1
|
Falco JA, Wynia-Smith SL, McCoy J, Smith BC, Weerapana E. Identification of Protein Targets of S-Nitroso-Coenzyme A-Mediated S-Nitrosation Using Chemoproteomics. ACS Chem Biol 2024; 19:193-207. [PMID: 38159293 PMCID: PMC11154738 DOI: 10.1021/acschembio.3c00654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
S-Nitrosation is a cysteine post-translational modification fundamental to cellular signaling. This modification regulates protein function in numerous biological processes in the nervous, cardiovascular, and immune systems. Small molecule or protein nitrosothiols act as mediators of NO signaling by transferring the NO group (formally NO+) to a free thiol on a target protein through a transnitrosation reaction. The protein targets of specific transnitrosating agents and the extent and functional effects of S-nitrosation on these target proteins have been poorly characterized. S-nitroso-coenzyme A (CoA-SNO) was recently identified as a mediator of endogenous S-nitrosation. Here, we identified direct protein targets of CoA-SNO-mediated transnitrosation using a competitive chemical-proteomic approach that quantified the extent of modification on 789 cysteine residues in response to CoA-SNO. A subset of cysteines displayed high susceptibility to modification by CoA-SNO, including previously uncharacterized sites of S-nitrosation. We further validated and functionally characterized the functional effects of S-nitrosation on the protein targets phosphofructokinase (platelet type), ATP citrate synthase, and ornithine aminotransferase.
Collapse
Affiliation(s)
- Julia A. Falco
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | - Sarah L. Wynia-Smith
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - James McCoy
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | - Brian C. Smith
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | |
Collapse
|
2
|
Gao W, Huang M, Chen X, Chen J, Zou Z, Li L, Ji K, Nie Z, Yang B, Wei Z, Xu P, Jia J, Zhang Q, Shen H, Wang Q, Li K, Zhu L, Wang M, Ye S, Zeng S, Lin Y, Rong Z, Xu Y, Zhu P, Zhang H, Hao B, Liu Q. The role of S-nitrosylation of PFKM in regulation of glycolysis in ovarian cancer cells. Cell Death Dis 2021; 12:408. [PMID: 33859186 PMCID: PMC8050300 DOI: 10.1038/s41419-021-03681-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 02/02/2023]
Abstract
One of the malignant transformation hallmarks is metabolism reprogramming, which plays a critical role in the biosynthetic needs of unchecked proliferation, abrogating cell death programs, and immunologic escape. However, the mechanism of the metabolic switch is not fully understood. Here, we found that the S-nitrosoproteomic profile of endogenous nitrogen oxide in ovarian cancer cells targeted multiple components in metabolism processes. Phosphofructokinase (PFKM), one of the most important regulatory enzymes of glycolysis, was S-nitrosylated by nitric oxide synthase NOS1 at Cys351. S-nitrosylation at Cys351 stabilized the tetramer of PFKM, leading to resist negative feedback of downstream metabolic intermediates. The PFKM-C351S mutation decreased the proliferation rate of cultured cancer cells, and reduced tumor growth and metastasis in the mouse xenograft model. These findings indicated that S-nitrosylation at Cys351 of PFKM by NOS1 contributes to the metabolic reprogramming of ovarian cancer cells, highlighting a critical role of endogenous nitrogen oxide on metabolism regulations in tumor progression.
Collapse
Affiliation(s)
- Wenwen Gao
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Mengqiu Huang
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xi Chen
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jianping Chen
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhiwei Zou
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Southern Hospital Zengcheng Branch, Southern Medical University, Guangzhou, 528308, China
| | - Linlin Li
- First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, 450001, China
| | - Kaiyuan Ji
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhirui Nie
- Guangzhou Panyu Central Hospital, Guangzhou, 511400, China
| | - Bingsheng Yang
- Pearl River Hospital, Southern Medical University, Guangzhou, 528308, China
| | - Zibo Wei
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Pengfei Xu
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Junshuang Jia
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qianbing Zhang
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hongfen Shen
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qianli Wang
- Henan Cancer Hospital, Zhengzhou University, Zhengzhou, Henan Province, 450003, China
| | - Keyi Li
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lingqun Zhu
- Guangzhou Concord Cancer Center, Guangzhou, 528308, China
| | - Meng Wang
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shuangyan Ye
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Sisi Zeng
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ying Lin
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhili Rong
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yang Xu
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518033, China
| | - Peng Zhu
- Central Lab of Shenzhen Pingshan People's Hospital, Shenzhen, 518118, P. R. China
| | - Hui Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
- Metabolic Innovation Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China.
- Platform of Metabolomics, Center for Precision Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China.
| | - Bingtao Hao
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Medical Genetic Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genoics, Henan Provincial People's Hospital Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, 450003, China.
| | - Qiuzhen Liu
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Pingshan General Hospital of Southern Medical University, Southern Medical University, Shenzhen, 518118, China.
| |
Collapse
|
3
|
Jang S, Xuan Z, Lagoy RC, Jawerth LM, Gonzalez IJ, Singh M, Prashad S, Kim HS, Patel A, Albrecht DR, Hyman AA, Colón-Ramos DA. Phosphofructokinase relocalizes into subcellular compartments with liquid-like properties in vivo. Biophys J 2021; 120:1170-1186. [PMID: 32853565 PMCID: PMC8059094 DOI: 10.1016/j.bpj.2020.08.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 02/08/2023] Open
Abstract
Although much is known about the biochemical regulation of glycolytic enzymes, less is understood about how they are organized inside cells. We systematically examine the dynamic subcellular localization of glycolytic protein phosphofructokinase-1/PFK-1.1 in Caenorhabditis elegans. We determine that endogenous PFK-1.1 localizes to subcellular compartments in vivo. In neurons, PFK-1.1 forms phase-separated condensates near synapses in response to energy stress from transient hypoxia. Restoring animals to normoxic conditions results in cytosolic dispersion of PFK-1.1. PFK-1.1 condensates exhibit liquid-like properties, including spheroid shapes due to surface tension, fluidity due to deformations, and fast internal molecular rearrangements. Heterologous self-association domain cryptochrome 2 promotes formation of PFK-1.1 condensates and recruitment of aldolase/ALDO-1. PFK-1.1 condensates do not correspond to stress granules and might represent novel metabolic subcompartments. Our studies indicate that glycolytic protein PFK-1.1 can dynamically form condensates in vivo.
Collapse
Affiliation(s)
- SoRi Jang
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut
| | - Zhao Xuan
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut
| | - Ross C Lagoy
- Department of Biomedical Engineering and Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Louise M Jawerth
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ian J Gonzalez
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut
| | - Milind Singh
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut
| | - Shavanie Prashad
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut
| | - Hee Soo Kim
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut
| | - Avinash Patel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Dirk R Albrecht
- Department of Biomedical Engineering and Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Daniel A Colón-Ramos
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut; Instituto de Neurobiología, Universidad de Puerto Rico, San Juan, Puerto Rico.
| |
Collapse
|
4
|
Krassikova L, Zhang B, Nagarajan D, Queiroz AL, Kacal M, Samakidis E, Vakifahmetoglu-Norberg H, Norberg E. The deubiquitinase JOSD2 is a positive regulator of glucose metabolism. Cell Death Differ 2021; 28:1091-1109. [PMID: 33082514 PMCID: PMC7937685 DOI: 10.1038/s41418-020-00639-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 09/24/2020] [Accepted: 10/06/2020] [Indexed: 01/30/2023] Open
Abstract
Cancer cells undergo complex metabolic alterations. The mechanisms underlying the tuning of cancer metabolism are under active investigation. Here, we identify the uncharacterized deubiquitinase JOSD2 as a positive regulator of cancer cell proliferation by displaying comprehensive effects on glucose catabolism. We found that JOSD2 directly controls a metabolic enzyme complex that includes Aldolase A, Phosphofructokinase-1 and Phosphoglycerate dehydrogenase, in vitro and in vivo. Further, JOSD2 expression, but not a catalytically inactive mutant, deubiquitinates and stabilizes the enzyme complex, thereby enhancing their activities and the glycolytic rate. This represents a selective JOSD2 feature that is not shared among other Machado-Joseph disease DUBs or observed in nontransformed cells. JOSD2 deficiency displays cytostatic effects and reduces glycolysis in a broad spectrum of tumor cells of distinct origin and its expression correlates with poor prognosis in non-small cell lung cancer. Overall, our study provides evidence for a previously unknown biological mechanism in which JOSD2 integrates glucose and serine metabolism with potential therapeutic implications.
Collapse
Affiliation(s)
- Lyudmila Krassikova
- grid.4714.60000 0004 1937 0626Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, Solnavägen 9, SE-171 65 Stockholm, Sweden
| | - Boxi Zhang
- grid.4714.60000 0004 1937 0626Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, Solnavägen 9, SE-171 65 Stockholm, Sweden
| | - Divya Nagarajan
- grid.4714.60000 0004 1937 0626Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, Solnavägen 9, SE-171 65 Stockholm, Sweden
| | - André Lima Queiroz
- grid.4714.60000 0004 1937 0626Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, Solnavägen 9, SE-171 65 Stockholm, Sweden ,grid.5386.8000000041936877XPresent Address: Department of Medicine, Weill Cornell Medicine, New York, NY 10065 USA
| | - Merve Kacal
- grid.4714.60000 0004 1937 0626Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, Solnavägen 9, SE-171 65 Stockholm, Sweden
| | - Evangelos Samakidis
- grid.4714.60000 0004 1937 0626Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, Solnavägen 9, SE-171 65 Stockholm, Sweden
| | - Helin Vakifahmetoglu-Norberg
- grid.4714.60000 0004 1937 0626Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, Solnavägen 9, SE-171 65 Stockholm, Sweden
| | - Erik Norberg
- grid.4714.60000 0004 1937 0626Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, Solnavägen 9, SE-171 65 Stockholm, Sweden
| |
Collapse
|
5
|
Fernandes PM, Kinkead J, McNae I, Michels PA, Walkinshaw MD. Biochemical and transcript level differences between the three human phosphofructokinases show optimisation of each isoform for specific metabolic niches. Biochem J 2020; 477:4425-4441. [PMID: 33141153 PMCID: PMC7702303 DOI: 10.1042/bcj20200656] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 01/14/2023]
Abstract
6-Phosphofructokinase-1-kinase (PFK) tetramers catalyse the phosphorylation of fructose 6-phosphate (F6P) to fructose 1,6-bisphosphate (F16BP). Vertebrates have three PFK isoforms (PFK-M, PFK-L, and PFK-P). This study is the first to compare the kinetics, structures, and transcript levels of recombinant human PFK isoforms. Under the conditions tested PFK-M has the highest affinities for F6P and ATP (K0.5ATP 152 µM; K0.5F6P 147 µM), PFK-P the lowest affinities (K0.5ATP 276 µM; K0.5F6P 1333 µM), and PFK-L demonstrates a mixed picture of high ATP affinity and low F6P affinity (K0.5ATP 160 µM; K0.5F6P 1360 µM). PFK-M is more resistant to ATP inhibition compared with PFK-L and PFK-P (respectively, 23%, 31%, 50% decreases in specificity constants). GTP is an alternate phospho donor. Interface 2, which regulates the inactive dimer to active tetramer equilibrium, differs between isoforms, resulting in varying tetrameric stability. Under the conditions tested PFK-M is less sensitive to fructose 2,6-bisphosphate (F26BP) allosteric modulation than PFK-L or PFK-P (allosteric constants [K0.5ATP+F26BP/K0.5ATP] 1.10, 0.92, 0.54, respectively). Structural analysis of two allosteric sites reveals one may be specialised for AMP/ADP and the other for smaller/flexible regulators (citrate or phosphoenolpyruvate). Correlations between PFK-L and PFK-P transcript levels indicate that simultaneous expression may expand metabolic capacity for F16BP production whilst preserving regulatory capabilities. Analysis of cancer samples reveals intriguing parallels between PFK-P and PKM2 (pyruvate kinase M2), and simultaneous increases in PFK-P and PFKFB3 (responsible for F26BP production) transcript levels, suggesting prioritisation of metabolic flexibility in cancers. Our results describe the kinetic and transcript level differences between the three PFK isoforms, explaining how each isoform may be optimised for distinct roles.
Collapse
Affiliation(s)
- Peter M. Fernandes
- School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, U.K
| | - James Kinkead
- School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, U.K
| | - Iain McNae
- School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, U.K
| | - Paul A.M. Michels
- School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, U.K
| | - Malcolm D. Walkinshaw
- School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, U.K
| |
Collapse
|
6
|
Ausina P, Da Silva D, Majerowicz D, Zancan P, Sola-Penna M. Insulin specifically regulates expression of liver and muscle phosphofructokinase isoforms. Biomed Pharmacother 2018; 103:228-233. [PMID: 29655163 DOI: 10.1016/j.biopha.2018.04.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/23/2018] [Accepted: 04/05/2018] [Indexed: 01/04/2023] Open
Abstract
Phosphofructokinase (PFK) is a key regulatory enzyme of glycolysis, being considered the pacemaker of this pathway. In mammals, this enzyme exists as three different isoforms, PFKM, PFKL and PFKP, presenting different regulatory and catalytic properties. The expression of these isoforms is tissue-specific and vary according to the cell differentiation and signalization. Although it is known that the expression of the different PFK isoforms directly affects cell function, the information regarding the regulation of PFK isoforms expression is scarce. In the present work, we evaluate the role of insulin signalization on the expression of three PFK isoforms on skeletal muscle, liver, and epididymal white adipose tissue (eWAT) of mice. For this, Swiss mice were treated with streptozotocin (STZ) to disrupt pancreatic ß-cells and, thus, insulin production. Control group were treated with citrate buffer (STZ vehicle). These groups were then treated with insulin or saline twice a day for ten consecutive days when animals were euthanized and tissues used for the evaluation of PFK isoforms expression by quantitative PCR (qPCR). Our results revealed that the lack of insulin significantly impacted the expression of PFKL, presenting mild effects on PFKM and no effects on PFKP. The decrease of PFKL and PFKM mRNA levels observed on the group treated with STZ was reversed by the treatment with insulin. In conclusion, insulin, the most known regulator of glucose consumption, specifically regulates the expression of PFKL and PFKM, which impact the regulation of glycolysis in the cell.
Collapse
Affiliation(s)
- Priscila Ausina
- Laboratório de Enzimologia e Controle do Metabolismo (LabECoM), Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-903, RJ, Brazil
| | - Daniel Da Silva
- Laboratório de Enzimologia e Controle do Metabolismo (LabECoM), Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-903, RJ, Brazil
| | - David Majerowicz
- Laboratório de Alvos Moleculares (LAM), Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-903, RJ, Brazil
| | - Patricia Zancan
- Laboratório de Oncobiologia Molecular (LabOMol), Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-903, RJ, Brazil
| | - Mauro Sola-Penna
- Laboratório de Enzimologia e Controle do Metabolismo (LabECoM), Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-903, RJ, Brazil.
| |
Collapse
|
7
|
Cardim Pires TR, Albanese JM, Schwab M, Marette A, Carvalho RS, Sola-Penna M, Zancan P. Phosphofructokinase-P Modulates P44/42 MAPK Levels in HeLa Cells. J Cell Biochem 2017; 118:1216-1226. [PMID: 27791266 DOI: 10.1002/jcb.25774] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/26/2016] [Indexed: 12/16/2022]
Abstract
It is known that interfering with glycolysis leads to profound modification of cancer cell proliferation. However, energy production is not the major reason for this correlation. Here, using HeLa cells as a model for cancer, we demonstrate that phosphofructokinase-P (PFK-P), which is overexpressed in diverse types of cancer including HeLa cells, modulates expression of P44/42 mitogen-activated protein kinase (MAPK). Silencing of PFK-P did not alter HeLa cell viability or energy production, including the glycolytic rate. On the other hand, silencing of PFK-P induced the downregulation of p44/42 MAPK, augmenting the sensitivity of HeLa cells to different drugs. Conversely, overexpression of PFK-P promotes the upregulation of p44/42 MAPK, making the cells more resistant to the drugs. These results indicate that overexpression of PFK-P by cancer cells is related to activation of survival pathways via upregulation of MAPK and suggest PFK-P as a promising target for cancer therapy. J. Cell. Biochem. 118: 1216-1226, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Jamille Mansur Albanese
- Laboratório de Oncobiologia Molecular (LabOMol), Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Michael Schwab
- Department of Medicine, Quebec Heart and Lung Institute, Hôpital Laval, Pavillon Marguerite d'Youville, Room Y4308, 2705 Chemin Ste-Foy, Québec, G1V 4G5, Canada
| | - André Marette
- Department of Medicine, Quebec Heart and Lung Institute, Hôpital Laval, Pavillon Marguerite d'Youville, Room Y4308, 2705 Chemin Ste-Foy, Québec, G1V 4G5, Canada
| | - Renato Sampaio Carvalho
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Mauro Sola-Penna
- Laboratório de Enzimologia e Controle do Metabolismo (LabECoM), Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Patricia Zancan
- Laboratório de Oncobiologia Molecular (LabOMol), Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| |
Collapse
|
8
|
Marcondes MC, Fernandes ACS, Itabaiana I, de Souza ROMA, Sola-Penna M, Zancan P. Nanomicellar Formulation of Clotrimazole Improves Its Antitumor Action toward Human Breast Cancer Cells. PLoS One 2015; 10:e0130555. [PMID: 26098874 PMCID: PMC4476588 DOI: 10.1371/journal.pone.0130555] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/21/2015] [Indexed: 02/04/2023] Open
Abstract
Background Although demonstrated as a selective anticancer drug, the clinical use of clotrimazole (CTZ) is limited due to its low solubility in hydrophilic fluids. Thus, we prepared a water-soluble nanomicellar formulation of CTZ (nCTZ) and tested on the human breast cancer cell line MCF-7 biology. Methodology/Principal Findings CTZ was nanoencapsulated in tween 80 micelles, which generated nanomicelles of, approximately, 17 nm of diameter. MCF-7 cells were treated with nCTZ and unencapsulated DMSO-solubilized drug (sCTZ) was used for comparison. After treatment, the cells were evaluated in terms of metabolism, proliferation, survival and structure. We found that nCTZ was more efficient than sCTZ at inhibiting glycolytic and other cytosolic and mitochondrial enzymes. Moreover, this increased activity was also observed for lactate production, intracellular ATP content, ROS production and antioxidant potential. As a consequence, nCTZ-treated MCF-7 cells displayed alterations to the plasma membrane, mitochondria and the nucleus. Finally, nCTZ induced both apoptosis and necrosis in MCF-7 cells. Conclusions/Significance MCF-7 cells are more sensible to nCTZ than to sCTZ. This was especially evident on regard to antioxidant potential, which is an important cell defense against drugs that affect cell metabolism. Moreover, this water-soluble formulation of CTZ strengths its potential use as an anticancer medicine.
Collapse
Affiliation(s)
- Mariah C. Marcondes
- Laboratório de Oncobiologia Molecular (LabOMol), Departamento de Biotecnologia Farmacêutica (BioTecFar), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Anne C. S. Fernandes
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Ivaldo Itabaiana
- Laboratório de Biocatálise e Síntese Orgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Rodrigo O. M. A. de Souza
- Laboratório de Biocatálise e Síntese Orgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Mauro Sola-Penna
- Laboratório de Enzimologia e Controle do Metabolismo (LabECoM), Departamento de Biotecnologia Farmacêutica (BioTecFar), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Patricia Zancan
- Laboratório de Oncobiologia Molecular (LabOMol), Departamento de Biotecnologia Farmacêutica (BioTecFar), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- * E-mail:
| |
Collapse
|
9
|
The structural and functional coordination of glycolytic enzymes in muscle: evidence of a metabolon? BIOLOGY 2014; 3:623-44. [PMID: 25247275 PMCID: PMC4192631 DOI: 10.3390/biology3030623] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/05/2014] [Accepted: 09/08/2014] [Indexed: 12/22/2022]
Abstract
Metabolism sustains life through enzyme-catalyzed chemical reactions within the cells of all organisms. The coupling of catalytic function to the structural organization of enzymes contributes to the kinetic optimization important to tissue-specific and whole-body function. This coupling is of paramount importance in the role that muscle plays in the success of Animalia. The structure and function of glycolytic enzyme complexes in anaerobic metabolism have long been regarded as a major regulatory element necessary for muscle activity and whole-body homeostasis. While the details of this complex remain to be elucidated through in vivo studies, this review will touch on recent studies that suggest the existence of such a complex and its structure. A potential model for glycolytic complexes and related subcomplexes is introduced.
Collapse
|
10
|
Yang Y, Tarabra E, Yang GS, Vaitheesvaran B, Palacios G, Kurland IJ, Pessin JE, Bastie CC. Alteration of de novo glucose production contributes to fasting hypoglycaemia in Fyn deficient mice. PLoS One 2013; 8:e81866. [PMID: 24312371 PMCID: PMC3842980 DOI: 10.1371/journal.pone.0081866] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 10/20/2013] [Indexed: 11/19/2022] Open
Abstract
Previous studies have demonstrated that glucose disposal is increased in the Fyn knockout (FynKO) mice due to increased insulin sensitivity. FynKO mice also display fasting hypoglycaemia despite decreased insulin levels, which suggested that hepatic glucose production was unable to compensate for the increased basal glucose utilization. The present study investigates the basis for the reduction in plasma glucose levels and the reduced ability for the liver to produce glucose in response to gluconeogenic substrates. FynKO mice had a 5-fold reduction in phosphoenolpyruvate carboxykinase (PEPCK) gene and protein expression and a marked reduction in pyruvate, pyruvate/lactate-stimulated glucose output. Remarkably, de novo glucose production was also blunted using gluconeogenic substrates that bypass the PEPCK step. Impaired conversion of glycerol to glucose was observed in both glycerol tolerance test and determination of the conversion of (13)C-glycerol to glucose in the fasted state. α-glycerol phosphate levels were reduced but glycerol kinase protein expression levels were not changed. Fructose-driven glucose production was also diminished without alteration of fructokinase expression levels. The normal levels of dihydroxyacetone phosphate and glyceraldehyde-3-phosphate observed in the FynKO liver extracts suggested normal triose kinase function. Fructose-bisphosphate aldolase (aldolase) mRNA or protein levels were normal in the Fyn-deficient livers, however, there was a large reduction in liver fructose-6-phosphate (30-fold) and fructose-1,6-bisphosphate (7-fold) levels as well as a reduction in glucose-6-phosphate (2-fold) levels. These data suggest a mechanistic defect in the allosteric regulation of aldolase activity.
Collapse
Affiliation(s)
- Yingjuan Yang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People’s Republic of China
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Elena Tarabra
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Gong-She Yang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People’s Republic of China
- * E-mail: (CCB); (GSY)
| | - Bhavapriya Vaitheesvaran
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Gustavo Palacios
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Irwin J. Kurland
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jeffrey E. Pessin
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Claire C. Bastie
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Division of Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- * E-mail: (CCB); (GSY)
| |
Collapse
|
11
|
Stanley IA, Ribeiro SM, Giménez-Cassina A, Norberg E, Danial NN. Changing appetites: the adaptive advantages of fuel choice. Trends Cell Biol 2013; 24:118-27. [PMID: 24018218 DOI: 10.1016/j.tcb.2013.07.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/29/2013] [Accepted: 07/30/2013] [Indexed: 01/02/2023]
Abstract
Cells are capable of metabolizing a variety of carbon substrates, including glucose, fatty acids, ketone bodies, and amino acids. Cellular fuel choice not only fulfills specific biosynthetic needs, but also enables programmatic adaptations to stress conditions beyond compensating for changes in nutrient availability. Emerging evidence indicates that specific switches from utilization of one substrate to another can have protective or permissive roles in disease pathogenesis. Understanding the molecular determinants of cellular fuel preference may provide insights into the homeostatic control of stress responses, and unveil therapeutic targets. Here, we highlight overarching themes encompassing cellular fuel choice; its link to cell fate and function; its advantages in stress protection; and its contribution to metabolic dependencies and maladaptations in pathological conditions.
Collapse
Affiliation(s)
- Illana A Stanley
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sofia M Ribeiro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Portugal; PhD Programme in Experimental Biology and Biomedicine (PDBEB), CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Alfredo Giménez-Cassina
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Erik Norberg
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Nika N Danial
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Coelho WS, Sola-Penna M. Serotonin regulates 6-phosphofructo-1-kinase activity in a PLC-PKC-CaMK II- and Janus kinase-dependent signaling pathway. Mol Cell Biochem 2012; 372:211-20. [PMID: 23010892 DOI: 10.1007/s11010-012-1462-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 09/14/2012] [Indexed: 01/08/2023]
Abstract
Serotonin (5-HT) is a hormone that has been implicated in the regulation of many physiological and pathological events. One of the most intriguing properties of this hormone is its ability to up-regulate mitosis. Moreover, 5-HT stimulates glucose uptake and up-regulates PFK activity through the 5-HT(2A) receptor, resulting in the phosphorylation of a tyrosine residue of PFK and the intracellular redistribution of PFK within skeletal muscle. The present study investigated some of the signaling intermediates involved in the effects of 5-HT on 6-phosphofructo-1-kinase (PFK) regulation from skeletal muscle using kinetic assessments, immunoprecipitation, and western blotting assays. Our results demonstrate that 5-HT stimulates PFK from skeletal muscle via phospholipase C (PLC). The activation of PLC in skeletal muscle leads to the recruitment of protein kinase C (PKC) and calmodulin and the stimulation of calmodulin kinase II, which associates with PFK upon 5-HT action. Alternatively, 5-HT loses its ability to up-regulate PFK activity when Janus kinase is inhibited, suggesting that 5-HT is able to control glycolytic flux in the skeletal muscle of mice by recruiting different pathways and controlling PFK activity.
Collapse
Affiliation(s)
- Wagner Santos Coelho
- Laboratório de Enzimologia e Controle do Metabolismo (LabECoM), Departamento de Fármacos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, RJ 21941-590, Brazil
| | | |
Collapse
|
13
|
Da Silva D, Ausina P, Alencar EM, Coelho WS, Zancan P, Sola-Penna M. Metformin reverses hexokinase and phosphofructokinase downregulation and intracellular distribution in the heart of diabetic mice. IUBMB Life 2012; 64:766-74. [DOI: 10.1002/iub.1063] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 05/25/2012] [Indexed: 01/19/2023]
|