1
|
Geyer A, Koltsaki I, Hessinger C, Renner S, Rogulja-Ortmann A. Impact of Ultrabithorax alternative splicing on Drosophila embryonic nervous system development. Mech Dev 2015; 138 Pt 2:177-189. [PMID: 26299253 DOI: 10.1016/j.mod.2015.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 08/13/2015] [Accepted: 08/17/2015] [Indexed: 11/17/2022]
Abstract
Hox genes control divergent segment identities along the anteroposterior body axis of bilateral animals by regulating a large number of processes in a cell context-specific manner. How Hox proteins achieve this functional diversity is a long-standing question in developmental biology. In this study we investigate the role of alternative splicing in functional specificity of the Drosophila Hox gene Ultrabithorax (Ubx). We focus specifically on the embryonic central nervous system (CNS) and provide a description of temporal expression patterns of three major Ubx isoforms during development of this tissue. These analyses imply distinct functions for individual isoforms in different stages of neural development. We also examine the set of Ubx isoforms expressed in two isoform-specific Ubx mutant strains and analyze for the first time the effects of splicing defects on regional neural stem cell (neuroblast) identity. Our findings support the notion of specific isoforms having different effects in providing individual neuroblasts with positional identity along the anteroposterior body axis, as well as being involved in regulation of progeny cell fate.
Collapse
Affiliation(s)
- Aenne Geyer
- Institute of Genetics, University of Mainz, Mainz, Germany
| | | | | | - Simone Renner
- Institute of Genetics, University of Mainz, Mainz, Germany
| | | |
Collapse
|
2
|
Mallo M, Alonso CR. The regulation of Hox gene expression during animal development. Development 2013; 140:3951-63. [PMID: 24046316 DOI: 10.1242/dev.068346] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hox genes encode a family of transcriptional regulators that elicit distinct developmental programmes along the head-to-tail axis of animals. The specific regional functions of individual Hox genes largely reflect their restricted expression patterns, the disruption of which can lead to developmental defects and disease. Here, we examine the spectrum of molecular mechanisms controlling Hox gene expression in model vertebrates and invertebrates and find that a diverse range of mechanisms, including nuclear dynamics, RNA processing, microRNA and translational regulation, all concur to control Hox gene outputs. We propose that this complex multi-tiered regulation might contribute to the robustness of Hox expression during development.
Collapse
Affiliation(s)
- Moisés Mallo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | | |
Collapse
|
3
|
de Navas LF, Reed H, Akam M, Barrio R, Alonso CR, Sánchez-Herrero E. Integration of RNA processing and expression level control modulates the function of the Drosophila Hox gene Ultrabithorax during adult development. Development 2010; 138:107-16. [PMID: 21115609 DOI: 10.1242/dev.051409] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although most metazoan genes undergo alternative splicing, the functional relevance of the majority of alternative splicing products is still unknown. Here we explore this problem in the Drosophila Hox gene Ultrabithorax (Ubx). Ubx produces a family of six protein isoforms through alternative splicing. To investigate the functional specificity of the Ubx isoforms, we studied their role during the formation of the Drosophila halteres, small dorsal appendages that are essential for normal flight. Our work shows that isoform Ia, which is encoded by all Ubx exons, is more efficient than isoform IVa, which lacks the amino acids coded by two small exons, in controlling haltere development and regulating Ubx downstream targets. However, our experiments also demonstrate that the functional differences among the Ubx isoforms can be compensated for by increasing the expression levels of the less efficient form. The analysis of the DNA-binding profiles of Ubx isoforms to a natural Ubx target, spalt, shows no major differences in isoform DNA-binding activities, suggesting that alternative splicing might primarily affect the regulatory capacity of the isoforms rather than their DNA-binding patterns. Our results suggest that to obtain distinct functional outputs during normal development genes must integrate the generation of qualitative differences by alternative splicing to quantitative processes affecting isoform protein expression levels.
Collapse
Affiliation(s)
- Luis F de Navas
- Centro de Biología Molecular Severo Ochoa (C.S.I.C.-U.A.M) Universidad Autónoma de madris, Spain
| | | | | | | | | | | |
Collapse
|
4
|
Reed HC, Hoare T, Thomsen S, Weaver TA, White RAH, Akam M, Alonso CR. Alternative splicing modulates Ubx protein function in Drosophila melanogaster. Genetics 2010; 184:745-58. [PMID: 20038634 PMCID: PMC2845342 DOI: 10.1534/genetics.109.112086] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 12/17/2009] [Indexed: 01/02/2023] Open
Abstract
The Drosophila Hox gene Ultrabithorax (Ubx) produces a family of protein isoforms through alternative splicing. Isoforms differ from one another by the presence of optional segments-encoded by individual exons-that modify the distance between the homeodomain and a cofactor-interaction module termed the "YPWM" motif. To investigate the functional implications of Ubx alternative splicing, here we analyze the in vivo effects of the individual Ubx isoforms on the activation of a natural Ubx molecular target, the decapentaplegic (dpp) gene, within the embryonic mesoderm. These experiments show that the Ubx isoforms differ in their abilities to activate dpp in mesodermal tissues during embryogenesis. Furthermore, using a Ubx mutant that reduces the full Ubx protein repertoire to just one single isoform, we obtain specific anomalies affecting the patterning of anterior abdominal muscles, demonstrating that Ubx isoforms are not functionally interchangeable during embryonic mesoderm development. Finally, a series of experiments in vitro reveals that Ubx isoforms also vary in their capacity to bind DNA in presence of the cofactor Extradenticle (Exd). Altogether, our results indicate that the structural changes produced by alternative splicing have functional implications for Ubx protein function in vivo and in vitro. Since other Hox genes also produce splicing isoforms affecting similar protein domains, we suggest that alternative splicing may represent an underestimated regulatory system modulating Hox gene specificity during fly development.
Collapse
Affiliation(s)
- Hilary C. Reed
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom and School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Tim Hoare
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom and School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Stefan Thomsen
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom and School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Thomas A. Weaver
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom and School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Robert A. H. White
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom and School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Michael Akam
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom and School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Claudio R. Alonso
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom and School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| |
Collapse
|
5
|
Tour E, Hittinger CT, McGinnis W. Evolutionarily conserved domains required for activation and repression functions of the Drosophila Hox protein Ultrabithorax. Development 2006; 132:5271-81. [PMID: 16284118 DOI: 10.1242/dev.02138] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
While testing the functions of deletion mutants in the Hox protein Ultrabithorax (Ubx), we found that the embryonic repression function of Ubx on Distal-less transcription in limb primordia is highly concentration dependent. The steep sigmoidal relationship between in vivo Ubx concentration and Distal-less repression is dependent on the Ubx YPWM motif. This suggests that Ubx cooperatively assembles a multi-protein repression complex on Distal-less regulatory DNA with the YPWM motif as a key protein-protein interface in this complex. Our deletion mutants also provide evidence for a transcriptional activation domain in the N-terminal 19 amino acids of Ubx. This proposed activation domain contains a variant of the SSYF motif that is found at the N termini of many Hox proteins, and is conserved in the activation domain of another Hox protein, Sex combs reduced. These results suggest that the N-terminal region containing the SSYF motif has been conserved in many Hox proteins for its role in transcriptional activation.
Collapse
Affiliation(s)
- Ella Tour
- Section in Cell and Developmental Biology, Division of Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
6
|
Gebelein B, Culi J, Ryoo HD, Zhang W, Mann RS. Specificity of Distalless repression and limb primordia development by abdominal Hox proteins. Dev Cell 2002; 3:487-98. [PMID: 12408801 DOI: 10.1016/s1534-5807(02)00257-5] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In Drosophila, differences between segments, such as the presence or absence of appendages, are controlled by Hox transcription factors. The Hox protein Ultrabithorax (Ubx) suppresses limb formation in the abdomen by repressing the leg selector gene Distalless, whereas Antennapedia (Antp), a thoracic Hox protein, does not repress Distalless. We show that the Hox cofactors Extradenticle and Homothorax selectively enhance Ubx, but not Antp, binding to a Distalless regulatory sequence. A C-terminal peptide in Ubx stimulates binding to this site. However, DNA binding is not sufficient for Distalless repression. Instead, an additional alternatively spliced domain in Ubx is required for Distalless repression but not DNA binding. Thus, the functional specificities of Hox proteins depend on both DNA binding-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Brian Gebelein
- Department of Biochemistry and Molecular Biophysics, Columbia University, 701 West 168th Street, HHSC 1104, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
7
|
Wilanowski T, Tuckfield A, Cerruti L, O'Connell S, Saint R, Parekh V, Tao J, Cunningham JM, Jane SM. A highly conserved novel family of mammalian developmental transcription factors related to Drosophila grainyhead. Mech Dev 2002; 114:37-50. [PMID: 12175488 DOI: 10.1016/s0925-4773(02)00046-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Drosophila transcription factor Grainyhead regulates several key developmental processes. Three mammalian genes, CP2, LBP-1a and LBP-9 have been previously identified as homologues of grainyhead. We now report the cloning of two new mammalian genes (Mammalian grainyhead (MGR) and Brother-of-MGR (BOM)) and one new Drosophila gene (dCP2) that rewrite the phylogeny of this family. We demonstrate that MGR and BOM are more closely related to grh, whereas CP2, LBP-1a and LBP-9 are descendants of the dCP2 gene. MGR shares the greatest sequence homology with grh, is expressed in tissue-restricted patterns more comparable to grh and binds to and transactivates the promoter of the human Engrailed-1 gene, the mammalian homologue of the key grainyhead target gene, engrailed. This sequence and functional conservation indicates that the new mammalian members of this family play important developmental roles.
Collapse
Affiliation(s)
- Tomasz Wilanowski
- Rotary Bone Marrow Research Laboratory, Royal Melbourne Hospital Research Foundation, c/o Royal Melbourne Hospital Post Office, Grattan Street, Parkville, Victoria 3050, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Tan XX, Bondos S, Li L, Matthews KS. Transcription activation by ultrabithorax Ib protein requires a predicted alpha-helical region. Biochemistry 2002; 41:2774-85. [PMID: 11851425 DOI: 10.1021/bi011967y] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Characterization of their transcription activation domains is critical to understanding functional specificity within the Hox family of proteins. However, few Hox activation domains have been identified and none characterized in detail. In this study, promotor-reporter assays in yeast and Drosophila S2 cell culture were used to refine the boundaries of the activation domain of the Drosophila Hox protein Ultrabithorax (Ubx) and to identify critical elements within this domain. We found that residues 159-242 were sufficient for 50% function, and full transactivation capacity was achieved with inclusion of additional N-terminal sequences. Activation domain sequence and placement relative to the homeodomain differ between Ubx and other Hox proteins, consistent with the possibility that diverse activation mechanisms contribute to functional distinctions in vivo. The essential residues 159-242 in the UbxIb activation domain are predicted to contain a beta-sheet segment followed by an alpha-helix. This putative alpha-helical region was established to be necessary, but not sufficient, for transcriptional activation. Disruption of the helix by proline substitutions abolished activation function, while alteration of side chains presented on the surface of this putative helix with alanine or lysine mutations had no significant effect on activity. Collectively, these data indicate that this secondary structural element is a key component in forming an effective activation domain in the UbxIb protein. Interestingly, the alpha-helix critical for transcriptional activation is found only for Ubx orthologs from flies and not other species. The mutant Ubx proteins generated in this study have potential applications in deciphering Hox functions in vivo.
Collapse
Affiliation(s)
- Xin-Xing Tan
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77251-1892, USA
| | | | | | | |
Collapse
|
9
|
Fu S, Stevenson H, Strovel JW, Haga SB, Stamberg J, Do K, Berg PE. Distinct functions of two isoforms of a homeobox gene, BP1 and DLX7, in the regulation of the beta-globin gene. Gene 2001; 278:131-9. [PMID: 11707330 DOI: 10.1016/s0378-1119(01)00716-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Homeotic proteins are transcription factors that regulate the expression of multiple genes involved in development and differentiation. We previously isolated a cDNA encoding such a protein from the human leukemia cell line K562, termed Beta Protein 1 (BP1), which is involved in negative regulation of the human beta-globin gene. Sequence comparison revealed that BP1 is a member of the distal-less (DLX) family of homeobox genes and that it shares its homeodomain and 3' sequences with another DLX cDNA, DLX7. BP1 and DLX7 exhibit unique 5' regions, diverging at nucleotide 565 of BP1. We mapped this new distal-less family member BP1 to chromosome 17q21-22 by FISH and PCR, which is the same locus to which DLX7 has been mapped. These results strongly suggest that BP1 and DLX7 are isoforms (derived from the same gene). Since our previous data demonstrated that BP1 and DLX7 are frequently co-expressed, we determined whether DLX7 is also involved in the negative regulation of the beta-globin gene. Mobility shift assays demonstrated that both BP1 and DLX7 proteins, synthesized in vitro, bind to the same BP1 binding site. However, using transient assays, we showed that although BP1 represses activity of a reporter gene through either of two silencer DNA sequences upstream of the beta-globin gene, DLX7 did not show repressor activity against the beta-globin promoter. Further characterization of these apparent isoforms is of significance since they are jointly expressed in acute myeloid leukemia and in many leukemia cell lines.
Collapse
Affiliation(s)
- S Fu
- Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, Washington, DC 20037, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Hong Y, Lee RC, Ambros V. Structure and function analysis of LIN-14, a temporal regulator of postembryonic developmental events in Caenorhabditis elegans. Mol Cell Biol 2000; 20:2285-95. [PMID: 10688674 PMCID: PMC110844 DOI: 10.1128/mcb.20.6.2285-2295.2000] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During postembryonic development of Caenorhabditis elegans, the heterochronic gene lin-14 controls the timing of developmental events in diverse cell types. Three alternative lin-14 transcripts are predicted to encode isoforms of a novel nuclear protein that differ in their amino-terminal domains. In this paper, we report that the alternative amino-terminal domains of LIN-14 are dispensable and that a carboxy-terminal region within exons 9 to 13 is necessary and sufficient for in vivo LIN-14 function. A transgene capable of expressing only one of the three alternative lin-14 gene products rescues a lin-14 null mutation and is developmentally regulated by lin-4. This shows that the deployment of alternative lin-14 gene products is not critical for the ability of LIN-14 to regulate downstream genes in diverse cell types or for the in vivo regulation of LIN-14 level by lin-4. The carboxy-terminal region of LIN-14 contains an unusual expanded nuclear localization domain which is essential for LIN-14 function. These results support the view that LIN-14 controls developmental timing in C. elegans by regulating gene expression in the nucleus.
Collapse
Affiliation(s)
- Y Hong
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | | | |
Collapse
|
11
|
Tasheva ES, Funderburgh ML, McReynolds J, Funderburgh JL, Conrad GW. The bovine mimecan gene. Molecular cloning and characterization of two major RNA transcripts generated by alternative use of two splice acceptor sites in the third exon. J Biol Chem 1999; 274:18693-701. [PMID: 10373482 DOI: 10.1074/jbc.274.26.18693] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mimecan is a proteoglycan expressed by many connective tissues. It was originally isolated in a truncated form as a bone-associated glycoprotein, osteoglycin, and was considered an osteoinductive factor. Recently, we demonstrated that the full-length translation product of the cDNA encoding mimecan is a corneal keratan sulfate proteoglycan present in other tissues without keratan sulfate chains. We also described multiple mimecan mRNA transcripts generated by differential splicing and alternative polyadenylation. In this study, we isolated genomic clones and determined the genomic organization of the bovine mimecan gene. The gene is spread over >33 kilobases of continuous DNA sequence and contains eight exons. The newly discovered first exon, identified by 5'-rapid amplification of cDNA ends, consists of a 5'-untranslated region and is enriched in C+G nucleotides. Two transcription initiation sites starting at the first and at the second exons were determined by primer extension. Molecular characterization shows that alternatively spliced RNA isoforms are generated by the use of two distinct splice acceptor sites in the third exon situated 278 base pairs apart. We determined a partial genomic structure of the human mimecan gene and demonstrated two alternatively spliced RNA transcripts that are generated likewise. Despite the diversity of mimecan transcripts, the primary structure of the core protein is encoded from exons 3 to 8 and remains unchanged, indicating its functional importance. Using ribonuclease protection assay, we analyzed the patterns of spliced RNA expressed in cultured bovine keratocytes. We demonstrated that their expression is differentially modulated in a temporal manner by basic fibroblast growth factor.
Collapse
Affiliation(s)
- E S Tasheva
- Division of Biology, Kansas State University, Manhattan, Kansas 66506-4901, USA.
| | | | | | | | | |
Collapse
|
12
|
Patel CV, Sharangpani R, Bandyopadhyay S, DiCorleto PE. Endothelial cells express a novel, tumor necrosis factor-alpha-regulated variant of HOXA9. J Biol Chem 1999; 274:1415-22. [PMID: 9880515 DOI: 10.1074/jbc.274.3.1415] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The expression of the class 1 homeobox (HOX) family of "master control" transcription factors has been studied principally in embryogenesis and neoplasia in which HOX genes play a critical role in cell proliferation, migration, and differentiation. We wished to test whether HOX family members were also involved in a differentiation-like process occurring in normal, diploid adult cells, that is, cytokine-induced activation of endothelial cells (EC). Screening of a human EC cDNA library yielded several members of the A and B groups of HOX transcription factors. One clone represented a novel, alternatively spliced variant of the human HOXA9 gene containing a new exon and the expression of which was driven by a novel promoter. This variant termed HOXA9EC appeared restricted to cells of endothelial lineage, i.e. expressed by human EC from multiple sources, but not by fibroblasts, smooth muscle cells, or several transformed cell lines. HOXA9EC mRNA was rapidly down-regulated in EC in response to tumor necrosis factor-alpha due to an apparent reduction in transcriptional rate. Reporter construct studies showed that the 400 base pairs of genomic DNA directly 5' to the transcription initiation site of HOXA9EC contained the information required for both up-regulation in response to cotransfection with a HOXA9EC expression vector and tumor necrosis factor-alpha-dependent down-regulation of this gene. These results provide evidence of a novel HOX family member that may participate in either the suppression or the genesis of EC activation.
Collapse
Affiliation(s)
- C V Patel
- Department of Cell Biology, Lerner Research Institute of The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | |
Collapse
|
13
|
Hatton AR, Subramaniam V, Lopez AJ. Generation of alternative Ultrabithorax isoforms and stepwise removal of a large intron by resplicing at exon-exon junctions. Mol Cell 1998; 2:787-96. [PMID: 9885566 DOI: 10.1016/s1097-2765(00)80293-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Little is known about mechanisms that regulate and ensure accurate processing of complex transcription units with long introns. We investigate this in the Ultrabithorax gene of Drosophila. A consensus 5' splice site is regenerated at the junction between the first exon and a small internal exon (mI); this splice site is used in a developmentally regulated manner to remove mI during subsequent processing of the downstream intron. Conserved elements within mI and an interaction with exon mII modulate use of the regenerated splice site. Structural similarities predict the same process for mII. This resplicing mechanism avoids competition between distant splice sites for control of exon inclusion and allows removal of a 74 kb intron as a series of smaller fragments.
Collapse
Affiliation(s)
- A R Hatton
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
14
|
Begemann G, Paricio N, Artero R, Kiss I, Pérez-Alonso M, Mlodzik M. muscleblind, a gene required for photoreceptor differentiation in Drosophila, encodes novel nuclear Cys3His-type zinc-finger-containing proteins. Development 1997; 124:4321-31. [PMID: 9334280 DOI: 10.1242/dev.124.21.4321] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have isolated the embryonic lethal gene muscleblind (mbl) as a suppressor of the sev-svp2 eye phenotype. Analysis of clones mutant for mbl during eye development shows that it is autonomously required for photoreceptor differentiation. Mutant cells are recruited into developing ommatidia and initiate neural differentiation, but they fail to properly differentiate as photoreceptors. Molecular analysis reveals that the mbl locus is large and complex, giving rise to multiple different proteins with common 5′ sequences but different carboxy termini. Mbl proteins are nuclear and share a Cys3His zinc-finger motif which is also found in the TIS11/NUP475/TTP family of proteins and is highly conserved in vertebrates and invertebrates. Functional analysis of mbl, the observation that it also dominantly suppresses the sE-Jun(Asp) gain-of-function phenotype and the phenotypic similarity to mutants in the photoreceptor-specific glass gene suggest that mbl is a general factor required for photoreceptor differentiation.
Collapse
Affiliation(s)
- G Begemann
- Developmental Biology Programme, EMBL, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Stage, tissue, and cell specific distribution of alternative Ultrabithorax mRNAs and protein isoforms in the Drosophila embryo. ACTA ACUST UNITED AC 1996; 205:450-459. [PMID: 28306097 DOI: 10.1007/bf00377226] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/1995] [Accepted: 08/30/1995] [Indexed: 10/26/2022]
Abstract
The homeotic gene Ultrabithorax encodes a family of six homeoproteins translated from alternatively spliced mRNAs. The structures of these UBX isoforms have been conserved among anciently diverged Drosoph-ila species and functional distinctions between some isoforms have been reported that suggest subtle but important roles in Ubx action. We present a detailed analysis of the expression patterns of Ubx mRNAs and proteins during embryogenesis, using isoform-specific monoclonal antibodies and synthetic oligonucleotide probes. These patterns are remarkably complex, each mRNA and corresponding protein isoform being expressed in a partially overlapping but distinct stage and tissue-specific pattern. The complexity is greatest in the central nervous system, where different isoforms predominate during successive developmental stages and where their relative proportions differ from one metamere to another and even among individual neurons within a given metamere. The distributions of UBX isoforms are consistent with those functional distinctions that have been described; they also suggest that different isoforms may be specialized or optimized to control different aspects of central nervous system development. The close correspondence between the mRNA and protein patterns indicates that the mRNAs do not differ strongly in translatability, despite the abundance of rare codons in the optional exons. There is a delay between the detection of particular splicing events in the nucleus and the detection of the 3' end of the message or the appearance of the corresponding mRNAs and proteins in the cytoplasm. This delay is consistent with the size of the Ubx introns and indicates a cotranscriptional mechanism of splicing.
Collapse
|
16
|
Castelli-Gair J, Akam M. How the Hox gene Ultrabithorax specifies two different segments: the significance of spatial and temporal regulation within metameres. Development 1995; 121:2973-82. [PMID: 7555723 DOI: 10.1242/dev.121.9.2973] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Drosophila, the Hox gene Ultrabithorax (Ubx) specifies the development of two different metameres--parasegment 5, which is entirely thoracic, and parasegment 6, which includes most of the first abdominal segment. Here we investigate how a single Hox gene can specify two such different morphologies. We show that, in the early embryo, cells respond similarly to UBX protein in both parasegments. The differences between parasegments 5 and 6 can be explained by the different spatial and temporal pattern of UBX protein expression in these two metameres. We find no evidence for multiple threshold responses to different levels of UBX protein. We examine in particular the role of Ubx in limb development. We show that UBX protein will repress limb primordia before 7 hours, when Ubx is expressed in the abdomen, but not later, when UBX is first expressed in the T3 limb primordium. The regulation of one downstream target of UBX, the Distalless gene, provides a model for this transition at the molecular level.
Collapse
|
17
|
Bomze HM, López AJ. Evolutionary conservation of the structure and expression of alternatively spliced Ultrabithorax isoforms from Drosophila. Genetics 1994; 136:965-77. [PMID: 7911773 PMCID: PMC1205900 DOI: 10.1093/genetics/136.3.965] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In Drosophila melanogaster, alternatively spliced mRNAs from the homeotic gene Ultrabithorax (Ubx) encode a family of structurally distinct homeoprotein isoforms. The developmentally regulated expression patterns of these isoforms suggest that they have specialized stage- and tissue-specific functions. To evaluate the functional importance of UBX isoform diversity and gain clues to the mechanism that regulates processing of Ubx RNAs, we have investigated whether the Ubx RNAs of other insects undergo similar alternative splicing. We have isolated and characterized Ubx cDNA fragments from D. melanogaster, Drosophila pseudoobscura, Drosophila hydei and Drosophila virilis, species separated by as much as 60 million years of evolution, and have found that three aspects of Ubx RNA processing have been conserved. (1) These four species exhibit identical patterns of optional exon use in a region adjacent to the homeodomain. (2) These four species produce the same family of UBX protein isoforms with identical amino acid sequences in the optional exons, even though the common amino-proximal region has undergone substantial divergence. The nucleotide sequences of the optional exons, including third positions of rare codons, have also been conserved strongly, suggesting functional constraints that are not limited to coding potential. (3) The tissue- and stage-specific patterns of expression of different UBX isoforms are identical among these Drosophila species, indicating that the developmental regulation of the alternative splicing events has also been conserved. These findings argue for an important role of alternative splicing in Ubx function. We discuss the implications of these results for models of UBX protein function and the mechanism of alternative splicing.
Collapse
Affiliation(s)
- H M Bomze
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | | |
Collapse
|
18
|
Intron-exon organization of the NF-Y genes. Tissue-specific splicing modifies an activation domain. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50377-5] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
19
|
Treacy MN, Neilson LI, Turner EE, He X, Rosenfeld MG. Twin of I-POU: A two amino acid difference in the I-POU homeodomain distinguishes an activator from an inhibitor of transcription. Cell 1992; 68:491-505. [PMID: 1346754 DOI: 10.1016/0092-8674(92)90186-g] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
I-POU, a POU domain nuclear protein that lacks two conserved basic amino acids of the POU homeodomain is coexpressed in the developing Drosophila nervous system with a second POU domain transcription factor, Cf1-a. I-POU does not bind to DNA but forms a POU domain-mediated, high affinity heterodimer with Cf1-a, inhibiting its ability to bind and activate the dopa decarboxylase gene. The I-POU/Cf1-a dimerization interface encompasses only the N-terminal basic region and helices 1 and 2 of the POU homeodomains with precise amino acid and alpha-helical requirements. twin of I-POU, an alternatively spliced transcript of the I-POU gene, encodes a protein containing the two basic amino acid residues absent in I-POU. Twin of I-POU is incapable of dimerizing with Cf1-a, but can act as a positive transcription factor on targets distinct from those regulated by Cf1-a. These findings suggest that the I-POU genomic locus simultaneously generates both a specific activator and inhibitor of gene transcription, capable of modulating two distinct regulatory programs during neural development.
Collapse
Affiliation(s)
- M N Treacy
- Eukaryotic Regulatory Biology Program, University of California, San Diego School of Medicine, La Jolla 92093-0648
| | | | | | | | | |
Collapse
|
20
|
Abstract
Research published in the past year has led to plausible molecular models explaining the maintenance of stable patterns of homeotic gene expression through many cell generations. In addition, genes have been identified that modify the functional specificity of homeotic genes without affecting their expression patterns.
Collapse
Affiliation(s)
- S Dessain
- Department of Molecular Physics and Biochemistry, Yale University, New Haven, CT 06511
| | | |
Collapse
|