1
|
Gong Y, Xue Q, Li J, Zhang S. Antifungal peptides from living organisms. Front Microbiol 2024; 15:1511461. [PMID: 39741586 PMCID: PMC11685209 DOI: 10.3389/fmicb.2024.1511461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 11/29/2024] [Indexed: 01/03/2025] Open
Abstract
In the post-COVID-19 era, people are increasingly concerned about microbial infections, including fungal infections that have risen in recent years. However, the currently available antifungal agents are rather limited. Worse still, the widespread use of the antifungal agents has caused the emergence of antifungal resistance in Candida, Cryptococcus, and Aspergillus species. Therefore, the development of novel antifungals is urgently needed. Antimicrobial peptides (AMPs), as components of the first-line defense of the host, are found to exhibit broad antimicrobial activity against bacteria, fungi, parasites, viruses, and protozoa. AMPs with antifungal activity are specifically referred to as antifungal peptides (AFPs). AFPs are currently regarded as the most promising alternative to conventional antifungal agents due to the fact that they are highly selective and less prone to facilitate the selection of drug resistance. In this review, we present an overview of the origin and classification of natural AFPs as well as their modes of action. Additionally, the production of natural, semisynthetic, and synthetic AFPs with a view to greater levels of exploitation is discussed. Finally, we evaluate the current and potential applications of AFPs in clinics and in the food industry.
Collapse
Affiliation(s)
- Yi Gong
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Qunhang Xue
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Jun Li
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Shicui Zhang
- Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, College of Life and Geographic Sciences, Kashi University, Kashi, China
- Department of Marine Biology, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
2
|
Ma Y, Wang H, Hu X, Zou H, Xu T, Wang Z, Ju X, He R. Inhibitory Effects of Royal Jelly and Its Functional Components on the Proliferation of MKN-28 Gastric Cancer Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20918-20929. [PMID: 39262347 DOI: 10.1021/acs.jafc.4c03367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Royal jelly (RJ) is a natural food product with nutritional value and anticancer activity. However, their effects on gastric cancer are unclear. Here, we show that treatment with 5-320 μg/mL of RJ, ethanol extract (RJEE), and protein hydrolyzate (RJPH) decreased the viability of MKN-28 gastric cancer cells, with a half-maximal inhibitory concentration of 123.22 μg/mL for RJEE. RJ, RJEE, and RJPH increase the lactate dehydrogenase release rate and change the morphology of the cells, resulting in cell shrinkage, nucleoplasm condensation, and the formation of apoptotic bodies. RJ and its functional components stagnated the cell cycle in the G0/G1 phase, accompanied by the accumulation of reactive oxygen species, decreased mitochondrial membrane potential, and increased expression levels of p53 and p21 proteins, caspase-3 activation, and apoptosis. Therefore, RJ, RJEE, and RJPH have potential inhibitory effects on the proliferation of gastric cancer cells.
Collapse
Affiliation(s)
- Yuting Ma
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Haifeng Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xiao Hu
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Hong Zou
- Jiangsu Lishui Huiyuan Nutritional Health Products Co., Nanjing 211215, China
| | - Tongyi Xu
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Zhigao Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xingrong Ju
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Rong He
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| |
Collapse
|
3
|
Ji S, An F, Zhang T, Lou M, Guo J, Liu K, Zhu Y, Wu J, Wu R. Antimicrobial peptides: An alternative to traditional antibiotics. Eur J Med Chem 2024; 265:116072. [PMID: 38147812 DOI: 10.1016/j.ejmech.2023.116072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/04/2023] [Accepted: 12/17/2023] [Indexed: 12/28/2023]
Abstract
As antibiotic-resistant bacteria and genes continue to emerge, the identification of effective alternatives to traditional antibiotics has become a pressing issue. Antimicrobial peptides are favored for their safety, low residue, and low resistance properties, and their unique antimicrobial mechanisms show significant potential in combating antibiotic resistance. However, the high production cost and weak activity of antimicrobial peptides limit their application. Moreover, traditional laboratory methods for identifying and designing new antimicrobial peptides are time-consuming and labor-intensive, hindering their development. Currently, novel technologies, such as artificial intelligence (AI) are being employed to develop and design new antimicrobial peptide resources, offering new opportunities for the advancement of antimicrobial peptides. This article summarizes the basic characteristics and antimicrobial mechanisms of antimicrobial peptides, as well as their advantages and limitations, and explores the application of AI in antimicrobial peptides prediction amd design. This highlights the crucial role of AI in enhancing the efficiency of antimicrobial peptide research and provides a reference for antimicrobial drug development.
Collapse
Affiliation(s)
- Shuaiqi Ji
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China; Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, PR China
| | - Feiyu An
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China; Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang, 110866, PR China
| | - Taowei Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China; Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, PR China
| | - Mengxue Lou
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China; Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang, 110866, PR China
| | - Jiawei Guo
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China; Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, PR China
| | - Kexin Liu
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China; Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, PR China
| | - Yi Zhu
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China; Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang, 110866, PR China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China; Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang, 110866, PR China; Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, PR China.
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China; Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang, 110866, PR China; Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, PR China.
| |
Collapse
|
4
|
Ohradanova-Repic A, Praženicová R, Gebetsberger L, Moskalets T, Skrabana R, Cehlar O, Tajti G, Stockinger H, Leksa V. Time to Kill and Time to Heal: The Multifaceted Role of Lactoferrin and Lactoferricin in Host Defense. Pharmaceutics 2023; 15:1056. [PMID: 37111542 PMCID: PMC10146187 DOI: 10.3390/pharmaceutics15041056] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Lactoferrin is an iron-binding glycoprotein present in most human exocrine fluids, particularly breast milk. Lactoferrin is also released from neutrophil granules, and its concentration increases rapidly at the site of inflammation. Immune cells of both the innate and the adaptive immune system express receptors for lactoferrin to modulate their functions in response to it. On the basis of these interactions, lactoferrin plays many roles in host defense, ranging from augmenting or calming inflammatory pathways to direct killing of pathogens. Complex biological activities of lactoferrin are determined by its ability to sequester iron and by its highly basic N-terminus, via which lactoferrin binds to a plethora of negatively charged surfaces of microorganisms and viruses, as well as to mammalian cells, both normal and cancerous. Proteolytic cleavage of lactoferrin in the digestive tract generates smaller peptides, such as N-terminally derived lactoferricin. Lactoferricin shares some of the properties of lactoferrin, but also exhibits unique characteristics and functions. In this review, we discuss the structure, functions, and potential therapeutic uses of lactoferrin, lactoferricin, and other lactoferrin-derived bioactive peptides in treating various infections and inflammatory conditions. Furthermore, we summarize clinical trials examining the effect of lactoferrin supplementation in disease treatment, with a special focus on its potential use in treating COVID-19.
Collapse
Affiliation(s)
- Anna Ohradanova-Repic
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Romana Praženicová
- Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia
| | - Laura Gebetsberger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Tetiana Moskalets
- Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia
| | - Rostislav Skrabana
- Laboratory of Structural Biology of Neurodegeneration, Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| | - Ondrej Cehlar
- Laboratory of Structural Biology of Neurodegeneration, Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| | - Gabor Tajti
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Hannes Stockinger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Vladimir Leksa
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
- Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia
| |
Collapse
|
5
|
Ma K, Wang Z, Ju X, Huang J, He R. Rapeseed peptide inhibits HepG2 cell proliferation by regulating the mitochondrial and P53 signaling pathways. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1474-1483. [PMID: 36168817 DOI: 10.1002/jsfa.12243] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/12/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Rapeseed peptide, extracted from rapeseed protein, is known to have a variety of biological activities. In this study, the anti-proliferation effect and molecular mechanism of rapeseed peptide on HepG2 cells were investigated. RESULTS In vitro anticancer experiments showed that the rapeseed peptide NDGNQPL could inhibit HepG2 cell proliferation in a concentration-dependent manner [half maximal inhibitory concentration (IC50 ), 1.56 mmol L-1 ). HepG2 cells were induced by NDGNQPL at a 0.5 mmol L-1 concentration and exhibited a 28.39 ± 0.80% apoptosis rate and a cell cycle arrest in the G0/G1 phase. Meanwhile, rapeseed peptide induced a decrease in mitochondrial membrane potential, an increase in reactive oxygen species (ROS) release, and changes in the nuclear morphology of HepG2 cells, indicating that rapeseed peptide could induce cell apoptosis through the mitochondrial pathway. In addition, rapeseed peptide activated the proliferation-related P53 signaling pathway, in which the expression levels of P53, P21, and cleaved-caspase3 were up-regulated, while the expression levels of murine double minute 2 (MDM2) were down-regulated. In molecular docking simulations, NDGNQPL exhibited a good affinity for the MDM2 molecule, which supported the notion that the rapeseed peptide is able to inhibit MDM2, a negative regulator of P53. CONCLUSION The current results indicate that the rapeseed-derived NDGNQPL peptide has the potential to inhibit the proliferation of HepG2 cells and promote human health. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Keer Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Zhigao Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Xingrong Ju
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Jiankang Huang
- Thyroid and Breast Surgery, Second People's Hospital of Anhui Province, Hefei, China
| | - Rong He
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
6
|
Guevara-Lora I, Bras G, Juszczak M, Karkowska-Kuleta J, Gorecki A, Manrique-Moreno M, Dymek J, Pyza E, Kozik A, Rapala-Kozik M. Cecropin D-derived synthetic peptides in the fight against Candida albicans cell filamentation and biofilm formation. Front Microbiol 2023; 13:1045984. [PMID: 36713201 PMCID: PMC9880178 DOI: 10.3389/fmicb.2022.1045984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
The recent progressive increase in the incidence of invasive fungal infections, especially in immunocompromised patients, makes the search for new therapies crucial in the face of the growing drug resistance of prevalent nosocomial yeast strains. The latest research focuses on the active compounds of natural origin, inhibiting fungal growth, and preventing the formation of fungal biofilms. Antimicrobial peptides are currently the subject of numerous studies concerning effective antifungal therapy. In the present study, the antifungal properties of two synthetic peptides (ΔM3, ΔM4) derived from an insect antimicrobial peptide - cecropin D - were investigated. The fungicidal activity of both compounds was demonstrated against the yeast forms of Candida albicans, Candida tropicalis, and Candida parapsilosis, reaching a MFC99.9 in the micromolar range, while Candida glabrata showed greater resistance to these peptides. The scanning electron microscopy revealed a destabilization of the yeast cell walls upon treatment with both peptides; however, their effectiveness was strongly modified by the presence of salt or plasma in the yeast environment. The transition of C. albicans cells from yeast to filamentous form, as well as the formation of biofilms, was effectively reduced by ΔM4. Mature biofilm viability was inhibited by a higher concentration of this peptide and was accompanied by increased ROS production, activation of the GPX3 and SOD5 genes, and finally, increased membrane permeability. Furthermore, both peptides showed a synergistic effect with caspofungin in inhibiting the metabolic activity of C. albicans cells, and an additive effect was also observed for the mixtures of peptides with amphotericin B. The results indicate the possible potential of the tested peptides in the prevention and treatment of candidiasis.
Collapse
Affiliation(s)
- Ibeth Guevara-Lora
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Grazyna Bras
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Magdalena Juszczak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Andrzej Gorecki
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Marcela Manrique-Moreno
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, Medellin, Colombia
| | - Jakub Dymek
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland,*Correspondence: Maria Rapala-Kozik,
| |
Collapse
|
7
|
Han G, Lee DG. Indole propionic acid induced Ca 2+ -dependent apoptosis in Candida albicans. IUBMB Life 2021; 74:235-244. [PMID: 34779568 DOI: 10.1002/iub.2579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/28/2021] [Indexed: 11/09/2022]
Abstract
Indole propionic acid (IPA) which majorly influences the modulation of cellular respiration is a metabolite generated by gut microbiota. The antimicrobial effects of IPA have not been previously demonstrated. Therefore, this study focused on investigating the antimicrobial activity of IPA. Initially, antifungal activity of IPA against Candida albicans was observed, accompanied by variations in mitochondrial respiration indicating modulation of NAD+ /NADH ratios. Consumption of O2 contributes to the respiratory regulation and triggered by Ca2+ overloading. After treatment with IPA, the cells were monitored, and Ca2+ increases leading to membrane depolarization and reactive oxygen species (ROS) accumulation in mitochondria were noted. Depolarization of mitochondria membrane induced release of proapoptotic proteins in mitochondria. Oxidative stress exerted by ROS contributed to glutathione depletion and oxidation of glutathione (GSH). Fragmentation of DNA is a characteristic event leading to apoptosis and accompanies major hallmarks of apoptosis including phosphatidylserine exposure and metacaspase activation. In addition, phosphatidylserine exposure and metacaspase activation were detected in the cell treated with IPA. In conclusion, IPA triggered apoptosis in C. albicans under the influence of Ca2+ .
Collapse
Affiliation(s)
- Giyeol Han
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Dong Gun Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
8
|
Juvêncio da Silva L, Dias Barroso FD, Vieira LS, Carlos Mota DR, da Silva Firmino BK, Rocha da Silva C, de Farias Cabral VP, Cândido TM, Sá LGDAV, Barbosa da Silva WM, Silva J, Marinho ES, Cavalcanti BC, de Moraes MO, Júnior HVN, de Andrade Neto JB. Diazepam's antifungal activity in fluconazole-resistant Candida spp. and biofilm inhibition in C. albicans: evaluation of the relationship with the proteins ALS3 and SAP5. J Med Microbiol 2021; 70. [PMID: 33560202 DOI: 10.1099/jmm.0.001308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The genus Candida spp. has been highlighted as one of the main etiological agents causing fungal infections, with Candida albicans being the most prominent, responsible for most cases of candidemia. Due to its capacity for invasion and tissue adhesion, it is associated with the formation of biofilms, mainly in the environment and hospital devices, decreasing the effectiveness of available treatments. The repositioning of drugs, which is characterized by the use of drugs already on the market for other purposes, together with molecular-docking methods can be used aiming at the faster development of new antifungals to combat micro-organisms. This study aimed to evaluate the antifungal effect of diazepam on mature C. albicans biofilms in vitro and its action on biofilm in formation, as well as its mechanism of action and interaction with structures related to the adhesion of C. albicans, ALS3 and SAP5. To determine the MIC, the broth microdilution test was used according to protocol M27-A3 (CLSI, 2008). In vitro biofilm formation tests were performed using 96-well plates, followed by molecular-docking protocols to analyse the binding agent interaction with ALS3 and SAP5 targets. The results indicate that diazepam has antimicrobial activity against planktonic cells of Candida spp. and C. albicans biofilms, interacting with important virulence factors related to biofilm formation (ALS3 and SAP5). In addition, treatment with diazepam triggered a series of events in C. albicans cells, such as loss of membrane integrity, mitochondrial depolarization and increased production of EROs, causing DNA damage and consequent cell apoptosis.
Collapse
Affiliation(s)
- Lisandra Juvêncio da Silva
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, Brazil.,School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Fátima Daiana Dias Barroso
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, Brazil.,School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | | | | | | | - Cecília Rocha da Silva
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, Brazil.,School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Vitória Pessoa de Farias Cabral
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Thiago Mesquita Cândido
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, Brazil.,School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lívia Gurgel do Amaral Valente Sá
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, Brazil.,School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Jacilene Silva
- Department of Chemistry, Group for Theoretical Chemistry and Electrochemistry (GQTE), State University of Ceará, Limoeiro do Norte, Ceará, Brazil
| | - Emmanuel Silva Marinho
- Department of Chemistry, Group for Theoretical Chemistry and Electrochemistry (GQTE), State University of Ceará, Limoeiro do Norte, Ceará, Brazil
| | - Bruno Coelho Cavalcanti
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil.,Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Manoel Odorico de Moraes
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil.,Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Hélio Vitoriano Nobre Júnior
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, Brazil.,School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | - João Batista de Andrade Neto
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil.,Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| |
Collapse
|
9
|
Reactive oxygen mediated apoptosis as a therapeutic approach against opportunistic Candida albicans. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 125:25-49. [PMID: 33931141 DOI: 10.1016/bs.apcsb.2020.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Candida albicans are polymorphic fungal species commonly occurs in a symbiotic association with the host's usual microflora. Certain specific changes in its usual microenvironment can lead to diseases ranging from external mucosal to severally lethal systemic infections like invasive candidiasis hospital-acquired fatal infection caused by different species of Candida. The patient acquired with this infection has a high mortality and morbidity rate, ranging from 40% to 60%. This is an ill-posed problem by its very nature. Hence, early diagnosis and management is a crucial part. Antifungal drug resistance against the first and second generation of antifungal drugs has made it difficult to treat such fatal diseases. After a few dormant years, recently, there has been a rapid turnover of identifying novel drugs with low toxicity to limit the problem of drug resistance. After an initial overview of related work, we examine specific prior work on how a change in oxidative stress can facilitate apoptosis in C. albicans. Subsequently, it was investigated that Candida spp. suppresses the production of ROS mediated host defense system. Here, we have reviewed possibly all the small molecule inhibitors, natural products, antimicrobial peptide, and some naturally derived semi-synthetic compounds which are known to influence oxidative stress, to generate a proper apoptotic response in C. albicans and thus might be a novel therapeutic approach to augment the current treatment options.
Collapse
|