1
|
O’Neill CE, Sun K, Sundararaman S, Chang JC, Glynn SA. The impact of nitric oxide on HER family post-translational modification and downstream signaling in cancer. Front Physiol 2024; 15:1358850. [PMID: 38601214 PMCID: PMC11004480 DOI: 10.3389/fphys.2024.1358850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/16/2024] [Indexed: 04/12/2024] Open
Abstract
The human epidermal growth factor receptor (HER) family consists of four members, activated by two families of ligands. They are known for mediating cell-cell interactions in organogenesis, and their deregulation has been associated with various cancers, including breast and esophageal cancers. In particular, aberrant epidermal growth factor receptor (EGFR) and HER2 signaling drive disease progression and result in poorer patient outcomes. Nitric oxide (NO) has been proposed as an alternative activator of the HER family and may play a role in this aberrant activation due to its ability to induce s-nitrosation and phosphorylation of the EGFR. This review discusses the potential impact of NO on HER family activation and downstream signaling, along with its role in the efficacy of therapeutics targeting the family.
Collapse
Affiliation(s)
- Ciara E. O’Neill
- Lambe Institute for Translational Research, Discipline of Pathology, School of Medicine, University of Galway, Galway, Ireland
| | - Kai Sun
- Houston Methodist Research Institute, Houston, TX, United States
- Dr Mary and Ron Neal Cancer Center, Houston Methodist Hospital, Houston, TX, United States
| | | | - Jenny C. Chang
- Houston Methodist Research Institute, Houston, TX, United States
- Dr Mary and Ron Neal Cancer Center, Houston Methodist Hospital, Houston, TX, United States
| | - Sharon A. Glynn
- Lambe Institute for Translational Research, Discipline of Pathology, School of Medicine, University of Galway, Galway, Ireland
| |
Collapse
|
2
|
Macdonald-Obermann JL, Pike LJ. Extracellular domain mutations of the EGF receptor differentially modulate high-affinity and low-affinity responses to EGF receptor ligands. J Biol Chem 2024; 300:105763. [PMID: 38367671 PMCID: PMC10945275 DOI: 10.1016/j.jbc.2024.105763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024] Open
Abstract
The EGF receptor is mutated in a number of cancers. In most cases, the mutations occur in the intracellular tyrosine kinase domain. However, in glioblastomas, many of the mutations are in the extracellular ligand binding domain. To determine what changes in receptor function are induced by such extracellular domain mutations, we analyzed the binding and biological response to the seven different EGF receptor ligands in three common glioblastoma mutants-R84K, A265V, and G574V. Our data indicate that all three mutations significantly increase the binding affinity of all seven ligands. In addition, the mutations increase the potency of all ligands for stimulating receptor autophosphorylation, phospholipase Cγ, Akt, and MAP kinase activity. In all mutants, the rank order of ligand potency seen at the wild-type receptor was retained, suggesting that the receptors still discriminate among the different ligands. However, the low-affinity ligands, EPR and EPG, did show larger than average enhancements of potency for stimulating Akt and MAPK but not receptor autophosphorylation and phospholipase Cγ activation. Relative to the wild-type receptor, these changes lead to an increase in the responsiveness of these mutants to physiological concentrations of ligands and an alteration in the ratio of activation of the different pathways. This may contribute to their oncogenic potential. In the context of recent findings, our data also suggest that so-called "high"-affinity biological responses arise from activation by isolated receptor dimers, whereas "low"-affinity biological responses require clustering of receptors which occurs at higher concentrations of ligand.
Collapse
Affiliation(s)
| | - Linda J Pike
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri.
| |
Collapse
|
3
|
Wu M, Mu C, Yang H, Wang Y, Ma P, Li S, Wang Z, Lan T. 8-Br-cGMP suppresses tumor progression through EGFR/PLC γ1 pathway in epithelial ovarian cancer. Mol Biol Rep 2024; 51:140. [PMID: 38236447 DOI: 10.1007/s11033-023-09037-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Cyclic guanosine monophosphate (cGMP)-dependent protein kinase I (PKG-I), a serine/threonine kinase, is important in tumor development. The present study determines that the cGMP/PKG I pathway is essential for promoting cell proliferation and survival in human ovarian cancer cells, whereas cGMP analog has been shown to lead to growth inhibition and apoptosis of various cancer cells. The role of cGMP/PKG I pathway in epithelial ovarian cancer (EOC), therefore, remains controversial. We investigated the effect of cGMP/PKG I pathway and the underlying mechanism in EOC. METHODS AND RESULTS The results showed that exogenous 8-Bromoguanosine-3', 5'-cyclic monophosphate (8-Br-cGMP) (cGMP analog) could antagonize the effects by EGF, including suppressing proliferation, invasion and migration of EOC cells. In vivo, 8-Br-cGMP hampered the growth of the xenograft tumor. Additionally, the expressions of epidermal growth factor receptor (EGFR), matrix metallopeptidase 9 (MMP9), proliferating cell nuclear antigen and Ki67 in xenograft tumor were decreased after 8-Br-cGMP intervention. Further research demonstrated that 8-Br-cGMP decreased the phosphorylation of EGFR (Y992) and downstream proteins phospholipase Cγ1 (PLC γ1) (Y783), calmodulin kinase II (T286) and inhibited cytoplasmic Ca2+ release as well as PKC transferring to cell membrane. It's worth noting that the inhibition was 8-Br-cGMP dose-dependent and 8-Br-cGMP showed similar inhibitory effect on EOC cells compared with U-73122, a specific inhibitor of PLC γ1. CONCLUSIONS The activation of endogenous PKG I by addition of exogenous 8-Br-cGMP could inhibit EOC development probably via EGFR/PLCγ1 signaling pathway. 8-Br-cGMP/PKG I provide a new insight and strategy for EOC treatment.
Collapse
Affiliation(s)
- Min Wu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chunyan Mu
- Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu, China
- School of Medical Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Huiwen Yang
- Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu, China
- School of Medical Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Yue Wang
- Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu, China
- School of Medical Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Ping Ma
- Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu, China
- School of Medical Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shibao Li
- Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu, China
- School of Medical Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhongcheng Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China.
| | - Ting Lan
- Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- School of Medical Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China.
| |
Collapse
|
4
|
Gerritsen JS, Faraguna JS, Bonavia R, Furnari FB, White FM. Predictive data-driven modeling of C-terminal tyrosine function in the EGFR signaling network. Life Sci Alliance 2023; 6:e202201466. [PMID: 37169593 PMCID: PMC10176108 DOI: 10.26508/lsa.202201466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) has been studied extensively because of its critical role in cellular signaling and association with disease. Previous models have elucidated interactions between EGFR and downstream adaptor proteins or showed phenotypes affected by EGFR. However, the link between specific EGFR phosphorylation sites and phenotypic outcomes is still poorly understood. Here, we employed a suite of isogenic cell lines expressing site-specific mutations at each of the EGFR C-terminal phosphorylation sites to interrogate their role in the signaling network and cell biological response to stimulation. Our results demonstrate the resilience of the EGFR network, which was largely similar even in the context of multiple Y-to-F mutations in the EGFR C-terminal tail, while also revealing nodes in the network that have not previously been linked to EGFR signaling. Our data-driven model highlights the signaling network nodes associated with distinct EGF-driven cell responses, including migration, proliferation, and receptor trafficking. Application of this same approach to less-studied RTKs should provide a plethora of novel associations that should lead to an improved understanding of these signaling networks.
Collapse
Affiliation(s)
- Jacqueline S Gerritsen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joseph S Faraguna
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rudy Bonavia
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Frank B Furnari
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, CA, USA
- Department of Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Forest M White
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
5
|
Myers PJ, Lee SH, Lazzara MJ. An integrated mechanistic and data-driven computational model predicts cell responses to high- and low-affinity EGFR ligands. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.25.543329. [PMID: 37425852 PMCID: PMC10327094 DOI: 10.1101/2023.06.25.543329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The biophysical properties of ligand binding heavily influence the ability of receptors to specify cell fates. Understanding the rules by which ligand binding kinetics impact cell phenotype is challenging, however, because of the coupled information transfers that occur from receptors to downstream signaling effectors and from effectors to phenotypes. Here, we address that issue by developing an integrated mechanistic and data-driven computational modeling platform to predict cell responses to different ligands for the epidermal growth factor receptor (EGFR). Experimental data for model training and validation were generated using MCF7 human breast cancer cells treated with the high- and low-affinity ligands epidermal growth factor (EGF) and epiregulin (EREG), respectively. The integrated model captures the unintuitive, concentration-dependent abilities of EGF and EREG to drive signals and phenotypes differently, even at similar levels of receptor occupancy. For example, the model correctly predicts the dominance of EREG over EGF in driving a cell differentiation phenotype through AKT signaling at intermediate and saturating ligand concentrations and the ability of EGF and EREG to drive a broadly concentration-sensitive migration phenotype through cooperative ERK and AKT signaling. Parameter sensitivity analysis identifies EGFR endocytosis, which is differentially regulated by EGF and EREG, as one of the most important determinants of the alternative phenotypes driven by different ligands. The integrated model provides a new platform to predict how phenotypes are controlled by the earliest biophysical rate processes in signal transduction and may eventually be leveraged to understand receptor signaling system performance depends on cell context. One-sentence summary Integrated kinetic and data-driven EGFR signaling model identifies the specific signaling mechanisms that dictate cell responses to EGFR activation by different ligands.
Collapse
|
6
|
Basant A, Way M. The relative binding position of Nck and Grb2 adaptors impacts actin-based motility of Vaccinia virus. eLife 2022; 11:e74655. [PMID: 35796545 PMCID: PMC9333988 DOI: 10.7554/elife.74655] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 07/06/2022] [Indexed: 11/19/2022] Open
Abstract
Phosphotyrosine (pTyr) motifs in unstructured polypeptides orchestrate important cellular processes by engaging SH2-containing adaptors to assemble complex signalling networks. The concept of phase separation has recently changed our appreciation of multivalent networks, however, the role of pTyr motif positioning in their function remains to be explored. We have now investigated this parameter in the operation of the signalling cascade driving actin-based motility and spread of Vaccinia virus. This network involves two pTyr motifs in the viral protein A36 that recruit the adaptors Nck and Grb2 upstream of N-WASP and Arp2/3 complex-mediated actin polymerisation. Manipulating the position of pTyr motifs in A36 and the unrelated p14 from Orthoreovirus, we find that only specific spatial arrangements of Nck and Grb2 binding sites result in robust N-WASP recruitment, Arp2/3 complex driven actin polymerisation and viral spread. This suggests that the relative position of pTyr adaptor binding sites is optimised for signal output. This finding may explain why the relative positions of pTyr motifs are frequently conserved in proteins from widely different species. It also has important implications for regulation of physiological networks, including those undergoing phase transitions.
Collapse
Affiliation(s)
- Angika Basant
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Michael Way
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| |
Collapse
|
7
|
Nosbisch JL, Bear JE, Haugh JM. A kinetic model of phospholipase C-γ1 linking structure-based insights to dynamics of enzyme autoinhibition and activation. J Biol Chem 2022; 298:101886. [PMID: 35367415 PMCID: PMC9097458 DOI: 10.1016/j.jbc.2022.101886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 01/31/2023] Open
Abstract
Phospholipase C-γ1 (PLC-γ1) is a receptor-proximal enzyme that promotes signal transduction through PKC in mammalian cells. Because of the complexity of PLC-γ1 regulation, a two-state (inactive/active) model does not account for the intricacy of activation and inactivation steps at the plasma membrane. Here, we introduce a structure-based kinetic model of PLC-γ1, considering interactions of its regulatory Src homology 2 (SH2) domains and perturbation of those dynamics upon phosphorylation of Tyr783, a hallmark of activation. For PLC-γ1 phosphorylation to dramatically enhance enzyme activation as observed, we found that high intramolecular affinity of the C-terminal SH2 (cSH2) domain-pTyr783 interaction is critical, but this affinity need not outcompete the autoinhibitory interaction of the cSH2 domain. Under conditions for which steady-state PLC-γ1 activity is sensitive to the rate of Tyr783 phosphorylation, maintenance of the active state is surprisingly insensitive to the phosphorylation rate, since pTyr783 is well protected by the cSH2 domain while the enzyme is active. In contrast, maintenance of enzyme activity is sensitive to the rate of PLC-γ1 membrane (re)binding. Accordingly, we found that hypothetical PLC-γ1 mutations that either weaken autoinhibition or strengthen membrane binding influence the activation kinetics differently, which could inform the characterization of oncogenic variants. Finally, we used this newly informed kinetic scheme to refine a spatial model of PLC/PKC polarization during chemotaxis. The refined model showed improved stability of the polarized pattern while corroborating previous qualitative predictions. As demonstrated here for PLC-γ1, this approach may be adapted to model the dynamics of other receptor- and membrane-proximal enzymes.
Collapse
Affiliation(s)
- Jamie L Nosbisch
- Biomathematics Graduate Program, North Carolina State University, Raleigh, North Carolina, USA
| | - James E Bear
- Department of Cell Biology and Physiology, UNC Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Jason M Haugh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA.
| |
Collapse
|
8
|
Goyette J, Depoil D, Yang Z, Isaacson SA, Allard J, van der Merwe PA, Gaus K, Dustin ML, Dushek O. Dephosphorylation accelerates the dissociation of ZAP70 from the T cell receptor. Proc Natl Acad Sci U S A 2022; 119:e2116815119. [PMID: 35197288 PMCID: PMC8892339 DOI: 10.1073/pnas.2116815119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/11/2021] [Indexed: 11/20/2022] Open
Abstract
Protein-protein binding domains are critical in signaling networks. Src homology 2 (SH2) domains are binding domains that interact with sequences containing phosphorylated tyrosines. A subset of SH2 domain-containing proteins has tandem domains, which are thought to enhance binding affinity and specificity. However, a trade-off exists between long-lived binding and the ability to rapidly reverse signaling, which is a critical requirement of noise-filtering mechanisms such as kinetic proofreading. Here, we use modeling to show that the unbinding rate of tandem, but not single, SH2 domains can be accelerated by phosphatases. Using surface plasmon resonance, we show that the phosphatase CD45 can accelerate the unbinding rate of zeta chain-associated protein kinase 70 (ZAP70), a tandem SH2 domain-containing kinase, from biphosphorylated peptides from the T cell receptor (TCR). An important functional prediction of accelerated unbinding is that the intracellular ZAP70-TCR half-life in T cells will not be fixed but rather, dependent on the extracellular TCR-antigen half-life, and we show that this is the case in both cell lines and primary T cells. The work highlights that tandem SH2 domains can break the trade-off between signal fidelity (requiring long half-life) and signal reversibility (requiring short half-life), which is a key requirement for T cell antigen discrimination mediated by kinetic proofreading.
Collapse
Affiliation(s)
- Jesse Goyette
- European Molecular Biology Laboratory Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney 2052, NSW, Australia;
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney 2052, NSW, Australia
| | - David Depoil
- The Kennedy Institute of Rheumatology, University of Oxford, OX3 7FY Oxford, United Kingdom
| | - Zhengmin Yang
- European Molecular Biology Laboratory Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney 2052, NSW, Australia
| | - Samuel A Isaacson
- Department of Mathematics and Statistics, Boston University, Boston, MA 02215
| | - Jun Allard
- Center for Complex Biological Systems, University of California, Irvine, CA 92697
| | - P Anton van der Merwe
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE Oxford, United Kingdom
| | - Katharina Gaus
- European Molecular Biology Laboratory Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney 2052, NSW, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney 2052, NSW, Australia
| | - Michael L Dustin
- The Kennedy Institute of Rheumatology, University of Oxford, OX3 7FY Oxford, United Kingdom;
| | - Omer Dushek
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE Oxford, United Kingdom
| |
Collapse
|
9
|
Mandal S, Bandyopadhyay S, Tyagi K, Roy A. Recent advances in understanding the molecular role of phosphoinositide-specific phospholipase C gamma 1 as an emerging onco-driver and novel therapeutic target in human carcinogenesis. Biochim Biophys Acta Rev Cancer 2021; 1876:188619. [PMID: 34454048 DOI: 10.1016/j.bbcan.2021.188619] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/04/2021] [Accepted: 08/21/2021] [Indexed: 02/07/2023]
Abstract
Phosphoinositide metabolism is crucial intracellular signaling system that regulates a plethora of biological functions including mitogenesis, cell proliferation and division. Phospholipase C gamma 1 (PLCγ1) which belongs to phosphoinositide-specific phospholipase C (PLC) family, is activated by many extracellular stimuli including hormones, neurotransmitters, growth factors and modulates several cellular and physiological functions necessary for tumorigenesis such as cell survival, migration, invasion and angiogenesis by generating inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG) via hydrolysis of phosphatidylinositol 4,5-biphosphate (PIP2). Cancer remains as a leading cause of global mortality and aberrant expression and regulation of PLCγ1 is linked to a plethora of deadly human cancers including carcinomas of the breast, lung, pancreas, stomach, prostate and ovary. Although PLCγ1 cross-talks with many onco-drivers and signaling circuits including PI3K, AKT, HIF1-α and RAF/MEK/ERK cascade, its precise role in carcinogenesis is not completely understood. This review comprehensively discussed the status quo of this ubiquitously expressed phospholipase as a tumor driver and highlighted its significance as a novel therapeutic target in cancer. Furthermore, we have highlighted the significance of somatic driver mutations in PLCG1 gene and molecular roles of PLCγ1 in several major human cancers, a knowledgebase that can be utilized to develop novel, isoform-specific small molecule inhibitors of PLCγ1.
Collapse
Affiliation(s)
- Supratim Mandal
- Department of Microbiology, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India.
| | - Shrabasti Bandyopadhyay
- Department of Microbiology, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Komal Tyagi
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh 201303, India
| | - Adhiraj Roy
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh 201303, India.
| |
Collapse
|
10
|
Abstract
Phospholipase C γ1 (PLCγ1) is a member of the PLC family that functions as signal transducer by hydrolyzing membrane lipid to generate second messengers. The unique protein structure of PLCγ1 confers a critical role as a direct effector of VEGFR2 and signaling mediated by other receptor tyrosine kinases. The distinct vascular phenotypes in PLCγ1-deficient animal models and the gain-of-function mutations of PLCγ1 found in human endothelial cancers point to a major physiological role of PLCγ1 in the endothelial system. In this review, we discuss aspects of physiological and molecular function centering around PLCγ1 in the context of endothelial cells and provide a perspective for future investigation.
Collapse
Affiliation(s)
- Dongying Chen
- Yale Cardiovascular Research Center, Departments of Internal Medicine and Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Michael Simons
- Yale Cardiovascular Research Center, Departments of Internal Medicine and Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
11
|
Bacon K, Blain A, Bowen J, Burroughs M, McArthur N, Menegatti S, Rao BM. Quantitative Yeast-Yeast Two Hybrid for the Discovery and Binding Affinity Estimation of Protein-Protein Interactions. ACS Synth Biol 2021; 10:505-514. [PMID: 33587591 DOI: 10.1021/acssynbio.0c00472] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Quantifying the binding affinity of protein-protein interactions is important for elucidating connections within biochemical signaling pathways, as well as characterization of binding proteins isolated from combinatorial libraries. We describe a quantitative yeast-yeast two-hybrid (qYY2H) system that not only enables the discovery of specific protein-protein interactions but also efficient, quantitative estimation of their binding affinities (KD). In qYY2H, the bait and prey proteins are expressed as yeast cell surface fusions using yeast surface display. We developed a semiempirical framework for estimating the KD of monovalent bait-prey interactions, using measurements of bait-prey yeast-yeast binding, which is mediated by multivalent interactions between yeast-displayed bait and prey. Using qYY2H, we identified interaction partners of SMAD3 and the tandem WW domains of YAP from a cDNA library and characterized their binding affinities. Finally, we showed that qYY2H could also quantitatively evaluate binding interactions mediated by post-translational modifications on the bait protein.
Collapse
Affiliation(s)
- Kaitlyn Bacon
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Abigail Blain
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - John Bowen
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Matthew Burroughs
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Nikki McArthur
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- Golden LEAF Biomanufacturing Training and Education Center, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Balaji M. Rao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- Golden LEAF Biomanufacturing Training and Education Center, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
12
|
Borna S, Fabisik M, Ilievova K, Dvoracek T, Brdicka T. Mechanisms determining a differential threshold for sensing Src family kinase activity by B and T cell antigen receptors. J Biol Chem 2020; 295:12935-12945. [PMID: 32665402 DOI: 10.1074/jbc.ra120.013552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 07/10/2020] [Indexed: 12/11/2022] Open
Abstract
Although signal transduction by immunoreceptors such as the T cell antigen receptor (TCR), B cell antigen receptor (BCR), and Fc receptors uses the same schematic and similar molecules, the threshold and the fine-tuning are set differently for each receptor. One manifestation of these differences is that inhibition of Src family kinases (SFK) blocks TCR but not BCR signaling. SFKs are key kinases phosphorylating immunoreceptor tyrosine-based activation motifs (ITAM) in both these receptors. However, it has been proposed that in B cells, downstream kinase SYK can phosphorylate ITAM sequences independently of SFK, allowing it to compensate for the loss of SFK activity, whereas its T cell paralog ZAP-70 is not capable of this compensation. To test this proposal, we examined signaling in SYK- and ZAP-70-deficient B and T cell lines expressing SYK or ZAP-70. We also analyzed signal transduction in T cells expressing BCR or B cells expressing part of the TCR complex. We show that when compared with ZAP-70, SYK lowered the threshold for SFK activity necessary to initiate antigen receptor signaling in both T and B cells. However, neither SYK nor ZAP-70 were able to initiate signaling independently of SFK. We further found that additional important factors are involved in setting this threshold. These include differences between the antigen receptor complexes themselves and the spatial separation of the key transmembrane adaptor protein LAT from the TCR. Thus, immunoreceptor sensing of SFK activity is a complex process regulated at multiple levels.
Collapse
Affiliation(s)
- Simon Borna
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Matej Fabisik
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Kristyna Ilievova
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomas Dvoracek
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomas Brdicka
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
13
|
Watson NA, Cartwright TN, Lawless C, Cámara-Donoso M, Sen O, Sako K, Hirota T, Kimura H, Higgins JMG. Kinase inhibition profiles as a tool to identify kinases for specific phosphorylation sites. Nat Commun 2020; 11:1684. [PMID: 32245944 PMCID: PMC7125195 DOI: 10.1038/s41467-020-15428-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 03/06/2020] [Indexed: 01/08/2023] Open
Abstract
There are thousands of known cellular phosphorylation sites, but the paucity of ways to identify kinases for particular phosphorylation events remains a major roadblock for understanding kinase signaling. To address this, we here develop a generally applicable method that exploits the large number of kinase inhibitors that have been profiled on near-kinome-wide panels of protein kinases. The inhibition profile for each kinase provides a fingerprint that allows identification of unknown kinases acting on target phosphosites in cell extracts. We validate the method on diverse known kinase-phosphosite pairs, including histone kinases, EGFR autophosphorylation, and Integrin β1 phosphorylation by Src-family kinases. We also use our approach to identify the previously unknown kinases responsible for phosphorylation of INCENP at a site within a commonly phosphorylated motif in mitosis (a non-canonical target of Cyclin B-Cdk1), and of BCL9L at S915 (PKA). We show that the method has clear advantages over in silico and genetic screening.
Collapse
Affiliation(s)
- Nikolaus A Watson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Tyrell N Cartwright
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Conor Lawless
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Marcos Cámara-Donoso
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Onur Sen
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Kosuke Sako
- The Cancer Institute, Japanese Foundation for Cancer Research, Koto, Tokyo, 135-8550, Japan
| | - Toru Hirota
- The Cancer Institute, Japanese Foundation for Cancer Research, Koto, Tokyo, 135-8550, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8503, Japan
| | - Jonathan M G Higgins
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
14
|
Salazar-Cavazos E, Nitta CF, Mitra ED, Wilson BS, Lidke KA, Hlavacek WS, Lidke DS. Multisite EGFR phosphorylation is regulated by adaptor protein abundances and dimer lifetimes. Mol Biol Cell 2020; 31:695-708. [PMID: 31913761 PMCID: PMC7202077 DOI: 10.1091/mbc.e19-09-0548] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Differential epidermal growth factor receptor (EGFR) phosphorylation is thought to couple receptor activation to distinct signaling pathways. However, the molecular mechanisms responsible for biased signaling are unresolved due to a lack of insight into the phosphorylation patterns of full-length EGFR. We extended a single-molecule pull-down technique previously used to study protein-protein interactions to allow for robust measurement of receptor phosphorylation. We found that EGFR is predominantly phosphorylated at multiple sites, yet phosphorylation at specific tyrosines is variable and only a subset of receptors share phosphorylation at the same site, even with saturating ligand concentrations. We found distinct populations of receptors as soon as 1 min after ligand stimulation, indicating early diversification of function. To understand this heterogeneity, we developed a mathematical model. The model predicted that variations in phosphorylation are dependent on the abundances of signaling partners, while phosphorylation levels are dependent on dimer lifetimes. The predictions were confirmed in studies of cell lines with different expression levels of signaling partners, and in experiments comparing low- and high-affinity ligands and oncogenic EGFR mutants. These results reveal how ligand-regulated receptor dimerization dynamics and adaptor protein concentrations play critical roles in EGFR signaling.
Collapse
Affiliation(s)
| | | | - Eshan D Mitra
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545
| | | | - Keith A Lidke
- Comprehensive Cancer Center, and.,Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131
| | - William S Hlavacek
- Comprehensive Cancer Center, and.,Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Diane S Lidke
- Department of Pathology.,Comprehensive Cancer Center, and
| |
Collapse
|
15
|
Tiruthani K, Mischler A, Ahmed S, Mahinthakumar J, Haugh JM, Rao BM. Design and evaluation of engineered protein biosensors for live-cell imaging of EGFR phosphorylation. Sci Signal 2019; 12:eaap7584. [PMID: 31164479 PMCID: PMC8757379 DOI: 10.1126/scisignal.aap7584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Live-cell fluorescence microscopy is broadly applied to study the dynamics of receptor-mediated cell signaling, but the availability of intracellular biosensors is limited. A biosensor based on the tandem SH2 domains from phospholipase C-γ1 (PLCγ1), tSH2-WT, has been used to measure phosphorylation of the epidermal growth factor receptor (EGFR). Here, we found that tSH2-WT lacked specificity for phosphorylated EGFR, consistent with the known promiscuity of SH2 domains. Further, EGF-stimulated membrane recruitment of tSH2-WT differed qualitatively from the expected kinetics of EGFR phosphorylation. Analysis of a mathematical model suggested, and experiments confirmed, that the high avidity of tSH2-WT resulted in saturation of its target and interference with EGFR endocytosis. To overcome the apparent target specificity and saturation issues, we implemented two protein engineering strategies. In the first approach, we screened a combinatorial library generated by random mutagenesis of the C-terminal SH2 domain (cSH2) of PLCγ1 and isolated a mutant form (mSH2) with enhanced specificity for phosphorylated Tyr992 (pTyr992) of EGFR. A biosensor based on mSH2 closely reported the kinetics of EGFR phosphorylation but retained cross-reactivity similar to tSH2-WT. In the second approach, we isolated a pTyr992-binding protein (SPY992) from a combinatorial library generated by mutagenesis of the Sso7d protein scaffold. Compared to tSH2-WT and mSH2, SPY992 exhibited superior performance as a specific, moderate-affinity biosensor. We extended this approach to isolate a biosensor for EGFR pTyr1148 (SPY1148). This approach of integrating theoretical considerations with protein engineering strategies can be generalized to design and evaluate suitable biosensors for various phospho-specific targets.
Collapse
Affiliation(s)
- Karthik Tiruthani
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Adam Mischler
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Shoeb Ahmed
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
| | - Jessica Mahinthakumar
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Jason M Haugh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Balaji M Rao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
16
|
Villalobo A, González-Muñoz M, Berchtold MW. Proteins with calmodulin-like domains: structures and functional roles. Cell Mol Life Sci 2019; 76:2299-2328. [PMID: 30877334 PMCID: PMC11105222 DOI: 10.1007/s00018-019-03062-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 02/26/2019] [Accepted: 03/07/2019] [Indexed: 12/21/2022]
Abstract
The appearance of modular proteins is a widespread phenomenon during the evolution of proteins. The combinatorial arrangement of different functional and/or structural domains within a single polypeptide chain yields a wide variety of activities and regulatory properties to the modular proteins. In this review, we will discuss proteins, that in addition to their catalytic, transport, structure, localization or adaptor functions, also have segments resembling the helix-loop-helix EF-hand motifs found in Ca2+-binding proteins, such as calmodulin (CaM). These segments are denoted CaM-like domains (CaM-LDs) and play a regulatory role, making these CaM-like proteins sensitive to Ca2+ transients within the cell, and hence are able to transduce the Ca2+ signal leading to specific cellular responses. Importantly, this arrangement allows to this group of proteins direct regulation independent of other Ca2+-sensitive sensor/transducer proteins, such as CaM. In addition, this review also covers CaM-binding proteins, in which their CaM-binding site (CBS), in the absence of CaM, is proposed to interact with other segments of the same protein denoted CaM-like binding site (CLBS). CLBS are important regulatory motifs, acting either by keeping these CaM-binding proteins inactive in the absence of CaM, enhancing the stability of protein complexes and/or facilitating their dimerization via CBS/CLBS interaction. The existence of proteins containing CaM-LDs or CLBSs substantially adds to the enormous versatility and complexity of Ca2+/CaM signaling.
Collapse
Affiliation(s)
- Antonio Villalobo
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, 28029, Madrid, Spain.
- Instituto de Investigaciones Sanitarias, Hospital Universitario La Paz, Edificio IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain.
| | - María González-Muñoz
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, 28029, Madrid, Spain
| | - Martin W Berchtold
- Department of Biology, University of Copenhagen, 13 Universitetsparken, 2100, Copenhagen, Denmark.
| |
Collapse
|
17
|
Hogan M, Bahta M, Tsuji K, Nguyen TX, Cherry S, Lountos GT, Tropea JE, Zhao BM, Zhao XZ, Waugh DS, Burke TR, Ulrich RG. Targeting Protein-Protein Interactions of Tyrosine Phosphatases with Microarrayed Fragment Libraries Displayed on Phosphopeptide Substrate Scaffolds. ACS COMBINATORIAL SCIENCE 2019; 21:158-170. [PMID: 30629404 PMCID: PMC8132114 DOI: 10.1021/acscombsci.8b00122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemical library screening approaches that focus exclusively on catalytic events may overlook unique effects of protein-protein interactions that can be exploited for development of specific inhibitors. Phosphotyrosyl (pTyr) residues embedded in peptide motifs comprise minimal recognition elements that determine the substrate specificity of protein tyrosine phosphatases (PTPases). We incorporated aminooxy-containing amino acid residues into a 7-residue epidermal growth factor receptor (EGFR) derived phosphotyrosine-containing peptide and subjected the peptides to solution-phase oxime diversification by reacting with aldehyde-bearing druglike functionalities. The pTyr residue remained unmodified. The resulting derivatized peptide library was printed in microarrays on nitrocellulose-coated glass surfaces for assessment of PTPase catalytic activity or on gold monolayers for analysis of kinetic interactions by surface plasmon resonance (SPR). Focusing on amino acid positions and chemical features, we first analyzed dephosphorylation of the peptide pTyr residues within the microarrayed library by the human dual-specificity phosphatases (DUSP) DUSP14 and DUSP22, as well as by PTPases from poxviruses (VH1) and Yersinia pestis (YopH). In order to identify the highest affinity oxime motifs, the binding interactions of the most active derivatized phosphopeptides were examined by SPR using noncatalytic PTPase mutants. On the basis of high-affinity oxime fragments identified by the two-step catalytic and SPR-based microarray screens, low-molecular-weight nonphosphate-containing peptides were designed to inhibit PTP catalysis at low micromolar concentrations.
Collapse
Affiliation(s)
- Megan Hogan
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702, United States
| | - Medhanit Bahta
- Chemical Biology Laboratory, Center for Cancer Research, National Institutes of Health, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
| | - Kohei Tsuji
- Chemical Biology Laboratory, Center for Cancer Research, National Institutes of Health, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
| | - Trung X. Nguyen
- Chemical Biology Laboratory, Center for Cancer Research, National Institutes of Health, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
| | - Scott Cherry
- Macromolecular Crystallography Laboratory, National Cancer Institute, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
| | - George T. Lountos
- Macromolecular Crystallography Laboratory, National Cancer Institute, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
- Basic Science Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland 21702, United States
| | - Joseph E. Tropea
- Macromolecular Crystallography Laboratory, National Cancer Institute, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
| | - Bryan M. Zhao
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702, United States
| | - Xue Zhi Zhao
- Chemical Biology Laboratory, Center for Cancer Research, National Institutes of Health, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
| | - David S. Waugh
- Macromolecular Crystallography Laboratory, National Cancer Institute, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
| | - Terrence R. Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Institutes of Health, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
| | - Robert G. Ulrich
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702, United States
| |
Collapse
|
18
|
β-Heregulin impairs EGF induced PLC-γ1 signalling in human breast cancer cells. Cell Signal 2018; 52:23-34. [PMID: 30165102 DOI: 10.1016/j.cellsig.2018.08.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/23/2018] [Accepted: 08/26/2018] [Indexed: 11/20/2022]
Abstract
The interplay of ErbB receptor homo- and heterodimers plays a crucial role in the pathology of breast cancer since activated signal transduction cascades coordinate proliferation, survival and migration of cells. EGF and β-Heregulin are well characterised ligands known to induce ErbB homo- and heterodimerisation, which have been associated with disease progression. In the present study, we investigated the impact of both factors on the migration of MDA-NEO and MDA-HER2 human breast cancer cells. MDA-NEO cells are positive for EGFR and HER3, while MDA-HER2 cells express EGFR, HER2 and HER3. Cell migration analysis revealed that β-Heregulin potently impaired EGF induced migration in both cell lines. Western blot studies showed that both ErbB receptor and PLC-γ1 tyrosine phosphorylation levels were diminished in EGF and β-Heregulin co-treated MDA-NEO and MDA-HER2 cells, which was further correlated to a significantly impaired calcium influx. Our data indicate that EGF and HRG may interfere with each other for receptor binding and dimerisation, which ultimately has an impact on signalling outcome.
Collapse
|
19
|
Wiseman E, Bates L, Dubé A, Carroll DJ. Starfish as a Model System for Analyzing Signal Transduction During Fertilization. Results Probl Cell Differ 2018; 65:49-67. [PMID: 30083915 DOI: 10.1007/978-3-319-92486-1_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
The starfish oocyte and egg offer advantages for use as a model system for signal transduction research. Some of these have been recognized for over a century, including the ease of procuring gametes, in vitro fertilization, and culturing the embryos. New advances, particularly in genomics, have also opened up opportunities for the use of these animals. In this chapter, we give a few examples of the historical use of the starfish for research in cell biology and then describe some new areas in which we believe the starfish can contribute to our understanding of signal transduction-particularly in fertilization.
Collapse
Affiliation(s)
- Emily Wiseman
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | - Lauren Bates
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | - Altair Dubé
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | - David J Carroll
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL, USA.
| |
Collapse
|
20
|
Affinity purification mass spectrometry analysis of PD-1 uncovers SAP as a new checkpoint inhibitor. Proc Natl Acad Sci U S A 2017; 115:E468-E477. [PMID: 29282323 DOI: 10.1073/pnas.1710437115] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Programmed cell death-1 (PD-1) is an essential inhibitory receptor in T cells. Antibodies targeting PD-1 elicit durable clinical responses in patients with multiple tumor indications. Nevertheless, a significant proportion of patients do not respond to anti-PD-1 treatment, and a better understanding of the signaling pathways downstream of PD-1 could provide biomarkers for those whose tumors respond and new therapeutic approaches for those whose tumors do not. We used affinity purification mass spectrometry to uncover multiple proteins associated with PD-1. Among these proteins, signaling lymphocytic activation molecule-associated protein (SAP) was functionally and mechanistically analyzed for its contribution to PD-1 inhibitory responses. Silencing of SAP augmented and overexpression blocked PD-1 function. T cells from patients with X-linked lymphoproliferative disease (XLP), who lack functional SAP, were hyperresponsive to PD-1 signaling, confirming its inhibitory role downstream of PD-1. Strikingly, signaling downstream of PD-1 in purified T cell subsets did not correlate with PD-1 surface expression but was inversely correlated with intracellular SAP levels. Mechanistically, SAP opposed PD-1 function by acting as a molecular shield of key tyrosine residues that are targets for the tyrosine phosphatase SHP2, which mediates PD-1 inhibitory properties. Our results identify SAP as an inhibitor of PD-1 function and SHP2 as a potential therapeutic target in patients with XLP.
Collapse
|
21
|
Jadwin JA, Curran TG, Lafontaine AT, White FM, Mayer BJ. Src homology 2 domains enhance tyrosine phosphorylation in vivo by protecting binding sites in their target proteins from dephosphorylation. J Biol Chem 2017; 293:623-637. [PMID: 29162725 DOI: 10.1074/jbc.m117.794412] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 11/17/2017] [Indexed: 02/03/2023] Open
Abstract
Phosphotyrosine (pTyr)-dependent signaling is critical for many cellular processes. It is highly dynamic, as signal output depends not only on phosphorylation and dephosphorylation rates but also on the rates of binding and dissociation of effectors containing phosphotyrosine-dependent binding modules such as Src homology 2 (SH2) and phosphotyrosine-binding (PTB) domains. Previous in vitro studies suggested that binding of SH2 and PTB domains can enhance protein phosphorylation by protecting the sites bound by these domains from phosphatase-mediated dephosphorylation. To test whether this occurs in vivo, we used the binding of growth factor receptor bound 2 (GRB2) to phosphorylated epidermal growth factor receptor (EGFR) as a model system. We analyzed the effects of SH2 domain overexpression on protein tyrosine phosphorylation by quantitative Western and far-Western blotting, mass spectrometry, and computational modeling. We found that SH2 overexpression results in a significant, dose-dependent increase in EGFR tyrosine phosphorylation, particularly of sites corresponding to the binding specificity of the overexpressed SH2 domain. Computational models using experimentally determined EGFR phosphorylation and dephosphorylation rates, and pTyr-EGFR and GRB2 concentrations, recapitulated the experimental findings. Surprisingly, both modeling and biochemical analyses suggested that SH2 domain overexpression does not result in a major decrease in the number of unbound phosphorylated SH2 domain-binding sites. Our results suggest that signaling via SH2 domain binding is buffered over a relatively wide range of effector concentrations and that SH2 domain proteins with overlapping binding specificities are unlikely to compete with one another for phosphosites in vivo.
Collapse
Affiliation(s)
- Joshua A Jadwin
- From the Raymond and Beverly Sackler Laboratory of Molecular Medicine, Department of Genetics and Genome Sciences, and the Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, Connecticut 06030 and
| | - Timothy G Curran
- the Department of Biological Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Adam T Lafontaine
- From the Raymond and Beverly Sackler Laboratory of Molecular Medicine, Department of Genetics and Genome Sciences, and the Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, Connecticut 06030 and
| | - Forest M White
- the Department of Biological Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Bruce J Mayer
- From the Raymond and Beverly Sackler Laboratory of Molecular Medicine, Department of Genetics and Genome Sciences, and the Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, Connecticut 06030 and
| |
Collapse
|
22
|
Gill K, Macdonald-Obermann JL, Pike LJ. Epidermal growth factor receptors containing a single tyrosine in their C-terminal tail bind different effector molecules and are signaling-competent. J Biol Chem 2017; 292:20744-20755. [PMID: 29074618 DOI: 10.1074/jbc.m117.802553] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/13/2017] [Indexed: 01/07/2023] Open
Abstract
The EGF receptor is a classic receptor tyrosine kinase. It contains nine tyrosines in its C-terminal tail, many of which are phosphorylated and bind proteins containing SH2 or phosphotyrosine-binding (PTB) domains. To determine how many and which tyrosines are required to enable EGF receptor-mediated signaling, we generated a series of EGF receptors that contained only one tyrosine in their C-terminal tail. Assays of the signaling capabilities of these single-Tyr EGF receptors indicated that they can activate a range of downstream signaling pathways, including MAP kinase and Akt. The ability of the single-Tyr receptors to signal correlated with their ability to bind Gab1 (Grb2-associated binding protein 1). However, Tyr-992 appeared to be almost uniquely required to observe activation of phospholipase Cγ. These results demonstrate that multiply phosphorylated receptors are not required to support most EGF-stimulated signaling but identify Tyr-992 and its binding partners as a unique node within the network. We also studied the binding of the isolated SH2 domain of Grb2 (growth factor receptor-bound protein 2) and the isolated PTB domain of Shc (SHC adaptor protein) to the EGF receptor. Although these adapter proteins bound readily to wild-type EGF receptor, they bound poorly to the single-Tyr EGF receptors, even those that bound full-length Grb2 and Shc well. This suggests that in addition to pTyr-directed associations, secondary interactions between the tail and regions of the adapter proteins outside of the SH2/PTB domains are important for stabilizing the binding of Grb2 and Shc to the single-Tyr EGF receptors.
Collapse
Affiliation(s)
- Kamaldeep Gill
- From the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Jennifer L Macdonald-Obermann
- From the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Linda J Pike
- From the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
23
|
Delos Santos RC, Bautista S, Lucarelli S, Bone LN, Dayam RM, Abousawan J, Botelho RJ, Antonescu CN. Selective regulation of clathrin-mediated epidermal growth factor receptor signaling and endocytosis by phospholipase C and calcium. Mol Biol Cell 2017; 28:2802-2818. [PMID: 28814502 PMCID: PMC5638584 DOI: 10.1091/mbc.e16-12-0871] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 07/10/2017] [Accepted: 08/09/2017] [Indexed: 12/11/2022] Open
Abstract
Clathrin-mediated endocytosis is a major regulator of cell-surface protein internalization. Clathrin and other proteins assemble into small invaginating structures at the plasma membrane termed clathrin-coated pits (CCPs) that mediate vesicle formation. In addition, epidermal growth factor receptor (EGFR) signaling is regulated by its accumulation within CCPs. Given the diversity of proteins regulated by clathrin-mediated endocytosis, how this process may distinctly regulate specific receptors is a key question. We examined the selective regulation of clathrin-dependent EGFR signaling and endocytosis. We find that perturbations of phospholipase Cγ1 (PLCγ1), Ca2+, or protein kinase C (PKC) impair clathrin-mediated endocytosis of EGFR, the formation of CCPs harboring EGFR, and EGFR signaling. Each of these manipulations was without effect on the clathrin-mediated endocytosis of transferrin receptor (TfR). EGFR and TfR were recruited to largely distinct clathrin structures. In addition to control of initiation and assembly of CCPs, EGF stimulation also elicited a Ca2+- and PKC-dependent reduction in synaptojanin1 recruitment to clathrin structures, indicating broad control of CCP assembly by Ca2+ signals. Hence EGFR elicits PLCγ1-calcium signals to facilitate formation of a subset of CCPs, thus modulating its own signaling and endocytosis. This provides evidence for the versatility of CCPs to control diverse cellular processes.
Collapse
Affiliation(s)
- Ralph Christian Delos Santos
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Stephen Bautista
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Stefanie Lucarelli
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Leslie N Bone
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Roya M Dayam
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - John Abousawan
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Roberto J Botelho
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Costin N Antonescu
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Ryerson University, Toronto, ON M5B 2K3, Canada .,Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON M5B 1W8, Canada
| |
Collapse
|
24
|
78495111110.3390/cancers9050052" />
Abstract
The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that is commonly upregulated in cancers such as in non-small-cell lung cancer, metastatic colorectal cancer, glioblastoma, head and neck cancer, pancreatic cancer, and breast cancer. Various mechanisms mediate the upregulation of EGFR activity, including common mutations and truncations to its extracellular domain, such as in the EGFRvIII truncations, as well as to its kinase domain, such as the L858R and T790M mutations, or the exon 19 truncation. These EGFR aberrations over-activate downstream pro-oncogenic signaling pathways, including the RAS-RAF-MEK-ERK MAPK and AKT-PI3K-mTOR pathways. These pathways then activate many biological outputs that are beneficial to cancer cell proliferation, including their chronic initiation and progression through the cell cycle. Here, we review the molecular mechanisms that regulate EGFR signal transduction, including the EGFR structure and its mutations, ligand binding and EGFR dimerization, as well as the signaling pathways that lead to G1 cell cycle progression. We focus on the induction of CYCLIN D expression, CDK4/6 activation, and the repression of cyclin-dependent kinase inhibitor proteins (CDKi) by EGFR signaling pathways. We also discuss the successes and challenges of EGFR-targeted therapies, and the potential for their use in combination with CDK4/6 inhibitors.
Collapse
|
25
|
Wee P, Wang Z. Epidermal Growth Factor Receptor Cell Proliferation Signaling Pathways. Cancers (Basel) 2017; 9:cancers9050052. [PMID: 28513565 PMCID: PMC5447962 DOI: 10.3390/cancers9050052] [Citation(s) in RCA: 1214] [Impact Index Per Article: 151.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 12/12/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that is commonly upregulated in cancers such as in non-small-cell lung cancer, metastatic colorectal cancer, glioblastoma, head and neck cancer, pancreatic cancer, and breast cancer. Various mechanisms mediate the upregulation of EGFR activity, including common mutations and truncations to its extracellular domain, such as in the EGFRvIII truncations, as well as to its kinase domain, such as the L858R and T790M mutations, or the exon 19 truncation. These EGFR aberrations over-activate downstream pro-oncogenic signaling pathways, including the RAS-RAF-MEK-ERK MAPK and AKT-PI3K-mTOR pathways. These pathways then activate many biological outputs that are beneficial to cancer cell proliferation, including their chronic initiation and progression through the cell cycle. Here, we review the molecular mechanisms that regulate EGFR signal transduction, including the EGFR structure and its mutations, ligand binding and EGFR dimerization, as well as the signaling pathways that lead to G1 cell cycle progression. We focus on the induction of CYCLIN D expression, CDK4/6 activation, and the repression of cyclin-dependent kinase inhibitor proteins (CDKi) by EGFR signaling pathways. We also discuss the successes and challenges of EGFR-targeted therapies, and the potential for their use in combination with CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Ping Wee
- Department of Medical Genetics and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Zhixiang Wang
- Department of Medical Genetics and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
26
|
Ulaganathan VK, Sperl B, Rapp UR, Ullrich A. Germline variant FGFR4 p.G388R exposes a membrane-proximal STAT3 binding site. Nature 2015; 528:570-4. [PMID: 26675719 DOI: 10.1038/nature16449] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/14/2015] [Indexed: 12/27/2022]
Abstract
Variant rs351855-G/A is a commonly occurring single-nucleotide polymorphism of coding regions in exon 9 of the fibroblast growth factor receptor FGFR4 (CD334) gene (c.1162G>A). It results in an amino-acid change at codon 388 from glycine to arginine (p.Gly388Arg) in the transmembrane domain of the receptor. Despite compelling genetic evidence for the association of this common variant with cancers of the bone, breast, colon, prostate, skin, lung, head and neck, as well as soft-tissue sarcomas and non-Hodgkin lymphoma, the underlying biological mechanism has remained elusive. Here we show that substitution of the conserved glycine 388 residue to a charged arginine residue alters the transmembrane spanning segment and exposes a membrane-proximal cytoplasmic signal transducer and activator of transcription 3 (STAT3) binding site Y(390)-(P)XXQ(393). We demonstrate that such membrane-proximal STAT3 binding motifs in the germline of type I membrane receptors enhance STAT3 tyrosine phosphorylation by recruiting STAT3 proteins to the inner cell membrane. Remarkably, such germline variants frequently co-localize with somatic mutations in the Catalogue of Somatic Mutations in Cancer (COSMIC) database. Using Fgfr4 single nucleotide polymorphism knock-in mice and transgenic mouse models for breast and lung cancers, we validate the enhanced STAT3 signalling induced by the FGFR4 Arg388-variant in vivo. Thus, our findings elucidate the molecular mechanism behind the genetic association of rs351855 with accelerated cancer progression and suggest that germline variants of cell-surface molecules that recruit STAT3 to the inner cell membrane are a significant risk for cancer prognosis and disease progression.
Collapse
Affiliation(s)
- Vijay K Ulaganathan
- Max Planck Institute for Biochemistry, Department of Molecular Biology, Am Klopferspitz 18, 82152, Martinsried. Germany
| | - Bianca Sperl
- Max Planck Institute for Biochemistry, Department of Molecular Biology, Am Klopferspitz 18, 82152, Martinsried. Germany
| | - Ulf R Rapp
- Max Planck Institute for Heart and Lung Research, Molecular Mechanisms of Lung Cancer, Parkstrasse 1, 61231 Bad Nauheim, Germany
| | - Axel Ullrich
- Max Planck Institute for Biochemistry, Department of Molecular Biology, Am Klopferspitz 18, 82152, Martinsried. Germany
| |
Collapse
|
27
|
Baumdick M, Brüggemann Y, Schmick M, Xouri G, Sabet O, Davis L, Chin JW, Bastiaens PIH. EGF-dependent re-routing of vesicular recycling switches spontaneous phosphorylation suppression to EGFR signaling. eLife 2015; 4. [PMID: 26609808 PMCID: PMC4716840 DOI: 10.7554/elife.12223] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 11/25/2015] [Indexed: 11/17/2022] Open
Abstract
Autocatalytic activation of epidermal growth factor receptor (EGFR) coupled to dephosphorylating activity of protein tyrosine phosphatases (PTPs) ensures robust yet diverse responses to extracellular stimuli. The inevitable tradeoff of this plasticity is spontaneous receptor activation and spurious signaling. We show that a ligand-mediated switch in EGFR trafficking enables suppression of spontaneous activation while maintaining EGFR’s capacity to transduce extracellular signals. Autocatalytic phosphorylation of tyrosine 845 on unliganded EGFR monomers is suppressed by vesicular recycling through perinuclear areas with high PTP1B activity. Ligand-binding results in phosphorylation of the c-Cbl docking tyrosine and ubiquitination of the receptor. This secondary signal relies on EGF-induced EGFR self-association and switches suppressive recycling to directional trafficking. The re-routing regulates EGFR signaling response by the transit-time to late endosomes where it is switched-off by high PTP1B activity. This ubiquitin-mediated switch in EGFR trafficking is a uniquely suited solution to suppress spontaneous activation while maintaining responsiveness to EGF. DOI:http://dx.doi.org/10.7554/eLife.12223.001 In living tissue, the ability of individual cells to grow is influenced by signal molecules in the environment around each cell. For example, after an injury, a molecule called epidermal growth factor can stimulate cells to grow to repair the wound. Epidermal growth factor binds to and activates a receptor protein called EGFR, which faces outwards from the cell surface. However, this signal needs to be switched off again afterwards to prevent the cells from growing too much. Epidermal growth factor activates EGFR by triggering a process called “autophosphorylation”, in which EGFR attaches molecules called phosphates to itself. To quench the signal, EGFRs that are bound to growth factors are removed from the cell surface and taken into the cell in small membrane bubbles called vesicles. Enzymes called phosphatases near the cell nucleus remove the phosphate groups and thereby switch the receptors off, before the receptors are ultimately destroyed. However, EGFR autophosphorylation can also happen spontaneously in the absence of growth factor, so it was not clear how the cell is able to distinguish between this spontaneous activation and a genuine signal. Baumdick, Brüggemann, Schmick, Xouri et al. used biochemical techniques to address this question. The experiments show that EGFRs that have become spontaneously active are also removed from the cell surface in vesicles. However, unlike the EGFRs that are bound to growth factors, the spontaneously active receptors are recycled back to the membrane. On the way, their activity is also switched off by encountering phosphatases so that they are not active when they reach the cell surface again. The experiments also show that EGFRs are targeted for destruction by the presence of a tag called ubiquitin, which is added to the receptor in response to the binding of growth factor. Therefore, Baumdick et al.’s findings show that epidermal growth factor controls a switch that alters the way active EGFRs are processed in cells. This system acts to suppress the spontaneous activation of EGFRs, whilst maintaining the ability of the cell to respond to epidermal growth factor. The next challenge is to understand how the location of the phosphatases inside the cell influences when and how the EGFRs respond to this external signal. DOI:http://dx.doi.org/10.7554/eLife.12223.002
Collapse
Affiliation(s)
- Martin Baumdick
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Yannick Brüggemann
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany.,Faculty of Chemistry and Chemical Biology, Technical University of Dortmund, Dortmund, Germany
| | - Malte Schmick
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Georgia Xouri
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Ola Sabet
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Lloyd Davis
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Philippe I H Bastiaens
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany.,Faculty of Chemistry and Chemical Biology, Technical University of Dortmund, Dortmund, Germany
| |
Collapse
|
28
|
Rowland MA, Harrison B, Deeds EJ. Phosphatase specificity and pathway insulation in signaling networks. Biophys J 2015; 108:986-996. [PMID: 25692603 DOI: 10.1016/j.bpj.2014.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 11/13/2014] [Accepted: 12/05/2014] [Indexed: 12/31/2022] Open
Abstract
Phosphatases play an important role in cellular signaling networks by regulating the phosphorylation state of proteins. Phosphatases are classically considered to be promiscuous, acting on tens to hundreds of different substrates. We recently demonstrated that a shared phosphatase can couple the responses of two proteins to incoming signals, even if those two substrates are from otherwise isolated areas of the network. This finding raises a potential paradox: if phosphatases are indeed highly promiscuous, how do cells insulate themselves against unwanted crosstalk? Here, we use mathematical models to explore three possible insulation mechanisms. One approach involves evolving phosphatase KM values that are large enough to prevent saturation by the phosphatase's substrates. Although this is an effective method for generating isolation, the phosphatase becomes a highly inefficient enzyme, which prevents the system from achieving switch-like responses and can result in slow response kinetics. We also explore the idea that substrate degradation can serve as an effective phosphatase. Assuming that degradation is unsaturatable, this mechanism could insulate substrates from crosstalk, but it would also preclude ultrasensitive responses and would require very high substrate turnover to achieve rapid dephosphorylation kinetics. Finally, we show that adaptor subunits, such as those found on phosphatases like PP2A, can provide effective insulation against phosphatase crosstalk, but only if their binding to substrates is uncoupled from their binding to the catalytic core. Analysis of the interaction network of PP2A's adaptor domains reveals that although its adaptors may isolate subsets of targets from one another, there is still a strong potential for phosphatase crosstalk within those subsets. Understanding how phosphatase crosstalk and the insulation mechanisms described here impact the function and evolution of signaling networks represents a major challenge for experimental and computational systems biology.
Collapse
Affiliation(s)
- Michael A Rowland
- Center for Computational Biology, University of Kansas, Lawrence, Kansas
| | - Brian Harrison
- Center for Computational Biology, University of Kansas, Lawrence, Kansas
| | - Eric J Deeds
- Center for Computational Biology, University of Kansas, Lawrence, Kansas; Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas; Santa Fe Institute, Santa Fe, New Mexico.
| |
Collapse
|
29
|
Inhibition of Receptor Dimerization as a Novel Negative Feedback Mechanism of EGFR Signaling. PLoS One 2015; 10:e0139971. [PMID: 26465157 PMCID: PMC4605717 DOI: 10.1371/journal.pone.0139971] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/18/2015] [Indexed: 11/19/2022] Open
Abstract
Dimerization of the epidermal growth factor receptor (EGFR) is crucial for initiating signal transduction. We employed raster image correlation spectroscopy to continuously monitor the EGFR monomer-dimer equilibrium in living cells. EGFR dimer formation upon addition of EGF showed oscillatory behavior with a periodicity of about 2.5 min, suggesting the presence of a negative feedback loop to monomerize the receptor. We demonstrated that monomerization of EGFR relies on phospholipase Cγ, protein kinase C, and protein kinase D (PKD), while being independent of Ca2+ signaling and endocytosis. Phosphorylation of the juxtamembrane threonine residues of EGFR (T654/T669) by PKD was identified as the factor that shifts the monomer-dimer equilibrium of ligand bound EGFR towards the monomeric state. The dimerization state of the receptor correlated with the activity of an extracellular signal-regulated kinase, downstream of the EGFR. Based on these observations, we propose a novel, negative feedback mechanism that regulates EGFR signaling via receptor monomerization.
Collapse
|
30
|
Dushek O, Lellouch AC, Vaux DJ, Shahrezaei V. Biosensor architectures for high-fidelity reporting of cellular signaling. Biophys J 2015; 107:773-782. [PMID: 25099816 PMCID: PMC4129486 DOI: 10.1016/j.bpj.2014.06.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/26/2014] [Accepted: 06/10/2014] [Indexed: 11/29/2022] Open
Abstract
Understanding mechanisms of information processing in cellular signaling networks requires quantitative measurements of protein activities in living cells. Biosensors are molecular probes that have been developed to directly track the activity of specific signaling proteins and their use is revolutionizing our understanding of signal transduction. The use of biosensors relies on the assumption that their activity is linearly proportional to the activity of the signaling protein they have been engineered to track. We use mechanistic mathematical models of common biosensor architectures (single-chain FRET-based biosensors), which include both intramolecular and intermolecular reactions, to study the validity of the linearity assumption. As a result of the classic mechanism of zero-order ultrasensitivity, we find that biosensor activity can be highly nonlinear so that small changes in signaling protein activity can give rise to large changes in biosensor activity and vice versa. This nonlinearity is abolished in architectures that favor the formation of biosensor oligomers, but oligomeric biosensors produce complicated FRET states. Based on this finding, we show that high-fidelity reporting is possible when a single-chain intermolecular biosensor is used that cannot undergo intramolecular reactions and is restricted to forming dimers. We provide phase diagrams that compare various trade-offs, including observer effects, which further highlight the utility of biosensor architectures that favor intermolecular over intramolecular binding. We discuss challenges in calibrating and constructing biosensors and highlight the utility of mathematical models in designing novel probes for cellular signaling.
Collapse
Affiliation(s)
- Omer Dushek
- Sir William Dunn School of Pathology, University of Oxford, United Kingdom; Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, United Kingdom.
| | - Annemarie C Lellouch
- Aix Marseille Université, Laboratoire d'Adhésion et Inflammation, Marseille, France; Institut National de la Santé et de la Recherche Médicale U1067, Marseille, France; Centre National de la Recherche Scientifique UMR 7333, Marseille, France
| | - David J Vaux
- Sir William Dunn School of Pathology, University of Oxford, United Kingdom
| | - Vahid Shahrezaei
- Department of Mathematics, Imperial College London, United Kingdom.
| |
Collapse
|
31
|
Chung YC, Kuo JF, Wei WC, Chang KJ, Chao WT. Caveolin-1 Dependent Endocytosis Enhances the Chemosensitivity of HER-2 Positive Breast Cancer Cells to Trastuzumab Emtansine (T-DM1). PLoS One 2015; 10:e0133072. [PMID: 26172389 PMCID: PMC4501549 DOI: 10.1371/journal.pone.0133072] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 06/23/2015] [Indexed: 01/21/2023] Open
Abstract
The humanized monoclonal antibody-drug conjugate trastuzumab emtansine (T-DM1, Kadcyla) has been approved by the U.S. FDA to treat human epidermal growth factor receptor 2 (HER-2)-positive metastatic breast cancer. Despite its effectiveness in most patients, some are initially resistant or develop resistance. No biomarker of drug resistance to T-DM1 has been identified. Antibody-drug efficacy is associated with antibody internalization in the cell; therefore, cellular sensitivity of cells to the drug may be linked to cellular vesicle trafficking systems. Caveolin-1 is a 22 KD protein required for caveolae formation and endocytic membrane transport. In this study, the relationship between caveolin-1 expression and the chemosensitivity of HER-2-positive breast cancer cells to T-DM1 was investigated. Samples from 32 human breast cancer biopsy and normal tissue specimens were evaluated immunohistochemically for caveolin-1 expression. Caveolin-1 was shown to be expressed in 68% (22/32) of the breast cancer specimens. In addition, eight (72.7%, 8/11) HER-2 positive breast cancer specimens had a higher caveolin-1 expression than normal tissues. HER-2-positive BT-474 and SKBR-3 breast cancer cells that express low and moderate levels of caveolin-1, respectively, were treated with trastuzumab or its conjugate T-DM1. Cell viability and molecular localizations of caveolin-1, antibody and its conjugate were examined. Confocal microscopy showed that T-DM1 and caveolin-1 colocalized in SKBR-3 cells, which also were five times more sensitive to the conjugate in terms of cell survival than BT-474 cells, although T-DM1 also showed improved drug efficacy in BT-474 cells than trastuzumab treatment. Caveolin-1 expression in these lines was manipulated by transfection of GFP-tagged caveolin-1 or caveolin-1 siRNA. BT-474 cells overexpressing caveolin-1 were more sensitive to T-DM1 treatment than mock-transfected cells, whereas the siRNA-transfected SKBR-3 cells had decreased sensitivity to T-DM1 than mock-transfected SKBR-3 cells. The expression of caveolin-1 could mediate endocytosis and promote the internalization of T-DM1 into HER-2 positive cancer cells. Thus, caveolin-1 protein may be an effective predictor for determining the outcome of T-DM1 treatment in breast cancer patients.
Collapse
Affiliation(s)
- Yuan-Chiang Chung
- Department of Surgery, Cheng-Ching General Hospital, Chungkang Branch, Taichung, Taiwan
| | - Jang-Fang Kuo
- Department of Pathology, Cheng-Ching General Hospital, Chungkang Branch, Taichung, Taiwan
| | - Wan-Chen Wei
- Department of Surgery, Cheng-Ching General Hospital, Chungkang Branch, Taichung, Taiwan
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - King-Jen Chang
- Department of Surgery, Cheng-Ching General Hospital, Chungkang Branch, Taichung, Taiwan
| | - Wei-Ting Chao
- Department of Life Science, Tunghai University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
32
|
Genetic Interactions of STAT3 and Anticancer Drug Development. Cancers (Basel) 2014; 6:494-525. [PMID: 24662938 PMCID: PMC3980611 DOI: 10.3390/cancers6010494] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/18/2014] [Accepted: 02/20/2014] [Indexed: 12/18/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) plays critical roles in tumorigenesis and malignant evolution and has been intensively studied as a therapeutic target for cancer. A number of STAT3 inhibitors have been evaluated for their antitumor activity in vitro and in vivo in experimental tumor models and several approved therapeutic agents have been reported to function as STAT3 inhibitors. Nevertheless, most STAT3 inhibitors have yet to be translated to clinical evaluation for cancer treatment, presumably because of pharmacokinetic, efficacy, and safety issues. In fact, a major cause of failure of anticancer drug development is lack of efficacy. Genetic interactions among various cancer-related pathways often provide redundant input from parallel and/or cooperative pathways that drives and maintains survival environments for cancer cells, leading to low efficacy of single-target agents. Exploiting genetic interactions of STAT3 with other cancer-related pathways may provide molecular insight into mechanisms of cancer resistance to pathway-targeted therapies and strategies for development of more effective anticancer agents and treatment regimens. This review focuses on functional regulation of STAT3 activity; possible interactions of the STAT3, RAS, epidermal growth factor receptor, and reduction-oxidation pathways; and molecular mechanisms that modulate therapeutic efficacies of STAT3 inhibitors.
Collapse
|
33
|
Analysis of protein tyrosine phosphatase interactions with microarrayed phosphopeptide substrates using imaging mass spectrometry. Anal Biochem 2013; 442:62-7. [PMID: 23906642 DOI: 10.1016/j.ab.2013.07.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 07/15/2013] [Accepted: 07/19/2013] [Indexed: 01/05/2023]
Abstract
Microarrays of peptide and recombinant protein libraries are routinely used for high-throughput studies of protein-protein interactions and enzymatic activities. Imaging mass spectrometry (IMS) is currently applied as a method to localize analytes on thin tissue sections and other surfaces. Here, we have applied IMS as a label-free means to analyze protein-peptide interactions in a microarray-based phosphatase assay. This IMS strategy visualizes the entire microarray in one composite image by collecting a predefined raster of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry spectra over the surface of the chip. Examining the bacterial tyrosine phosphatase YopH, we used IMS as a label-free means to visualize enzyme binding and activity with a microarrayed phosphopeptide library printed on chips coated with either gold or indium-tin oxide. Furthermore, we demonstrate that microarray-based IMS can be coupled with surface plasmon resonance imaging to add kinetic analyses to measured binding interactions. The method described here is within the capabilities of many modern MALDI-TOF instruments and has general utility for the label-free analysis of microarray assays.
Collapse
|
34
|
Müller PJ, Rigbolt KTG, Paterok D, Piehler J, Vanselow J, Lasonder E, Andersen JS, Schaper F, Sobota RM. Protein tyrosine phosphatase SHP2/PTPN11 mistargeting as a consequence of SH2-domain point mutations associated with Noonan Syndrome and leukemia. J Proteomics 2013; 84:132-47. [PMID: 23584145 DOI: 10.1016/j.jprot.2013.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/02/2013] [Accepted: 04/04/2013] [Indexed: 11/25/2022]
Abstract
UNLABELLED SHP2/PTPN11 is a key regulator of cytokine, growth factor and integrin signaling. SHP2 influences cell survival, proliferation and differentiation by regulating major signaling pathways. Mutations in PTPN11 cause severe diseases like Noonan, LEOPARD syndrome or leukemia. Whereas several of these mutations result in altered enzymatic activity due to impaired auto-inhibition, not all disease patterns can be explained by this mechanism. In this study we analyzed altered binding properties of disease-related SHP2-mutants bearing point mutations within the SH2-domain (T42A, E139D, and R138Q). Mutants were chosen according to SPR assays, which revealed different binding properties of mutated SH2 towards phosphorylated receptor peptides. To analyze global changes in mutant binding properties we applied quantitative mass spectrometry (SILAC). Using an in vitro approach we identified overall more than 1000 protein candidates, which specifically bind to the SH2-domain of SHP2. We discovered that mutations in the SH2-domain selectively affected protein enrichment by altering the binding capacity of the SH2-domain. Mutation-dependent, enhanced or reduced exposure of SHP2 to its binding partners could have an impact on the dynamics of signaling networks. Thus, disease-associated mutants of SHP2 should not only be discussed in the context of deregulated auto-inhibition but also with respect to deregulated protein targeting of the SHP2 mutants. BIOLOGICAL SIGNIFICANCE Using quantitative mass spectrometry based proteomics we provided evidence that disease related mutations in SHP2 domains of SHP2 are able to influence SHP2 recruitment to its targets in mutation dependent manner. We discovered that mutations in the SH2-domain selectively affected protein enrichment ratios suggesting altered binding properties of the SH2-domain. We demonstrated that mutations within SHP2, which had been attributed to affect the enzymatic activity (i.e. affect the open/close status of SHP2), also differ in respect to binding properties. Our study indicates that SHP2 mutations need to be discussed not only in terms of deregulated auto-inhibition but also with respect to deregulated protein targeting properties of the SHP2 mutants. Discovery of the new binding partners for disease-related SHP2 mutants might provide a fruitful foundation for developing strategies targeting Noonan-associated leukemia.
Collapse
Affiliation(s)
- Pia J Müller
- Department of Biochemistry, RWTH Aachen University, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Systems model of T cell receptor proximal signaling reveals emergent ultrasensitivity. PLoS Comput Biol 2013; 9:e1003004. [PMID: 23555234 PMCID: PMC3610635 DOI: 10.1371/journal.pcbi.1003004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 02/05/2013] [Indexed: 01/25/2023] Open
Abstract
Receptor phosphorylation is thought to be tightly regulated because phosphorylated receptors initiate signaling cascades leading to cellular activation. The T cell antigen receptor (TCR) on the surface of T cells is phosphorylated by the kinase Lck and dephosphorylated by the phosphatase CD45 on multiple immunoreceptor tyrosine-based activation motifs (ITAMs). Intriguingly, Lck sequentially phosphorylates ITAMs and ZAP-70, a cytosolic kinase, binds to phosphorylated ITAMs with differential affinities. The purpose of multiple ITAMs, their sequential phosphorylation, and the differential ZAP-70 affinities are unknown. Here, we use a systems model to show that this signaling architecture produces emergent ultrasensitivity resulting in switch-like responses at the scale of individual TCRs. Importantly, this switch-like response is an emergent property, so that removal of multiple ITAMs, sequential phosphorylation, or differential affinities abolishes the switch. We propose that highly regulated TCR phosphorylation is achieved by an emergent switch-like response and use the systems model to design novel chimeric antigen receptors for therapy. Recognition of antigen by the T cell antigen receptor (TCR) is a central event in the initiation of adaptive immune responses and for this reason the TCR has been extensively studied. Multiple studies performed over the past 20 years have revealed intriguing findings that include the observation that the TCR has multiple phosphorylation sites that are sequentially phosphorylated by the kinase Lck and that ZAP-70, a cytosolic kinase, binds to these sites with different affinities. The purpose of multiple sites, their sequential phosphorylation by Lck, and the differential binding affinities of ZAP-70 are unknown. Using a novel mechanistic model that incorporates a high level of molecular detail, we find, unexpectedly, that all factors are critical for producing ultrasensitivity (switch-like response) and therefore this signaling architecture exhibits systems-level emergent ultrasensitivity. We use the model to study existing therapeutic chimeric antigen receptors and in the design of novel ones. The work also has direct implications to the study of many other immune receptors.
Collapse
|
36
|
Hogan M, Bahta M, Cherry S, Lountos GT, Tropea JE, Zhao BM, Burke TR, Waugh DS, Ulrich RG. Biomolecular Interactions of small-molecule inhibitors affecting the YopH protein tyrosine phosphatase. Chem Biol Drug Des 2013; 81:323-33. [PMID: 23241354 PMCID: PMC3573263 DOI: 10.1111/cbdd.12097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have developed competitive and direct binding methods to examine small-molecule inhibitors of protein tyrosine phosphatase activity. Focusing on the Yersinia pestis outer protein H, a potent bacterial protein tyrosine phosphatase, we describe how an understanding of the kinetic interactions involving Yersinia pestis outer protein H, peptide substrates, and small-molecule inhibitors of protein tyrosine phosphatase activity can be beneficial for inhibitor screening, and we further translate these results into a microarray assay for high-throughput screening.
Collapse
Affiliation(s)
- Megan Hogan
- United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702, United States
| | - Medhanit Bahta
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Scott Cherry
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick National Lab, Frederick, Maryland 21702, United States
| | - George T. Lountos
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick National Lab, Frederick, Maryland 21702, United States
- Basic Science Program, SAIC-Frederick, Inc., Frederick National Lab, Frederick, Maryland 21702, United States
| | - Joseph E. Tropea
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick National Lab, Frederick, Maryland 21702, United States
| | - Bryan M. Zhao
- United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702, United States
| | - Terrence R. Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - David S. Waugh
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick National Lab, Frederick, Maryland 21702, United States
| | - Robert G. Ulrich
- United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702, United States
| |
Collapse
|
37
|
Live-cell fluorescence microscopy with molecular biosensors: what are we really measuring? Biophys J 2012; 102:2003-11. [PMID: 22824263 DOI: 10.1016/j.bpj.2012.03.055] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 02/22/2012] [Accepted: 03/23/2012] [Indexed: 11/22/2022] Open
Abstract
Engineered protein biosensors, such as those based on Förster resonance energy transfer, membrane translocation, or solvatochromic shift, are being used in combination with live-cell fluorescence microscopy to reveal kinetics and spatial localization of intracellular processes as they occur. Progress in the application of this approach has been steady, yet its general suitability for quantitative measurements remains unclear. To address the pitfalls of the biosensor approach in quantitative terms, simple reaction-diffusion models were analyzed. The analysis shows that although high-affinity molecular recognition allows robust detection of the fluorescence readout, either of two detrimental effects is fostered. Binding of an intramolecular biosensor or of a relatively abundant intermolecular biosensor introduces observer effects in which the dynamics of the target molecule under study are significantly perturbed, whereas binding of a sparingly expressed intermolecular biosensor is subject to a saturation effect, where the pool of unbound biosensor is significantly depleted. The analysis explores how these effects are manifest in the kinetics and spatial gradients of the biosensor-target complex. A sobering insight emerges: the observer or saturation effect is always significant; the question is whether or not it can be tolerated or accounted for. The challenge in managing the adverse effects is that specification of the biosensor-target affinity to within a certain order of magnitude is required.
Collapse
|
38
|
Mayer BJ. Perspective: Dynamics of receptor tyrosine kinase signaling complexes. FEBS Lett 2012; 586:2575-9. [PMID: 22584051 DOI: 10.1016/j.febslet.2012.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 04/30/2012] [Accepted: 05/02/2012] [Indexed: 11/17/2022]
Abstract
Textbook descriptions of signal transduction complexes provide a static snapshot view of highly dynamic events. Despite enormous strides in identifying the key components of signaling complexes and the underlying mechanisms of signal transduction, our understanding of the dynamic behavior of these complexes has lagged behind. Using the example of receptor tyrosine kinases, this perspective takes a fresh look at the dynamics of the system and their potential impact on signal processing.
Collapse
Affiliation(s)
- Bruce J Mayer
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|
39
|
Gingrich DE, Lisko JG, Curry MA, Cheng M, Quail M, Lu L, Wan W, Albom MS, Angeles TS, Aimone LD, Haltiwanger RC, Wells-Knecht K, Ott GR, Ghose AK, Ator MA, Ruggeri B, Dorsey BD. Discovery of an Orally Efficacious Inhibitor of Anaplastic Lymphoma Kinase. J Med Chem 2012; 55:4580-93. [PMID: 22564207 DOI: 10.1021/jm201550q] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Diane E. Gingrich
- Worldwide
Discovery Research, Cephalon, Inc., 145
Brandywine Parkway, West Chester, Pennsylvania 19380, United States
| | - Joseph G. Lisko
- Worldwide
Discovery Research, Cephalon, Inc., 145
Brandywine Parkway, West Chester, Pennsylvania 19380, United States
| | - Matthew A. Curry
- Worldwide
Discovery Research, Cephalon, Inc., 145
Brandywine Parkway, West Chester, Pennsylvania 19380, United States
| | - Mangeng Cheng
- Worldwide
Discovery Research, Cephalon, Inc., 145
Brandywine Parkway, West Chester, Pennsylvania 19380, United States
| | - Matthew Quail
- Worldwide
Discovery Research, Cephalon, Inc., 145
Brandywine Parkway, West Chester, Pennsylvania 19380, United States
| | - Lihui Lu
- Worldwide
Discovery Research, Cephalon, Inc., 145
Brandywine Parkway, West Chester, Pennsylvania 19380, United States
| | - Weihua Wan
- Worldwide
Discovery Research, Cephalon, Inc., 145
Brandywine Parkway, West Chester, Pennsylvania 19380, United States
| | - Mark S. Albom
- Worldwide
Discovery Research, Cephalon, Inc., 145
Brandywine Parkway, West Chester, Pennsylvania 19380, United States
| | - Thelma S. Angeles
- Worldwide
Discovery Research, Cephalon, Inc., 145
Brandywine Parkway, West Chester, Pennsylvania 19380, United States
| | - Lisa D. Aimone
- Worldwide
Discovery Research, Cephalon, Inc., 145
Brandywine Parkway, West Chester, Pennsylvania 19380, United States
| | - R. Curtis Haltiwanger
- Worldwide
Discovery Research, Cephalon, Inc., 145
Brandywine Parkway, West Chester, Pennsylvania 19380, United States
| | - Kevin Wells-Knecht
- Worldwide
Discovery Research, Cephalon, Inc., 145
Brandywine Parkway, West Chester, Pennsylvania 19380, United States
| | - Gregory R. Ott
- Worldwide
Discovery Research, Cephalon, Inc., 145
Brandywine Parkway, West Chester, Pennsylvania 19380, United States
| | - Arup K. Ghose
- Worldwide
Discovery Research, Cephalon, Inc., 145
Brandywine Parkway, West Chester, Pennsylvania 19380, United States
| | - Mark A. Ator
- Worldwide
Discovery Research, Cephalon, Inc., 145
Brandywine Parkway, West Chester, Pennsylvania 19380, United States
| | - Bruce Ruggeri
- Worldwide
Discovery Research, Cephalon, Inc., 145
Brandywine Parkway, West Chester, Pennsylvania 19380, United States
| | - Bruce D. Dorsey
- Worldwide
Discovery Research, Cephalon, Inc., 145
Brandywine Parkway, West Chester, Pennsylvania 19380, United States
| |
Collapse
|
40
|
Wilson KJ, Mill C, Lambert S, Buchman J, Wilson TR, Hernandez-Gordillo V, Gallo RM, Ades LMC, Settleman J, Riese DJ. EGFR ligands exhibit functional differences in models of paracrine and autocrine signaling. Growth Factors 2012; 30:107-16. [PMID: 22260327 PMCID: PMC3962550 DOI: 10.3109/08977194.2011.649918] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Epidermal growth factor (EGF) family peptides are ligands for the EGF receptor (EGFR). Here, we elucidate functional differences among EGFR ligands and mechanisms underlying these distinctions. In 32D/EGFR myeloid and MCF10A breast cells, soluble amphiregulin (AR), transforming growth factor alpha (TGFα), neuregulin 2 beta, and epigen stimulate greater EGFR coupling to cell proliferation and DNA synthesis than do EGF, betacellulin, heparin-binding EGF-like growth factor, and epiregulin. EGF competitively antagonizes AR, indicating that its functional differences reflect dissimilar intrinsic activity at EGFR. EGF stimulates much greater phosphorylation of EGFR Tyr1045 than does AR. Moreover, the EGFR Y1045F mutation and z-cbl dominant-negative mutant of the c-cbl ubiquitin ligase potentiate the effect of EGF but not of AR. Both EGF and AR stimulate phosphorylation of EGFR Tyr992. However, the EGFR Y992F mutation and phospholipase C gamma inhibitor U73122 reduce the effect of AR much more than that of EGF. Expression of TGFα in 32D/EGFR cells causes greater EGFR coupling to cell proliferation than does expression of EGF. Moreover, expression of EGF in 32D/EGFR cells causes these cells to be largely refractory to stimulation with soluble EGF. Thus, EGFR ligands are functionally distinct in models of paracrine and autocrine signaling and EGFR coupling to biological responses may be specified by competition among functionally distinct EGFR ligands.
Collapse
Affiliation(s)
- Kristy J Wilson
- Purdue University College of Pharmacy, Purdue University Center for Cancer Research, West Lafayette, IN 47907-2064, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Yang YR, Choi JH, Chang JS, Kwon HM, Jang HJ, Ryu SH, Suh PG. Diverse cellular and physiological roles of phospholipase C-γ1. Adv Biol Regul 2012; 52:138-151. [PMID: 21964416 DOI: 10.1016/j.advenzreg.2011.09.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 09/19/2011] [Indexed: 05/31/2023]
Affiliation(s)
- Yong Ryoul Yang
- School of Nano-Biotechnology and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
42
|
Ligeti E, Welti S, Scheffzek K. Inhibition and Termination of Physiological Responses by GTPase Activating Proteins. Physiol Rev 2012; 92:237-72. [DOI: 10.1152/physrev.00045.2010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Physiological processes are strictly organized in space and time. However, in cell physiology research, more attention is given to the question of space rather than to time. To function as a signal, environmental changes must be restricted in time; they need not only be initiated but also terminated. In this review, we concentrate on the role of one specific protein family involved in biological signal termination. GTPase activating proteins (GAPs) accelerate the endogenously low GTP hydrolysis rate of monomeric guanine nucleotide-binding proteins (GNBPs), limiting thereby their prevalence in the active, GTP-bound form. We discuss cases where defective or excessive GAP activity of specific proteins causes significant alteration in the function of the nervous, endocrine, and hemopoietic systems, or contributes to development of infections and tumors. Biochemical and genetic data as well as observations from human pathology support the notion that GAPs represent vital elements in the spatiotemporal fine tuning of physiological processes.
Collapse
Affiliation(s)
- Erzsébet Ligeti
- Department of Physiology, Semmelweis University, Budapest, Hungary; Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany; and Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Stefan Welti
- Department of Physiology, Semmelweis University, Budapest, Hungary; Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany; and Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Klaus Scheffzek
- Department of Physiology, Semmelweis University, Budapest, Hungary; Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany; and Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
43
|
Abstract
The physiological effects of many extracellular neurotransmitters, hormones, growth factors, and other stimuli are mediated by receptor-promoted activation of phospholipase C (PLC) and consequential activation of inositol lipid signaling pathways. These signaling responses include the classically described conversion of phosphatidylinositol(4,5)P(2) to the Ca(2+)-mobilizing second messenger inositol(1,4,5)P(3) and the protein kinase C-activating second messenger diacylglycerol as well as alterations in membrane association or activity of many proteins that harbor phosphoinositide binding domains. The 13 mammalian PLCs elaborate a minimal catalytic core typified by PLC-d to confer multiple modes of regulation of lipase activity. PLC-b isozymes are activated by Gaq- and Gbg-subunits of heterotrimeric G proteins, and activation of PLC-g isozymes occurs through phosphorylation promoted by receptor and non-receptor tyrosine kinases. PLC-e and certain members of the PLC-b and PLC-g subclasses of isozymes are activated by direct binding of small G proteins of the Ras, Rho, and Rac subfamilies of GTPases. Recent high resolution three dimensional structures together with biochemical studies have illustrated that the X/Y linker region of the catalytic core mediates autoinhibition of most if not all PLC isozymes. Activation occurs as a consequence of removal of this autoinhibition.
Collapse
|
44
|
Breslin HJ, Lane BM, Ott GR, Ghose AK, Angeles TS, Albom MS, Cheng M, Wan W, Haltiwanger RC, Wells-Knecht KJ, Dorsey BD. Design, Synthesis, and Anaplastic Lymphoma Kinase (ALK) Inhibitory Activity for a Novel Series of 2,4,8,22-Tetraazatetracyclo[14.3.1.13,7.19,13]docosa-1(20),3(22),4,6,9(21),10,12,16,18-nonaene Macrocycles. J Med Chem 2011; 55:449-64. [PMID: 22172029 DOI: 10.1021/jm201333e] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Henry J. Breslin
- Cephalon, Inc., 145 Brandywine
Parkway, West Chester, Pennsylvania 19380-4245, United States
| | - Brandon M. Lane
- Cephalon, Inc., 145 Brandywine
Parkway, West Chester, Pennsylvania 19380-4245, United States
| | - Gregory R. Ott
- Cephalon, Inc., 145 Brandywine
Parkway, West Chester, Pennsylvania 19380-4245, United States
| | - Arup K. Ghose
- Cephalon, Inc., 145 Brandywine
Parkway, West Chester, Pennsylvania 19380-4245, United States
| | - Thelma S. Angeles
- Cephalon, Inc., 145 Brandywine
Parkway, West Chester, Pennsylvania 19380-4245, United States
| | - Mark S. Albom
- Cephalon, Inc., 145 Brandywine
Parkway, West Chester, Pennsylvania 19380-4245, United States
| | - Mangeng Cheng
- Cephalon, Inc., 145 Brandywine
Parkway, West Chester, Pennsylvania 19380-4245, United States
| | - Weihua Wan
- Cephalon, Inc., 145 Brandywine
Parkway, West Chester, Pennsylvania 19380-4245, United States
| | - R. Curtis Haltiwanger
- Cephalon, Inc., 145 Brandywine
Parkway, West Chester, Pennsylvania 19380-4245, United States
| | - Kevin J. Wells-Knecht
- Cephalon, Inc., 145 Brandywine
Parkway, West Chester, Pennsylvania 19380-4245, United States
| | - Bruce D. Dorsey
- Cephalon, Inc., 145 Brandywine
Parkway, West Chester, Pennsylvania 19380-4245, United States
| |
Collapse
|
45
|
Acquaviva J, Jun HJ, Lessard J, Ruiz R, Zhu H, Donovan M, Woolfenden S, Boskovitz A, Raval A, Bronson RT, Pfannl R, Whittaker CA, Housman DE, Charest A. Chronic activation of wild-type epidermal growth factor receptor and loss of Cdkn2a cause mouse glioblastoma formation. Cancer Res 2011; 71:7198-206. [PMID: 21987724 PMCID: PMC3228869 DOI: 10.1158/0008-5472.can-11-1514] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Glioblastoma multiforme (GBM) is characterized by overexpression of epidermal growth factor receptor (EGFR) and loss of the tumor suppressors Ink4a/Arf. Efforts at modeling GBM using wild-type EGFR in mice have proven unsuccessful. Here, we present a unique mouse model of wild-type EGFR-driven gliomagenesis. We used a combination of somatic conditional overexpression and ligand-mediated chronic activation of EGFR in cooperation with Ink4a/Arf loss in the central nervous system of adult mice to generate tumors with the histopathologic and molecular characteristics of human GBMs. Sustained, ligand-mediated activation of EGFR was necessary for gliomagenesis, functionally substantiating the clinical observation that EGFR-positive GBMs from patients express EGFR ligands. To gain a better understanding of the clinically disappointing EGFR-targeted therapies for GBM, we investigated the molecular responses to EGFR tyrosine kinase inhibitor (TKI) treatment in this model. Gefitinib treatment of primary GBM cells resulted in a robust apoptotic response, partially conveyed by mitogen-activated protein kinase (MAPK) signaling attenuation and accompanied by BIM(EL) expression. In human GBMs, loss-of-function mutations in the tumor suppressor PTEN are a common occurrence. Elimination of PTEN expression in GBM cells posttumor formation did not confer resistance to TKI treatment, showing that PTEN status in our model is not predictive. Together, these findings offer important mechanistic insights into the genetic determinants of EGFR gliomagenesis and sensitivity to TKIs and provide a robust discovery platform to better understand the molecular events that are associated with predictive markers of TKI therapy.
Collapse
Affiliation(s)
- Jaime Acquaviva
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Hyun Jung Jun
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Julie Lessard
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Rolando Ruiz
- Genetics Program, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Haihao Zhu
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Melissa Donovan
- Genetics Program, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Steve Woolfenden
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Abraham Boskovitz
- Department of Neurosurgery, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Ami Raval
- Department of Neurosurgery, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | - Rolf Pfannl
- Department of Neurosurgery, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Charles A. Whittaker
- David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David E. Housman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Al Charest
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
- Department of Neurosurgery, Tufts University School of Medicine, Boston, MA 02111, USA
- Genetics Program, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
46
|
Milkiewicz KL, Aimone LD, Albom MS, Angeles TS, Chang H, Grobelny JV, Husten J, LoSardo C, Miknyoczki S, Murthy S, Rolon-Steele D, Underiner TL, Weinberg LR, Worrell CS, Zeigler KS, Dorsey BD. Improvement in oral bioavailability of 2,4-diaminopyrimidine c-Met inhibitors by incorporation of a 3-amidobenzazepin-2-one group. Bioorg Med Chem 2011; 19:6274-84. [DOI: 10.1016/j.bmc.2011.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/30/2011] [Accepted: 09/06/2011] [Indexed: 11/25/2022]
|
47
|
Mukherjee A, Badal Y, Nguyen XT, Miller J, Chenna A, Tahir H, Newton A, Parry G, Williams S. Profiling the HER3/PI3K pathway in breast tumors using proximity-directed assays identifies correlations between protein complexes and phosphoproteins. PLoS One 2011; 6:e16443. [PMID: 21297994 PMCID: PMC3030586 DOI: 10.1371/journal.pone.0016443] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 12/17/2010] [Indexed: 01/19/2023] Open
Abstract
Background The identification of patients for targeted antineoplastic therapies requires accurate measurement of therapeutic targets and associated signaling complexes. HER3 signaling through heterodimerization is an important growth-promoting mechanism in several tumor types and may be a principal resistance mechanism by which EGFR and HER2 expressing tumors elude targeted therapies. Current methods that can study these interactions are inadequate for formalin-fixed, paraffin-embedded (FFPE) tumor samples. Methodology and Principal Findings Herein, we describe a panel of proximity-directed assays capable of measuring protein-interactions and phosphorylation in FFPE samples in the HER3/PI3K/Akt pathway and examine the capability of these assays to inform on the functional state of the pathway. We used FFPE breast cancer cell line and tumor models for this study. In breast cancer cell lines we observe both ligand-dependent and independent activation of the pathway and strong correlations between measured activation of key analytes. When selected cell lines are treated with HER2 inhibitors, we not only observe the expected molecular effects based on mechanism of action knowledge, but also novel effects of HER2 inhibition on key targets in the HER receptor pathway. Significantly, in a xenograft model of delayed tumor fixation, HER3 phosphorylation is unstable, while alternate measures of pathway activation, such as formation of the HER3PI3K complex is preserved. Measurements in breast tumor samples showed correlations between HER3 phosphorylation and receptor interactions, obviating the need to use phosphorylation as a surrogate for HER3 activation. Significance This assay system is capable of quantitatively measuring therapeutically relevant responses and enables molecular profiling of receptor networks in both preclinical and tumor models.
Collapse
Affiliation(s)
- Ali Mukherjee
- Department of Oncology, Monogram Biosciences, South San Francisco, California, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wang JY, Yeh CL, Chou HC, Yang CH, Fu YN, Chen YT, Cheng HW, Huang CYF, Liu HP, Huang SF, Chen YR. Vaccinia H1-related phosphatase is a phosphatase of ErbB receptors and is down-regulated in non-small cell lung cancer. J Biol Chem 2011; 286:10177-84. [PMID: 21262974 DOI: 10.1074/jbc.m110.163295] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vaccinia H1-related phosphatase (VHR) is classified as a dual specificity phosphatase. Unlike typical dual specificity phosphatases, VHR lacks the MAPK-binding domain and shows poor activity against MAPKs. We found that EGF receptor (EGFR) was a direct substrate of VHR and that overexpression of VHR down-regulated EGFR phosphorylation, particularly at Tyr-992 residue. Expression of VHR inhibited the activation of phospholipase Cγ and protein kinase C, both downstream effectors of Tyr-992 phosphorylation of EGFR. Decreasing VHR expression by RNA interference caused higher EGFR phosphorylation at Tyr-992. In addition to EGFR, VHR also directly dephosphorylated ErbB2. Consistent with these results, suppression of VHR augmented the foci formation ability of H1299 non-small cell lung cancer (NSCLC) cells, whereas overexpression of VHR suppressed cell growth in both two- and three-dimensional cultures. Expression of VHR also suppressed tumor formation in a mouse xenograft model. Furthermore, VHR expression was significantly lower in NSCLC tissues in comparison to that in normal lung tissues. Collectively, this study shows that down-regulation of VHR expression enhances the signaling of ErbB receptors and may be involved in NSCLC pathogenesis.
Collapse
Affiliation(s)
- Jiz-Yuh Wang
- Division of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan 35053
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Su T, Bryant DM, Luton F, Vergés M, Ulrich SM, Hansen KC, Datta A, Eastburn DJ, Burlingame AL, Shokat KM, Mostov KE. A kinase cascade leading to Rab11-FIP5 controls transcytosis of the polymeric immunoglobulin receptor. Nat Cell Biol 2010; 12:1143-53. [PMID: 21037565 PMCID: PMC3072784 DOI: 10.1038/ncb2118] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 10/06/2010] [Indexed: 01/26/2023]
Abstract
Polymeric immunoglobulin A (pIgA) transcytosis, mediated by the polymeric immunoglobulin receptor (pIgR), is a central component of mucosal immunity and a model for regulation of polarized epithelial membrane traffic. Binding of pIgA to pIgR stimulates transcytosis in a process requiring Yes, a Src family tyrosine kinase (SFK). We show that Yes directly phosphorylates EGF receptor (EGFR) on liver endosomes. Injection of pIgA into rats induced EGFR phosphorylation. Similarly, in MDCK cells, pIgA treatment significantly increased phosphorylation of EGFR on various sites, subsequently activating extracellular signal-regulated protein kinase (ERK). Furthermore, we find that the Rab11 effector Rab11-FIP5 is a substrate of ERK. Knocking down Yes or Rab11-FIP5, or inhibition of the Yes-EGFR-ERK cascade, decreased pIgA-pIgR transcytosis. Finally, we demonstrate that Rab11-FIP5 phosphorylation by ERK controls Rab11a endosome distribution and pIgA-pIgR transcytosis. Our results reveal a novel Yes-EGFR-ERK-FIP5 signalling network for regulation of pIgA-pIgR transcytosis.
Collapse
Affiliation(s)
- Tao Su
- Department of Anatomy, University of California, San Francisco, CA 94158-2517, USA
- Biochemistry and Biophysics, University of California, San Francisco, CA 94158-2517, USA
| | - David M. Bryant
- Department of Anatomy, University of California, San Francisco, CA 94158-2517, USA
- Biochemistry and Biophysics, University of California, San Francisco, CA 94158-2517, USA
| | - Frédéric Luton
- Department of Anatomy, University of California, San Francisco, CA 94158-2517, USA
- Biochemistry and Biophysics, University of California, San Francisco, CA 94158-2517, USA
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia-Antipolis, CNRS-UMR6097, 06560 Sophia-Antipolis, France
| | - Marcel Vergés
- Department of Anatomy, University of California, San Francisco, CA 94158-2517, USA
- Biochemistry and Biophysics, University of California, San Francisco, CA 94158-2517, USA
- Cardiovascular Genetics Centre, IdIBGi - University of Girona, 17003 Girona, Spain
| | - Scott M. Ulrich
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158-2280, USA
- Department of Chemistry, Ithaca College, Ithaca, NY 14850, USA
| | - Kirk C. Hansen
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158-2517, USA
- Proteomics Core, University of Colorado Health Sciences Centre, Aurora, CO 80045, USA
| | - Anirban Datta
- Department of Anatomy, University of California, San Francisco, CA 94158-2517, USA
- Biochemistry and Biophysics, University of California, San Francisco, CA 94158-2517, USA
| | - Dennis J. Eastburn
- Department of Anatomy, University of California, San Francisco, CA 94158-2517, USA
- Biochemistry and Biophysics, University of California, San Francisco, CA 94158-2517, USA
| | - Alma L. Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158-2517, USA
| | - Kevan M. Shokat
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158-2280, USA
| | - Keith E. Mostov
- Department of Anatomy, University of California, San Francisco, CA 94158-2517, USA
- Biochemistry and Biophysics, University of California, San Francisco, CA 94158-2517, USA
| |
Collapse
|
50
|
Phosphoproteomics-based modeling defines the regulatory mechanism underlying aberrant EGFR signaling. PLoS One 2010; 5:e13926. [PMID: 21085658 PMCID: PMC2978091 DOI: 10.1371/journal.pone.0013926] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 10/15/2010] [Indexed: 12/03/2022] Open
Abstract
Background Mutation of the epidermal growth factor receptor (EGFR) results in a discordant cell signaling, leading to the development of various diseases. However, the mechanism underlying the alteration of downstream signaling due to such mutation has not yet been completely understood at the system level. Here, we report a phosphoproteomics-based methodology for characterizing the regulatory mechanism underlying aberrant EGFR signaling using computational network modeling. Methodology/Principal Findings Our phosphoproteomic analysis of the mutation at tyrosine 992 (Y992), one of the multifunctional docking sites of EGFR, revealed network-wide effects of the mutation on EGF signaling in a time-resolved manner. Computational modeling based on the temporal activation profiles enabled us to not only rediscover already-known protein interactions with Y992 and internalization property of mutated EGFR but also further gain model-driven insights into the effect of cellular content and the regulation of EGFR degradation. Our kinetic model also suggested critical reactions facilitating the reconstruction of the diverse effects of the mutation on phosphoproteome dynamics. Conclusions/Significance Our integrative approach provided a mechanistic description of the disorders of mutated EGFR signaling networks, which could facilitate the development of a systematic strategy toward controlling disease-related cell signaling.
Collapse
|