAAS-CNRS, Université de Toulouse, CNRS, 31000 Toulouse, France
| |
Collapse
|
16
|
Lactobacillus rhamnosus GG Genomic and Phenotypic Stability in an Industrial Production Process. Appl Environ Microbiol 2020; 86:AEM.02780-19. [PMID: 31924618 DOI: 10.1128/aem.02780-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 12/30/2019] [Indexed: 12/11/2022] Open
Abstract
Lactobacillus rhamnosus GG is one of the most widely marketed and studied probiotic strains. In L. rhamnosus GG, the spaCBA-srtC1 gene cluster encodes pili, which are important for some of the probiotic properties of the strain. A previous study showed that the DNA sequence of the spaCBA-srtC1 gene cluster was not present in some L. rhamnosus GG variants isolated from liquid dairy products. To examine the stability of the L. rhamnosus GG genome in an industrial production process, we sequenced the genome of samples of L. rhamnosus GG (DSM 33156) collected at specific steps of the industrial production process, including the culture collection stock, intermediate fermentations, and final freeze-dried products. We found that the L. rhamnosus GG genome sequence was unchanged throughout the production process. Consequently, the spaCBA-srtC1 gene locus was intact and fully conserved in all 31 samples examined. In addition, different production batches of L. rhamnosus GG exhibited consistent phenotypes, including the presence of pili in final freeze-dried products, and consistent characteristics in in vitro assays of probiotic properties. Our data show that L. rhamnosus GG is highly stable in this industrial production process.IMPORTANCE Lactobacillus rhamnosus GG is one of the best-studied probiotic strains. One of the well-characterized features of the strain is the pili encoded by the spaCBA-srtC1 gene cluster. These pili are involved in persistence in the gastrointestinal tract and are important for the probiotic properties of L. rhamnosus GG. Previous studies demonstrated that the L. rhamnosus GG genome can be unstable under certain conditions and can lose the spaCBA-srtC1 gene cluster. Since in vitro studies have shown that the loss of the spaCBA-srtC1 gene cluster decreases certain L. rhamnosus GG probiotic properties, we assessed both the genomic stability and phenotypic properties of L. rhamnosus GG throughout an industrial production process. We found that neither genomic nor phenotypic changes occurred in the samples. Therefore, we demonstrate that L. rhamnosus GG retains the spaCBA-srtC1 cluster and exhibits excellent genomic and phenotypic stability in the specific industrial process examined here.
Collapse
|
17
|
Kumar Megta A, Palva A, von Ossowski I, Krishnan V. SpaB, an atypically adhesive basal pilin from the lactobacillar SpaCBA pilus: crystallization and X-ray diffraction analysis. Acta Crystallogr F Struct Biol Commun 2019; 75:731-737. [PMID: 31797814 PMCID: PMC6891582 DOI: 10.1107/s2053230x19015358] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
The SpaB pilin is recognized as the basal subunit of the sortase-dependent SpaCBA pilus, which is known to be produced by the Gram-positive Lactobacillus rhamnosus GG, a gut-adapted commensal advocated to have health benefits. Despite seeming to function as an archetypal basal pilin by serving as the terminal subunit in pilus assembly, SpaB also assumes an atypical role as a mucoadhesive protein. To shed light on the structural factors that contribute to this dual functional behaviour, a recombinant form of the L. rhamnosus GG SpaB pilin was produced and purified for crystallization and X-ray diffraction experiments. The crystallization of SpaB remained particularly challenging until the implementation of a three-pronged crystallization approach involving C-terminal tail truncation, surface lysine methylation and magnesium additives. Ultimately, hexagonal crystals of SpaB were produced and were able to diffract to a resolution of 2.4 Å. This crystal form belonged to space group P6522 or P6122, with unit-cell parameters a = b = 51.53, c = 408.22 Å, α = β = 90.0, γ = 120.0°. Obtaining an interpretable electron-density map via single-wavelength anomalous diffraction (SAD) using iodide-derivative data sets did not succeed owing to the weak anomalous signal. As an alternative, attempts to provide phases by molecular replacement using the iodide-SAD data from SpaB and a collection of distant homology models (<28% sequence identity) are in progress.
Collapse
Affiliation(s)
- Abhin Kumar Megta
- Laboratory of Structural Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana 121 001, India
- School of Biotechnology, KIIT University, Odisha 751 024, India
| | - Airi Palva
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | | | - Vengadesan Krishnan
- Laboratory of Structural Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana 121 001, India
| |
Collapse
|
18
|
Finke S, Fagerlund A, Smith V, Krogstad V, Zhang MJ, Saragliadis A, Linke D, Nielsen-LeRoux C, Økstad OA. Bacillus thuringiensis CbpA is a collagen binding cell surface protein under c-di-GMP control. ACTA ACUST UNITED AC 2019; 5:100032. [PMID: 32803021 PMCID: PMC7423583 DOI: 10.1016/j.tcsw.2019.100032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 06/24/2019] [Accepted: 07/05/2019] [Indexed: 12/12/2022]
Abstract
Cyclic diguanylate (c-di-GMP) signalling affects several cellular processes in Bacillus cereus group bacteria including biofilm formation and motility, and CdgF was previously identified as a diguanylate cyclase promoting biofilm formation in B. thuringiensis. C-di-GMP can exert its function as a second messenger via riboswitch binding, and a functional c-di-GMP-responsive riboswitch has been found upstream of cbpA in various B. cereus group strains. Protein signature recognition predicted CbpA to be a cell wall-anchored surface protein with a fibrinogen or collagen binding domain. The aim of this study was to identify the binding ligand of CbpA and the function of CbpA in cellular processes that are part of the B. cereus group c-di-GMP regulatory network. By global gene expression profiling cbpA was found to be down-regulated in a cdgF deletion mutant, and cbpA exhibited maximum expression in early exponential growth. Contrary to the wild type, a ΔcbpA deletion mutant showed no binding to collagen in a cell adhesion assay, while a CbpA overexpression strain exhibited slightly increased collagen binding compared to the control. For both fibrinogen and fibronectin there was however no change in binding activity compared to controls, and CbpA did not appear to contribute to binding to abiotic surfaces (polystyrene, glass, steel). Also, the CbpA overexpression strain appeared to be less motile and showed a decrease in biofilm formation compared to the control. This study provides the first experimental proof that the binding ligand of the c-di-GMP regulated adhesin CbpA is collagen.
Collapse
Affiliation(s)
- Sarah Finke
- Centre for Integrative Microbial Evolution and Section for Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Annette Fagerlund
- Centre for Integrative Microbial Evolution and Section for Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Veronika Smith
- Centre for Integrative Microbial Evolution and Section for Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Veronica Krogstad
- Centre for Integrative Microbial Evolution and Section for Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Mimmi Jingxi Zhang
- Centre for Integrative Microbial Evolution and Section for Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | | | - Dirk Linke
- Department of Biosciences, University of Oslo, Norway
| | | | - Ole Andreas Økstad
- Centre for Integrative Microbial Evolution and Section for Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
- Corresponding author at: Department of Pharmacy, University of Oslo, PB 1068 Blindern, 0371 Blindern, Norway.
| |
Collapse
|
19
|
Megta AK, Mishra AK, Palva A, von Ossowski I, Krishnan V. Crystal structure of basal pilin SpaE reveals the molecular basis of its incorporation in the lactobacillar SpaFED pilus. J Struct Biol 2019; 207:74-84. [PMID: 31026587 DOI: 10.1016/j.jsb.2019.04.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 11/16/2022]
Abstract
For some Gram-positive genera and species, the long-extended and adhesive sortase-dependent pilus plays an essential role during host colonization, biofilm formation, and immune modulation. Lactobacillus rhamnosus GG is a gut-adapted commensal strain that harbors the operonic genes for the SpaCBA and SpaFED pili, both being comprised of three different protein subunits termed the backbone, tip, and basal pilins. Crystal structures of the backbone pilins (SpaA and SpaD) have recently been solved, and here we describe the high-resolution (1.5 Å) structural determination of the SpaE basal pilin. SpaE consists of two immunoglobulin-like CnaB domains, with each displaying a spontaneously formed internal isopeptide bond, though apparently slow forming in the N-terminal domain. Remarkably, SpaE contains an atypically lengthy unstructured C-terminal tail, along with an YPKN pilin motif peptide, which is normally reserved for backbone subunits. Based on our analysis of the crystal structure data, we provide a molecular model for the basal positioning of the SpaE pilin within the SpaFED pilus.
Collapse
Affiliation(s)
- Abhin Kumar Megta
- Laboratory of Structural Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana 121 001, India; School of Biotechnology, KIIT University, Odisha 751024, India
| | - Arjun K Mishra
- Laboratory of Structural Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana 121 001, India
| | - Airi Palva
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | | | - Vengadesan Krishnan
- Laboratory of Structural Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana 121 001, India.
| |
Collapse
|
20
|
Abstract
To interact with the external environments, bacteria often display long proteinaceous appendages on their cell surface, called pili or fimbriae. These non-flagellar thread-like structures are polymers composed of covalently or non-covalently interacting repeated pilin subunits. Distinct pilus classes can be identified on basis of their assembly pathways, including chaperone-usher pili, type V pili, type IV pili, curli and fap fibers, conjugative and type IV secretion pili, as well as sortase-mediated pili. Pili play versatile roles in bacterial physiology, and can be involved in adhesion and host cell invasion, DNA and protein secretion and uptake, biofilm formation, cell motility and more. Recent advances in structure determination of components involved in the various pilus systems has enabled a better molecular understanding of their mechanisms of assembly and function. In this chapter we describe the diversity in structure, biogenesis and function of the different pilus systems found in Gram-positive and Gram-negative bacteria, and review their potential as anti-microbial targets.
Collapse
Affiliation(s)
- Magdalena Lukaszczyk
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050, Brussels, Belgium
| | - Brajabandhu Pradhan
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050, Brussels, Belgium
| | - Han Remaut
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050, Brussels, Belgium.
| |
Collapse
|
21
|
Molecular strategy for blocking isopeptide bond formation in nascent pilin proteins. Proc Natl Acad Sci U S A 2018; 115:9222-9227. [PMID: 30150415 DOI: 10.1073/pnas.1807689115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bacteria anchor to their host cells through their adhesive pili, which must resist the large mechanical stresses induced by the host as it attempts to dislodge the pathogens. The pili of gram-positive bacteria are constructed as a single polypeptide made of hundreds of pilin repeats, which contain intramolecular isopeptide bonds strategically located in the structure to prevent their unfolding under force, protecting the pilus from degradation by extant proteases and oxygen radicals. Here, we demonstrate the design of a short peptide that blocks the formation of the isopeptide bond present in the pilin Spy0128 from the human pathogen Streptococcus pyogenes, resulting in mechanically labile pilin domains. We use a combination of protein engineering and atomic-force microscopy force spectroscopy to demonstrate that the peptide blocks the formation of the native isopeptide bond and compromises the mechanics of the domain. While an intact Spy0128 is inextensible at any force, peptide-modified Spy0128 pilins readily unfold at very low forces, marking the abrogation of the intramolecular isopeptide bond as well as the absence of a stable pilin fold. We propose that isopeptide-blocking peptides could be further developed as a type of highly specific antiadhesive antibiotics to treat gram-positive pathogens.
Collapse
|
22
|
Chaurasia P, Pratap S, Palva A, von Ossowski I, Krishnan V. Bent conformation of a backbone pilin N-terminal domain supports a three-stage pilus assembly mechanism. Commun Biol 2018; 1:94. [PMID: 30271975 PMCID: PMC6123636 DOI: 10.1038/s42003-018-0100-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/21/2018] [Indexed: 12/31/2022] Open
Abstract
Effective colonization of host cells by some Gram-positive bacteria often involves using lengthy, adhesive macromolecular structures called sortase-dependent pili. Among commensals, the gut-adapted Lactobacillus rhamnosus GG strain encodes the operons for two varieties of these pili (SpaCBA and SpaFED), with each structure consisting of backbone, tip, and basal pilin subunits. Although the tertiary structure was recently solved for the backbone subunit (SpaA) of the SpaCBA pilus, no structural information exists for its counterpart in the SpaFED pilus. Here, we report several crystal structures for the SpaD backbone pilin, two of which capture the N-terminal domain in either the closed (linear) or open (bent) conformation. To our knowledge, this is the first observation of the bent conformation in Gram-positive pilin structures. Based on this bent conformation, we suggest a three-stage model, which we call the expose-ligate-seal mechanism, for the docking and assembly of backbone pilins into the sortase-dependent pilus. Priyanka Chaurasia et al. report crystal structures of the SpaD backbone pilin from a gut-adapted bacteria, Lactobacillus rhamnosus. The observed bent conformation of the N-terminal domain has not been seen in other Gram-positive pilin structures.
Collapse
Affiliation(s)
- Priyanka Chaurasia
- Laboratory of Structural Microbiology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India.,Department of Biotechnology, Manipal University, Manipal, Karnataka, 576104, India
| | - Shivendra Pratap
- Laboratory of Structural Microbiology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Airi Palva
- Department of Veterinary Biosciences, University of Helsinki, FIN-00014, Helsinki, Finland
| | - Ingemar von Ossowski
- Department of Veterinary Biosciences, University of Helsinki, FIN-00014, Helsinki, Finland
| | - Vengadesan Krishnan
- Laboratory of Structural Microbiology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India.
| |
Collapse
|
23
|
Di Martino P. Bacterial adherence: much more than a bond. AIMS Microbiol 2018; 4:563-566. [PMID: 31294233 PMCID: PMC6604948 DOI: 10.3934/microbiol.2018.3.563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 11/29/2022] Open
Affiliation(s)
- Patrick Di Martino
- Groupe Biofilm et Comportement Microbien aux Interfaces, Laboratoire ERRMECe-EA1391, Université de Cergy-Pontoise, rue Descartes site de Neuville-sur-Oise 95031 Cergy-Pontoise, cedex France
| |
Collapse
|
24
|
Prieto-Borja L, Conde A, Arenas MA, de Damborenea JJ, Esteban J. Influence of exposure time on the release of bacteria from a biofilm on Ti6Al4V discs using sonication: An in vitro model. Diagn Microbiol Infect Dis 2017; 89:258-261. [PMID: 29037465 DOI: 10.1016/j.diagmicrobio.2017.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/25/2017] [Accepted: 08/22/2017] [Indexed: 01/05/2023]
Abstract
Implant sonication is considered a useful method for the diagnosis of implant-related infections. We designed an in vitro study using Ti6Al4V discs and 5 different bacteria to determine the optimal sonication time for recovery of most bacteria tested to enable use of sonication in clinical practice for microbiological diagnosis of implant-related infections. We carried out a specific protocol for the adherence and subsequent biofilm formation on the materials used. The discs were then sonicated and the retrieved bacteria were quantified. From minute 1 to 5, the amount of recovered organisms grew progressively for all bacteria. Between minute 6 and minute 10, the number was irregular for all strains except E. coli, though no pattern was evidenced. E. coli was the only microorganism with a progressive increase in liberation throughout the process. Significant differences were observed in each of the 10minutes analyzed as concerns the release of the 5 strains (P<0.021) as well as in the mean dislodgement (of the 10minutes) of all tested strains (P<0.00001). Considering that infections in which biofilms are involved could be polymicrobial, we concluded that 5minutes is the optimal time of sonication in order to recover the maximum amount of most bacteria attached to Ti6Al4V discs.
Collapse
Affiliation(s)
- Laura Prieto-Borja
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain.
| | - Ana Conde
- Centro Nacional de Investigaciones Metalúrgicas CENIM/CSIC, Madrid, Spain
| | - María A Arenas
- Centro Nacional de Investigaciones Metalúrgicas CENIM/CSIC, Madrid, Spain
| | | | - Jaime Esteban
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| |
Collapse
|
25
|
The Sortase-Dependent Fimbriome of the Genus Bifidobacterium: Extracellular Structures with Potential To Modulate Microbe-Host Dialogue. Appl Environ Microbiol 2017; 83:AEM.01295-17. [PMID: 28754709 DOI: 10.1128/aem.01295-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/25/2017] [Indexed: 12/21/2022] Open
Abstract
Bifidobacteria are important gut commensals of mammals, including humans, of any age. However, the molecular mechanisms by which these microorganisms establish themselves in the mammalian gut and persist in this environment are largely unknown. Here, we analyzed the genetic diversity of the predicted arsenal of sortase-dependent pili of known and sequenced members of the Bifidobacterium genus and constructed a bifidobacterial sortase-dependent fimbriome database. Our analyses revealed considerable genetic variability of the sortase-dependent fimbriome among bifidobacterial (sub)species, which appears to have been due to horizontal gene transfer events and for which we were able to perform evolutionary mapping. Functional assessment by transcriptome analysis and binding assays involving different substrates demonstrates how bifidobacterial pili are pivotal in promoting various abilities for adhesion to glycans and extracellular matrix proteins, thereby supporting the ecological success of bifidobacteria in the mammalian gut.IMPORTANCE Adhesion of bifidobacterial cells to the mucosa of the large intestine is considered a hallmark for the persistence and colonization of these bacteria in the human gut. In this context, we analyzed the genetic diversity of the predicted arsenal of sortase-dependent pili of known and sequenced members of the Bifidobacterium genus, and constructed a bifidobacterial sortase-dependent fimbriome database. Our analyses revealed considerable genetic variability of the sortase-dependent fimbriome among bifidobacterial (sub)species, which appears to have been due to horizontal gene transfer events. In addition, functional assessment by transcriptome analysis and binding assays involving different substrates demonstrates how bifidobacterial pili are crucial in promoting various abilities for adhesion to glycans and extracellular matrix proteins, thereby supporting the ecological success of bifidobacteria in the mammalian gut. This study represents a complete genomic study regarding the presence of fimbriae in the genus Bifidobacterium.
Collapse
|
26
|
von Ossowski I. Novel Molecular Insights about Lactobacillar Sortase-Dependent Piliation. Int J Mol Sci 2017; 18:ijms18071551. [PMID: 28718795 PMCID: PMC5536039 DOI: 10.3390/ijms18071551] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/11/2017] [Accepted: 07/14/2017] [Indexed: 01/09/2023] Open
Abstract
One of the more conspicuous structural features that punctuate the outer cell surface of certain bacterial Gram-positive genera and species is the sortase-dependent pilus. As these adhesive and variable-length protrusions jut outward from the cell, they provide a physically expedient and useful means for the initial contact between a bacterium and its ecological milieu. The sortase-dependent pilus displays an elongated macromolecular architecture consisting of two to three types of monomeric protein subunits (pilins), each with their own specific function and location, and that are joined together covalently by the transpeptidyl activity of a pilus-specific C-type sortase enzyme. Sortase-dependent pili were first detected among the Gram-positive pathogens and subsequently categorized as an essential virulence factor for host colonization and tissue invasion by these harmful bacteria. However, the sortase-dependent pilus was rebranded as also a niche-adaptation factor after it was revealed that “friendly” Gram-positive commensals exhibit the same kind of pilus structures, which includes two contrasting gut-adapted species from the Lactobacillus genus, allochthonous Lactobacillus rhamnosus and autochthonous Lactobacillus ruminis. This review will highlight and discuss what has been learned from the latest research carried out and published on these lactobacillar pilus types.
Collapse
Affiliation(s)
- Ingemar von Ossowski
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki FIN-00014, Finland.
| |
Collapse
|
27
|
Probing the potential of CnaB-type domains for the design of tag/catcher systems. PLoS One 2017; 12:e0179740. [PMID: 28654665 PMCID: PMC5487036 DOI: 10.1371/journal.pone.0179740] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 06/02/2017] [Indexed: 01/06/2023] Open
Abstract
Building proteins into larger, post-translational assemblies in a defined and stable way is still a challenging task. A promising approach relies on so-called tag/catcher systems that are fused to the proteins of interest and allow a durable linkage via covalent intermolecular bonds. Tags and catchers are generated by splitting protein domains that contain intramolecular isopeptide or ester bonds that form autocatalytically under physiological conditions. There are already numerous biotechnological and medical applications that demonstrate the usefulness of covalent linkages mediated by these systems. Additional covalent tag/catcher systems would allow creating more complex and ultra-stable protein architectures and networks. Two of the presently available tag/catcher systems were derived from closely related CnaB-domains of Streptococcus pyogenes and Streptococcus dysgalactiae proteins. However, it is unclear whether domain splitting is generally tolerated within the CnaB-family or only by a small subset of these domains. To address this point, we have selected a set of four CnaB domains of low sequence similarity and characterized the resulting tag/catcher systems by computational and experimental methods. Experimental testing for intermolecular isopeptide bond formation demonstrated two of the four systems to be functional. For these two systems length and sequence variations of the peptide tags were investigated revealing only a relatively small effect on the efficiency of the reaction. Our study suggests that splitting into tag and catcher moieties is tolerated by a significant portion of the naturally occurring CnaB-domains, thus providing a large reservoir for the design of novel tag/catcher systems.
Collapse
|
28
|
Mishra AK, Megta AK, Palva A, von Ossowski I, Krishnan V. Crystallization and X-ray diffraction analysis of SpaE, a basal pilus protein from the gut-adapted Lactobacillus rhamnosus GG. Acta Crystallogr F Struct Biol Commun 2017; 73:321-327. [PMID: 28580919 PMCID: PMC5458388 DOI: 10.1107/s2053230x17006963] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 05/09/2017] [Indexed: 12/19/2022] Open
Abstract
SpaE is the predicted basal pilin subunit in the sortase-dependent SpaFED pilus from the gut-adapted and commensal Lactobacillus rhamnosus GG. Thus far, structural characterization of the cell-wall-anchoring basal pilins has remained difficult and has been limited to only a few examples from pathogenic genera and species. To gain a further structural understanding of the molecular mechanisms that are involved in the anchoring and assembly of sortase-dependent pili in less harmful bacteria, L. rhamnosus GG SpaE for crystallization was produced by recombinant expression in Escherichia coli. Although several attempts to crystallize the SpaE protein were unsuccessful, trigonal crystals that diffracted to a resolution of 3.1 Å were eventually produced using PEG 3350 as a precipitant and high protein concentrations. Further optimization with a combination of additives led to the generation of SpaE crystals in an orthorhombic form that diffracted to a higher resolution of 1.5 Å. To expedite structure determination by SAD phasing, selenium-substituted (orthorhombic) SpaE crystals were grown and X-ray diffraction data were collected to 1.8 Å resolution.
Collapse
Affiliation(s)
- Arjun K. Mishra
- Laboratory of Structural Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121 001, India
| | - Abhin Kumar Megta
- Laboratory of Structural Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121 001, India
- School of Biotechnology, KIIT University, Odisha 751 024, India
| | - Airi Palva
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | | | - Vengadesan Krishnan
- Laboratory of Structural Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121 001, India
| |
Collapse
|
29
|
Kattke MD, Chan AH, Duong A, Sexton DL, Sawaya MR, Cascio D, Elliot MA, Clubb RT. Crystal Structure of the Streptomyces coelicolor Sortase E1 Transpeptidase Provides Insight into the Binding Mode of the Novel Class E Sorting Signal. PLoS One 2016; 11:e0167763. [PMID: 27936128 PMCID: PMC5148588 DOI: 10.1371/journal.pone.0167763] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/18/2016] [Indexed: 01/17/2023] Open
Abstract
Many species of Gram-positive bacteria use sortase transpeptidases to covalently affix proteins to their cell wall or to assemble pili. Sortase-displayed proteins perform critical and diverse functions for cell survival, including cell adhesion, nutrient acquisition, and morphological development, among others. Based on their amino acid sequences, there are at least six types of sortases (class A to F enzymes); however, class E enzymes have not been extensively studied. Class E sortases are used by soil and freshwater-dwelling Actinobacteria to display proteins that contain a non-canonical LAXTG sorting signal, which differs from 90% of known sorting signals by substitution of alanine for proline. Here we report the first crystal structure of a class E sortase, the 1.93 Å resolution structure of the SrtE1 enzyme from Streptomyces coelicolor. The active site is bound to a tripeptide, providing insight into the mechanism of substrate binding. SrtE1 possesses β3/β4 and β6/β7 active site loops that contact the LAXTG substrate and are structurally distinct from other classes. We propose that SrtE1 and other class E sortases employ a conserved tyrosine residue within their β3/β4 loop to recognize the amide nitrogen of alanine at position P3 of the sorting signal through a hydrogen bond, as seen here. Incapability of hydrogen-bonding with canonical proline-containing sorting signals likely contributes to class E substrate specificity. Furthermore, we demonstrate that surface anchoring of proteins involved in aerial hyphae formation requires an N-terminal segment in SrtE1 that is presumably positioned within the cytoplasm. Combined, our results reveal unique features within class E enzymes that enable them to recognize distinct sorting signals, and could facilitate the development of substrate-based inhibitors of this important enzyme family.
Collapse
Affiliation(s)
- Michele D. Kattke
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Albert H. Chan
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Andrew Duong
- Department of Biology and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Danielle L. Sexton
- Department of Biology and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Michael R. Sawaya
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Duilio Cascio
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Marie A. Elliot
- Department of Biology and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Robert T. Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, United States of America
- UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
30
|
Siegel SD, Liu J, Ton-That H. Biogenesis of the Gram-positive bacterial cell envelope. Curr Opin Microbiol 2016; 34:31-37. [PMID: 27497053 PMCID: PMC5164837 DOI: 10.1016/j.mib.2016.07.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 07/19/2016] [Indexed: 01/29/2023]
Abstract
The Gram-positive cell envelope serves as a molecular platform for surface display of capsular polysaccharides, wall teichoic acids (WTAs), lipoteichoic acids (LTAs), lipoproteins, surface proteins and pili. WTAs, LTAs, and sortase-assembled pili are a few features that make the Gram-positive cell envelope distinct from the Gram-negative counterpart. Interestingly, a set of LytR-CpsA-Psr family proteins, found in all Gram-positives but limited to a minority of Gram-negative organisms, plays divergent functions, while decorating the cell envelope with glycans. Furthermore, a phylum of Gram-positive bacteria, the actinobacteria, appear to employ oxidative protein folding as the major folding mechanism, typically occurring in an oxidizing environment of the Gram-negative periplasm. These distinctive features will be highlighted, along with recent findings in the cell envelope biogenesis.
Collapse
Affiliation(s)
- Sara D Siegel
- Department of Microbiology & Molecular Genetics, University of Texas McGovern Medical School, Houston, TX, USA
| | - Jun Liu
- Department of Pathology & Laboratory Medicine, University of Texas McGovern Medical School, Houston, TX, USA
| | - Hung Ton-That
- Department of Microbiology & Molecular Genetics, University of Texas McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
31
|
Chaurasia P, Pratap S, von Ossowski I, Palva A, Krishnan V. New insights about pilus formation in gut-adapted Lactobacillus rhamnosus GG from the crystal structure of the SpaA backbone-pilin subunit. Sci Rep 2016; 6:28664. [PMID: 27349405 PMCID: PMC4923907 DOI: 10.1038/srep28664] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/08/2016] [Indexed: 12/11/2022] Open
Abstract
Thus far, all solved structures of pilin-proteins comprising sortase-assembled pili are from pathogenic genera and species. Here, we present the first crystal structure of a pilin subunit (SpaA) from a non-pathogen host (Lactobacillus rhamnosus GG). SpaA consists of two tandem CnaB-type domains, each with an isopeptide bond and E-box motif. Intriguingly, while the isopeptide bond in the N-terminal domain forms between lysine and asparagine, the one in the C-terminal domain atypically involves aspartate. We also solved crystal structures of mutant proteins where residues implicated in forming isopeptide bonds were replaced. Expectedly, the E-box-substituted E139A mutant lacks an isopeptide bond in the N-terminal domain. However, the C-terminal E269A substitution gave two structures; one of both domains with their isopeptide bonds present, and another of only the N-terminal domain, but with an unformed isopeptide bond and significant conformational changes. This latter crystal structure has never been observed for any other Gram-positive pilin. Notably, the C-terminal isopeptide bond still forms in D295N-substituted SpaA, irrespective of E269 being present or absent. Although E-box mutations affect SpaA proteolytic and thermal stability, a cumulative effect perturbing normal pilus polymerization was unobserved. A model showing the polymerized arrangement of SpaA within the SpaCBA pilus is proposed.
Collapse
Affiliation(s)
- Priyanka Chaurasia
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad-121 001, India.,Department of Biotechnology, Manipal University, Karnataka, 576104, India
| | - Shivendra Pratap
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad-121 001, India
| | | | - Airi Palva
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Vengadesan Krishnan
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad-121 001, India
| |
Collapse
|
32
|
Jemima Beulin DS, Ponnuraj K. Steered molecular dynamics study reveals insights into the function of the repetitive B region of collagen- and fibrinogen-binding MSCRAMMs. J Biomol Struct Dyn 2016; 35:535-550. [PMID: 26861150 DOI: 10.1080/07391102.2016.1152566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
MSCRAMMs (microbial surface components recognizing adhesive matrix molecules) are modular proteins covalently anchored in the bacterial cell wall of many Gram-positive bacteria. The N-terminal region of most MSCRAMMs carries the ligand-binding domains (A region) which specifically target the host extracellular matrix (ECM) proteins such as collagen, fibrinogen and fibronectin. In Staphylococcus aureus Cna, the prototype collagen-binding MSCRAMM, the A region is followed by a repetitive B region which is found to be conserved among many Gram-positive bacteria. This conservation signifies an important functional role for the B region which is made of repetitive domains. It was suggested that this region could act as a 'stalk' as well as a 'spring' to present the ligand-binding A region, away from the bacterial surface. But there is no clear functional implication of this region available till date. Each repetitive domain in the B region possesses a variant of the Ig fold called the CnaB fold. Additionally, the B repeats are also paired and the pairs are clustered together. To investigate if the B domains have a function similar to the Ig domains in the I-band region of the giant muscle protein, titin, steered molecular dynamics simulations of one, two and four B repeats of Cna were carried out. The results of the simulations suggest that the B region could provide mechanical stability, extensibility and elasticity to Cna due to the CnaB fold as well as the clustered arrangement of their domains. This study thus provided further insights into the biological underpinnings of adhesin-host interaction.
Collapse
Affiliation(s)
- D S Jemima Beulin
- a Centre of Advanced Study in Crystallography and Biophysics , University of Madras , Guindy Campus, Chennai 600 025 , India
| | - Karthe Ponnuraj
- a Centre of Advanced Study in Crystallography and Biophysics , University of Madras , Guindy Campus, Chennai 600 025 , India
| |
Collapse
|
33
|
Isopeptide bond in collagen- and fibrinogen-binding MSCRAMMs. Biophys Rev 2016; 8:75-83. [PMID: 28510145 DOI: 10.1007/s12551-015-0191-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022] Open
Abstract
The internal isopeptide bonds are amide bonds formed autocatalytically between the side chains of Lys and Asn/Asp residues and have been discovered recently. These bonds are well conserved in Gram-positive bacterial pilin proteins and are also observed over a wide range of Gram-positive bacterial surface proteins. The presence of these bonds confers the pilus subunits with remarkable properties in terms of thermal stability and resistance to proteases. Like pili, microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) are also surface proteins found only in Gram-positive bacteria. They specifically interact with the extracellular matrix (ECM) molecules like collagen, fibrinogen, fibronectin, laminin, etc. Many biophysical and biochemical studies have been carried out to characterize the isopeptide bonds in pili proteins from Gram-positive bacteria, but no attempts have been made to study the isopeptide bonds in MSCRAMMs. This short review aims to study the significance of the isopeptide bonds in relation to their function, by analyzing the crystal structures of collagen- and fibrinogen-binding MSCRAMMs. In this analysis, interestingly, we observed that the putative isopeptide bonds are restricted to the collagen-binding MSCRAMMs. Based on analogy with bacterial pilus subunits, we hypothesize that the collagen-binding MSCRAMMs possessing putative isopeptide bonds exhibit similar structural properties, which could help the bacteria in colonizing the host and provide resistance against host-defense mechanisms.
Collapse
|
34
|
Yu X, Jaatinen A, Rintahaka J, Hynönen U, Lyytinen O, Kant R, Åvall-Jääskeläinen S, von Ossowski I, Palva A. Human Gut-Commensalic Lactobacillus ruminis ATCC 25644 Displays Sortase-Assembled Surface Piliation: Phenotypic Characterization of Its Fimbrial Operon through In Silico Predictive Analysis and Recombinant Expression in Lactococcus lactis. PLoS One 2015; 10:e0145718. [PMID: 26709916 PMCID: PMC4692528 DOI: 10.1371/journal.pone.0145718] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 12/08/2015] [Indexed: 02/08/2023] Open
Abstract
Sortase-dependent surface pili (or fimbriae) in Gram-positive bacteria are well documented as a key virulence factor for certain harmful opportunistic pathogens. However, it is only recently known that these multi-subunit protein appendages are also belonging to the “friendly” commensals and now, with this new perspective, they have come to be categorized as a niche-adaptation factor as well. In this regard, it was shown earlier that sortase-assembled piliation is a native fixture of two human intestinal commensalics (i.e., Lactobacillus rhamnosus and Bifidobacterium bifidum), and correspondingly where the pili involved have a significant role in cellular adhesion and immunomodulation processes. We now reveal that intestinal indigenous (or autochthonous) Lactobacillus ruminis is another surface-piliated commensal lactobacillar species. Heeding to in silico expectations, the predicted loci for the LrpCBA-called pili are organized tandemly in the L. ruminis genome as a canonical fimbrial operon, which then encodes for three pilin-proteins and a single C-type sortase enzyme. Through electron microscopic means, we showed that these pilus formations are a surface assemblage of tip, basal, and backbone pilin subunits (respectively named LrpC, LrpB, and LrpA) in L. ruminis, and also when expressed recombinantly in Lactococcus lactis. As well, by using the recombinant-piliated lactococci, we could define certain ecologically relevant phenotypic traits, such as the ability to adhere to extracellular matrix proteins and gut epithelial cells, but also to effectuate an induced dampening on Toll-like receptor 2 signaling and interleukin-8 responsiveness in immune-related cells. Within the context of the intestinal microcosm, by wielding such niche-advantageous cell-surface properties the LrpCBA pilus would undoubtedly have a requisite functional role in the colonization dynamics of L. ruminis indigeneity. Our study provides only the second description of a native-piliated Lactobacillus species, but at the same time also involves the structural and functional characterization of a third type of lactobacillar pilus.
Collapse
Affiliation(s)
- Xia Yu
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Annukka Jaatinen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna Rintahaka
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Ulla Hynönen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Outi Lyytinen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Ravi Kant
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Silja Åvall-Jääskeläinen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Ingemar von Ossowski
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- * E-mail: (IvO); (AP)
| | - Airi Palva
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- * E-mail: (IvO); (AP)
| |
Collapse
|