1
|
Urzúa Lehuedé T, Berdion Gabarain V, Ibeas MA, Salinas-Grenet H, Achá-Escobar R, Moyano TC, Ferrero L, Núñez-Lillo G, Pérez-Díaz J, Perotti MF, Miguel VN, Spies FP, Rosas MA, Kawamura A, Rodríguez-García DR, Kim AR, Nolan T, Moreno AA, Sugimoto K, Perrimon N, Sanguinet KA, Meneses C, Chan RL, Ariel F, Alvarez JM, Estevez JM. Two antagonistic gene regulatory networks drive Arabidopsis root hair growth at low temperature linked to a low-nutrient environment. THE NEW PHYTOLOGIST 2025; 245:2645-2664. [PMID: 39891516 DOI: 10.1111/nph.20406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 12/20/2024] [Indexed: 02/03/2025]
Abstract
Root hair (RH) cells can elongate to several hundred times their initial size, and are an ideal model system for investigating cell size control. Their development is influenced by both endogenous and external signals, which are combined to form an integrative response. Surprisingly, a low-temperature condition of 10°C causes increased RH growth in Arabidopsis and in several monocots, even when the development of the rest of the plant is halted. Previously, we demonstrated a strong correlation between RH growth response and a significant decrease in nutrient availability in the growth medium under low-temperature conditions. However, the molecular basis responsible for receiving and transmitting signals related to the availability of nutrients in the soil, and their relation to plant development, remain largely unknown. We have discovered two antagonic gene regulatory networks (GRNs) controlling RH early transcriptome responses to low temperature. One GNR enhances RH growth and it is commanded by the transcription factors (TFs) ROOT HAIR DEFECTIVE 6 (RHD6), HAIR DEFECTIVE 6-LIKE 2 and 4 (RSL2-RSL4) and a member of the homeodomain leucine zipper (HD-Zip I) group I 16 (AtHB16). On the other hand, a second GRN was identified as a negative regulator of RH growth at low temperature and it is composed by the trihelix TF GT2-LIKE1 (GTL1) and the associated DF1, a previously unidentified MYB-like TF (AT2G01060) and several members of HD-Zip I group (AtHB3, AtHB13, AtHB20, AtHB23). Functional analysis of both GRNs highlights a complex regulation of RH growth response to low temperature, and more importantly, these discoveries enhance our comprehension of how plants synchronize RH growth in response to variations in temperature at the cellular level.
Collapse
Affiliation(s)
- Tomás Urzúa Lehuedé
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile
- ANID - Millennium Science Initiative Program - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, 8331150, Chile
- ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago, 7500000, Chile
| | - Victoria Berdion Gabarain
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
| | - Miguel Angel Ibeas
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile
- ANID - Millennium Science Initiative Program - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, 8331150, Chile
- ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago, 7500000, Chile
| | - Hernán Salinas-Grenet
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile
- ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago, 7500000, Chile
| | - Romina Achá-Escobar
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile
- ANID - Millennium Science Initiative Program - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, 8331150, Chile
| | - Tomás C Moyano
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile
- ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago, 7500000, Chile
| | - Lucia Ferrero
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral-CONICET, Facultad de Bioquímica y Ciencias Biológicas, CCT Santa Fe, Colectora Ruta Nacional 168 km 0, Santa Fe, 3000, Argentina
| | - Gerardo Núñez-Lillo
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Calle San Francisco s/n, La Palma, Quillota, 2260000, Chile
| | - Jorge Pérez-Díaz
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile
- ANID - Millennium Science Initiative Program - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, 8331150, Chile
| | - María Florencia Perotti
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral-CONICET, Facultad de Bioquímica y Ciencias Biológicas, CCT Santa Fe, Colectora Ruta Nacional 168 km 0, Santa Fe, 3000, Argentina
| | - Virginia Natali Miguel
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral-CONICET, Facultad de Bioquímica y Ciencias Biológicas, CCT Santa Fe, Colectora Ruta Nacional 168 km 0, Santa Fe, 3000, Argentina
| | - Fiorella Paola Spies
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral-CONICET, Facultad de Bioquímica y Ciencias Biológicas, CCT Santa Fe, Colectora Ruta Nacional 168 km 0, Santa Fe, 3000, Argentina
| | - Miguel A Rosas
- Department of Crop and Soil Sciences and Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA, 99164, USA
| | - Ayako Kawamura
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Diana R Rodríguez-García
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
| | - Ah-Ram Kim
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Trevor Nolan
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA, 91125, USA
| | - Adrian A Moreno
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Karen A Sanguinet
- Department of Crop and Soil Sciences and Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA, 99164, USA
| | - Claudio Meneses
- ANID - Millennium Science Initiative Program - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, 8331150, Chile
- Departamento de Fruticultura y Enología, Facultad de Agronomía y Sistemas Naturales, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
- Fondo de Desarrollo de Áreas Prioritarias, Center for Genome Regulation, Santiago, 6904411, Chile
| | - Raquel L Chan
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral-CONICET, Facultad de Bioquímica y Ciencias Biológicas, CCT Santa Fe, Colectora Ruta Nacional 168 km 0, Santa Fe, 3000, Argentina
| | - Federico Ariel
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral-CONICET, Facultad de Bioquímica y Ciencias Biológicas, CCT Santa Fe, Colectora Ruta Nacional 168 km 0, Santa Fe, 3000, Argentina
| | - Jose M Alvarez
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile
- ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago, 7500000, Chile
- ANID - Millenium Science Initiative Program - Millenium Nucleus in Data Science for Plant Resilience (Phytolearning), Santiago, 8370186, Chile
| | - José M Estevez
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile
- ANID - Millennium Science Initiative Program - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, 8331150, Chile
- ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago, 7500000, Chile
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
| |
Collapse
|
2
|
Mao WT, Hsu WH, Song JL, Yang CH. The HD-ZIP II Gene PaHAT14 Increases Cuticle Deposition by Downregulating ERF Gene PaERF105 in Phalaenopsis. PLANT & CELL PHYSIOLOGY 2024; 65:1751-1768. [PMID: 38985662 DOI: 10.1093/pcp/pcae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
To analyze the genes involved in orchid floral development, a homeodomain-leucine zipper II gene PaHAT14, which is specifically and highly expressed in perianth during early flower development, was identified from Phalaenopsis. Transgenic Arabidopsis plants expressing 35S::PaHAT14 and 35S::PaHAT14 + SRDX (fused with the repressor motif SRDX) exhibited similar altered phenotypes, including small leaves, early flowering and bending petals with increased cuticle production. This suggests that PaHAT14 acts as a repressor. In contrast, transgenic Arabidopsis plants expressing 35S::PaHAT14 + VP16 (fused with the activation domain VP16) exhibited curled leaves, late flowering and folded petals with decreased cuticle production within hardly opened flowers. Additionally, the expression of the ERF gene DEWAX2, which negatively regulates cuticular wax biosynthesis, was downregulated in 35S::PaHAT14 and 35S::PaHAT14 + SRDX transgenic Arabidopsis, while it was upregulated in 35S::PaHAT14 + VP16 transgenic Arabidopsis. Furthermore, transient overexpression of PaHAT14 in Phalaenopsis petal/sepal increased cuticle deposition due to the downregulation of PaERF105, a Phalaenopsis DEWAX2 ortholog. On the other hand, transient overexpression of PaERF105 decreased cuticle deposition, whereas cuticle deposition increased and the rate of epidermal water loss was reduced in PaERF105 virus-induced gene silencing Phalaenopsis flowers. Moreover, ectopic expression of PaERF105 not only produced phenotypes similar to those in 35S::PaHAT14 + VP16 Arabidopsis but also compensated for the altered phenotypes observed in 35S::PaHAT14 and 35S::PaHAT14 + SRDX Arabidopsis. These results suggest that PaHAT14 promotes cuticle deposition by negatively regulating downstream gene PaERF105 in orchid flowers.
Collapse
Affiliation(s)
- Wan-Ting Mao
- Institute of Biotechnology, National Chung Hsing University, Taichung 40227 ROC, Taiwan
| | - Wei-Han Hsu
- Institute of Biotechnology, National Chung Hsing University, Taichung 40227 ROC, Taiwan
| | - Jia-Lin Song
- Institute of Biotechnology, National Chung Hsing University, Taichung 40227 ROC, Taiwan
| | - Chang-Hsien Yang
- Institute of Biotechnology, National Chung Hsing University, Taichung 40227 ROC, Taiwan
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung 40227 ROC, Taiwan
| |
Collapse
|
3
|
Chu CY, Lin LF, Lai SC, Yang JH, Chou ML. FaTEDT1L of Octoploid Cultivated Strawberry Functions as a Transcriptional Activator and Enhances Abiotic Stress Tolerance in Transgenic Arabidopsis. Int J Mol Sci 2024; 25:10091. [PMID: 39337577 PMCID: PMC11432484 DOI: 10.3390/ijms251810091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Plants may encounter abiotic stresses, such as drought, flooding, salinity, and extreme temperatures, thereby negatively affecting their growth, development, and reproduction. In order to enhance their tolerance to such stresses, plants have developed intricate signaling networks that regulate stress-responsive gene expression. For example, Arabidopsis Enhanced Drought Tolerance1/HOMEODOMAIN GLABROUS 11 (AtEDT1/HDG11), one of the transcription factor genes from the group IV of homeodomain-leucine zipper (HD-ZIP) gene family, has been shown to increase drought tolerance in various transgenic plants. However, the underlying molecular mechanisms of enhanced stress tolerance remain unclear. In this study, we identified a homologous gene related to AtEDT1/HDG11, named FaTEDT1L, from the transcriptome sequencing database of cultivated strawberry. Phylogenetic analysis revealed the close relationship of FaTEDT1L with AtEDT1/HDG11, which is one of the group IV members of the HD-ZIP gene family. Yeast one-hybrid analysis showed that FaTEDT1L functions as a transcriptional activator. Transgenic Arabidopsis plants overexpressing FaTEDT1L under the control of the cauliflower mosaic virus (CaMV) 35S promoter exhibited significantly enhanced tolerance to osmotic stress (both drought and salinity) when compared to the wild-type (WT) plants. Under osmotic stress, the average root length was 3.63 ± 0.83 cm, 4.20 ± 1.03 cm, and 4.60 ± 1.14 cm for WT, 35S::FaTEDT1L T2 #3, and 35S:: FaTEDT1L T2 #5, respectively. Substantially increased root length in 35S::FaTEDT1L T2 #3 and 35S::FaTEDT1L T2 #5 was noted when compared to the WT. In addition, the average water loss rates were 64%, 57.1%, and 55.6% for WT, 35S::FaTEDT1L T2 #3, and 35S::FaTEDT1L T2 #5, respectively, after drought treatment, indicating a significant decrease in water loss rate of 35S:: FaTEDT1L T2 #3 and 35S::FaTEDT1L T2 #5 is a critical factor in enhancing plant drought resistance. These findings thus highlight the crucial role of FaTEDT1L in mitigating drought and salt stresses and regulating plant osmotic stress tolerance. Altogether, FaTEDT1L shows its potential usage as a candidate gene for strawberry breeding in improving crop resilience and increasing agricultural productivity under adverse environmental conditions.
Collapse
Affiliation(s)
- Ching-Ying Chu
- Department of Life Sciences, Tzu Chi University, Hualien 97004, Taiwan
| | - Lee-Fong Lin
- Department of Life Sciences, Tzu Chi University, Hualien 97004, Taiwan
- Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien 97004, Taiwan
| | - Shang-Chih Lai
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Jui-Hung Yang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 30011, Taiwan
| | - Ming-Lun Chou
- Department of Life Sciences, Tzu Chi University, Hualien 97004, Taiwan
- Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien 97004, Taiwan
| |
Collapse
|
4
|
Bhat A, Mishra S, Kaul S, Dhar MK. Comparative analysis of miRNA expression profiles in flowering and non-flowering tissue of Crocus sativus L. PROTOPLASMA 2024; 261:749-769. [PMID: 38340171 DOI: 10.1007/s00709-024-01931-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
Crocus sativus is a valuable plant due to the presence of apocarotenoids in its stigma. Considerable work has been done in the past to understand the apocarotenoid biosynthetic pathway in saffron. However, the reports on understanding the regulation of flowering at the post-transcriptional level are meagre. The study aimed to discover the candidate miRNAs, target genes, transcription factors (TFs), and apocarotenoid biosynthetic pathway genes associated with the regulation and transition of flowering in C. sativus. In the present investigation, miRNA profiling was performed in flowering and non-flowering corms of saffron, along with expression analysis of apocarotenoid genes and transcription factors involved in the synthesis of secondary metabolites. Significant modulation in the expression of miR156, miR159, miR166, miR172, miR395, miR396, miR399, and miR408 gene families was observed. We obtained 36 known miRNAs (26 in flowering and 10 in non-flowering) and 64 novel miRNAs (40 in flowering and 24 in non-flowering) unique to specific tissues in our analysis. TFs, including CsMADS and CsMYb, showed significant modulation in expression in flowering tissue, followed by CsHB. Additionally, the miRNAs were predicted to be involved in carbohydrate metabolism, phytohormone signalling, regulation of flower development, and response to stress, cold, and defence. The comprehensive study has enhanced our understanding of the regulatory machinery comprising factors like phytohormones, abiotic stress, apocarotenoid genes, transcription factors, and miRNAs responsible for the synthesis of apocarotenoids and developmental processes during and after flowering.
Collapse
Affiliation(s)
- Archana Bhat
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, Jammu and Kashmir, India
| | - Sonal Mishra
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, Jammu and Kashmir, India
| | - Sanjana Kaul
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, Jammu and Kashmir, India
| | - Manoj Kumar Dhar
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, Jammu and Kashmir, India.
| |
Collapse
|
5
|
Sessa G, Carabelli M, Sassi M. The Ins and Outs of Homeodomain-Leucine Zipper/Hormone Networks in the Regulation of Plant Development. Int J Mol Sci 2024; 25:5657. [PMID: 38891845 PMCID: PMC11171833 DOI: 10.3390/ijms25115657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
The generation of complex plant architectures depends on the interactions among different molecular regulatory networks that control the growth of cells within tissues, ultimately shaping the final morphological features of each structure. The regulatory networks underlying tissue growth and overall plant shapes are composed of intricate webs of transcriptional regulators which synergize or compete to regulate the expression of downstream targets. Transcriptional regulation is intimately linked to phytohormone networks as transcription factors (TFs) might act as effectors or regulators of hormone signaling pathways, further enhancing the capacity and flexibility of molecular networks in shaping plant architectures. Here, we focus on homeodomain-leucine zipper (HD-ZIP) proteins, a class of plant-specific transcriptional regulators, and review their molecular connections with hormonal networks in different developmental contexts. We discuss how HD-ZIP proteins emerge as key regulators of hormone action in plants and further highlight the fundamental role that HD-ZIP/hormone networks play in the control of the body plan and plant growth.
Collapse
Affiliation(s)
| | | | - Massimiliano Sassi
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, 00185 Rome, Italy; (G.S.); (M.C.)
| |
Collapse
|
6
|
Wu Z, Li T, Zhang Y, Zhang D, Teng N. HD-Zip I protein LlHOX6 antagonizes homeobox protein LlHB16 to attenuate basal thermotolerance in lily. PLANT PHYSIOLOGY 2024; 194:1870-1888. [PMID: 37930281 DOI: 10.1093/plphys/kiad582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 09/28/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023]
Abstract
Homeodomain-leucine zipper (HD-Zip) I transcription factors are crucial for plant responses to drought, salt, and cold stresses. However, how they are associated with thermotolerance remains mostly unknown. We previously demonstrated that lily (Lilium longiflorum) LlHB16 (HOMEOBOX PROTEIN 16) promotes thermotolerance, whereas the roles of other HD-Zip I members are still unclear. Here, we conducted a transcriptomic analysis and identified a heat-responsive HD-Zip I gene, LlHOX6 (HOMEOBOX 6). We showed that LlHOX6 represses the establishment of basal thermotolerance in lily. LlHOX6 expression was rapidly activated by high temperature, and its protein localized to the nucleus. Heterologous expression of LlHOX6 in Arabidopsis (Arabidopsis thaliana) and overexpression in lily reduced their basal thermotolerance. In contrast, silencing LlHOX6 in lily elevated basal thermotolerance. Cooverexpressing or cosilencing LlHOX6 and LlHB16 in vivo compromised their functions in modulating basal thermotolerance. LlHOX6 interacted with itself and with LlHB16, although heterologous interactions were stronger than homologous ones. Notably, LlHOX6 directly bounds DNA elements to repress the expression of the LlHB16 target genes LlHSFA2 (HEAT STRESS TRANSCRIPTION FACTOR A2) and LlMBF1c (MULTIPROTEIN BRIDGING FACTOR 1C). Moreover, LlHB16 activated itself to form a positive feedback loop, while LlHOX6 repressed LlHB16 expression. The LlHOX6-LlHB16 heterooligomers exhibited stronger DNA binding to compete for LlHB16 homooligomers, thus weakening the transactivation ability of LlHB16 for LlHSFA2 and LlMBF1c and reducing its autoactivation. Altogether, our findings demonstrate that LlHOX6 interacts with LlHB16 to limit its transactivation, thereby impairing heat stress responses in lily.
Collapse
Affiliation(s)
- Ze Wu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Lily Department in Jiangsu Graduate Workstation of Nanjing Agricultural University and Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Nanjing 210043, China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ting Li
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Lily Department in Jiangsu Graduate Workstation of Nanjing Agricultural University and Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Nanjing 210043, China
| | - Yinyi Zhang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Lily Department in Jiangsu Graduate Workstation of Nanjing Agricultural University and Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Nanjing 210043, China
| | - Dehua Zhang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Lily Department in Jiangsu Graduate Workstation of Nanjing Agricultural University and Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Nanjing 210043, China
| | - Nianjun Teng
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Lily Department in Jiangsu Graduate Workstation of Nanjing Agricultural University and Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Nanjing 210043, China
| |
Collapse
|
7
|
Wang Y, Wang H, Yu C, Yan X, Chu J, Jiang B, Zhu J. Comprehensive bioinformation analysis of homeodomain-leucine zipper gene family and expression pattern of HD-Zip I under abiotic stress in Salix suchowensis. BMC Genomics 2024; 25:182. [PMID: 38360569 PMCID: PMC10870566 DOI: 10.1186/s12864-024-10067-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Homeodomain-leucine zipper (HD-Zip) transcription factors are plant-specific and play important roles in plant defense against environmental stresses. Identification and functional studies have been carried out in model plants such as rice, Arabidopsis thaliana, and poplar, but comprehensive analysis on the HD-Zip family of Salix suchowensis have not been reported. RESULTS A total of 55 HD-Zip genes were identified in the willow genome, unevenly distributed on 18 chromosomes except for chromosome 19. And segmental duplication events containing SsHD-Zip were detected on all chromosomes except chromosomes 13 and 19. The SsHD-Zip were classified into 4 subfamilies subfamilies (I-IV) according to the evolutionary analysis, and members of each subfamily shared similar domain structure and gene structure. The combination of GO annotation and promoter analysis showed that SsHD-Zip genes responded to multiple abiotic stresses. Furthermore, the results of qPCR analysis showed that the SsHD-Zip I gene exhibited different degrees of expression under salt stress, PEG treatment and heat treatment. Moreover, there was a synergistic effect between SsHD-Zip I genes under stress conditions based on coregulatory networks analysis. CONCLUSIONS In this study, HD-Zip transcription factors were systematically identified and analyzed at the whole genome level. These results preliminarily clarified the structural characteristics and related functions of willow HD-Zip family members, and it was found that SsHox34, SsHox36 and SsHox51 genes were significantly involved in the response to various stresses. Together, these findings laid the foundation for further research on the resistance functions of willow HD-Zip genes.
Collapse
Affiliation(s)
- Yujiao Wang
- Department of Cotton Research Institute, Anhui Academy of Agricultural Sciences, 230001, Hefei, China
| | - Hongjuan Wang
- Department of Cotton Research Institute, Anhui Academy of Agricultural Sciences, 230001, Hefei, China
| | - Chun Yu
- Department of Cotton Research Institute, Anhui Academy of Agricultural Sciences, 230001, Hefei, China
| | - Xiaoming Yan
- Department of Cotton Research Institute, Anhui Academy of Agricultural Sciences, 230001, Hefei, China
| | - Jiasong Chu
- Department of Cotton Research Institute, Anhui Academy of Agricultural Sciences, 230001, Hefei, China
| | - Benli Jiang
- Department of Cotton Research Institute, Anhui Academy of Agricultural Sciences, 230001, Hefei, China.
| | - Jiabao Zhu
- Department of Cotton Research Institute, Anhui Academy of Agricultural Sciences, 230001, Hefei, China.
| |
Collapse
|
8
|
Maeda N, Matsuta F, Noguchi T, Fujii A, Ishida H, Kitagawa Y, Ishikawa A. The Homeodomain-Leucine Zipper Subfamily I Contributes to Leaf Age- and Time-Dependent Resistance to Pathogens in Arabidopsis thaliana. Int J Mol Sci 2023; 24:16356. [PMID: 38003546 PMCID: PMC10671646 DOI: 10.3390/ijms242216356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
In Arabidopsis thaliana (Arabidopsis), nonhost resistance (NHR) is influenced by both leaf age and the moment of inoculation. While the circadian clock and photoperiod have been linked to the time-dependent regulation of NHR in Arabidopsis, the mechanism underlying leaf age-dependent NHR remains unclear. In this study, we investigated leaf age-dependent NHR to Pyricularia oryzae in Arabidopsis. Our findings revealed that this NHR type is regulated by both miR156-dependent and miR156-independent pathways. To identify the key players, we utilized rice-FOX Arabidopsis lines and identified the rice HD-Zip I OsHOX6 gene. Notably, OsHOX6 expression confers robust NHR to P. oryzae and Colletotrichum nymphaeae in Arabidopsis, with its effect being contingent upon leaf age. Moreover, we explored the role of AtHB7 and AtHB12, the Arabidopsis closest homologues of OsHOX6, by studying mutants and overexpressors in Arabidopsis-C. higginsianum interaction. AtHB7 and AtHB12 were found to contribute to both penetration resistance and post-penetration resistance to C. higginsianum in a leaf age- and time-dependent manner. These findings highlight the involvement of HD-Zip I AtHB7 and AtHB12, well-known regulators of development and abiotic stress responses, in biotic stress responses in Arabidopsis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Atsushi Ishikawa
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui 910-1195, Japan
| |
Collapse
|
9
|
Patel A, Miles A, Strackhouse T, Cook L, Leng S, Patel S, Klinger K, Rudrabhatla S, Potlakayala SD. Methods of crop improvement and applications towards fortifying food security. Front Genome Ed 2023; 5:1171969. [PMID: 37484652 PMCID: PMC10361821 DOI: 10.3389/fgeed.2023.1171969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023] Open
Abstract
Agriculture has supported human life from the beginning of civilization, despite a plethora of biotic (pests, pathogens) and abiotic (drought, cold) stressors being exerted on the global food demand. In the past 50 years, the enhanced understanding of cellular and molecular mechanisms in plants has led to novel innovations in biotechnology, resulting in the introduction of desired genes/traits through plant genetic engineering. Targeted genome editing technologies such as Zinc-Finger Nucleases (ZFNs), Transcription Activator-Like Effector Nucleases (TALENs), and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) have emerged as powerful tools for crop improvement. This new CRISPR technology is proving to be an efficient and straightforward process with low cost. It possesses applicability across most plant species, targets multiple genes, and is being used to engineer plant metabolic pathways to create resistance to pathogens and abiotic stressors. These novel genome editing (GE) technologies are poised to meet the UN's sustainable development goals of "zero hunger" and "good human health and wellbeing." These technologies could be more efficient in developing transgenic crops and aid in speeding up the regulatory approvals and risk assessments conducted by the US Departments of Agriculture (USDA), Food and Drug Administration (FDA), and Environmental Protection Agency (EPA).
Collapse
Affiliation(s)
- Aayushi Patel
- Penn State Harrisburg, Middletown, PA, United States
| | - Andrew Miles
- Penn State University Park, State College, University Park, PA, United States
| | | | - Logan Cook
- Penn State Harrisburg, Middletown, PA, United States
| | - Sining Leng
- Shanghai United Cell Biotechnology Co Ltd, Shanghai, China
| | - Shrina Patel
- Penn State Harrisburg, Middletown, PA, United States
| | | | | | | |
Collapse
|
10
|
Raineri J, Caraballo LN, Gómez M, Chan RL. The Transcription Factor HaHB11 Boosts Grain Set and Yield in Rice Plants, Allowing Them to Approach Their Ideal Phenotype. Biomolecules 2023; 13:biom13050826. [PMID: 37238696 DOI: 10.3390/biom13050826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The ideal rice phenotype is that of plants exhibiting fewer panicles with high biomass, large grain number, flag leaf area with small insertion angles, and an erected morphology improving light interception. The sunflower transcription factor HaHB11, homeodomain-leucine zipper I, confers increased seed yield and abiotic stress tolerance to Arabidopsis and maize. Here, we report the obtaining and characterization of rice plants expressing HaHB11 driven by its promoter or the 35S constitutive one. Transgenic p35S:HaHB11 plants closely resembled the ideal high-yield phenotype, whereas those carrying the pHaHB11:HaHB11 construct were hard to distinguish from the wild type. The former had an erected architecture, enhanced vegetative leaf biomass, rolled flag leaves with a larger surface, sharper insertion angles insensitive to brassinosteroids, and higher harvest index and seed biomass than the wild type. The combination of the distinct features exhibited by p35S:HaHB11 plants, including the increased number of set grains per panicle, supports the high-yield phenotype. We wondered where HaHB11 has to be expressed to achieve the high-yield phenotype and evaluated HaHB11 expression levels in all tissues. The results indicate that its expression is particularly necessary in the flag leaf and panicle to produce the ideal phenotype.
Collapse
Affiliation(s)
- Jesica Raineri
- Instituto de Agrobiotecnología del Litoral, CONICET, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, Santa Fe 3000, Argentina
| | - Luciano Nicolás Caraballo
- Instituto de Agrobiotecnología del Litoral, CONICET, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, Santa Fe 3000, Argentina
| | - Maximiliano Gómez
- Instituto de Agrobiotecnología del Litoral, CONICET, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, Santa Fe 3000, Argentina
| | - Raquel Lía Chan
- Instituto de Agrobiotecnología del Litoral, CONICET, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, Santa Fe 3000, Argentina
| |
Collapse
|
11
|
Beretta VM, Franchini E, Ud Din I, Lacchini E, Van den Broeck L, Sozzani R, Orozco-Arroyo G, Caporali E, Adam H, Jouannic S, Gregis V, Kater MM. The ALOG family members OsG1L1 and OsG1L2 regulate inflorescence branching in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 37009647 DOI: 10.1111/tpj.16229] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
The architecture of the rice inflorescence is an important determinant of crop yield. The length of the inflorescence and the number of branches are among the key factors determining the number of spikelets, and thus grains, that a plant will develop. In particular, the timing of the identity transition from indeterminate branch meristem to determinate spikelet meristem governs the complexity of the inflorescence. In this context, the ALOG gene TAWAWA1 (TAW1) has been shown to delay the transition to determinate spikelet development in Oryza sativa (rice). Recently, by combining precise laser microdissection of inflorescence meristems with RNA-seq, we observed that two ALOG genes, OsG1-like 1 (OsG1L1) and OsG1L2, have expression profiles similar to that of TAW1. Here, we report that osg1l1 and osg1l2 loss-of-function CRISPR mutants have similar phenotypes to the phenotype of the previously published taw1 mutant, suggesting that these genes might act on related pathways during inflorescence development. Transcriptome analysis of the osg1l2 mutant suggested interactions of OsG1L2 with other known inflorescence architecture regulators and the data sets were used for the construction of a gene regulatory network (GRN), proposing interactions among genes potentially involved in controlling inflorescence development in rice. In this GRN, we selected the homeodomain-leucine zipper transcription factor encoding the gene OsHOX14 for further characterization. The spatiotemporal expression profiling and phenotypical analysis of CRISPR loss-of-function mutants of OsHOX14 suggests that the proposed GRN indeed serves as a valuable resource for the identification of new proteins involved in rice inflorescence development.
Collapse
Affiliation(s)
- Veronica M Beretta
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Emanuela Franchini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Israr Ud Din
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Elia Lacchini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Lisa Van den Broeck
- Plant and Microbial Biology Department, North Carolina State University, Raleigh, NC, 27695, USA
| | - Rosangela Sozzani
- Plant and Microbial Biology Department, North Carolina State University, Raleigh, NC, 27695, USA
| | - Gregorio Orozco-Arroyo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Elisabetta Caporali
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Hélène Adam
- DIADE, University of Montpellier, IRD, CIRAD, Montpellier, France
| | - Stefan Jouannic
- DIADE, University of Montpellier, IRD, CIRAD, Montpellier, France
| | - Veronica Gregis
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Martin M Kater
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| |
Collapse
|
12
|
Raza A, Mubarik MS, Sharif R, Habib M, Jabeen W, Zhang C, Chen H, Chen ZH, Siddique KHM, Zhuang W, Varshney RK. Developing drought-smart, ready-to-grow future crops. THE PLANT GENOME 2023; 16:e20279. [PMID: 36366733 DOI: 10.1002/tpg2.20279] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/02/2022] [Indexed: 05/10/2023]
Abstract
Breeding crop plants with increased yield potential and improved tolerance to stressful environments is critical for global food security. Drought stress (DS) adversely affects agricultural productivity worldwide and is expected to rise in the coming years. Therefore, it is vital to understand the physiological, biochemical, molecular, and ecological mechanisms associated with DS. This review examines recent advances in plant responses to DS to expand our understanding of DS-associated mechanisms. Suboptimal water sources adversely affect crop growth and yields through physical impairments, physiological disturbances, biochemical modifications, and molecular adjustments. To control the devastating effect of DS in crop plants, it is important to understand its consequences, mechanisms, and the agronomic and genetic basis of DS for sustainable production. In addition to plant responses, we highlight several mitigation options such as omics approaches, transgenics breeding, genome editing, and biochemical to mechanical methods (foliar treatments, seed priming, and conventional agronomic practices). Further, we have also presented the scope of conventional and speed breeding platforms in helping to develop the drought-smart future crops. In short, we recommend incorporating several approaches, such as multi-omics, genome editing, speed breeding, and traditional mechanical strategies, to develop drought-smart cultivars to achieve the 'zero hunger' goal.
Collapse
Affiliation(s)
- Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry Univ., Fuzhou, 350002, China
| | | | - Rahat Sharif
- Dep. of Horticulture, College of Horticulture and Plant Protection, Yangzhou Univ., Yangzhou, Jiangsu, 225009, China
| | - Madiha Habib
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Park Rd., Islamabad, 45500, Pakistan
| | - Warda Jabeen
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National Univ. of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Chong Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry Univ., Fuzhou, 350002, China
| | - Hua Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry Univ., Fuzhou, 350002, China
| | - Zhong-Hua Chen
- School of Science, Hawkesbury Institute for the Environment, Western Sydney Univ., Penrith, NSW, 2751, Australia
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The Univ. of Western Australia, Crawley, Perth, 6009, Australia
| | - Weijian Zhuang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry Univ., Fuzhou, 350002, China
| | - Rajeev K Varshney
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry Univ., Fuzhou, 350002, China
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch Univ., Murdoch, WA, 6150, Australia
| |
Collapse
|
13
|
Wu Z, Li T, Zhang D, Teng N. Lily HD-Zip I Transcription Factor LlHB16 Promotes Thermotolerance by Activating LlHSFA2 and LlMBF1c. PLANT & CELL PHYSIOLOGY 2022; 63:1729-1744. [PMID: 36130232 DOI: 10.1093/pcp/pcac131] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/23/2022] [Accepted: 09/20/2022] [Indexed: 06/15/2023]
Abstract
HD-Zip I transcription factors play important roles in plant development and response to abiotic stresses; however, their roles in thermotolerance are largely unknown. Through transcriptome analysis in lily (Lilium longiflorum), we isolated and identified a HD-Zip I gene differentially expressed at high temperatures, LlHB16, which belongs to the β2 subgroup and positively regulates thermotolerance. The expression of LlHB16 was rapidly and continuously activated by heat stress. LlHB16 protein localized to the nucleus and exhibited transactivation activity in both plant and yeast cells, and its C-terminus contributed to its transcriptional activity. Overexpressing LlHB16 in Arabidopsis and lily improved thermotolerance and activated the expression of heat-related genes in both plants, especially that of HSFA2 and MBF1c. In addition, LlHB16 overexpression in Arabidopsis also caused growth defects, delayed flowering and abscisic acid (ABA) insensitivity. Further analysis revealed that LlHB16 directly binds to the promoters of LlHSFA2 and LlMBF1c and activates their expressions. Similarly, the expression of AtHSFA2 and AtMBF1c was also elevated in LlHB16 transgenic Arabidopsis lines. Together, our findings demonstrate that LlHB16 participates in the establishment of thermotolerance involved in activating LlHSFA2 and LlMBF1c, and LlHB16 overexpression resulted in ABA insensitivity in transgenic plants, suggesting that LlHB16 links the basal heat-responsive pathway and ABA signal to collaboratively regulate thermotolerance.
Collapse
Affiliation(s)
- Ze Wu
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Jiangsu Graduate Workstation of Nanjing Agricultural University and Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Nanjing, Jiangsu 210043, China
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ting Li
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Jiangsu Graduate Workstation of Nanjing Agricultural University and Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Nanjing, Jiangsu 210043, China
| | - Dehua Zhang
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Jiangsu Graduate Workstation of Nanjing Agricultural University and Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Nanjing, Jiangsu 210043, China
| | - Nianjun Teng
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Jiangsu Graduate Workstation of Nanjing Agricultural University and Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Nanjing, Jiangsu 210043, China
| |
Collapse
|
14
|
Wang K, Xu L, Wang Y, Ying J, Li J, Dong J, Li C, Zhang X, Liu L. Genome-wide characterization of homeodomain-leucine zipper genes reveals RsHDZ17 enhances the heat tolerance in radish (Raphanus sativus L.). PHYSIOLOGIA PLANTARUM 2022; 174:e13789. [PMID: 36183327 DOI: 10.1111/ppl.13789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/06/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Homeodomain-leucine zipper (HD-Zip) transcription factors are involved in various biological processes of plant growth, development, and abiotic stress response. However, how they regulate heat stress (HS) response remains largely unclear in plants. In this study, a total of 83 RsHD-Zip genes were firstly identified from the genome of Raphanus sativus. RNA-Seq, RT-qPCR and promoter activity assays revealed that RsHDZ17 from HD-Zip Class I was highly expressed under heat, salt, and Cd stresses. RsHDZ17 is a nuclear protein with transcriptional activity at the C-terminus. Ectopic overexpression (OE) of RsHDZ17 in Arabidopsis thaliana enhanced the HS tolerance by improving the survival rate, photosynthesis capacity, and scavenging for reactive oxygen species (ROS). In addition, transient OE of RsHDZ17 in radish cotyledons impeded cell injury and augmented ROS scavenging under HS. Moreover, yeast one-hybrid, dual-luciferase assay, and electrophoretic mobility shift assay revealed that RsHDZ17 could bind to the promoter of HSFA1e. Collectively, these pieces of evidence demonstrate that RsHDZ17 could play a positive role in thermotolerance, partially through up-regulation of the expression of HSFA1e in plants. These results provide novel insights into the role of HD-Zips in radish and facilitate genetical engineering and development of heat-tolerant radish in breeding programs.
Collapse
Affiliation(s)
- Kai Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Jiali Ying
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Jingxue Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Junhui Dong
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Cui Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Xiaoli Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| |
Collapse
|
15
|
He C, Liew LC, Yin L, Lewsey MG, Whelan J, Berkowitz O. The retrograde signaling regulator ANAC017 recruits the MKK9-MPK3/6, ethylene, and auxin signaling pathways to balance mitochondrial dysfunction with growth. THE PLANT CELL 2022; 34:3460-3481. [PMID: 35708648 PMCID: PMC9421482 DOI: 10.1093/plcell/koac177] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/29/2022] [Indexed: 05/12/2023]
Abstract
In plant cells, mitochondria are ideally positioned to sense and balance changes in energy metabolism in response to changing environmental conditions. Retrograde signaling from mitochondria to the nucleus is crucial for adjusting the required transcriptional responses. We show that ANAC017, the master regulator of mitochondrial stress, directly recruits a signaling cascade involving the plant hormones ethylene and auxin as well as the MAP KINASE KINASE (MKK) 9-MAP KINASE (MPK) 3/6 pathway in Arabidopsis thaliana. Chromatin immunoprecipitation followed by sequencing and overexpression demonstrated that ANAC017 directly regulates several genes of the ethylene and auxin pathways, including MKK9, 1-AMINO-CYCLOPROPANE-1-CARBOXYLATE SYNTHASE 2, and YUCCA 5, in addition to genes encoding transcription factors regulating plant growth and stress responses such as BASIC REGION/LEUCINE ZIPPER MOTIF (bZIP) 60, bZIP53, ANAC081/ATAF2, and RADICAL-INDUCED CELL DEATH1. A time-resolved RNA-seq experiment established that ethylene signaling precedes the stimulation of auxin signaling in the mitochondrial stress response, with a large part of the transcriptional regulation dependent on ETHYLENE-INSENSITIVE 3. These results were confirmed by mutant analyses. Our findings identify the molecular components controlled by ANAC017, which integrates the primary stress responses to mitochondrial dysfunction with whole plant growth via the activation of regulatory and partly antagonistic feedback loops.
Collapse
Affiliation(s)
- Cunman He
- Department of Animal, Plant and Soil Science, La Trobe University, Bundoora, Victoria 3086, Australia
- ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Lim Chee Liew
- Department of Animal, Plant and Soil Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Lingling Yin
- Department of Animal, Plant and Soil Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Mathew G Lewsey
- Department of Animal, Plant and Soil Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - James Whelan
- Department of Animal, Plant and Soil Science, La Trobe University, Bundoora, Victoria 3086, Australia
- ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia
| | | |
Collapse
|
16
|
Zhong X, Hong W, Shu Y, Li J, Liu L, Chen X, Islam F, Zhou W, Tang G. CRISPR/Cas9 mediated gene-editing of GmHdz4 transcription factor enhances drought tolerance in soybean ( Glycine max [L.] Merr.). FRONTIERS IN PLANT SCIENCE 2022; 13:988505. [PMID: 36061810 PMCID: PMC9437544 DOI: 10.3389/fpls.2022.988505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/01/2022] [Indexed: 05/27/2023]
Abstract
The HD-Zip transcription factors play a crucial role in plant development, secondary metabolism, and abiotic stress responses, but little is known about HD-Zip I genes in soybean. Here, a homeodomain-leucine zipper gene designated GmHdz4 was isolated. Chimeric soybean plants, GmHdz4 overexpressing (GmHdz4-oe), and gene-editing via CRISPR/Cas9 (gmhdz4) in hairy roots, were generated to examine the GmHdz4 gene response to polyethylene glycol (PEG)-simulated drought stress. Bioinformatic analysis showed GmHdz4 belonged to clade δ, and was closely related to other drought tolerance-related HD-Zip I family genes such as AtHB12, Oshox12, and Gshdz4. The GmHdz4 was located in the plant nucleus and showed transcriptional activation activity by yeast hybrid assay. Quantitative real-time PCR analysis revealed that GmHdz4 expression varied in tissues and was induced by PEG-simulated drought stress. The gmhdz4 showed promoted growth of aboveground parts, and its root system architecture, including the total root length, the root superficial area, and the number of root tips were significantly higher than those of GmHdz4-oe even the non-transgenic line (NT) on root tips number. The better maintenance of turgor pressure by osmolyte accumulation, and the higher activity of antioxidant enzymes to scavenge reactive oxygen species, ultimately suppressed the accumulation of hydrogen peroxide (H2O2), superoxide anion (O2-), and malondialdehyde (MDA), conferring higher drought tolerance in gmhdz4 compared with both GmHdz4-oe and NT. Together, our results provide new insights for future research on the mechanisms by which GmHdz4 gene-editing via CRISPR/Cas9 system could promote drought stress and provide a potential target for molecular breeding in soybean.
Collapse
Affiliation(s)
- Xuanbo Zhong
- Zhejiang Provincial Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Hong
- Zhejiang Provincial Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yue Shu
- Zhejiang Provincial Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou, Zhejiang, China
- Hainan Institute of Zhejiang University, Sanya, Hainan, China
| | - Jianfei Li
- Zhejiang Provincial Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou, Zhejiang, China
- Hainan Institute of Zhejiang University, Sanya, Hainan, China
| | - Lulu Liu
- Zhejiang Provincial Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoyang Chen
- Seed Management Station of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Faisal Islam
- Zhejiang Provincial Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weijun Zhou
- Zhejiang Provincial Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Guixiang Tang
- Zhejiang Provincial Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou, Zhejiang, China
- Hainan Institute of Zhejiang University, Sanya, Hainan, China
| |
Collapse
|
17
|
Raineri J, Caraballo L, Rigalli N, Portapila M, Otegui ME, Chan RL. Expressing the sunflower transcription factor HaHB11 in maize improves waterlogging and defoliation tolerance. PLANT PHYSIOLOGY 2022; 189:230-247. [PMID: 35148415 PMCID: PMC9070847 DOI: 10.1093/plphys/kiac054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 06/01/2023]
Abstract
The sunflower (Helianthus annuus) transcription factor HaHB11 (H. annuus Homeobox 11) belongs to the homeodomain-leucine zipper family and confers improved yield to maize (Zea mays) hybrids (HiII × B73) and lines. Here we report that transgenic maize lines expressing HaHB11 exhibited better performance under waterlogging, both in greenhouse and field trials carried out during three growth cycles. Transgenic plants had increased chlorophyll content, wider stems, more nodal roots, greater total aerial biomass, a higher harvest index, and increased plant grain yield. Under severe defoliation caused by a windstorm during flowering, transgenic genotypes were able to set more grains than controls. This response was confirmed in controlled defoliation assays. Hybrids generated by crossing B73 HaHB11 lines with the contrasting Mo17 lines were also tested in the field and exhibited the same beneficial traits as the parental lines, compared with their respective controls. Moreover, they were less penalized by stress than commercial hybrids. Waterlogging tolerance increased via improvement of the root system, including more xylem vessels, reduced tissue damage, less superoxide accumulation, and altered carbohydrate metabolism. Multivariate analyses corroborated the robustness of the differential traits observed. Furthermore, canopy spectral reflectance data, computing 29 vegetation indices associated with biomass, chlorophyll, and abiotic stress, helped to distinguish genotypes as well as their growing conditions. Altogether the results reported here indicate that this sunflower gene constitutes a suitable tool to improve maize plants for environments prone to waterlogging and/or wind defoliation.
Collapse
Affiliation(s)
- Jesica Raineri
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral—CONICET, Santa Fe 3000, Argentina
| | - Luciano Caraballo
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral—CONICET, Santa Fe 3000, Argentina
| | - Nicolás Rigalli
- CIFASIS, Universidad Nacional de Rosario—CONICET, Santa Fe 2000, Argentina
| | | | - María Elena Otegui
- Facultad de Agronomía, CONICET-INTA-FAUBA, Estación experimental Pergamino, Universidad de Buenos Aires, Buenos Aires C1417DSE, Argentina
| | - Raquel Lía Chan
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral—CONICET, Santa Fe 3000, Argentina
| |
Collapse
|
18
|
Sequencing and de novo transcriptome assembly for discovering regulators of gene expression in Jack (Artocarpus heterophyllus). Genomics 2022; 114:110356. [PMID: 35364267 DOI: 10.1016/j.ygeno.2022.110356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/12/2022] [Accepted: 03/27/2022] [Indexed: 01/14/2023]
Abstract
Jack (Artocarpus heterophyllus) is a multipurpose fruit-tree species with minimal genomic resources. The study reports developing comprehensive transcriptome data containing 80,411 unigenes with an N50 value of 1265 bp. We predicted 64,215 CDSs from the unigenes and annotated and functionally categorized them into the biological process (23,230), molecular function (27,149), and cellular components (17,284). From 80,411 unigenes, we discovered 16,853 perfect SSRs with 192 distinct repeat motif types reiterating 4 to 22 times. Besides, we identified 2741 TFs from 69 TF families, 53 miRNAs from 19 conserved miRNA families, 25,953 potential lncRNAs, and placed three functional eTMs in different lncRNA-miRNA pairs. The regulatory networks involving genes, TFs, and miRNAs identified several regulatory and regulated nodes providing insight into miRNAs' gene associations and transcription factor-mediated regulation. The comparison of expression patterns of some selected miRNAs vis-à-vis their corresponding target genes showed an inverse relationship indicating the possible miRNA-mediated regulation of the genes.
Collapse
|
19
|
Yang Q, Xiang W, Li Z, Nian Y, Fu X, Zhou G, Li L, Zhang J, Huang G, Han X, Xu L, Bai X, Liu L, Wu D. Genome-Wide Characterization and Expression Analysis of HD-ZIP Gene Family in Dendrobium officinale. Front Genet 2022; 13:797014. [PMID: 35368655 PMCID: PMC8971680 DOI: 10.3389/fgene.2022.797014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/07/2022] [Indexed: 11/29/2022] Open
Abstract
The homeodomain-leucine zipper (HD-ZIP) gene family, as one of the plant-specific transcription factor families, plays an important role in regulating plant growth and development as well as in response to diverse stresses. Although it has been extensively characterized in many plants, the HD-ZIP family is not well-studied in Dendrobium officinale, a valuable ornamental and traditional Chinese medicinal herb. In this study, 37 HD-ZIP genes were identified in Dendrobium officinale (Dohdzs) through the in silico genome search method, and they were classified into four subfamilies based on phylogenetic analysis. Exon–intron structure and conserved protein domain analyses further supported the prediction with the same group sharing similar gene and protein structures. Furthermore, their expression patterns were investigated in nine various tissues and under cold stress based on RNA-seq datasets to obtain the tissue-specific and cold-responsive candidates. Finally, Dohdz5, Dohdz9, and Dohdz12 were selected to validate their expression through qRT-PCR analysis, and they displayed significantly differential expression under sudden chilling stress, suggesting they might be the key candidates underlying cold stress response. These findings will contribute to better understanding of the regulatory roles of the HD-ZIP family playing in cold stress and also will provide the vital targets for further functional studies of HD-ZIP genes in D. officinale.
Collapse
Affiliation(s)
- Qianyu Yang
- College of Forestry, Shenyang Agricultural University, Shenyang, China
| | - Weibo Xiang
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, China
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Beijing, China
- YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing, China
| | - Zhihui Li
- College of Forestry, Shenyang Agricultural University, Shenyang, China
| | - Yuxin Nian
- College of Forestry, Shenyang Agricultural University, Shenyang, China
| | - Xiaoyun Fu
- College of Forestry, Shenyang Agricultural University, Shenyang, China
| | - Guangzhu Zhou
- College of Forestry, Shenyang Agricultural University, Shenyang, China
| | - Linbao Li
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, China
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Beijing, China
- YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing, China
| | - Jun Zhang
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, China
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Beijing, China
- YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing, China
| | - Guiyun Huang
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, China
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Beijing, China
- YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing, China
| | - Xiao Han
- Natural Resources Affairs Service Center of Dalian, Dalian, China
| | - Lu Xu
- College of Horticulture, Hunan Agricultural University, Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha, China
| | - Xiao Bai
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Lei Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- *Correspondence: Lei Liu, ; Di Wu,
| | - Di Wu
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, China
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Beijing, China
- YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing, China
- *Correspondence: Lei Liu, ; Di Wu,
| |
Collapse
|
20
|
Genome-Wide Analysis of the Homeobox Gene Family and Identification of Drought-Responsive Members in Populus trichocarpa. PLANTS 2021; 10:plants10112284. [PMID: 34834651 PMCID: PMC8653966 DOI: 10.3390/plants10112284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022]
Abstract
Homeobox (HB) genes play critical roles in the regulation of plant morphogenesis, growth and development. Here, we identified a total of 156 PtrHB genes from the Populus trichocarpa genome. According to the topologies and taxonomy of the phylogenetic tree constructed by Arabidopsis thaliana HB members, all PtrHB proteins were divided into six subgroups, namely HD-ZIP, ZF-HD, HB-PHD, TALE, WOX and HB-OTHERS. Multiple alignments of conserved homeodomains (HDs) revealed the conserved loci of each subgroup, while gene structure analysis showed similar exon–intron gene structures, and motif analysis indicated the similarity of motif number and pattern in the same subgroup. Promoter analysis indicated that the promoters of PtrHB genes contain a series of cis-acting regulatory elements involved in responding to various abiotic stresses, indicating that PtrHBs had potential functions in these processes. Collinearity analysis revealed that there are 96 pairs of 127 PtrHB genes mainly distributing on Chromosomes 1, 2, and 5. We analyzed the spatio-temporal expression patterns of PtrHB genes, and the virus-induced gene silencing (VIGS) of PtrHB3 gene resulted in the compromised tolerance of poplar seedlings to mannitol treatment. The bioinformatics on PtrHB family and preliminary exploration of drought-responsive genes can provide support for further study of the family in woody plants, especially in drought-related biological processes. It also provides a direction for developing new varieties of poplar with drought resistance. Overall, our results provided significant information for further functional analysis of PtrHB genes in poplar and demonstrated that PtrHB3 is a dominant gene regulating tolerance to water stress treatment in poplar seedlings.
Collapse
|
21
|
Zhang Y, Zhang Y, Sun Q, Lu S, Chai L, Ye J, Deng X. Citrus transcription factor CsHB5 regulates abscisic acid biosynthetic genes and promotes senescence. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:151-168. [PMID: 34414618 DOI: 10.1111/tpj.15431] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Senescence is a gradual physiological process involving the integration of numerous internal and environmental signals. Abscisic acid (ABA) is a well-known inducer of senescence. However, the regulatory mechanisms underlying ABA-mediated senescence remain largely unknown. Here, we report that the citrus homeodomain leucine zipper I (HD-ZIP I) transcription factor CsHB5 functions as a regulator of ABA-triggered senescence. CsHB5 acts as a nucleus-localized transcriptional activator, the expression of which appeared to be closely associated with citrus senescence. Overexpression of CsHB5 in citrus calli upregulated the expression of ABA- and reactive oxygen species (ROS)-related genes, and significantly increased the content of ABA and hydrogen peroxide (H2 O2 ), whereas silencing CsHB5 in citrus calli downregulated the expression of ABA-related genes. Additionally, heterogenous overexpression of CsHB5 in Solanum lycopersicum (tomato) and Arabidopsis thaliana (Arabidopsis) leads to early leaf yellowing under dark-induced senescence conditions. Meanwhile, the levels of ABA and H2 O2 in transgenic tomatoes increased significantly and the lycopene content decreased. Transcriptome analysis of CsHB5-overexpressing citrus calli and tomato showed that CsHB5 was involved in multiple senescence-associated processes, including chlorophyll degradation, nutrient compound biosynthesis and transport, as well as ABA and ROS signal transduction. The results of yeast one-hybrid assays, electrophoretic mobility shift assays and dual luciferase assays indicated that CsHB5 directly binds to the promoters of ABA biosynthetic genes, including β-carotene hydroxylase 1 (BCH1) and 9-cis-epoxycarotenoid dioxygenase 2 (NCED2), thereby activating their transcription. Our findings revealed that CsHB5 participates in senescence, at least partly, by directly controlling ABA accumulation. Our work provides insight into the regulatory mechanisms underlying ABA-mediated senescence.
Collapse
Affiliation(s)
- Yin Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yingzi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Quan Sun
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Suwen Lu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lijun Chai
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junli Ye
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
22
|
Physiological and Molecular Responses of 'Dusa' Avocado Rootstock to Water Stress: Insights for Drought Adaptation. PLANTS 2021; 10:plants10102077. [PMID: 34685886 PMCID: PMC8537572 DOI: 10.3390/plants10102077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 11/17/2022]
Abstract
Avocado consumption is increasing year by year, and its cultivation has spread to many countries with low water availability, which threatens the sustainability and profitability of avocado orchards. However, to date, there is not much information on the behavior of commercial avocado rootstocks against drought. The aim of this research was to evaluate the physiological and molecular responses of ‘Dusa’ avocado rootstock to different levels of water stress. Plants were deficit irrigated until soil water content reached 50% (mild-WS) and 25% (severe-WS) of field capacity. Leaf water potential (Ψw), net CO2 assimilation rates (AN), transpiration rate (E), stomatal conductance (gs), and plant transpiration rates significantly decreased under both WS treatments, reaching significantly lower values in severe-WS plants. After rewatering, mild- and severe-WS plants showed a fast recovery in most physiological parameters measured. To analyze root response to different levels of drought stress, a cDNA avocado stress microarray was carried out. Plants showed a wide transcriptome response linked to the higher degree of water stress, and functional enrichment of differentially expressed genes (DEGs) revealed abundance of common sequences associated with water stress, as well as specific categories for mild-WS and severe-WS. DEGs previously linked to drought tolerance showed overexpression under both water stress levels, i.e., several transcription factors, genes related to abscisic acid (ABA) response, redox homeostasis, osmoprotection, and cell-wall organization. Taken altogether, physiological and molecular data highlight the good performance of ‘Dusa’ rootstock under low-water-availability conditions, although further water stress experiments must be carried out under field conditions.
Collapse
|
23
|
Sharif R, Raza A, Chen P, Li Y, El-Ballat EM, Rauf A, Hano C, El-Esawi MA. HD-ZIP Gene Family: Potential Roles in Improving Plant Growth and Regulating Stress-Responsive Mechanisms in Plants. Genes (Basel) 2021; 12:1256. [PMID: 34440430 PMCID: PMC8394574 DOI: 10.3390/genes12081256] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 12/11/2022] Open
Abstract
Exploring the molecular foundation of the gene-regulatory systems underlying agronomic parameters or/and plant responses to both abiotic and biotic stresses is crucial for crop improvement. Thus, transcription factors, which alone or in combination directly regulated the targeted gene expression levels, are appropriate players for enlightening agronomic parameters through genetic engineering. In this regard, homeodomain leucine zipper (HD-ZIP) genes family concerned with enlightening plant growth and tolerance to environmental stresses are considered key players for crop improvement. This gene family containing HD and LZ domain belongs to the homeobox superfamily. It is further classified into four subfamilies, namely HD-ZIP I, HD-ZIP II, HD-ZIP III, and HD-ZIP IV. The first HD domain-containing gene was discovered in maize cells almost three decades ago. Since then, with advanced technologies, these genes were functionally characterized for their distinct roles in overall plant growth and development under adverse environmental conditions. This review summarized the different functions of HD-ZIP genes in plant growth and physiological-related activities from germination to fruit development. Additionally, the HD-ZIP genes also respond to various abiotic and biotic environmental stimuli by regulating defense response of plants. This review, therefore, highlighted the various significant aspects of this important gene family based on the recent findings. The practical application of HD-ZIP biomolecules in developing bioengineered plants will not only mitigate the negative effects of environmental stresses but also increase the overall production of crop plants.
Collapse
Affiliation(s)
- Rahat Sharif
- Department of Horticulture, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China;
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Ali Raza
- Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agriculture Science (CAAS), Wuhan 430062, China
| | - Peng Chen
- College of Life Science, Northwest A&F University, Yangling 712100, China;
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Enas M. El-Ballat
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23430, Pakistan;
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRAE USC1328, Université d’Orléans, 28000 Chartres, France;
| | - Mohamed A. El-Esawi
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| |
Collapse
|
24
|
Perotti MF, Arce AL, Chan RL. The underground life of homeodomain-leucine zipper transcription factors. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4005-4021. [PMID: 33713412 DOI: 10.1093/jxb/erab112] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Roots are the anchorage organs of plants, responsible for water and nutrient uptake, exhibiting high plasticity. Root architecture is driven by the interactions of biomolecules, including transcription factors and hormones that are crucial players regulating root plasticity. Multiple transcription factor families are involved in root development; some, such as ARFs and LBDs, have been well characterized, whereas others remain less well investigated. In this review, we synthesize the current knowledge about the involvement of the large family of homeodomain-leucine zipper (HD-Zip) transcription factors in root development. This family is divided into four subfamilies (I-IV), mainly according to structural features, such as additional motifs aside from HD-Zip, as well as their size, gene structure, and expression patterns. We explored and analyzed public databases and the scientific literature regarding HD-Zip transcription factors in Arabidopsis and other species. Most members of the four HD-Zip subfamilies are expressed in specific cell types and several individuals from each group have assigned functions in root development. Notably, a high proportion of the studied proteins are part of intricate regulation pathways involved in primary and lateral root growth and development.
Collapse
Affiliation(s)
- María Florencia Perotti
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, FBCB, Colectora Ruta Nacional 168 km 0, 3000 Santa Fe,Argentina
| | - Agustín Lucas Arce
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, FBCB, Colectora Ruta Nacional 168 km 0, 3000 Santa Fe,Argentina
| | - Raquel Lía Chan
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, FBCB, Colectora Ruta Nacional 168 km 0, 3000 Santa Fe,Argentina
| |
Collapse
|
25
|
González FG, Manavella PA. Prospects for plant productivity: from the canopy to the nucleus. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3931-3935. [PMID: 34003934 DOI: 10.1093/jxb/erab147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Population growth has been closely associated with agricultural production, since the first famine predicted by Malthus (1798) up to the Green Revolution of the past century. Today, we continue to face increasing demand for food and crop production (Tilman et al., 2011). Considering the combined caloric or protein content of the 275 major crops used directly as human foods or as livestock and fish feeds, Tilman et al. (2011) forecast a 100% increase in global demand for crops from 2005 to 2050. Meeting this demand with the lowest impact on the environment could be achieved by sustainable intensification of existing cropland with reduced land clearing (Tilman et al., 2011; Fischer and Connor, 2018).
Collapse
Affiliation(s)
- Fernanda G González
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA, CONICET- UNNOBA-UNSADA), 2700 Pergamino, Buenos Aires, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA), EEA 2700 Pergamino, Buenos Aires, Argentina
| | - Pablo A Manavella
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| |
Collapse
|
26
|
Javadi SM, Shobbar ZS, Ebrahimi A, Shahbazi M. New insights on key genes involved in drought stress response of barley: gene networks reconstruction, hub, and promoter analysis. J Genet Eng Biotechnol 2021; 19:2. [PMID: 33409810 PMCID: PMC7788114 DOI: 10.1186/s43141-020-00104-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022]
Abstract
Background Barley (Hordeum vulgare L.) is one of the most important cereals worldwide. Although this crop is drought-tolerant, water deficiency negatively affects its growth and production. To detect key genes involved in drought tolerance in barley, a reconstruction of the related gene network and discovery of the hub genes would help. Here, drought-responsive genes in barley were collected through analysis of the available microarray datasets (− 5 ≥ Fold change ≥ 5, adjusted p value ≤ 0.05). Protein-protein interaction (PPI) networks were reconstructed. Results The hub genes were identified by Cytoscape software using three Cyto-hubba algorithms (Degree, Closeness, and MNC), leading to the identification of 17 and 16 non-redundant genes at vegetative and reproductive stages, respectively. These genes consist of some transcription factors such as HvVp1, HvERF4, HvFUS3, HvCBF6, DRF1.3, HvNAC6, HvCO5, and HvWRKY42, which belong to AP2, NAC, Zinc-finger, and WRKY families. In addition, the expression pattern of four hub genes was compared between the two studied cultivars, i.e., “Yousef” (drought-tolerant) and “Morocco” (susceptible). The results of real-time PCR revealed that the expression patterns corresponded well with those determined by the microarray. Also, promoter analysis revealed that some TF families, including AP2, NAC, Trihelix, MYB, and one modular (composed of two HD-ZIP TFs), had a binding site in 85% of promoters of the drought-responsive genes and of the hub genes in barley. Conclusions The identified hub genes, especially those from AP2 and NAC families, might be among key TFs that regulate drought-stress response in barley and are suggested as promising candidate genes for further functional analysis.
Collapse
Affiliation(s)
- Seyedeh Mehri Javadi
- Department of Biotechnology and Plant Breeding, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra-Sadat Shobbar
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Asa Ebrahimi
- Department of Biotechnology and Plant Breeding, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Shahbazi
- Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
27
|
Mosharaf MP, Rahman H, Ahsan MA, Akond Z, Ahmed FF, Islam MM, Moni MA, Mollah MNH. In silico identification and characterization of AGO, DCL and RDR gene families and their associated regulatory elements in sweet orange (Citrus sinensis L.). PLoS One 2020; 15:e0228233. [PMID: 33347517 PMCID: PMC7751981 DOI: 10.1371/journal.pone.0228233] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 12/07/2020] [Indexed: 12/30/2022] Open
Abstract
RNA interference (RNAi) plays key roles in post-transcriptional and chromatin modification levels as well as regulates various eukaryotic gene expressions which are involved in stress responses, development and maintenance of genome integrity during developmental stages. The whole mechanism of RNAi pathway is directly involved with the gene-silencing process by the interaction of Dicer-Like (DCL), Argonaute (AGO) and RNA-dependent RNA polymerase (RDR) gene families and their regulatory elements. However, these RNAi gene families and their sub-cellular locations, functional pathways and regulatory components were not extensively investigated in the case of economically and nutritionally important fruit plant sweet orange (Citrus sinensis L.). Therefore, in silico characterization, gene diversity and regulatory factor analysis of RNA silencing genes in C. sinensis were conducted by using the integrated bioinformatics approaches. Genome-wide comparison analysis based on phylogenetic tree approach detected 4 CsDCL, 8 CsAGO and 4 CsRDR as RNAi candidate genes in C. sinensis corresponding to the RNAi genes of model plant Arabidopsis thaliana. The domain and motif composition and gene structure analyses for all three gene families exhibited almost homogeneity within the same group members. The Gene Ontology enrichment analysis clearly indicated that the predicted genes have direct involvement into the gene-silencing and other important pathways. The key regulatory transcription factors (TFs) MYB, Dof, ERF, NAC, MIKC_MADS, WRKY and bZIP were identified by their interaction network analysis with the predicted genes. The cis-acting regulatory elements associated with the predicted genes were detected as responsive to light, stress and hormone functions. Furthermore, the expressed sequence tag (EST) analysis showed that these RNAi candidate genes were highly expressed in fruit and leaves indicating their organ specific functions. Our genome-wide comparison and integrated bioinformatics analyses provided some necessary information about sweet orange RNA silencing components that would pave a ground for further investigation of functional mechanism of the predicted genes and their regulatory factors.
Collapse
Affiliation(s)
- Md. Parvez Mosharaf
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh
| | - Hafizur Rahman
- Department of Microbiology, Rajshahi Institute of Biosciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Md. Asif Ahsan
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh
| | - Zobaer Akond
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh
- Institute of Environmental Science, University of Rajshahi, Rajshahi, Bangladesh
- Agricultural Statistics and ICT Division, Bangladesh Agricultural Research Institute (BARI), Gazipur, Bangladesh
| | - Fee Faysal Ahmed
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh
- Department of Mathematics, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Mazharul Islam
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh
| | - Mohammad Ali Moni
- The University of Sydney, Sydney Medical School, School of Medical Sciences, Discipline of Biomedical Science, Sydney, New South Wales, Australia
| | - Md. Nurul Haque Mollah
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh
- * E-mail:
| |
Collapse
|
28
|
Miguel VN, Ribichich KF, Giacomelli JI, Chan RL. Key role of the motor protein Kinesin 13B in the activity of homeodomain-leucine zipper I transcription factors. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6282-6296. [PMID: 32882705 DOI: 10.1093/jxb/eraa379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
The sunflower (Helianthus annuus) homeodomain-leucine zipper I transcription factor HaHB11 conferred differential phenotypic features when it was expressed in Arabidopsis, alfalfa, and maize plants. Such differences were increased biomass, seed yield, and tolerance to flooding. To elucidate the molecular mechanisms leading to such traits and identify HaHB11-interacting proteins, a yeast two-hybrid screening of an Arabidopsis cDNA library was carried out using HaHB11 as bait. The sole protein identified with high confidence as interacting with HaHB11 was Kinesin 13B. The interaction was confirmed by bimolecular fluorescence complementation and by yeast two-hybrid assay. Kinesin 13B also interacted with AtHB7, the Arabidopsis closest ortholog of HaHB11. Histochemical analyses revealed an overlap between the expression patterns of the three genes in hypocotyls, apical meristems, young leaves, vascular tissue, axillary buds, cauline leaves, and cauline leaf nodes at different developmental stages. AtKinesin 13B mutants did not exhibit a differential phenotype when compared with controls; however, both HaHB11 and AtHB7 overexpressor plants lost, partially or totally, their differential phenotypic characteristics when crossed with such mutants. Altogether, the results indicated that Kinesin 13B is essential for the homeodomain-leucine zipper transcription factors I to exert their functions, probably via regulation of the intracellular distribution of these transcription factors by the motor protein.
Collapse
Affiliation(s)
- Virginia Natali Miguel
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, FBCB, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| | - Karina Fabiana Ribichich
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, FBCB, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| | - Jorge Ignacio Giacomelli
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, FBCB, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| | - Raquel Lia Chan
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, FBCB, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| |
Collapse
|
29
|
Perotti MF, Ariel FD, Chan RL. Lateral root development differs between main and secondary roots and depends on the ecotype. PLANT SIGNALING & BEHAVIOR 2020; 15:1755504. [PMID: 32310024 PMCID: PMC8570754 DOI: 10.1080/15592324.2020.1755504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Root architecture depends on the development of the main root and also on the number and density of lateral roots. Most molecular knowledge about the development of lateral roots was acquired studying primary roots, and it was implied that high order roots follow the same pattern. Recently, we informed that AtHB23 is differentially regulated in primary and secondary roots. Here we show that LBD16, a target of AtHB23, also is differentially regulated; it is expressed in the tip of secondary and tertiary roots but not in primary ones. Moreover, the key hormone auxin exhibits a different distribution pattern in secondary and tertiary roots, according to the reporter DR5. Finally, we show that in Col 0 and Ler ecotypes development of secondary and tertiary roots exhibits significant variations. Altogether, we can conclude that different genetic programs govern secondary and tertiary roots development and such processes are dependent on the Arabidopsis genotype.
Collapse
Affiliation(s)
- María Florencia Perotti
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, Centro Científico Tecnológico CONICET Santa Fe, Santa Fe, Argentina
| | - Federico Damián Ariel
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, Centro Científico Tecnológico CONICET Santa Fe, Santa Fe, Argentina
| | - Raquel Lía Chan
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, Centro Científico Tecnológico CONICET Santa Fe, Santa Fe, Argentina
| |
Collapse
|
30
|
Ribichich KF, Chiozza M, Ávalos-Britez S, Cabello JV, Arce AL, Watson G, Arias C, Portapila M, Trucco F, Otegui ME, Chan RL. Successful field performance in warm and dry environments of soybean expressing the sunflower transcription factor HB4. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3142-3156. [PMID: 32140724 PMCID: PMC7260725 DOI: 10.1093/jxb/eraa064] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 02/07/2020] [Indexed: 05/10/2023]
Abstract
Soybean yield is limited primarily by abiotic constraints. No transgenic soybean with improved abiotic stress tolerance is commercially available. We transformed soybean plants with genetic constructs able to express the sunflower transcription factor HaHB4, which confers drought tolerance to Arabidopsis and wheat. One line (b10H) carrying the sunflower promoter was chosen among three independent lines because it exhibited the best performance in seed yield, and was evaluated in the greenhouse and in 27 field trials in different environments in Argentina. In greenhouse experiments, transgenic plants showed increased seed yield under stress conditions together with greater epicotyl diameter, larger xylem area, and increased water use efficiency compared with controls. They also exhibited enhanced seed yield in warm and dry field conditions. This response was accompanied by an increase in seed number that was not compensated by a decrease in individual seed weight. Transcriptome analysis of plants from a field trial with maximum difference in seed yield between genotypes indicated the induction of genes encoding redox and heat shock proteins in b10H. Collectively, our results indicate that soybeans transformed with HaHB4 are expected to have a reduced seed yield penalty when cultivated in warm and dry conditions, which constitute the best target environments for this technology.
Collapse
Affiliation(s)
- Karina F Ribichich
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral – CONICET, Facultad de Bioquímica y Ciencias Biológicas, Santa Fe, Argentina
| | | | - Selva Ávalos-Britez
- Estación Experimental Pergamino, Instituto Nacional de Tecnología Agropecuaria (INTA), Pergamino, Argentina
| | - Julieta V Cabello
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral – CONICET, Facultad de Bioquímica y Ciencias Biológicas, Santa Fe, Argentina
| | - Augustin L Arce
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral – CONICET, Facultad de Bioquímica y Ciencias Biológicas, Santa Fe, Argentina
| | | | - Claudia Arias
- CIFASIS, Universidad Nacional de Rosario – CONICET, Rosario, Argentina
| | | | | | - Maria E Otegui
- CONICET-INTA-FAUBA, Estación Experimental Pergamino, Facultad de Agronomía Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Raquel L Chan
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral – CONICET, Facultad de Bioquímica y Ciencias Biológicas, Santa Fe, Argentina
| |
Collapse
|
31
|
The HD-ZIP II Transcription Factors Regulate Plant Architecture through the Auxin Pathway. Int J Mol Sci 2020; 21:ijms21093250. [PMID: 32375344 PMCID: PMC7246542 DOI: 10.3390/ijms21093250] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/29/2020] [Accepted: 05/02/2020] [Indexed: 11/17/2022] Open
Abstract
The homeodomain-leucine zipper (HD-ZIP) family transcription factors play important roles in plant growth and development. However, the underlying mechanisms remain largely unclear. Here we found that ATHB2, encoding a HD-ZIP transcription factor, is an early auxin responsive gene. Phenotypic analyses show that overexpression of ATHB2 impairs plant architecture, including reduced plant height and small leaves, and also reduces auxin response in leaves when grown in soil. Simultaneously, the seedlings with chemical induction of ATHB2 exhibit abnormal root gravitropism, a typical auxin-related phenotype. We further show that the auxin response pattern is altered in roots of the inducible ATHB2 seedlings. Consistently, the transcript levels of some auxin biosynthetic and transport genes are significantly decreased in these transgenic seedlings. Further, protein and promoter sequence analyses in common wheat showed that the HD-ZIP II subfamily transcription factors have highly conserved motifs and most of these encoding gene promoters contain the canonical auxin-responsive elements. Expression analyses confirm that some of these HD-ZIP II genes are indeed regulated by auxin in wheat. Together, our results suggest that the HD-ZIP II subfamily transcription factors regulate plant development possibly through the auxin pathway in plants.
Collapse
|
32
|
Sharif R, Xie C, Wang J, Cao Z, Zhang H, Chen P, Yuhong L. Genome wide identification, characterization and expression analysis of HD-ZIP gene family in Cucumis sativus L. under biotic and various abiotic stresses. Int J Biol Macromol 2020; 158:S0141-8130(20)32981-0. [PMID: 32376256 DOI: 10.1016/j.ijbiomac.2020.04.124] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/26/2022]
Abstract
Information retrieved from genomic assembly may provide important clues and various molecular aspects in plants. Our research identified 40 CsHDZ genes in the Cucumber genome database. Subsequently; we performed the conserved motif and domain analysis of CsHDZ proteins. The phylogeny of the CsHDZ proteins further divides into 4 subfamilies (HD-ZIP I, HD-ZIP II, HD-ZIP III, and HD-ZIP IV) based on the structural similarities and functional diversities. The GO (Gene ontology) analysis of CsHDZ proteins showed that they are responsive to environmental stimuli and involved in numerous growth and developmental processes. The qRT-PCR analysis of 11 CsHDZ genes showed that they are expressed in all the tested tissues of Cucumis sativus. The differential expression pattern of CsHDZ genes unfolded their possible involvement in responding to various abiotic stresses and powdery mildew stress. It has been found that the CsHDZ22 localized in the nucleus which possibly participates in the regulatory mechanisms of various biological and cellular processes. In the light of above-mentioned outcomes, it has been deducted that CsHDZ genes in the Cucumis sativus genome play an important role in mediating the resistance to various abiotic stresses and powdery mildew stress as well as provide significant clues for functional studies.
Collapse
Affiliation(s)
- Rahat Sharif
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Chen Xie
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Jin Wang
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Zhen Cao
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Haiqiang Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Peng Chen
- College of Life Science, Northwest A&F University, Yangling 712100, China
| | - Li Yuhong
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
33
|
Kumar K, Gambhir G, Dass A, Tripathi AK, Singh A, Jha AK, Yadava P, Choudhary M, Rakshit S. Genetically modified crops: current status and future prospects. PLANTA 2020; 251:91. [PMID: 32236850 DOI: 10.1007/s00425-020-03372-8] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 02/28/2020] [Indexed: 05/20/2023]
Abstract
While transgenic technology has heralded a new era in crop improvement, several concerns have precluded their widespread acceptance. Alternative technologies, such as cisgenesis and genome-editing may address many of such issues and facilitate the development of genetically engineered crop varieties with multiple favourable traits. Genetic engineering and plant transformation have played a pivotal role in crop improvement via introducing beneficial foreign gene(s) or silencing the expression of endogenous gene(s) in crop plants. Genetically modified crops possess one or more useful traits, such as, herbicide tolerance, insect resistance, abiotic stress tolerance, disease resistance, and nutritional improvement. To date, nearly 525 different transgenic events in 32 crops have been approved for cultivation in different parts of the world. The adoption of transgenic technology has been shown to increase crop yields, reduce pesticide and insecticide use, reduce CO2 emissions, and decrease the cost of crop production. However, widespread adoption of transgenic crops carrying foreign genes faces roadblocks due to concerns of potential toxicity and allergenicity to human beings, potential environmental risks, such as chances of gene flow, adverse effects on non-target organisms, evolution of resistance in weeds and insects etc. These concerns have prompted the adoption of alternative technologies like cisgenesis, intragenesis, and most recently, genome editing. Some of these alternative technologies can be utilized to develop crop plants that are free from any foreign gene hence, it is expected that such crops might achieve higher consumer acceptance as compared to the transgenic crops and would get faster regulatory approvals. In this review, we present a comprehensive update on the current status of the genetically modified (GM) crops under cultivation. We also discuss the issues affecting widespread adoption of transgenic GM crops and comment upon the recent tools and techniques developed to address some of these concerns.
Collapse
Affiliation(s)
- Krishan Kumar
- ICAR-Indian Institute of Maize Research, Pusa Campus, New Delhi, 110012, India.
| | - Geetika Gambhir
- ICAR-Indian Institute of Maize Research, Pusa Campus, New Delhi, 110012, India
| | - Abhishek Dass
- ICAR-Indian Institute of Maize Research, Pusa Campus, New Delhi, 110012, India
| | - Amit Kumar Tripathi
- National Institute for Research in Environmental Health, Bhopal, 462001, India
| | - Alla Singh
- ICAR-Indian Institute of Maize Research, PAU Campus, Ludhiana, 141004, India
| | - Abhishek Kumar Jha
- ICAR-Indian Institute of Maize Research, Pusa Campus, New Delhi, 110012, India
| | - Pranjal Yadava
- ICAR-Indian Institute of Maize Research, Pusa Campus, New Delhi, 110012, India
| | - Mukesh Choudhary
- ICAR-Indian Institute of Maize Research, PAU Campus, Ludhiana, 141004, India
| | - Sujay Rakshit
- ICAR-Indian Institute of Maize Research, PAU Campus, Ludhiana, 141004, India
| |
Collapse
|
34
|
Miguel VN, Manavella PA, Chan RL, Capella MA. The AtHB1 Transcription Factor Controls the miR164-CUC2 Regulatory Node to Modulate Leaf Development. PLANT & CELL PHYSIOLOGY 2020; 61:659-670. [PMID: 31868910 DOI: 10.1093/pcp/pcz233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
The presence of small tooth-like indentations, or serrations, characterizes leaf margins of Arabidopsis thaliana plants. The NAC family member CUP-SHAPED COTYLEDON 2 (CUC2), which undergoes post-transcriptional gene silencing by three micro-RNA genes (MIR164A, B and C), controls the extension of leaf serration. Here, we analyzed the role of AtHB1, a transcription factor (TF) belonging to the homeodomain-leucine zipper subfamily I, in shaping leaf margins. Using mutants with an impaired silencing pathway as background, we obtained transgenic plants expressing AtHB1 over 100 times compared to controls. These plants presented an atypical developmental phenotype characterized by leaves with deep serration. Transcript measurements revealed that CUC2 expression was induced in plants overexpressing AtHB1 and repressed in athb1 mutants, indicating a positive regulation exerted by this TF. Moreover, molecular analyses of AtHB1 overexpressing and mutant plants revealed that AtHB1 represses MIR164 transcription. We found that overexpression of MIR164B was able to reverse the serration phenotype of plants overexpressing AtHB1. Finally, chromatin immunoprecipitation assays revealed that AtHB1 was able to bind in vivo the promoter regions of all three MIR164 encoding loci. Altogether, our results indicate that AtHB1 directly represses MIR164 expression to enhance leaf serration by increasing CUC2 levels.
Collapse
Affiliation(s)
- Virginia N Miguel
- Instituto de Agrobiotecnolog�a del Litoral, Facultad de Bioqu�mica y Ciencias Biol�gicas, Universidad Nacional del Litoral - CONICET, Colectora Ruta Nacional 168 km 0, Santa Fe, Argentina
| | - Pablo A Manavella
- Instituto de Agrobiotecnolog�a del Litoral, Facultad de Bioqu�mica y Ciencias Biol�gicas, Universidad Nacional del Litoral - CONICET, Colectora Ruta Nacional 168 km 0, Santa Fe, Argentina
| | - Raquel L Chan
- Instituto de Agrobiotecnolog�a del Litoral, Facultad de Bioqu�mica y Ciencias Biol�gicas, Universidad Nacional del Litoral - CONICET, Colectora Ruta Nacional 168 km 0, Santa Fe, Argentina
| | - Matï As Capella
- Instituto de Agrobiotecnolog�a del Litoral, Facultad de Bioqu�mica y Ciencias Biol�gicas, Universidad Nacional del Litoral - CONICET, Colectora Ruta Nacional 168 km 0, Santa Fe, Argentina
| |
Collapse
|
35
|
Perotti MF, Ribone PA, Cabello JV, Ariel FD, Chan RL. AtHB23 participates in the gene regulatory network controlling root branching, and reveals differences between secondary and tertiary roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:1224-1236. [PMID: 31444832 DOI: 10.1111/tpj.14511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/02/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
In Arabidopsis, lateral root (LR) development is mainly controlled by several known auxin-regulated transcription factors (TFs). Here, we show that AtHB23 (a homeodomain-leucine zipper I TF) participates in this intricate network. Our study of the expression pattern of AtHB23 revealed that it is transcriptionally activated in the early stages of secondary LR primordium (LRP). We found that AtHB23 directly limits the expression of LBD16, a key factor in LR initiation, and also directly induces the auxin transporter gene LAX3. We propose that this HD-Zip I mediates the regulation of LAX3 by ARF7/19. Furthermore, AtHB23 plays distinct roles during the formation of secondary and tertiary roots, exhibiting differential expression patterns. ATHB23 is expressed throughout the tertiary root primordium, whereas it is restricted to early stages in secondary primordia, likely later repressing LBD16 in tertiary LR development and further inhibiting root emergence. Our results suggest that different genetic programs govern the formation of LRP from the main or secondary roots, thereby shaping the global dynamic architecture of the root system.
Collapse
Affiliation(s)
- María F Perotti
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, FBCB, Centro Científico Tecnológico CONICET Santa Fe, Colectora Ruta Nacional No 168 km. 0, Paraje El Pozo, 3000, Santa Fe, Argentina
| | - Pamela A Ribone
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, FBCB, Centro Científico Tecnológico CONICET Santa Fe, Colectora Ruta Nacional No 168 km. 0, Paraje El Pozo, 3000, Santa Fe, Argentina
| | - Julieta V Cabello
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, FBCB, Centro Científico Tecnológico CONICET Santa Fe, Colectora Ruta Nacional No 168 km. 0, Paraje El Pozo, 3000, Santa Fe, Argentina
| | - Federico D Ariel
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, FBCB, Centro Científico Tecnológico CONICET Santa Fe, Colectora Ruta Nacional No 168 km. 0, Paraje El Pozo, 3000, Santa Fe, Argentina
| | - Raquel L Chan
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, FBCB, Centro Científico Tecnológico CONICET Santa Fe, Colectora Ruta Nacional No 168 km. 0, Paraje El Pozo, 3000, Santa Fe, Argentina
| |
Collapse
|
36
|
Gong S, Ding Y, Hu S, Ding L, Chen Z, Zhu C. The role of HD-Zip class I transcription factors in plant response to abiotic stresses. PHYSIOLOGIA PLANTARUM 2019; 167:516-525. [PMID: 30851063 DOI: 10.1111/ppl.12965] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/02/2019] [Accepted: 03/07/2019] [Indexed: 05/27/2023]
Abstract
Abiotic stresses usually affect plant growth and development, indirectly or directly causing crop production reduction and even plant death. To survive, plants utilize different mechanisms to adapt themselves to continuously changing surrounding environmental stresses. Homeodomain-leucine zipper (HD-Zip) transcription factors are unique to the plant kingdom and divided into four different subfamilies (HD-Zip I∼IV). Many HD-Zip I members have been shown to play critical roles in the regulation of plant developmental processes, signaling networks and responses to environmental stresses. This review focuses on the role of HD-Zip I transcription factors in plant responses to various abiotic stresses, including abscisic acid-mediated stress, drought and cold stress, oxidative stress, helping to identify the potential regulatory mechanisms that alleviate abiotic stress in plants.
Collapse
Affiliation(s)
- Shaohua Gong
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Yanfei Ding
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Shanshan Hu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Lihong Ding
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Zhixiang Chen
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Cheng Zhu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| |
Collapse
|
37
|
Zhang H, Ma X, Li W, Niu D, Wang Z, Yan X, Yang X, Yang Y, Cui H. Genome-wide characterization of NtHD-ZIP IV: different roles in abiotic stress response and glandular Trichome induction. BMC PLANT BIOLOGY 2019; 19:444. [PMID: 31651252 PMCID: PMC6814048 DOI: 10.1186/s12870-019-2023-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 09/10/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND The plant-specific homeodomain-leucine zipper class IV (HD-ZIP IV) gene family has been involved in the regulation of epidermal development. RESULTS Fifteen genes coding for HD-ZIP IV proteins were identified (NtHD-ZIP-IV-1 to NtHD-ZIP-IV-15) based on the genome of N. tabacum. Four major domains (HD, ZIP, SAD and START) were present in these proteins. Tissue expression pattern analysis indicated that NtHD-ZIP-IV-1, - 2, - 3, - 10, and - 12 may be associated with trichome development; NtHD-ZIP-IV-8 was expressed only in cotyledons; NtHD-ZIP-IV-9 only in the leaf and stem epidermis; NtHD-ZIP-IV-11 only in leaves; and NtHD-ZIP-IV-15 only in the root and stem epidermis. We found that jasmonates may induce the generation of glandular trichomes, and that NtHD-ZIP-IV-1, - 2, - 5, and - 7 were response to MeJA treatment. Dynamic expression under abiotic stress and after application of phytohormones indicated that most NtHD-ZIP IV genes were induced by heat, cold, salt and drought. Furthermore, most of these genes were induced by gibberellic acid, 6-benzylaminopurine, and salicylic acid, but were inhibited by abscisic acid. NtHD-ZIP IV genes were sensitive to heat, but insensitive to osmotic stress. CONCLUSION NtHD-ZIP IV genes are implicated in a complex regulatory gene network controlling epidermal development and abiotic stress responses. The present study provides evidence to elucidate the gene functions of NtHD-ZIP IVs during epidermal development and stress response.
Collapse
Affiliation(s)
- Hongying Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002 China
| | - Xudong Ma
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002 China
| | - Wenjiao Li
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002 China
| | - Dexin Niu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002 China
| | - Zhaojun Wang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002 China
| | - Xiaoxiao Yan
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002 China
| | - Xinling Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd, Zhengzhou, 450000 China
| | - Yongfeng Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd, Zhengzhou, 450000 China
| | - Hong Cui
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002 China
| |
Collapse
|
38
|
Baillo EH, Kimotho RN, Zhang Z, Xu P. Transcription Factors Associated with Abiotic and Biotic Stress Tolerance and Their Potential for Crops Improvement. Genes (Basel) 2019; 10:E771. [PMID: 31575043 PMCID: PMC6827364 DOI: 10.3390/genes10100771] [Citation(s) in RCA: 286] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 01/24/2023] Open
Abstract
In field conditions, crops are adversely affected by a wide range of abiotic stresses including drought, cold, salt, and heat, as well as biotic stresses including pests and pathogens. These stresses can have a marked effect on crop yield. The present and future effects of climate change necessitate the improvement of crop stress tolerance. Plants have evolved sophisticated stress response strategies, and genes that encode transcription factors (TFs) that are master regulators of stress-responsive genes are excellent candidates for crop improvement. Related examples in recent studies include TF gene modulation and overexpression approaches in crop species to enhance stress tolerance. However, much remains to be discovered about the diverse plant TFs. Of the >80 TF families, only a few, such as NAC, MYB, WRKY, bZIP, and ERF/DREB, with vital roles in abiotic and biotic stress responses have been intensively studied. Moreover, although significant progress has been made in deciphering the roles of TFs in important cereal crops, fewer TF genes have been elucidated in sorghum. As a model drought-tolerant crop, sorghum research warrants further focus. This review summarizes recent progress on major TF families associated with abiotic and biotic stress tolerance and their potential for crop improvement, particularly in sorghum. Other TF families and non-coding RNAs that regulate gene expression are discussed briefly. Despite the emphasis on sorghum, numerous examples from wheat, rice, maize, and barley are included. Collectively, the aim of this review is to illustrate the potential application of TF genes for stress tolerance improvement and the engineering of resistant crops, with an emphasis on sorghum.
Collapse
Affiliation(s)
- Elamin Hafiz Baillo
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
- Agricultural Research Corporation (ARC), Ministry of Agriculture, Gezira 21111, Sudan.
| | - Roy Njoroge Kimotho
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhengbin Zhang
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| | - Ping Xu
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
39
|
Li Y, Xiong H, Cuo D, Wu X, Duan R. Genome-wide characterization and expression profiling of the relation of the HD-Zip gene family to abiotic stress in barley (Hordeum vulgare L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 141:250-258. [PMID: 31195255 DOI: 10.1016/j.plaphy.2019.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 05/16/2023]
Abstract
The homeodomain-leucine zipper (HD-Zip) gene family plays an important role in plant growth and environmental responses. At present, research on the HD-Zip gene family of barley is incomplete. In this study, 32 HD-Zip genes (HvHD-Zip 1-32) were identified from the barley genome and were subsequently divided into four subfamilies according to conserved structure and motif analysis. Whole genome replication events in barley and Arabidopsis, rice, and wheat HD-Zip gene families were analyzed, yielding 3, 14 and 25 gene pairs, respectively, but no segmental or tandem duplication events were identified in the barley HD-Zip gene family. Subsequently, quantitative real-time PCR (qRT-PCR) analysis revealed that the HvHD-Zip gene is sensitive to drought stress and that members of the HD-Zip I and HD-Zip IV subfamilies are generally more sensitive to abiotic stresses. Our results suggest a relationship between barley resistance and the potential key HvHD-Zip gene, which lay the foundation for further functional studies.
Collapse
Affiliation(s)
- Yuan Li
- College of Eco-environmental Engineering, Qinghai University, Qinghai, 810016, China
| | - Huiyan Xiong
- College of Agriculture and Animal Husbandry, Qinghai University, Qinghai, 810016, China
| | - Duojie Cuo
- College of Eco-environmental Engineering, Qinghai University, Qinghai, 810016, China
| | - Xiongxiong Wu
- College of Eco-environmental Engineering, Qinghai University, Qinghai, 810016, China
| | - Ruijun Duan
- College of Eco-environmental Engineering, Qinghai University, Qinghai, 810016, China; Qinghai Provincial Key Laboratory of Hulless Barley Genetics and Breeding, Qinghai University, Qinghai, 810016, China.
| |
Collapse
|
40
|
Tang Y, Bao X, Wang S, Liu Y, Tan J, Yang M, Zhang M, Dai R, Yu X. A Physic Nut Stress-Responsive HD-Zip Transcription Factor, JcHDZ07, Confers Enhanced Sensitivity to Salinity Stress in Transgenic Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:942. [PMID: 31379913 PMCID: PMC6652468 DOI: 10.3389/fpls.2019.00942] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/05/2019] [Indexed: 05/30/2023]
Abstract
Homeodomain-leucine zipper (HD-Zip) transcription factors are reported to play crucial roles in the growth, development, and stress responses of plants. However, there is little knowledge of the molecular mechanisms involved in physic nut's stress tolerance generally, or the functions of its HD-Zip genes. In the present study, a HD-Zip family transcription factor, designated JcHDZ07, was isolated from physic nut. Expression profile analysis showed that salinity stress inhibited the expression of JcHDZ07. Transient expression of JcHDZ07-YFP in Arabidopsis protoplast cells revealed that JcHDZ07 was a nuclear-localized protein. Additionally, no obvious difference in growth and development between wild-type and JcHDZ07-overexpressing plants was observed in the absence of stress. Our results further indicated that JcHDZ07 overexpressing transgenic plants had lower proline contents, lower survival rates, and activities of catalase and superoxide dismutase, but higher relative electrical leakage and malonaldehyde contents compared with wild-type plants under salinity stress conditions, suggesting that overexpression of JcHDZ07 confers enhanced sensitivity to salinity stress in transgenic Arabidopsis. Expression of salt stress-responsive genes were upregulated in leaves of transgenic plants under salinity stress, but less strongly than in wild-type plants. Collectively, our results suggest that JcHDZ07 functions as an important regulator during the process of plant responses to salinity stress.
Collapse
Affiliation(s)
- Yuehui Tang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
- Henan Key Laboratory of Crop Molecular Breeding and Bioreactor, Zhoukou Normal University, Zhoukou, China
| | - Xinxin Bao
- School of Journalism and Communication, Zhoukou Normal University, Zhoukou, China
| | - Shuang Wang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
| | - Yan Liu
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
| | - Jie Tan
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
| | - Mengxia Yang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
| | - Mengyuan Zhang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
| | - Rongrong Dai
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
| | - Xinrong Yu
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
| |
Collapse
|
41
|
Ahn H, Jo K, Jeong D, Pak M, Hur J, Jung W, Kim S. PropaNet: Time-Varying Condition-Specific Transcriptional Network Construction by Network Propagation. FRONTIERS IN PLANT SCIENCE 2019; 10:698. [PMID: 31258543 PMCID: PMC6587906 DOI: 10.3389/fpls.2019.00698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
Abstract
Transcription factor (TF) has a significant influence on the state of a cell by regulating multiple down-stream genes. Thus, experimental and computational biologists have made great efforts to construct TF gene networks for regulatory interactions between TFs and their target genes. Now, an important research question is how to utilize TF networks to investigate the response of a plant to stress at the transcription control level using time-series transcriptome data. In this article, we present a new computational network, PropaNet, to investigate dynamics of TF networks from time-series transcriptome data using two state-of-the-art network analysis techniques, influence maximization and network propagation. PropaNet uses the influence maximization technique to produce a ranked list of TFs, in the order of TF that explains differentially expressed genes (DEGs) better at each time point. Then, a network propagation technique is used to select a group of TFs that explains DEGs best as a whole. For the analysis of Arabidopsis time series datasets from AtGenExpress, we used PlantRegMap as a template TF network and performed PropaNet analysis to investigate transcriptional dynamics of Arabidopsis under cold and heat stress. The time varying TF networks showed that Arabidopsis responded to cold and heat stress quite differently. For cold stress, bHLH and bZIP type TFs were the first responding TFs and the cold signal influenced histone variants, various genes involved in cell architecture, osmosis and restructuring of cells. However, the consequences of plants under heat stress were up-regulation of genes related to accelerating differentiation and starting re-differentiation. In terms of energy metabolism, plants under heat stress show elevated metabolic process and resulting in an exhausted status. We believe that PropaNet will be useful for the construction of condition-specific time-varying TF network for time-series data analysis in response to stress. PropaNet is available at http://biohealth.snu.ac.kr/software/PropaNet.
Collapse
Affiliation(s)
- Hongryul Ahn
- Bioinformatics Institute, Seoul National University, Seoul, South Korea
| | - Kyuri Jo
- Bioinformatics Institute, Seoul National University, Seoul, South Korea
| | - Dabin Jeong
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea
| | - Minwoo Pak
- Department of Computer Science and Engineering, Seoul National University, Seoul, South Korea
| | - Jihye Hur
- Department of Crop Science, Konkuk University, Seoul, South Korea
| | - Woosuk Jung
- Department of Crop Science, Konkuk University, Seoul, South Korea
| | - Sun Kim
- Bioinformatics Institute, Seoul National University, Seoul, South Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea
- Department of Computer Science and Engineering, Seoul National University, Seoul, South Korea
| |
Collapse
|
42
|
González FG, Capella M, Ribichich KF, Curín F, Giacomelli JI, Ayala F, Watson G, Otegui ME, Chan RL. Field-grown transgenic wheat expressing the sunflower gene HaHB4 significantly outyields the wild type. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1669-1681. [PMID: 30726944 PMCID: PMC6411379 DOI: 10.1093/jxb/erz037] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/18/2019] [Indexed: 05/07/2023]
Abstract
HaHB4 is a sunflower transcription factor belonging to the homeodomain-leucine zipper I family whose ectopic expression in Arabidopsis triggers drought tolerance. The use of PCR to clone the HaHB4 coding sequence for wheat transformation caused unprogrammed mutations producing subtle differences in its activation ability in yeast. Transgenic wheat plants carrying a mutated version of HaHB4 were tested in 37 field experiments. A selected transgenic line yielded 6% more (P<0.001) and had 9.4% larger water use efficiency (P<0.02) than its control across the evaluated environments. Differences in grain yield between cultivars were explained by the 8% improvement in grain number per square meter (P<0.0001), and were more pronounced in stress (16% benefit) than in non-stress conditions (3% benefit), reaching a maximum of 97% in one of the driest environments. Increased grain number per square meter of transgenic plants was accompanied by positive trends in spikelet numbers per spike, tillers per plant, and fertile florets per plant. The gene transcripts associated with abiotic stress showed that HaHB4's action was not dependent on the response triggered either by RD19 or by DREB1a, traditional candidates related to water deficit responses. HaHB4 enabled wheat to show some of the benefits of a species highly adapted to water scarcity, especially in marginal regions characterized by frequent droughts.
Collapse
Affiliation(s)
- Fernanda Gabriela González
- Estación Experimental Pergamino, Instituto Nacional de Tecnología Agropecuaria (INTA), Pergamino, Buenos Aires, Argentina
- CITNOBA, CONICET-UNNOBA, Pergamino, Buenos Aires, Argentina
| | - Matías Capella
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral – CONICET, Facultad de Bioquímica y Ciencias Biológicas, Santa Fe, Argentina
| | - Karina Fabiana Ribichich
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral – CONICET, Facultad de Bioquímica y Ciencias Biológicas, Santa Fe, Argentina
| | - Facundo Curín
- CITNOBA, CONICET-UNNOBA, Pergamino, Buenos Aires, Argentina
| | - Jorge Ignacio Giacomelli
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral – CONICET, Facultad de Bioquímica y Ciencias Biológicas, Santa Fe, Argentina
| | | | | | - María Elena Otegui
- CONICET-INTA-FAUBA, Estación Experimental Pergamino, Facultad de Agronomía Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Raquel Lía Chan
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral – CONICET, Facultad de Bioquímica y Ciencias Biológicas, Santa Fe, Argentina
| |
Collapse
|
43
|
Shao J, Haider I, Xiong L, Zhu X, Hussain RMF, Övernäs E, Meijer AH, Zhang G, Wang M, Bouwmeester HJ, Ouwerkerk PBF. Functional analysis of the HD-Zip transcription factor genes Oshox12 and Oshox14 in rice. PLoS One 2018; 13:e0199248. [PMID: 30028850 PMCID: PMC6054374 DOI: 10.1371/journal.pone.0199248] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/04/2018] [Indexed: 12/19/2022] Open
Abstract
The homeodomain-leucine zipper (HD-Zip) transcription factor family plays vital roles in plant development and morphogenesis as well as responses to biotic and abiotic stresses. In barley, a recessive mutation in Vrs1 (HvHox1) changes two-rowed barley to six-rowed barley, which improves yield considerably. The Vrs1 gene encodes an HD-Zip subfamily I transcription factor. Phylogenetic analysis has shown that the rice HD-Zip I genes Oshox12 and Oshox14 are the closest homologues of Vrs1. Here, we show that Oshox12 and Oshox14 are ubiquitously expressed with higher levels in developing panicles. Trans-activation assays in yeast and rice protoplasts demonstrated that Oshox12 and Oshox14 can bind to a specific DNA sequence, AH1 (CAAT(A/T)ATTG), and activate reporter gene expression. Overexpression of Oshox12 and Oshox14 in rice resulted in reduced panicle length and a dwarf phenotype. In addition, Oshox14 overexpression lines showed a deficiency in panicle exsertion. Our findings suggest that Oshox12 and Oshox14 may be involved in the regulation of panicle development. This study provides a significant advancement in understanding the functions of HD-Zip transcription factors in rice.
Collapse
Affiliation(s)
- Jingxia Shao
- College of Life Sciences, Northwest A&F University, Shaanxi, People’s Republic of China
- Institute of Biology (IBL), Leiden University, Leiden, The Netherlands
| | - Imran Haider
- Institute of Biology (IBL), Leiden University, Leiden, The Netherlands
- Laboratory of Plant Physiology, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Xiaoyi Zhu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, People’s Republic of China
| | | | - Elin Övernäs
- Department of Physiological Botany, EBC, Uppsala University, Uppsala, Sweden
| | | | - Gaisheng Zhang
- College of Agronomy, Northwest A&F University, Shaanxi, People’s Republic of China
| | - Mei Wang
- Institute of Biology (IBL), Leiden University, Leiden, The Netherlands
- Leiden University European Center for Chinese Medicine and Natural Compounds, Leiden, The Netherlands
| | - Harro J. Bouwmeester
- Laboratory of Plant Physiology, Wageningen University and Research Centre, Wageningen, The Netherlands
| | | |
Collapse
|
44
|
Yang Y, Luang S, Harris J, Riboni M, Li Y, Bazanova N, Hrmova M, Haefele S, Kovalchuk N, Lopato S. Overexpression of the class I homeodomain transcription factor TaHDZipI-5 increases drought and frost tolerance in transgenic wheat. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1227-1240. [PMID: 29193733 PMCID: PMC5978581 DOI: 10.1111/pbi.12865] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/29/2017] [Accepted: 11/12/2017] [Indexed: 05/20/2023]
Abstract
Characterization of the function of stress-related genes helps to understand the mechanisms of plant responses to environmental conditions. The findings of this work defined the role of the wheat TaHDZipI-5 gene, encoding a stress-responsive homeodomain-leucine zipper class I (HD-Zip I) transcription factor, during the development of plant tolerance to frost and drought. Strong induction of TaHDZipI-5 expression by low temperatures, and the elevated TaHDZipI-5 levels of expression in flowers and early developing grains in the absence of stress, suggests that TaHDZipI-5 is involved in the regulation of frost tolerance at flowering. The TaHDZipI-5 protein behaved as an activator in a yeast transactivation assay, and the TaHDZipI-5 activation domain was localized to its C-terminus. The TaHDZipI-5 protein homo- and hetero-dimerizes with related TaHDZipI-3, and differences between DNA interactions in both dimers were specified at 3D molecular levels. The constitutive overexpression of TaHDZipI-5 in bread wheat significantly enhanced frost and drought tolerance of transgenic wheat lines with the appearance of undesired phenotypic features, which included a reduced plant size and biomass, delayed flowering and a grain yield decrease. An attempt to improve the phenotype of transgenic wheat by the application of stress-inducible promoters with contrasting properties did not lead to the elimination of undesired phenotype, apparently due to strict spatial requirements for TaHDZipI-5 overexpression.
Collapse
Affiliation(s)
- Yunfei Yang
- School of Agriculture, Food and WineUniversity of AdelaideGlen OsmondSAAustralia
| | - Sukanya Luang
- School of Agriculture, Food and WineUniversity of AdelaideGlen OsmondSAAustralia
- Present address:
Institute of Molecular BiosciencesMahidol UniversityNakhon‐PathomThailand
| | - John Harris
- School of Agriculture, Food and WineUniversity of AdelaideGlen OsmondSAAustralia
- Present address:
South Australian Research and Development InstituteGPO Box 397AdelaideSA5064Australia
| | - Matteo Riboni
- School of Agriculture, Food and WineUniversity of AdelaideGlen OsmondSAAustralia
| | - Yuan Li
- School of Agriculture, Food and WineUniversity of AdelaideGlen OsmondSAAustralia
| | - Natalia Bazanova
- School of Agriculture, Food and WineUniversity of AdelaideGlen OsmondSAAustralia
- Present address:
Commonwealth Scientific and Industrial Research OrganisationGlen OsmondSA5064Australia
| | - Maria Hrmova
- School of Agriculture, Food and WineUniversity of AdelaideGlen OsmondSAAustralia
| | - Stephan Haefele
- School of Agriculture, Food and WineUniversity of AdelaideGlen OsmondSAAustralia
- Present address:
Rothamsted ResearchWest Common HarpendenHertfordshireAl5 2JQUK
| | - Nataliya Kovalchuk
- School of Agriculture, Food and WineUniversity of AdelaideGlen OsmondSAAustralia
| | - Sergiy Lopato
- School of Agriculture, Food and WineUniversity of AdelaideGlen OsmondSAAustralia
| |
Collapse
|
45
|
ZINC-FINGER interactions mediate transcriptional regulation of hypocotyl growth in Arabidopsis. Proc Natl Acad Sci U S A 2018; 115:E4503-E4511. [PMID: 29686058 PMCID: PMC5948964 DOI: 10.1073/pnas.1718099115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Light coordinates energy production, growth, and survival throughout plant development. In Arabidopsis, light stimulates transcriptional reprogramming during developmental transitions such as photomorphogenesis and flowering through the action of photoreceptors, transcription factors, and signaling components. Here we assign a function to a member of the zinc-finger homeodomain (ZFHD) transcription factor family in regulating light-induced development. Our findings reveal ZFHD10 to be a missing link in understanding how the recently discovered integrator of light and photoperiodic flowering, TANDEM ZINC-FINGER PLUS3 (TZP), controls the expression of growth-promoting transcriptional regulators via direct association with light-regulated promoter elements. Elucidating how such novel protein complexes coordinate gene expression will allow scientists and breeders to optimize plant growth and development in response to unfavorable environmental conditions. Integration of environmental signals and interactions among photoreceptors and transcriptional regulators is key in shaping plant development. TANDEM ZINC-FINGER PLUS3 (TZP) is an integrator of light and photoperiodic signaling that promotes flowering in Arabidopsis thaliana. Here we elucidate the molecular role of TZP as a positive regulator of hypocotyl elongation. We identify an interacting partner for TZP, the transcription factor ZINC-FINGER HOMEODOMAIN 10 (ZFHD10), and characterize its function in coregulating the expression of blue-light–dependent transcriptional regulators and growth-promoting genes. By employing a genome-wide approach, we reveal that ZFHD10 and TZP coassociate with promoter targets enriched in light-regulated elements. Furthermore, using a targeted approach, we show that ZFHD10 recruits TZP to the promoters of key coregulated genes. Our findings not only unveil the mechanism of TZP action in promoting hypocotyl elongation at the transcriptional level but also assign a function to an uncharacterized member of the ZFHD transcription factor family in promoting plant growth.
Collapse
|
46
|
Moreno-Piovano GS, Moreno JE, Cabello JV, Arce AL, Otegui ME, Chan RL. A role for LAX2 in regulating xylem development and lateral-vein symmetry in the leaf. ANNALS OF BOTANY 2017; 120:577-590. [PMID: 28981582 PMCID: PMC5737667 DOI: 10.1093/aob/mcx091] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 06/09/2017] [Indexed: 05/18/2023]
Abstract
Background and Aims The symmetry of venation patterning in leaves is highly conserved within a plant species. Auxins are involved in this process and also in xylem vasculature development. Studying transgenic Arabidopsis plants ectopically expressing the sunflower transcription factor HaHB4, it was observed that there was a significant lateral-vein asymmetry in leaves and in xylem formation compared to wild type plants. To unravel the molecular mechanisms behind this phenotype, genes differentially expressed in these plants and related to auxin influx were investigated. Methods Candidate genes responsible for the observed phenotypes were selected using a co-expression analysis. Single and multiple mutants in auxin influx carriers were characterized by morphological, physiological and molecular techniques. The analysis was further complemented by restoring the wild type (WT) phenotype by mutant complementation studies and using transgenic soybean plants ectopically expressing HaHB4 . Key Results LAX2 , down-regulated in HaHB4 transgenic plants, was bioinformatically chosen as a candidate gene. The quadruple mutant aux1 lax1 lax2 lax3 and the single mutants, except lax1, presented an enhanced asymmetry in venation patterning. Additionally, the xylem vasculature of the lax2 mutant and the HaHB4 -expressing plants differed from the WT vasculature, including increased xylem length and number of xylem cell rows. Complementation of the lax2 mutant with the LAX2 gene restored both lateral-vein symmetry and xylem/stem area ratio in the stem, showing that auxin homeostasis is required to achieve normal vascular development. Interestingly, soybean plants ectopically expressing HaHB4 also showed an increased asymmetry in the venation patterning, accompanied by the repression of several GmLAX genes. Conclusions Auxin influx carriers have a significant role in leaf venation pattering in leaves and, in particular, LAX2 is required for normal xylem development, probablt controlling auxin homeostasis.
Collapse
Affiliation(s)
- Guillermo S Moreno-Piovano
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral - CONICET, Facultad de Bioquímica y Ciencias Biológicas, Colectora Ruta Nacional 168 km 0, Santa Fe, Argentina
| | - Javier E Moreno
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral - CONICET, Facultad de Bioquímica y Ciencias Biológicas, Colectora Ruta Nacional 168 km 0, Santa Fe, Argentina
| | - Julieta V Cabello
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral - CONICET, Facultad de Bioquímica y Ciencias Biológicas, Colectora Ruta Nacional 168 km 0, Santa Fe, Argentina
| | - Agustín L Arce
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral - CONICET, Facultad de Bioquímica y Ciencias Biológicas, Colectora Ruta Nacional 168 km 0, Santa Fe, Argentina
| | - María E Otegui
- Facultad de Agronomía, Universidad de Buenos Aires, CONICET, Argentina
| | - Raquel L Chan
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral - CONICET, Facultad de Bioquímica y Ciencias Biológicas, Colectora Ruta Nacional 168 km 0, Santa Fe, Argentina
| |
Collapse
|
47
|
Ebrahimian-Motlagh S, Ribone PA, Thirumalaikumar VP, Allu AD, Chan RL, Mueller-Roeber B, Balazadeh S. JUNGBRUNNEN1 Confers Drought Tolerance Downstream of the HD-Zip I Transcription Factor AtHB13. FRONTIERS IN PLANT SCIENCE 2017; 8:2118. [PMID: 29326734 PMCID: PMC5736527 DOI: 10.3389/fpls.2017.02118] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/28/2017] [Indexed: 05/05/2023]
Abstract
Low water availability is the major environmental factor limiting growth and productivity of plants and crops and is therefore considered of high importance for agriculture affected by climate change. Identifying regulatory components controlling the response and tolerance to drought stress is thus of major importance. The NAC transcription factor (TF) JUNGBRUNNEN1 (JUB1) from Arabidopsis thaliana extends leaf longevity under non-stress growth conditions, lowers cellular hydrogen peroxide (H2O2) level, and enhances tolerance against heat stress and salinity. Here, we additionally find that JUB1 strongly increases tolerance to drought stress in Arabidopsis when expressed from both, a constitutive (CaMV 35S) and an abiotic stress-induced (RD29A) promoter. Employing a yeast one-hybrid screen we identified HD-Zip class I TF AtHB13 as an upstream regulator of JUB1. AtHB13 has previously been reported to act as a positive regulator of drought tolerance. AtHB13 and JUB1 thereby establish a joint drought stress control module.
Collapse
Affiliation(s)
- Saghar Ebrahimian-Motlagh
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Pamela A. Ribone
- Instituto de Agrobiotecnología del Litoral, CONICET-Universidad Nacional del Litoral, Facultad de Bioquímica y Ciencias Biológicas, Santa Fe, Argentina
| | - Venkatesh P. Thirumalaikumar
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Annapurna D. Allu
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Raquel L. Chan
- Instituto de Agrobiotecnología del Litoral, CONICET-Universidad Nacional del Litoral, Facultad de Bioquímica y Ciencias Biológicas, Santa Fe, Argentina
| | - Bernd Mueller-Roeber
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Salma Balazadeh
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- *Correspondence: Salma Balazadeh,
| |
Collapse
|