1
|
Sun C, Zhou C, Daneshvar K, Ben Saad A, Kratkiewicz AJ, Toles BJ, Arghiani N, Hess A, Chen JY, Pondick JV, York SR, Li W, Moran SP, Gentile SD, Rahman RU, Li Z, Zhou P, Sparks RP, Habboub T, Kim BM, Choi MY, Affo S, Schwabe RF, Popov YV, Mullen AC. Conserved long noncoding RNA TILAM promotes liver fibrosis through interaction with PML in HSCs. Hepatology 2025; 81:853-869. [PMID: 38563629 PMCID: PMC11825499 DOI: 10.1097/hep.0000000000000822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 02/01/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND AND AIMS Fibrosis is the common end point for all forms of chronic liver injury, and the progression of fibrosis leads to the development of end-stage liver disease. Activation of HSCs and their transdifferentiation into myofibroblasts results in the accumulation of extracellular matrix proteins that form the fibrotic scar. Long noncoding RNAs regulate the activity of HSCs and provide targets for fibrotic therapies. APPROACH AND RESULTS We identified long noncoding RNA TILAM located near COL1A1 , expressed in HSCs, and induced with liver fibrosis in humans and mice. Loss-of-function studies in human HSCs and human liver organoids revealed that TILAM regulates the expression of COL1A1 and other extracellular matrix genes. To determine the role of TILAM in vivo, we annotated the mouse ortholog ( Tilam ), generated Tilam- deficient green fluorescent protein-reporter mice, and challenged these mice in 2 different models of liver fibrosis. Single-cell data and analysis of single-data and analysis of Tilam-deficient reporter mice revealed that Tilam is induced in murine HSCs with the development of fibrosis in vivo. Tilam -deficient reporter mice revealed that Tilam is induced in murine HSCs with the development of fibrosis in vivo. Furthermore, loss of Tilam expression attenuated the development of fibrosis in the setting of in vivo liver injury. Finally, we found that TILAM interacts with promyelocytic leukemia nuclear body scaffold protein to regulate a feedback loop by which TGF-β2 reinforces TILAM expression and nuclear localization of promyelocytic leukemia nuclear body scaffold protein to promote the fibrotic activity of HSCs. CONCLUSIONS TILAM is activated in HSCs with liver injury and interacts with promyelocytic leukemia nuclear body scaffold protein to drive the development of fibrosis. Depletion of TILAM may serve as a therapeutic approach to combat the development of end-stage liver disease.
Collapse
Affiliation(s)
- Cheng Sun
- Department of Medicine, Division of Gastroenterology, Chan Medical School, University of Massachusetts, Worcester, Massachusetts, USA
| | - Chan Zhou
- Department of Population and Quantitative Health Sciences, Chan Medical School, University of Massachusetts, Worcester, Massachusetts USA
| | - Kaveh Daneshvar
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Amel Ben Saad
- Department of Medicine, Division of Gastroenterology, Chan Medical School, University of Massachusetts, Worcester, Massachusetts, USA
| | - Arcadia J. Kratkiewicz
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Benjamin J. Toles
- Department of Medicine, Division of Gastroenterology, Chan Medical School, University of Massachusetts, Worcester, Massachusetts, USA
| | - Nahid Arghiani
- Department of Medicine, Division of Gastroenterology, Chan Medical School, University of Massachusetts, Worcester, Massachusetts, USA
| | - Anja Hess
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jennifer Y. Chen
- Department of Medicine, Liver Center, University of California, San Francisco, California, USA
| | - Joshua V. Pondick
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Samuel R. York
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wenyang Li
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sean P. Moran
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Stefan D. Gentile
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute, Cambridge, Massachusetts, USA
| | - Raza Ur Rahman
- Department of Medicine, Division of Gastroenterology, Chan Medical School, University of Massachusetts, Worcester, Massachusetts, USA
- Broad Institute, Cambridge, Massachusetts, USA
| | - Zixiu Li
- Department of Population and Quantitative Health Sciences, Chan Medical School, University of Massachusetts, Worcester, Massachusetts USA
| | - Peng Zhou
- Department of Population and Quantitative Health Sciences, Chan Medical School, University of Massachusetts, Worcester, Massachusetts USA
| | - Robert P. Sparks
- Department of Medicine, Division of Gastroenterology, Chan Medical School, University of Massachusetts, Worcester, Massachusetts, USA
| | - Tim Habboub
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Byeong-Moo Kim
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Y. Choi
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Silvia Affo
- Department of Liver, Digestive System, and Metabolism, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Robert F. Schwabe
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Yury V. Popov
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Alan C. Mullen
- Department of Medicine, Division of Gastroenterology, Chan Medical School, University of Massachusetts, Worcester, Massachusetts, USA
- Broad Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Bercier P, de Thé H. History of Developing Acute Promyelocytic Leukemia Treatment and Role of Promyelocytic Leukemia Bodies. Cancers (Basel) 2024; 16:1351. [PMID: 38611029 PMCID: PMC11011038 DOI: 10.3390/cancers16071351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
The story of acute promyelocytic leukemia (APL) discovery, physiopathology, and treatment is a unique journey, transforming the most aggressive form of leukemia to the most curable. It followed an empirical route fueled by clinical breakthroughs driving major advances in biochemistry and cell biology, including the discovery of PML nuclear bodies (PML NBs) and their central role in APL physiopathology. Beyond APL, PML NBs have emerged as key players in a wide variety of biological functions, including tumor-suppression and SUMO-initiated protein degradation, underscoring their broad importance. The APL story is an example of how clinical observations led to the incremental development of the first targeted leukemia therapy. The understanding of APL pathogenesis and the basis for cure now opens new insights in the treatment of other diseases, especially other acute myeloid leukemias.
Collapse
Affiliation(s)
- Pierre Bercier
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, 75231 Paris, France;
- GenCellDis, Inserm U944, CNRS UMR7212, Université Paris Cité, 75010 Paris, France
| | - Hugues de Thé
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, 75231 Paris, France;
- GenCellDis, Inserm U944, CNRS UMR7212, Université Paris Cité, 75010 Paris, France
- Hematology Laboratory, Hôpital St Louis, AP/HP, 75010 Paris, France
| |
Collapse
|
3
|
Bregnard TA, Fairchild D, Erlandsen H, Semenova IV, Szczepaniak R, Ahmed A, Weller SK, Korzhnev DM, Bezsonova I. Conformational exchange at a C 2H 2 zinc-binding site facilitates redox sensing by the PML protein. Structure 2023; 31:1086-1099.e6. [PMID: 37473756 PMCID: PMC10528520 DOI: 10.1016/j.str.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/12/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023]
Abstract
The promyelocytic leukemia protein, PML, plays a vital role in the cellular response to oxidative stress; however, the molecular mechanism of its action remains poorly understood. Here, we identify redox-sensitive sites of PML. A molecule of PML is cysteine-rich and contains three zinc-binding domains including RING, B-box1, and B-box2. Using in vitro assays, we have compared the sensitivity of the isolated RING and B-box1 domains and shown that B-box1 is more sensitive to oxidation. NMR studies of PML dynamics showed that one of the Zn-coordination sites within the B-box1 undergoes significant conformational exchange, revealing a hotspot for exposure of reactive cysteines. In agreement with the in vitro data, enhancement of the B-box1 Zn-coordination dynamics led to more efficient recruitment of PML into PML nuclear bodies in cells. Overall, our results suggest that the increased sensitivity of B-box1 to oxidative stress makes this domain an important redox-sensing component of PML.
Collapse
Affiliation(s)
- Thomas A Bregnard
- Department of Molecular Biology and Biophysics, UCONN Health, Farmington, CT 06032, USA
| | - Daniel Fairchild
- Department of Molecular Biology and Biophysics, UCONN Health, Farmington, CT 06032, USA
| | - Heidi Erlandsen
- Center for Open Research Resources & Equipment, UCONN, Storrs, CT 06269, USA
| | - Irina V Semenova
- Department of Molecular Biology and Biophysics, UCONN Health, Farmington, CT 06032, USA
| | - Renata Szczepaniak
- Department of Molecular Biology and Biophysics, UCONN Health, Farmington, CT 06032, USA
| | - Affrin Ahmed
- Department of Molecular Biology and Biophysics, UCONN Health, Farmington, CT 06032, USA
| | - Sandra K Weller
- Department of Molecular Biology and Biophysics, UCONN Health, Farmington, CT 06032, USA
| | - Dmitry M Korzhnev
- Department of Molecular Biology and Biophysics, UCONN Health, Farmington, CT 06032, USA
| | - Irina Bezsonova
- Department of Molecular Biology and Biophysics, UCONN Health, Farmington, CT 06032, USA.
| |
Collapse
|
4
|
Sun C, Zhou C, Daneshvar K, Kratkiewicz AJ, Saad AB, Hess A, Chen JY, Pondick JV, York SR, Li W, Moran S, Gentile S, Rahman RU, Li Z, Sparks R, Habboub T, Kim BM, Choi MY, Affo S, Schwabe RF, Popov YV, Mullen AC. Conserved long noncoding RNA TILAM promotes liver fibrosis through interaction with PML in hepatic stellate cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.29.551032. [PMID: 37546982 PMCID: PMC10402143 DOI: 10.1101/2023.07.29.551032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Background & Aims Fibrosis is the common endpoint for all forms of chronic liver injury, and progression of fibrosis leads to the development of end-stage liver disease. Activation of hepatic stellate cells (HSCs) and their transdifferentiation to myofibroblasts results in the accumulation of extracellular matrix (ECM) proteins that form the fibrotic scar. Long noncoding (lnc) RNAs regulate the activity of HSCs and may provide targets for fibrotic therapies. Methods We identified lncRNA TILAM as expressed near COL1A1 in human HSCs and performed loss-of-function studies in human HSCs and liver organoids. Transcriptomic analyses of HSCs isolated from mice defined the murine ortholog of TILAM . We then generated Tilam -deficient GFP reporter mice and quantified fibrotic responses to carbon tetrachloride (CCl 4 ) and choline-deficient L-amino acid defined high fat diet (CDA-HFD). Co-precipitation studies, mass spectrometry, and gene expression analyses identified protein partners of TILAM . Results TILAM is conserved between human and mouse HSCs and regulates expression of ECM proteins, including collagen. Tilam is selectively induced in HSCs during the development of fibrosis in vivo . In both male and female mice, loss of Tilam results in reduced fibrosis in the setting of CCl 4 and CDA-HFD injury models. TILAM interacts with promyelocytic leukemia protein (PML) to stabilize PML protein levels and promote the fibrotic activity of HSCs. Conclusion TILAM is activated in HSCs and interacts with PML to drive the development of liver fibrosis. Depletion of TILAM may serve as a therapeutic approach to combat the development of end stage liver disease.
Collapse
|
5
|
Ryabchenko B, Šroller V, Horníková L, Lovtsov A, Forstová J, Huérfano S. The interactions between PML nuclear bodies and small and medium size DNA viruses. Virol J 2023; 20:82. [PMID: 37127643 PMCID: PMC10152602 DOI: 10.1186/s12985-023-02049-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/23/2023] [Indexed: 05/03/2023] Open
Abstract
Promyelocytic leukemia nuclear bodies (PM NBs), often referred to as membraneless organelles, are dynamic macromolecular protein complexes composed of a PML protein core and other transient or permanent components. PML NBs have been shown to play a role in a wide variety of cellular processes. This review describes in detail the diverse and complex interactions between small and medium size DNA viruses and PML NBs that have been described to date. The PML NB components that interact with small and medium size DNA viruses include PML protein isoforms, ATRX/Daxx, Sp100, Sp110, HP1, and p53, among others. Interaction between viruses and components of these NBs can result in different outcomes, such as influencing viral genome expression and/or replication or impacting IFN-mediated or apoptotic cell responses to viral infection. We discuss how PML NB components abrogate the ability of adenoviruses or Hepatitis B virus to transcribe and/or replicate their genomes and how papillomaviruses use PML NBs and their components to promote their propagation. Interactions between polyomaviruses and PML NBs that are poorly understood but nevertheless suggest that the NBs can serve as scaffolds for viral replication or assembly are also presented. Furthermore, complex interactions between the HBx protein of hepadnaviruses and several PML NBs-associated proteins are also described. Finally, current but scarce information regarding the interactions of VP3/apoptin of the avian anellovirus with PML NBs is provided. Despite the considerable number of studies that have investigated the functions of the PML NBs in the context of viral infection, gaps in our understanding of the fine interactions between viruses and the very dynamic PML NBs remain. The complexity of the bodies is undoubtedly a great challenge that needs to be further addressed.
Collapse
Affiliation(s)
- Boris Ryabchenko
- Department of Genetics and Microbiology, Faculty of Science, BIOCEV, Charles University, Vestec, 25250, Czech Republic
| | - Vojtěch Šroller
- Department of Genetics and Microbiology, Faculty of Science, BIOCEV, Charles University, Vestec, 25250, Czech Republic
| | - Lenka Horníková
- Department of Genetics and Microbiology, Faculty of Science, BIOCEV, Charles University, Vestec, 25250, Czech Republic
| | - Alexey Lovtsov
- Department of Genetics and Microbiology, Faculty of Science, BIOCEV, Charles University, Vestec, 25250, Czech Republic
| | - Jitka Forstová
- Department of Genetics and Microbiology, Faculty of Science, BIOCEV, Charles University, Vestec, 25250, Czech Republic
| | - Sandra Huérfano
- Department of Genetics and Microbiology, Faculty of Science, BIOCEV, Charles University, Vestec, 25250, Czech Republic.
| |
Collapse
|
6
|
Cerutti E, D'Amico M, Cainero I, Pelicci PG, Faretta M, Dellino GI, Diaspro A, Lanzanò L. Alterations induced by the PML-RARα oncogene revealed by image cross correlation spectroscopy. Biophys J 2022; 121:4358-4367. [PMID: 36196056 PMCID: PMC9703036 DOI: 10.1016/j.bpj.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/30/2022] [Accepted: 10/03/2022] [Indexed: 12/14/2022] Open
Abstract
The molecular mechanisms that underlie oncogene-induced genomic damage are still poorly understood. To understand how oncogenes affect chromatin architecture, it is important to visualize fundamental processes such as DNA replication and transcription in intact nuclei and quantify the alterations of their spatiotemporal organization induced by oncogenes. Here, we apply superresolution microscopy in combination with image cross correlation spectroscopy to the U937-PR9 cell line, an in vitro model of acute promyelocytic leukemia that allows us to activate the expression of the PML-RARα oncogene and analyze its effects on the spatiotemporal organization of functional nuclear processes. More specifically, we perform Tau-stimulated emission depletion imaging, a superresolution technique based on the concept of separation of photons by lifetime tuning. Tau-stimulated emission depletion imaging is combined with a robust image analysis protocol that quickly produces a value of colocalization fraction on several hundreds of single cells and allows observation of cell-to-cell variability. Upon activation of the oncogene, we detect a significant increase in the fraction of transcription sites colocalized with PML/PML-RARα. This increase of colocalization can be ascribed to oncogene-induced disruption of physiological PML bodies and the abnormal occurrence of a relatively large number of PML-RARα microspeckles. We also detect a significant cell-to-cell variability of this increase of colocalization, which can be ascribed, at least in part, to a heterogeneous response of the cells to the activation of the oncogene. These results prove that our method efficiently reveals oncogene-induced alterations in the spatial organization of nuclear processes and suggest that the abnormal localization of PML-RARα could interfere with the transcription machinery, potentially leading to DNA damage and genomic instability.
Collapse
Affiliation(s)
- Elena Cerutti
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, Catania, Italy; Nanoscopy and NIC@IIT, CHT Erzelli, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Morgana D'Amico
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, Catania, Italy
| | - Isotta Cainero
- Nanoscopy and NIC@IIT, CHT Erzelli, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Mario Faretta
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Gaetano Ivan Dellino
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| | - Alberto Diaspro
- Nanoscopy and NIC@IIT, CHT Erzelli, Istituto Italiano di Tecnologia, Genoa, Italy; DIFILAB, Department of Physics, University of Genoa, Genoa, Italy
| | - Luca Lanzanò
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, Catania, Italy; Nanoscopy and NIC@IIT, CHT Erzelli, Istituto Italiano di Tecnologia, Genoa, Italy.
| |
Collapse
|
7
|
Tan Y, Wang X, Song H, Zhang Y, Zhang R, Li S, Jin W, Chen S, Fang H, Chen Z, Wang K. A PML/RARα direct target atlas redefines transcriptional deregulation in acute promyelocytic leukemia. Blood 2021; 137:1503-1516. [PMID: 32854112 PMCID: PMC7976511 DOI: 10.1182/blood.2020005698] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022] Open
Abstract
Transcriptional deregulation initiated by oncogenic fusion proteins plays a vital role in leukemia. The prevailing view is that the oncogenic fusion protein promyelocytic leukemia/retinoic acid receptor-α (PML/RARα), generated by the chromosome translocation t(15;17), functions as a transcriptional repressor in acute promyelocytic leukemia (APL). Here, we provide rich evidence of how PML/RARα drives oncogenesis through both repressive and activating functions, particularly the importance of the newly identified activation role for the leukemogenesis of APL. The activating function of PML/RARα is achieved by recruiting both abundant P300 and HDAC1 and by the formation of super-enhancers. All-trans retinoic acid and arsenic trioxide, 2 widely used drugs in APL therapy, exert synergistic effects on controlling super-enhancer-associated PML/RARα-regulated targets in APL cells. We use a series of in vitro and in vivo experiments to demonstrate that PML/RARα-activated target gene GFI1 is necessary for the maintenance of APL cells and that PML/RARα, likely oligomerized, transactivates GFI1 through chromatin conformation at the super-enhancer region. Finally, we profile GFI1 targets and reveal the interplay between GFI1 and PML/RARα on chromatin in coregulating target genes. Our study provides genomic insight into the dual role of fusion transcription factors in transcriptional deregulation to drive leukemia development, highlighting the importance of globally dissecting regulatory circuits.
Collapse
Affiliation(s)
- Yun Tan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoling Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; and
| | - Huan Song
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rongsheng Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; and
| | - Shufen Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Jin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Saijuan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hai Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kankan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; and
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Banella C, Catalano G, Travaglini S, Divona M, Masciarelli S, Guerrera G, Fazi F, Lo-Coco F, Voso MT, Noguera NI. PML/RARa Interferes with NRF2 Transcriptional Activity Increasing the Sensitivity to Ascorbate of Acute Promyelocytic Leukemia Cells. Cancers (Basel) 2019; 12:cancers12010095. [PMID: 31905996 PMCID: PMC7016898 DOI: 10.3390/cancers12010095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 12/27/2019] [Indexed: 12/30/2022] Open
Abstract
NRF2 (NF-E2 p45-related factor 2) orchestrates cellular adaptive responses to stress. Its quantity and subcellular location is controlled through a complex network and its activity increases during redox perturbation, inflammation, growth factor stimulation, and energy fluxes. Even before all-trans retinoic acid (ATRA) treatment era it was a common experience that acute promyelocytic leukemia (APL) cells are highly sensitive to first line chemotherapy. Since we demonstrated how high doses of ascorbate (ASC) preferentially kill leukemic blast cells from APL patients, we aimed to define the underlying mechanism and found that promyelocytic leukemia/retinoic acid receptor α (PML/RARa) inhibits NRF2 function, impedes its transfer to the nucleus and enhances its degradation in the cytoplasm. Such loss of NRF2 function alters cell metabolism, demarcating APL tissue from both normal promyelocytes and other acute myeloide leukemia (AML) blast cells. Resistance to ATRA/arsenic trioxide (ATO) treatment is rare but grave and the metabolically-oriented treatment with high doses of ASC, which is highly effective on APL cells and harmless on normal hematopoietic stem cells (HSCs), could be of use in preventing clonal evolution and in rescuing APL-resistant patients.
Collapse
Affiliation(s)
- Cristina Banella
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy; (C.B.); (G.C.); (S.T.); (F.L.-C.); (M.T.V.)
- Neuro-Oncohematology Unit, Fondazione Santa Lucia, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.), 00143 Rome, Italy
| | - Gianfranco Catalano
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy; (C.B.); (G.C.); (S.T.); (F.L.-C.); (M.T.V.)
- Neuro-Oncohematology Unit, Fondazione Santa Lucia, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.), 00143 Rome, Italy
| | - Serena Travaglini
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy; (C.B.); (G.C.); (S.T.); (F.L.-C.); (M.T.V.)
| | | | - Silvia Masciarelli
- Istituto di Istologia ed Embriologia, Universita Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Fondazione Policlinico Universitario A. Gemelli, I.R.C.C.S., 00168 Rome, Italy
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy;
| | - Gisella Guerrera
- Neuroimmunology and Flow Cytometry Units, Fondazione Santa Lucia I.R.C.C.S., 00143 Rome, Italy;
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy;
| | - Francesco Lo-Coco
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy; (C.B.); (G.C.); (S.T.); (F.L.-C.); (M.T.V.)
- Neuro-Oncohematology Unit, Fondazione Santa Lucia, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.), 00143 Rome, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy; (C.B.); (G.C.); (S.T.); (F.L.-C.); (M.T.V.)
- Neuro-Oncohematology Unit, Fondazione Santa Lucia, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.), 00143 Rome, Italy
| | - Nelida Ines Noguera
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy; (C.B.); (G.C.); (S.T.); (F.L.-C.); (M.T.V.)
- Neuro-Oncohematology Unit, Fondazione Santa Lucia, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.), 00143 Rome, Italy
- Correspondence: ; Tel.: +39-065-0170-3214; Fax: +39-065-0170-3318
| |
Collapse
|
9
|
Wagner K, Kunz K, Piller T, Tascher G, Hölper S, Stehmeier P, Keiten-Schmitz J, Schick M, Keller U, Müller S. The SUMO Isopeptidase SENP6 Functions as a Rheostat of Chromatin Residency in Genome Maintenance and Chromosome Dynamics. Cell Rep 2019; 29:480-494.e5. [PMID: 31597105 DOI: 10.1016/j.celrep.2019.08.106] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/21/2019] [Accepted: 08/29/2019] [Indexed: 11/20/2022] Open
Abstract
Signaling by the ubiquitin-related SUMO pathway relies on coordinated conjugation and deconjugation events. SUMO-specific deconjugating enzymes counterbalance SUMOylation, but comprehensive insight into their substrate specificity and regulation is missing. By characterizing SENP6, we define an N-terminal multi-SIM domain as a critical determinant in targeting SENP6 to SUMO chains. Proteomic profiling reveals a network of SENP6 functions at the crossroads of chromatin organization and DNA damage response (DDR). SENP6 acts as a SUMO eraser at telomeric and centromeric chromatin domains and determines the SUMOylation status and chromatin association of the cohesin complex. Importantly, SENP6 is part of the hPSO4/PRP19 complex that drives ATR-Chk1 activation. SENP6 deficiency impairs chromatin association of the ATR cofactor ATRIP, thereby compromising the activation of Chk1 signaling in response to aphidicolin-induced replicative stress and sensitizing cells to DNA damage. We propose a general role of SENP6 in orchestrating chromatin dynamics and genome stability networks by balancing chromatin residency of protein complexes.
Collapse
Affiliation(s)
- Kristina Wagner
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Kathrin Kunz
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Tanja Piller
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Georg Tascher
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Soraya Hölper
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Per Stehmeier
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Jan Keiten-Schmitz
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Markus Schick
- Internal Medicine III, School of Medicine, Technische Universität München, Ismaninger Strasse 22, 81675 Munich, Germany; Department of Hematology, Oncology and Tumor Immunology (Campus Benjamin Franklin), Charité Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Ulrich Keller
- Internal Medicine III, School of Medicine, Technische Universität München, Ismaninger Strasse 22, 81675 Munich, Germany; Department of Hematology, Oncology and Tumor Immunology (Campus Benjamin Franklin), Charité Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Stefan Müller
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| |
Collapse
|
10
|
Ni X, Hu G, Cai X. The success and the challenge of all-trans retinoic acid in the treatment of cancer. Crit Rev Food Sci Nutr 2018; 59:S71-S80. [PMID: 30277803 DOI: 10.1080/10408398.2018.1509201] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
All-trans retinoic acid (ATRA), an active metabolite of vitamin A, plays important roles in cell proliferation, cell differentiation, apoptosis, and embryonic development. The effects of ATRA are mediated by nuclear retinoid receptors as well as non-genomic signal pathway, such as MAPK and PKA. The great success of differentiation therapy with ATRA in acute promyelocytic leukemia (APL) not only improved the prognosis of APL but also spurred the studies of ATRA in the treatment of other tumors. Since the genetic and physiopathological simplicity of APL is not common in human malignancies, the combination of ATRA with other agents (chemotherapy, epigenetic modifiers, and arsenic trioxide, etc) had been extensively investigated in a variety of tumors. In this review, we will discuss in details about ATRA and its role in cancer treatment.
Collapse
Affiliation(s)
- Xiaoling Ni
- a Department of General Surgery , Zhongshan Hospital, Shanghai Medical College, Fudan University , Shanghai , China
| | - Guohua Hu
- a Department of General Surgery , Zhongshan Hospital, Shanghai Medical College, Fudan University , Shanghai , China
| | - Xun Cai
- b Shanghai Institute of Hematology and State Key Laboratory of Medical Genomics , Rui-jin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| |
Collapse
|
11
|
Voisset E, Moravcsik E, Stratford EW, Jaye A, Palgrave CJ, Hills RK, Salomoni P, Kogan SC, Solomon E, Grimwade D. Pml nuclear body disruption cooperates in APL pathogenesis and impairs DNA damage repair pathways in mice. Blood 2018; 131:636-648. [PMID: 29191918 PMCID: PMC5805489 DOI: 10.1182/blood-2017-07-794784] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/26/2017] [Indexed: 01/20/2023] Open
Abstract
A hallmark of acute promyelocytic leukemia (APL) is altered nuclear architecture, with disruption of promyelocytic leukemia (PML) nuclear bodies (NBs) mediated by the PML-retinoic acid receptor α (RARα) oncoprotein. To address whether this phenomenon plays a role in disease pathogenesis, we generated a knock-in mouse model with NB disruption mediated by 2 point mutations (C62A/C65A) in the Pml RING domain. Although no leukemias developed in PmlC62A/C65A mice, these transgenic mice also expressing RARα linked to a dimerization domain (p50-RARα model) exhibited a doubling in the rate of leukemia, with a reduced latency period. Additionally, we found that response to targeted therapy with all-trans retinoic acid in vivo was dependent on NB integrity. PML-RARα is recognized to be insufficient for development of APL, requiring acquisition of cooperating mutations. We therefore investigated whether NB disruption might be mutagenic. Compared with wild-type cells, primary PmlC62A/C65A cells exhibited increased sister-chromatid exchange and chromosome abnormalities. Moreover, functional assays showed impaired homologous recombination (HR) and nonhomologous end-joining (NHEJ) repair pathways, with defective localization of Brca1 and Rad51 to sites of DNA damage. These data directly demonstrate that Pml NBs are critical for DNA damage responses, and suggest that Pml NB disruption is a central contributor to APL pathogenesis.
Collapse
MESH Headings
- Animals
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- DNA Damage/genetics
- DNA End-Joining Repair/genetics
- DNA Repair/genetics
- Intranuclear Inclusion Bodies/genetics
- Intranuclear Inclusion Bodies/metabolism
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Mice
- Mice, Transgenic
- Mutagenesis/genetics
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Promyelocytic Leukemia Protein/genetics
- Promyelocytic Leukemia Protein/physiology
- Signal Transduction/genetics
Collapse
Affiliation(s)
- Edwige Voisset
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Eva Moravcsik
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Eva W Stratford
- Department of Tumor Biology, The Norwegian Radium Hospital/Oslo University Hospital, Oslo, Norway
| | - Amie Jaye
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | | | - Robert K Hills
- Centre for Trials Research, College of Biomedical & Life Sciences, Cardiff University, Cardiff, United Kingdom
| | | | - Scott C Kogan
- Helen Diller Family Comprehensive Cancer Center and
- Department of Laboratory Medicine, University of California, San Francisco, CA
| | - Ellen Solomon
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - David Grimwade
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| |
Collapse
|
12
|
Li Y, Wang H, Wang XJ, Tang X. The short isoform of
PML
‐
RAR
α activates the
NRF
2/
HO
‐1 pathway through a direct interaction with
NRF
2. FEBS Lett 2017; 591:2859-2868. [DOI: 10.1002/1873-3468.12779] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/27/2017] [Accepted: 07/30/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Yulong Li
- Department of Biochemistry Zhejiang University School of Medicine Hangzhou China
| | - Hongyan Wang
- Department of Biochemistry Zhejiang University School of Medicine Hangzhou China
- Department of Pharmacology Zhejiang University School of Medicine Hangzhou China
| | - Xiu Jun Wang
- Department of Pharmacology Zhejiang University School of Medicine Hangzhou China
| | - Xiuwen Tang
- Department of Biochemistry Zhejiang University School of Medicine Hangzhou China
| |
Collapse
|
13
|
Wang FF, Liu MZ, Sui Y, Cao Q, Yan B, Jin ML, Mo X. Deficiency of SUMO-specific protease 1 induces arsenic trioxide-mediated apoptosis by regulating XBP1 activity in human acute promyelocytic leukemia. Oncol Lett 2016; 12:3755-3762. [PMID: 27895727 PMCID: PMC5104160 DOI: 10.3892/ol.2016.5162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/22/2016] [Indexed: 01/08/2023] Open
Abstract
Small ubiquitin-like modifier (SUMO)/sentrin-specific protease 1 (SENP1), a member of the SENP family, is highly expressed in several neoplastic tissues. However, the effect of SENP1 in acute promyelocytic leukemia (APL) has not been elucidated. In the present study, it was observed that SENP1 deficiency had no effect on the spontaneous apoptosis or differentiation of NB4 cells. Arsenic trioxide (As2O3) could induce the upregulation of endoplasmic reticulum (ER) stress, resulting in the apoptosis of NB4 cells. Additionally, knockdown of SENP1 significantly increased As2O3-induced apoptosis in NB4 cells transfected with small interfering RNA targeting SENP1. SENP1 deficiency also increased the accumulation of SUMOylated X-box binding protein 1 (XBP1), which was accompanied by the downregulation of the messenger RNA expression and transcriptional activity of the XBP1 target genes endoplasmic reticulum-localized DnaJ 4 and Sec61a, which were involved in ER stress and closely linked to the apoptosis of NB4 cells. Taken together, these results revealed that the specific de-SUMOylation activity of SENP1 for XBP1 was involved in the ER stress-mediated apoptosis caused by As2O3 treatment in NB4 cells, thus providing insight into potential therapeutic targets for APL treatment via manipulating XBP1 signaling during ER stress by targeting SENP1.
Collapse
Affiliation(s)
- Fei-Fei Wang
- Institute for Pediatric Translational Medicine, Shanghai Children's Medical Center of Shanghai Jiao Tong University, Shanghai 200127, P.R. China; Shanghai YiBeiRui Biotechnology Co., Ltd., Shanghai 201318, P.R. China
| | - Ming-Zhu Liu
- Shanghai YiBeiRui Biotechnology Co., Ltd., Shanghai 201318, P.R. China
| | - Yi Sui
- Shanghai YiBeiRui Biotechnology Co., Ltd., Shanghai 201318, P.R. China
| | - Qing Cao
- Department of Infectious Diseases, Shanghai Children's Medical Center of Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Bo Yan
- Shanghai YiBeiRui Biotechnology Co., Ltd., Shanghai 201318, P.R. China
| | - Mei-Ling Jin
- Shanghai YiBeiRui Biotechnology Co., Ltd., Shanghai 201318, P.R. China
| | - Xi Mo
- Institute for Pediatric Translational Medicine, Shanghai Children's Medical Center of Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| |
Collapse
|
14
|
Weng XQ, Sheng Y, Ge DZ, Wu J, Shi L, Cai X. RAF-1/MEK/ERK pathway regulates ATRA-induced differentiation in acute promyelocytic leukemia cells through C/EBPβ, C/EBPε and PU.1. Leuk Res 2016; 45:68-74. [DOI: 10.1016/j.leukres.2016.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 03/31/2016] [Indexed: 11/26/2022]
|
15
|
Hirano S, Tadano M, Kobayashi Y, Udagawa O, Kato A. Solubility shift and SUMOylaltion of promyelocytic leukemia (PML) protein in response to arsenic(III) and fate of the SUMOylated PML. Toxicol Appl Pharmacol 2015; 287:191-201. [DOI: 10.1016/j.taap.2015.05.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/17/2015] [Accepted: 05/29/2015] [Indexed: 12/16/2022]
|
16
|
PML isoforms IV and V contribute to adenovirus-mediated oncogenic transformation by functionally inhibiting the tumor-suppressor p53. Oncogene 2015; 35:69-82. [PMID: 25772236 DOI: 10.1038/onc.2015.63] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 12/16/2014] [Accepted: 01/30/2015] [Indexed: 11/09/2022]
Abstract
Although modulation of the cellular tumor-suppressor p53 is considered to have the major role in E1A/E1B-55K-mediated tumorigenesis, other promyelocytic leukemia nuclear body (PML-NB)/PML oncogenic domain (POD)-associated factors including SUMO, Mre11, Daxx, as well as the integrity of these nuclear bodies contribute to the transformation process. However, the biochemical consequences and oncogenic alterations of PML-associated E1B-55K by SUMO-dependent PML-IV and PML-V interaction have so far remained elusive. We performed mutational analysis to define a PML interaction motif within the E1B-55K polypeptide. Our results showed that E1B-55K/PML binding is not required for p53, Mre11 and Daxx interaction. We also observed that E1B-55K lacking subnuclear PML localization because of either PML-IV or PML-V-binding deficiency was no longer capable of mediating E1B-55K-dependent SUMOylation of p53, inhibition of p53-mediated transactivation or efficiently transforming primary rodent cells. These results together with the observation that E1B-55K-dependent SUMOylation of p53 is required for efficient cell transformation, provides evidence for the idea that the SUMO ligase activity of the E1B-55K viral oncoprotein is intimately linked to its growth-promoting oncogenic activities.
Collapse
|
17
|
di Masi A, Leboffe L, De Marinis E, Pagano F, Cicconi L, Rochette-Egly C, Lo-Coco F, Ascenzi P, Nervi C. Retinoic acid receptors: from molecular mechanisms to cancer therapy. Mol Aspects Med 2015; 41:1-115. [PMID: 25543955 DOI: 10.1016/j.mam.2014.12.003] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/15/2014] [Indexed: 02/07/2023]
Abstract
Retinoic acid (RA), the major bioactive metabolite of retinol or vitamin A, induces a spectrum of pleiotropic effects in cell growth and differentiation that are relevant for embryonic development and adult physiology. The RA activity is mediated primarily by members of the retinoic acid receptor (RAR) subfamily, namely RARα, RARβ and RARγ, which belong to the nuclear receptor (NR) superfamily of transcription factors. RARs form heterodimers with members of the retinoid X receptor (RXR) subfamily and act as ligand-regulated transcription factors through binding specific RA response elements (RAREs) located in target genes promoters. RARs also have non-genomic effects and activate kinase signaling pathways, which fine-tune the transcription of the RA target genes. The disruption of RA signaling pathways is thought to underlie the etiology of a number of hematological and non-hematological malignancies, including leukemias, skin cancer, head/neck cancer, lung cancer, breast cancer, ovarian cancer, prostate cancer, renal cell carcinoma, pancreatic cancer, liver cancer, glioblastoma and neuroblastoma. Of note, RA and its derivatives (retinoids) are employed as potential chemotherapeutic or chemopreventive agents because of their differentiation, anti-proliferative, pro-apoptotic, and anti-oxidant effects. In humans, retinoids reverse premalignant epithelial lesions, induce the differentiation of myeloid normal and leukemic cells, and prevent lung, liver, and breast cancer. Here, we provide an overview of the biochemical and molecular mechanisms that regulate the RA and retinoid signaling pathways. Moreover, mechanisms through which deregulation of RA signaling pathways ultimately impact on cancer are examined. Finally, the therapeutic effects of retinoids are reported.
Collapse
Affiliation(s)
- Alessandra di Masi
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy
| | - Loris Leboffe
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy
| | - Elisabetta De Marinis
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100
| | - Francesca Pagano
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100
| | - Laura Cicconi
- Department of Biomedicine and Prevention, University of Roma "Tor Vergata", Via Montpellier 1, Roma I-00133, Italy; Laboratory of Neuro-Oncohematology, Santa Lucia Foundation, Via Ardeatina, 306, Roma I-00142, Italy
| | - Cécile Rochette-Egly
- Department of Functional Genomics and Cancer, IGBMC, CNRS UMR 7104 - Inserm U 964, University of Strasbourg, 1 rue Laurent Fries, BP10142, Illkirch Cedex F-67404, France.
| | - Francesco Lo-Coco
- Department of Biomedicine and Prevention, University of Roma "Tor Vergata", Via Montpellier 1, Roma I-00133, Italy; Laboratory of Neuro-Oncohematology, Santa Lucia Foundation, Via Ardeatina, 306, Roma I-00142, Italy.
| | - Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Via della Vasca Navale 79, Roma I-00146, Italy.
| | - Clara Nervi
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100.
| |
Collapse
|
18
|
Jin G, Gao Y, Lin HK. Cytoplasmic PML: from molecular regulation to biological functions. J Cell Biochem 2014; 115:812-8. [PMID: 24288198 DOI: 10.1002/jcb.24727] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/19/2013] [Indexed: 01/18/2023]
Abstract
The tumor suppressor promyelocytic leukemia protein (PML) is predominantly localized in the nucleus, where it is essential for the formation and stabilization of the PML nuclear bodies (PML-NBs). PML-NBs are involved in the regulation of numerous cellular functions, such as tumorigenesis, DNA damage and antiviral responses. Despite its nuclear localization, a small portion of PML has been found in the cytoplasm. A number of studies recently demonstrated that the cytoplasmic PML (cPML) has diverse functions in many cellular processes including tumorigenesis, metabolism, antiviral responses, cell cycle regulation, and laminopothies. In this prospective, we will summarize the current viewpoints on the regulation and biological significance of cPML and discuss the important questions that still need to be further answered.
Collapse
Affiliation(s)
- Guoxiang Jin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030
| | | | | |
Collapse
|
19
|
Berscheminski J, Wimmer P, Brun J, Ip WH, Groitl P, Horlacher T, Jaffray E, Hay RT, Dobner T, Schreiner S. Sp100 isoform-specific regulation of human adenovirus 5 gene expression. J Virol 2014; 88:6076-92. [PMID: 24623443 PMCID: PMC4093896 DOI: 10.1128/jvi.00469-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/10/2014] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED Promyelocytic leukemia nuclear bodies (PML-NBs) are nuclear structures that accumulate intrinsic host factors to restrict viral infections. To ensure viral replication, these must be limited by expression of viral early regulatory proteins that functionally inhibit PML-NB-associated antiviral effects. To benefit from the activating capabilities of Sp100A and simultaneously limit repression by Sp100B, -C, and -HMG, adenoviruses (Ads) employ several features to selectively and individually target these isoforms. Ads induce relocalization of Sp100B, -C, and -HMG from PML-NBs prior to association with viral replication centers. In contrast, Sp100A is kept at the PML tracks that surround the newly formed viral replication centers as designated sites of active transcription. We concluded that the host restriction factors Sp100B, -C, and -HMG are potentially inactivated by active displacement from these sites, whereas Sp100A is retained to amplify Ad gene expression. Ad-dependent loss of Sp100 SUMOylation is another crucial part of the virus repertoire to counteract intrinsic immunity by circumventing Sp100 association with HP1, therefore limiting chromatin condensation. We provide evidence that Ad selectively counteracts antiviral responses and, at the same time, benefits from PML-NB-associated components which support viral gene expression by actively recruiting them to PML track-like structures. Our findings provide insights into novel strategies for manipulating transcriptional regulation to either inactivate or amplify viral gene expression. IMPORTANCE We describe an adenoviral evasion strategy that involves isoform-specific and active manipulation of the PML-associated restriction factor Sp100. Recently, we reported that the adenoviral transactivator E1A targets PML-II to efficiently activate viral transcription. In contrast, the PML-associated proteins Daxx and ATRX are inhibited by early viral factors. We show that this concept is more intricate and significant than originally believed, since adenoviruses apparently take advantage of specific PML-NB-associated proteins and simultaneously inhibit antiviral measures to maintain the viral infectious program. Specifically, we observed Ad-induced relocalization of the Sp100 isoforms B, C, and HMG from PML-NBs juxtaposed with viral replication centers. In contrast, Sp100A is retained at Ad-induced PML tracks that surround the newly formed viral replication centers, acting as designated sites of active transcription. The host restriction factors Sp100B, -C, and -HMG are potentially inactivated by active displacement from these sites, whereas Sp100A is retained to amplify Ad gene expression.
Collapse
Affiliation(s)
- Julia Berscheminski
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Peter Wimmer
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Juliane Brun
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Wing Hang Ip
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Peter Groitl
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Tim Horlacher
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Ellis Jaffray
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ron T. Hay
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Thomas Dobner
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Sabrina Schreiner
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| |
Collapse
|
20
|
Sahin U, Ferhi O, Jeanne M, Benhenda S, Berthier C, Jollivet F, Niwa-Kawakita M, Faklaris O, Setterblad N, de Thé H, Lallemand-Breitenbach V. Oxidative stress-induced assembly of PML nuclear bodies controls sumoylation of partner proteins. ACTA ACUST UNITED AC 2014; 204:931-45. [PMID: 24637324 PMCID: PMC3998805 DOI: 10.1083/jcb.201305148] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PML multimerization into nuclear bodies following its oxidation promotes sumoylation and sequestration of partner proteins in these structures. The promyelocytic leukemia (PML) protein organizes PML nuclear bodies (NBs), which are stress-responsive domains where many partner proteins accumulate. Here, we clarify the basis for NB formation and identify stress-induced partner sumoylation as the primary NB function. NB nucleation does not rely primarily on intermolecular interactions between the PML SUMO-interacting motif (SIM) and SUMO, but instead results from oxidation-mediated PML multimerization. Oxidized PML spherical meshes recruit UBC9, which enhances PML sumoylation, allow partner recruitment through SIM interactions, and ultimately enhance partner sumoylation. Intermolecular SUMO–SIM interactions then enforce partner sequestration within the NB inner core. Accordingly, oxidative stress enhances NB formation and global sumoylation in vivo. Some NB-associated sumoylated partners also become polyubiquitinated by RNF4, precipitating their proteasomal degradation. As several partners are protein-modifying enzymes, NBs could act as sensors that facilitate and confer oxidative stress sensitivity not only to sumoylation but also to other post-translational modifications, thereby explaining alterations of stress response upon PML or NB loss.
Collapse
Affiliation(s)
- Umut Sahin
- Université Paris Diderot, Sorbonne Paris Cité, Hôpital St. Louis 1, 75475 Paris Cedex 10, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
De Braekeleer E, Douet-Guilbert N, De Braekeleer M. RARA fusion genes in acute promyelocytic leukemia: a review. Expert Rev Hematol 2014; 7:347-57. [PMID: 24720386 DOI: 10.1586/17474086.2014.903794] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The t(15;17)(q24;q21), generating a PML-RARA fusion gene, is the hallmark of acute promyelocytic leukemia (APL). At present, eight other genes fusing with RARA have been identified. The resulting fusion proteins retain domains of the RARA protein allowing binding to retinoic acid response elements (RARE) and dimerization with the retinoid X receptor protein (RXRA). They participate in protein-protein interactions, associating with RXRA to form hetero-oligomeric complexes that can bind to RARE. They have a dominant-negative effect on wild-type RARA/RXRA transcriptional activity. Moreover, RARA fusion proteins can homodimerize, conferring the ability to regulate an expanded repertoire of genes normally not affected by RARA. RARA fusion proteins behave as potent transcriptional repressors of retinoic acid signalling, inducing a differentiation blockage at the promyelocyte stage which can be overcome with therapeutic doses of ATRA or arsenic trioxide. However, resistance to these two drugs is a major problem, which necessitates development of new therapies.
Collapse
Affiliation(s)
- Etienne De Braekeleer
- Laboratoire d'Histologie, Embryologie et Cytogénétique, Faculté de Médecine et des Sciences de la Santé, Université de Brest, Brest, France
| | | | | |
Collapse
|
22
|
Shima Y, Honma Y, Kitabayashi I. PML-RARα and its phosphorylation regulate pml oligomerization and HIPK2 stability. Cancer Res 2013; 73:4278-88. [PMID: 23722549 DOI: 10.1158/0008-5472.can-12-3814] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The PML gene is frequently fused to the retinoic acid receptor α (RARα) gene in acute promyelocytic leukemia (APL), generating a characteristic PML-RARα oncogenic chimera. PML-RARα disrupts the discrete nuclear speckles termed nuclear bodies, which are formed in PML, suggesting that nuclear body disruption is involved in leukemogenesis. Nuclear body formation that relies upon PML oligomerization and its stabilization of the hypoxia-inducible protein kinase (HIPK)-2 is disrupted by expression of the PML-RARα chimera. Here, we report that disruption of nuclear bodies is also mediated by PML-RARα inhibition of PML oligomerization. PKA-mediated phosphorylation of PML-RARα blocked its ability to inhibit PML oligomerization and destabilize HIPK2. Our results establish that both PML oligomerization and HIPK2 stabilization at nuclear bodies are important for APL cell differentiation, offering insights into the basis for the most common prodifferentiation therapies of APL used clinically.
Collapse
Affiliation(s)
- Yutaka Shima
- Division of Hematological Malignancy, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | | | | |
Collapse
|
23
|
Berscheminski J, Groitl P, Dobner T, Wimmer P, Schreiner S. The adenoviral oncogene E1A-13S interacts with a specific isoform of the tumor suppressor PML to enhance viral transcription. J Virol 2013; 87:965-77. [PMID: 23135708 PMCID: PMC3554061 DOI: 10.1128/jvi.02023-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 10/20/2012] [Indexed: 12/21/2022] Open
Abstract
PML nuclear bodies (PML NBs), also called ND10, are matrix-bound nuclear structures that have been implicated in a variety of functions, including DNA repair, transcriptional regulation, protein degradation, and tumor suppression. These domains are also known for their potential to mediate an intracellular defense mechanism against many virus types. This is likely why they are targeted and subsequently manipulated by numerous viral proteins. Paradoxically, the genomes of various DNA viruses become associated with PML NBs, and initial sites of viral transcription/replication centers are often juxtaposed to these domains. The question is why viruses start their transcription and replication next to their supposed antagonists. Here, we report that PML NBs are targeted by the adenoviral (Ad) transactivator protein E1A-13S. Alternatively spliced E1A isoforms (E1A-12S and E1A-13S) are the first proteins expressed upon Ad infection. E1A-13S is essential for activating viral transcription in the early phase of infection. Coimmunoprecipitation assays showed that E1A-13S preferentially interacts with only one (PML-II) of at least six nuclear human PML isoforms. Deletion mapping located the interaction site within E1A conserved region 3 (CR3), which was previously described as the transcription factor binding region of E1A-13S. Indeed, cooperation with PML-II enhanced E1A-mediated transcriptional activation, while deleting the SUMO-interacting motif (SIM) of PML proved even more effective. Our results suggest that in contrast to PML NB-associated antiviral defense, PML-II may help transactivate viral gene expression and therefore play a novel role in activating Ad transcription during the early viral life cycle.
Collapse
Affiliation(s)
- Julia Berscheminski
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | | | | | | | | |
Collapse
|
24
|
Miki T, Xu Z, Chen-Goodspeed M, Liu M, Van Oort-Jansen A, Rea MA, Zhao Z, Lee CC, Chang KS. PML regulates PER2 nuclear localization and circadian function. EMBO J 2012; 31:1427-39. [PMID: 22274616 DOI: 10.1038/emboj.2012.1] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 12/22/2011] [Indexed: 01/06/2023] Open
Abstract
Studies have suggested that the clock regulator PER2 is a tumour suppressor. A cancer network involving PER2 raises the possibility that some tumour suppressors are directly involved in the mammalian clock. Here, we show that the tumour suppressor promyelocytic leukaemia (PML) protein is a circadian clock regulator and can physically interact with PER2. In the suprachiasmatic nucleus (SCN), PML expression and PML-PER2 interaction are under clock control. Loss of PML disrupts and dampens the expression of clock regulators Per2, Per1, Cry1, Bmal1 and Npas2. In the presence of PML and PER2, BMAL1/CLOCK-mediated transcription is enhanced. In Pml(-/-) SCN and mouse embryo fibroblast cells, the cellular distribution of PER2 is primarily perinuclear/cytoplasmic. PML is acetylated at K487 and its deacetylation by SIRT1 promotes PML control of PER2 nuclear localization. The circadian period of Pml(-/-) mice displays reduced precision and stability consistent with PML having a role in the mammalian clock mechanism.
Collapse
Affiliation(s)
- Takao Miki
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center-Houston, Houston, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Batty EC, Jensen K, Freemont PS. PML nuclear bodies and other TRIM-defined subcellular compartments. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 770:39-58. [PMID: 23630999 DOI: 10.1007/978-1-4614-5398-7_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Tripartite motif (TRIM) proteins are defined by their possession of a RING, B-box and predicted coiled coil (RBCC) domain. The coiled-coil region facilitates the oligomerisation of TRIMs and contributes to the formation of high molecular weight complexes that show interesting subcellular compartmentalisations and structures. TRIM protein compartments include both nuclear and cytoplasmic filaments and aggregates (bodies), as well as diffuse subcellular distributions. TRIM 19, otherwise known as promyelocytic leukaemia (PML) protein forms nuclear aggregates termed PML nuclear bodies (PML NBs), at which a number of functionally diverse proteins transiently or covalently associate. PML NBs are therefore implicated in a wide variety of cellular functions such as transcriptional regulation, viral response, apoptosis and nuclear protein storage.
Collapse
Affiliation(s)
- Elizabeth C Batty
- Macromolecular Structure and Function Group, Division of Molecular Biosciences, Imperial College London, South Kensington, London, UK
| | | | | |
Collapse
|
26
|
Soye KJ, Trottier C, Richardson CD, Ward BJ, Miller WH. RIG-I is required for the inhibition of measles virus by retinoids. PLoS One 2011; 6:e22323. [PMID: 21811588 PMCID: PMC3139622 DOI: 10.1371/journal.pone.0022323] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 06/24/2011] [Indexed: 12/17/2022] Open
Abstract
Vitamin A can significantly decrease measles-associated morbidity and mortality. Vitamin A can inhibit the replication of measles virus (MeV) in vitro through an RARα- and type I interferon (IFN)-dependent mechanism. Retinoid-induced gene I (RIG-I) expression is induced by retinoids, activated by MeV RNA and is important for IFN signaling. We hypothesized that RIG-I is central to retinoid-mediated inhibition of MeV in vitro. We demonstrate that RIG-I expression is increased in cells treated with retinoids and infected with MeV. The central role of RIG-I in the retinoid-anti-MeV effect was demonstrated in the Huh-7/7.5 model; the latter cells having non-functional RIG-I. RAR-dependent retinoid signaling was required for the induction of RIG-I by retinoids and MeV. Retinoid signaling was also found to act in combination with IFN to induce high levels of RIG-I expression. RIG-I promoter activation required both retinoids and MeV, as indicated by markers of active chromatin. IRF-1 is known to be regulated by retinoids and MeV, but we found recruitment of IRF-1 to the RIG-I promoter by retinoids alone. Using luciferase expression constructs, we further demonstrated that the IRF-1 response element of RIG-I was required for RIG-I activation by retinoids or IFN. These results reveal that retinoid treatment and MeV infection induces significant RIG-I. RIG-I is required for the retinoid-MeV antiviral response. The induction is dependent on IFN, retinoids and IRF-1.
Collapse
Affiliation(s)
- Kaitlin J. Soye
- McGill University Health Center Research Institute, Department of Infectious Diseases, McGill University, Montreal, Quebec, Canada
- Segal Cancer Centre, Lady Davis Institute for Medical Research, SMBD Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Claire Trottier
- McGill University Health Center Research Institute, Department of Infectious Diseases, McGill University, Montreal, Quebec, Canada
- Segal Cancer Centre, Lady Davis Institute for Medical Research, SMBD Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Chris D. Richardson
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia
| | - Brian J. Ward
- McGill University Health Center Research Institute, Department of Infectious Diseases, McGill University, Montreal, Quebec, Canada
| | - Wilson H. Miller
- Segal Cancer Centre, Lady Davis Institute for Medical Research, SMBD Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
27
|
Cuchet-Lourenço D, Boutell C, Lukashchuk V, Grant K, Sykes A, Murray J, Orr A, Everett RD. SUMO pathway dependent recruitment of cellular repressors to herpes simplex virus type 1 genomes. PLoS Pathog 2011; 7:e1002123. [PMID: 21779164 PMCID: PMC3136452 DOI: 10.1371/journal.ppat.1002123] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 05/03/2011] [Indexed: 12/12/2022] Open
Abstract
Components of promyelocytic leukaemia (PML) nuclear bodies (ND10) are recruited to sites associated with herpes simplex virus type 1 (HSV-1) genomes soon after they enter the nucleus. This cellular response is linked to intrinsic antiviral resistance and is counteracted by viral regulatory protein ICP0. We report that the SUMO interaction motifs of PML, Sp100 and hDaxx are required for recruitment of these repressive proteins to HSV-1 induced foci, which also contain SUMO conjugates and PIAS2β, a SUMO E3 ligase. SUMO modification of PML and elements of its tripartite motif (TRIM) are also required for recruitment in cells lacking endogenous PML. Mutants of PML isoform I and hDaxx that are not recruited to virus induced foci are unable to reproduce the repression of ICP0 null mutant HSV-1 infection mediated by their wild type counterparts. We conclude that recruitment of ND10 components to sites associated with HSV-1 genomes reflects a cellular defence against invading pathogen DNA that is regulated through the SUMO modification pathway.
Collapse
Affiliation(s)
| | - Chris Boutell
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Vera Lukashchuk
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Kyle Grant
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Amanda Sykes
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Jill Murray
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Anne Orr
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Roger D. Everett
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| |
Collapse
|
28
|
Reichelt M, Wang L, Sommer M, Perrino J, Nour AM, Sen N, Baiker A, Zerboni L, Arvin AM. Entrapment of viral capsids in nuclear PML cages is an intrinsic antiviral host defense against varicella-zoster virus. PLoS Pathog 2011; 7:e1001266. [PMID: 21304940 PMCID: PMC3033373 DOI: 10.1371/journal.ppat.1001266] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 12/30/2010] [Indexed: 12/24/2022] Open
Abstract
The herpesviruses, like most other DNA viruses, replicate in the host cell nucleus. Subnuclear domains known as promyelocytic leukemia protein nuclear bodies (PML-NBs), or ND10 bodies, have been implicated in restricting early herpesviral gene expression. These viruses have evolved countermeasures to disperse PML-NBs, as shown in cells infected in vitro, but information about the fate of PML-NBs and their functions in herpesvirus infected cells in vivo is limited. Varicella-zoster virus (VZV) is an alphaherpesvirus with tropism for skin, lymphocytes and sensory ganglia, where it establishes latency. Here, we identify large PML-NBs that sequester newly assembled nucleocapsids (NC) in neurons and satellite cells of human dorsal root ganglia (DRG) and skin cells infected with VZV in vivo. Quantitative immuno-electron microscopy revealed that these distinctive nuclear bodies consisted of PML fibers forming spherical cages that enclosed mature and immature VZV NCs. Of six PML isoforms, only PML IV promoted the sequestration of NCs. PML IV significantly inhibited viral infection and interacted with the ORF23 capsid surface protein, which was identified as a target for PML-mediated NC sequestration. The unique PML IV C-terminal domain was required for both capsid entrapment and antiviral activity. Similar large PML-NBs, termed clastosomes, sequester aberrant polyglutamine (polyQ) proteins, such as Huntingtin (Htt), in several neurodegenerative disorders. We found that PML IV cages co-sequester HttQ72 and ORF23 protein in VZV infected cells. Our data show that PML cages contribute to the intrinsic antiviral defense by sensing and entrapping VZV nucleocapsids, thereby preventing their nuclear egress and inhibiting formation of infectious virus particles. The efficient sequestration of virion capsids in PML cages appears to be the outcome of a basic cytoprotective function of this distinctive category of PML-NBs in sensing and safely containing nuclear aggregates of aberrant proteins.
Collapse
Affiliation(s)
- Mike Reichelt
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sung KS, Lee YA, Kim ET, Lee SR, Ahn JH, Choi CY. Role of the SUMO-interacting motif in HIPK2 targeting to the PML nuclear bodies and regulation of p53. Exp Cell Res 2010; 317:1060-70. [PMID: 21192925 DOI: 10.1016/j.yexcr.2010.12.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 12/01/2010] [Accepted: 12/15/2010] [Indexed: 11/17/2022]
Abstract
Homeodomain-interacting protein kinase 2 (HIPK2) is a key regulator of various transcription factors including p53 and CtBP in the DNA damage signaling pathway. PML-nuclear body (NB) is required for HIPK2-mediated p53 phosphorylation at Ser46 and induction of apoptosis. Although PML-NB targeting of HIPK2 has been shown, much is not clear about the molecular mechanism of HIPK2 recruitment to PML-NBs. Here we show that HIPK2 colocalizes specifically with PML-I and PML-IV. Mutational analysis showed that HIPK2 recruitment to PML-IV-NBs is mediated by the SUMO-interaction motifs (SIMs) of both PML-IV and HIPK2. Wild-type HIPK2 associated with SUMO-conjugated PML-IV at a higher affinity than with un-conjugated PML-IV, while the association of a HIPK2 SIM mutant with SUMO-modified PML-IV was impaired. In colony formation assays, HIPK2 strongly suppressed cell proliferation, but HIPK2 SIM mutants did not. In addition, activation and phosphorylation of p53 at the Ser46 residue were impaired by HIPK2 SIM mutants. These results suggest that SIM-mediated HIPK2 targeting to PML-NBs is crucial for HIPK2-mediated p53 activation and induction of apoptosis.
Collapse
Affiliation(s)
- Ki Sa Sung
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | | | | | | | | | | |
Collapse
|
30
|
SUMO modification of E1B-55K oncoprotein regulates isoform-specific binding to the tumour suppressor protein PML. Oncogene 2010; 29:5511-22. [PMID: 20639899 DOI: 10.1038/onc.2010.284] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The E1B-55K product from human adenovirus is a substrate of the small ubiquitin-related modifier (SUMO)-conjugation system. SUMOylation of E1B-55K is required to transform primary mammalian cells in cooperation with adenovirus E1A and to repress p53 tumour suppressor functions. The biochemical consequences of SUMO1 conjugation of 55K have so far remained elusive. Here, we report that E1B-55K physically interacts with different isoforms of the tumour suppressor protein promyelocytic leukaemia (PML). We show that E1B-55K binds to PML isoforms IV and V in a SUMO1-dependent and -independent manner. Interaction with PML-IV promotes the localization of 55K to PML-containing subnuclear structures (PML-NBs). In virus-infected cells, this process is negatively regulated by other viral proteins, indicating that binding to PML is controlled through reversible SUMOylation in a timely coordinated manner. These results together with earlier work are consistent with the idea that SUMOylation regulates targeting of E1B-55K to PML-NBs, known to control transcriptional regulation, tumour suppression, DNA repair and apoptosis. Furthermore, they suggest that SUMO1-dependent modulation of p53-dependent growth suppression through E1B-55K PML-IV interaction has a key role in adenovirus-mediated cell transformation.
Collapse
|
31
|
Theodosiou M, Laudet V, Schubert M. From carrot to clinic: an overview of the retinoic acid signaling pathway. Cell Mol Life Sci 2010; 67:1423-45. [PMID: 20140749 PMCID: PMC11115864 DOI: 10.1007/s00018-010-0268-z] [Citation(s) in RCA: 229] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 01/06/2010] [Accepted: 01/11/2010] [Indexed: 01/23/2023]
Abstract
Vitamin A is essential for the formation and maintenance of many body tissues. It is also important for embryonic growth and development and can act as a teratogen at critical periods of development. Retinoic acid (RA) is the biologically active form of vitamin A and its signaling is mediated by the RA and retinoid X receptors. In addition to its role as an important molecule during development, RA has also been implicated in clinical applications, both as a potential anti-tumor agent as well as for the treatment of skin diseases. This review presents an overview of how dietary retinoids are converted to RA, hence presenting the major players in RA metabolism and signaling, and highlights examples of treatment applications of retinoids. Moreover, we discuss the origin and diversification of the retinoid pathway, which are important factors for understanding the evolution of ligand-specificity among retinoid receptors.
Collapse
Affiliation(s)
- Maria Theodosiou
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon (Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon), 46 allée d'Italie, 69364 Lyon Cedex 07, France.
| | | | | |
Collapse
|
32
|
Lang M, Jegou T, Chung I, Richter K, Münch S, Udvarhelyi A, Cremer C, Hemmerich P, Engelhardt J, Hell SW, Rippe K. Three-dimensional organization of promyelocytic leukemia nuclear bodies. J Cell Sci 2010; 123:392-400. [PMID: 20130140 DOI: 10.1242/jcs.053496] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Promyelocytic leukemia nuclear bodies (PML-NBs) are mobile subnuclear organelles formed by PML and Sp100 protein. They have been reported to have a role in transcription, DNA replication and repair, telomere lengthening, cell cycle control and tumor suppression. We have conducted high-resolution 4Pi fluorescence laser-scanning microscopy studies complemented with correlative electron microscopy and investigations of the accessibility of the PML-NB subcompartment. During interphase PML-NBs adopt a spherical organization characterized by the assembly of PML and Sp100 proteins into patches within a 50- to 100-nm-thick shell. This spherical shell of PML and Sp100 imposes little constraint to the exchange of components between the PML-NB interior and the nucleoplasm. Post-translational SUMO modifications, telomere repeats and heterochromatin protein 1 were found to localize in characteristic patterns with respect to PML and Sp100. From our findings, we derived a model that explains how the three-dimensional organization of PML-NBs serves to concentrate different biological activities while allowing for an efficient exchange of components.
Collapse
Affiliation(s)
- Marion Lang
- Division of High Resolution Optical Microscopy, Deutsches Krebsforschungszentrum, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Luther G, Rames R, Wagner ER, Zhu G, Luo Q, Bi Y, Kim SH, Gao JL, Huang E, Yang K, Wang L, Liu X, Li M, Hu N, Su Y, Luo X, Chen L, Luo J, Haydon RC, Luu HH, Zhou L, He TC. Molecular basis of differentiation therapy for soft tissue sarcomas. TRENDS IN CANCER RESEARCH 2010; 6:69-90. [PMID: 26912947 PMCID: PMC4762605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Stem cells are undifferentiated precursor cells with the capacity for proliferation or terminal differentiation. Progression down the differentiation cascade results in a loss of proliferative potential in exchange for the differentiated phenotype. This balance is tightly regulated in the physiologic state. Recent studies, however, have demonstrated that during tumorigenesis, disruptions preventing terminal differentiation allow cancer cells to maintain a proliferative, precursor cell phenotype. Current therapies (i.e., chemotherapy and radiation therapy) target the actively proliferating cells in tumor masses, which in many cases inevitably induce therapy-resistant cancer cells. It is conceivable that promising therapy regimens can be developed by treating human cancers by inducing terminal differentiation, thereby restoring the interrupted pathway and shifting the balance from proliferation to differentiation. For example, osteosarcoma (OS) is a primary bone cancer caused by differentiation defects in mesenchymal stem cells (MSCs) for which several differentiation therapies have shown great promise. In this review, we discuss the various differentiation therapies in the treatment of human sarcomas with a focus on OS. Such therapies hold great promise as they not only inhibit tumorigenesis, but also avoid the adverse effects associated with conventional chemotherapy regimens. Furthermore, it is conceivable that a combination of conventional therapies with differentiation therapy should significantly improve anticancer efficacy and reduce drug-resistance in the clinical management of human cancers, including sarcomas.
Collapse
Affiliation(s)
- Gaurav Luther
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Richard Rames
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Eric R. Wagner
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Gaohui Zhu
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Stem Cell Biology and Therapy Laboratory, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Qing Luo
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Stem Cell Biology and Therapy Laboratory, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Yang Bi
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Stem Cell Biology and Therapy Laboratory, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Stephanie H. Kim
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jian-Li Gao
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Key Laboratory of Diagnostic Medicine designated by Chinese Ministry of Education and Affiliated Hospitals, Chongqing Medical University, Chongqing 400016, China
| | - Enyi Huang
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Ke Yang
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Cell Biology, The Third Military Medical University, Chongqing 400030, China
| | - Linyuan Wang
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Xing Liu
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Stem Cell Biology and Therapy Laboratory, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Mi Li
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Stem Cell Biology and Therapy Laboratory, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Ning Hu
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Key Laboratory of Diagnostic Medicine designated by Chinese Ministry of Education and Affiliated Hospitals, Chongqing Medical University, Chongqing 400016, China
| | - Yuxi Su
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Stem Cell Biology and Therapy Laboratory, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xiaoji Luo
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Key Laboratory of Diagnostic Medicine designated by Chinese Ministry of Education and Affiliated Hospitals, Chongqing Medical University, Chongqing 400016, China
| | - Liang Chen
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Key Laboratory of Diagnostic Medicine designated by Chinese Ministry of Education and Affiliated Hospitals, Chongqing Medical University, Chongqing 400016, China
| | - Jinyong Luo
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Key Laboratory of Diagnostic Medicine designated by Chinese Ministry of Education and Affiliated Hospitals, Chongqing Medical University, Chongqing 400016, China
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lan Zhou
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Key Laboratory of Diagnostic Medicine designated by Chinese Ministry of Education and Affiliated Hospitals, Chongqing Medical University, Chongqing 400016, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Stem Cell Biology and Therapy Laboratory, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Key Laboratory of Diagnostic Medicine designated by Chinese Ministry of Education and Affiliated Hospitals, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
34
|
Hosoi Y, Kapp L. Expression of a Candidate Ataxia-telangiectasia Group D Gene in Cultured Fibroblast Cell Lines and Human Tissues. Int J Radiat Biol 2009. [DOI: 10.1080/09553009414551891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Y. Hosoi
- Laboratory of Radiobiology and Environmental Health, University of California, San Francisco, CA, 94143-0750, USA
| | - L.N. Kapp
- SRI International, 333 Ravenswood Avenue, Menlo ParkCA, 94025, USA
| |
Collapse
|
35
|
Murnane J, Zhu Y, Young B, Christman M. Expression of the Candidate A-T GeneATDCIs Not Detectable in a Human Cell Line with a Normal Response to Ionizing Radiation. Int J Radiat Biol 2009. [DOI: 10.1080/09553009414551901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- J.P. Murnane
- Laboratory of Radiobiology and Environmental Health, University of California, San Francisco, CA, 94143, USA
| | - Y. Zhu
- Department of Radiation Oncology, University of California, San Francisco, CA, 94143, USA
| | - B.R. Young
- Laboratory of Radiobiology and Environmental Health, University of California, San Francisco, CA, 94143, USA
| | - M.F. Christman
- Department of Radiation Oncology, University of California, San Francisco, CA, 94143, USA
| |
Collapse
|
36
|
Abstract
Retinoids function as activating ligands for a class of nuclear receptors that control gene expression programs for a wide range of tissues and organs during embryogenesis and throughout life. Over the years, three sets of observations have spurred interest in the function of retinoids with respect to development and disease of hematopoietic cells. Since the 1920s, epidemiological studies indicated altered hematopoiesis in vitamin A-deficient (VAD) human populations. More recently, the ability of retinoids to affect various aspects of hematopoietic development has been demonstrated in vitro. Finally, it was discovered that the gene encoding a retinoid receptor is a key target for chromosomal translocations that cause acute promyelocytic leukemia (APL). More recent investigations using targeted gene disruptions, VAD animal models, and mouse models of leukemia have continued to shed light on the function of the retinoid pathway in blood cells. It is now clear that retinoids are required for normal hematopoiesis during both yolk sac and fetal liver stages of hematopoiesis, while the pathway has at least modulatory functions for bone marrow derived progenitors. Studies of normal development and APL have provided complementary insight into the molecular control of blood cell differentiation. Here we review the evidence for retinoid requirements in hematopoiesis and also summarize current ideas regarding how this pathway is subverted in leukemia.
Collapse
Affiliation(s)
- Tal Oren
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Chanin 501, Bronx, NY 10461, USA
| | | | | |
Collapse
|
37
|
Sivaramakrishnan G, Sun Y, Rajmohan R, Lin VCL. B30.2/SPRY domain in tripartite motif-containing 22 is essential for the formation of distinct nuclear bodies. FEBS Lett 2009; 583:2093-9. [PMID: 19481078 DOI: 10.1016/j.febslet.2009.05.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 04/23/2009] [Accepted: 05/18/2009] [Indexed: 01/14/2023]
Abstract
Tripartite motif-containing 22 (TRIM22) is an important antiviral protein that forms distinct nuclear bodies (NB) in many cell types. This study aims to identify functional domains/residues for TRIM22's nuclear localization and NB formation. Deletion of the really-interesting-new-gene (RING) domain, which is essential for its antiviral property, abolished TRIM22 NB formation. However, mutation of two critical residues Cys15 and Cys18 to alanine in the RING domain, did not affect NB formation notably. Although the deletion of the putative bipartite nuclear localization signal (NLS) abolished TRIM22 localization and NB formation, the B30.2/SplA and ryanodine receptor (SPRY) domain, and residues 491-494 specifically are also essential for nuclear localization and NB formation.
Collapse
|
38
|
Lott ST, Chen N, Chandler DS, Yang Q, Wang L, Rodriguez M, Xie H, Balasenthil S, Buchholz TA, Sahin AA, Chaung K, Zhang B, Olufemi SE, Chen J, Adams H, Band V, El-Naggar AK, Frazier ML, Keyomarsi K, Hunt KK, Sen S, Haffty B, Hewitt SM, Krahe R, Killary AM. DEAR1 is a dominant regulator of acinar morphogenesis and an independent predictor of local recurrence-free survival in early-onset breast cancer. PLoS Med 2009; 6:e1000068. [PMID: 19536326 PMCID: PMC2673042 DOI: 10.1371/journal.pmed.1000068] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 03/17/2009] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Breast cancer in young women tends to have a natural history of aggressive disease for which rates of recurrence are higher than in breast cancers detected later in life. Little is known about the genetic pathways that underlie early-onset breast cancer. Here we report the discovery of DEAR1 (ductal epithelium-associated RING Chromosome 1), a novel gene encoding a member of the TRIM (tripartite motif) subfamily of RING finger proteins, and provide evidence for its role as a dominant regulator of acinar morphogenesis in the mammary gland and as an independent predictor of local recurrence-free survival in early-onset breast cancer. METHODS AND FINDINGS Suppression subtractive hybridization identified DEAR1 as a novel gene mapping to a region of high-frequency loss of heterozygosity (LOH) in a number of histologically diverse human cancers within Chromosome 1p35.1. In the breast epithelium, DEAR1 expression is limited to the ductal and glandular epithelium and is down-regulated in transition to ductal carcinoma in situ (DCIS), an early histologic stage in breast tumorigenesis. DEAR1 missense mutations and homozygous deletion (HD) were discovered in breast cancer cell lines and tumor samples. Introduction of the DEAR1 wild type and not the missense mutant alleles to complement a mutation in a breast cancer cell line, derived from a 36-year-old female with invasive breast cancer, initiated acinar morphogenesis in three-dimensional (3D) basement membrane culture and restored tissue architecture reminiscent of normal acinar structures in the mammary gland in vivo. Stable knockdown of DEAR1 in immortalized human mammary epithelial cells (HMECs) recapitulated the growth in 3D culture of breast cancer cell lines containing mutated DEAR1, in that shDEAR1 clones demonstrated disruption of tissue architecture, loss of apical basal polarity, diffuse apoptosis, and failure of lumen formation. Furthermore, immunohistochemical staining of a tissue microarray from a cohort of 123 young female breast cancer patients with a 20-year follow-up indicated that in early-onset breast cancer, DEAR1 expression serves as an independent predictor of local recurrence-free survival and correlates significantly with strong family history of breast cancer and the triple-negative phenotype (ER(-), PR(-), HER-2(-)) of breast cancers with poor prognosis. CONCLUSIONS Our data provide compelling evidence for the genetic alteration and loss of expression of DEAR1 in breast cancer, for the functional role of DEAR1 in the dominant regulation of acinar morphogenesis in 3D culture, and for the potential utility of an immunohistochemical assay for DEAR1 expression as an independent prognostic marker for stratification of early-onset disease.
Collapse
Affiliation(s)
- Steven T. Lott
- Department of Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Nanyue Chen
- Department of Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Dawn S. Chandler
- Department of Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Qifeng Yang
- Department of Radiation Oncology, University of Medicine & Dentistry of New Jersey–Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Luo Wang
- Department of Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Marivonne Rodriguez
- Department of Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Hongyan Xie
- Department of Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Seetharaman Balasenthil
- Department of Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Thomas A. Buchholz
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Aysegul A. Sahin
- Division of Pathology and Laboratory Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Katrina Chaung
- Department of Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Baili Zhang
- Department of Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Shodimu-Emmanu Olufemi
- Department of Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Jinyun Chen
- Department of Epidemiology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Henry Adams
- Department of Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Vimla Band
- Department of Genetics, Cell Biology and Anatomy, The University of Nebraska Medical Center, Eppley Cancer Center, Omaha, Nebraska, United States of America
| | - Adel K. El-Naggar
- Division of Pathology and Laboratory Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Marsha L. Frazier
- Department of Epidemiology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Kelly K. Hunt
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Subrata Sen
- Division of Pathology and Laboratory Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Bruce Haffty
- Department of Radiation Oncology, University of Medicine & Dentistry of New Jersey–Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Stephen M. Hewitt
- Tissue Array Research Program, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ralf Krahe
- Department of Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Ann McNeill Killary
- Department of Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
39
|
Salomoni P, Ferguson BJ, Wyllie AH, Rich T. New insights into the role of PML in tumour suppression. Cell Res 2008; 18:622-40. [PMID: 18504460 DOI: 10.1038/cr.2008.58] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The PML gene is involved in the t(15;17) translocation of acute promyelocytic leukaemia (APL), which generates the oncogenic fusion protein PML (promyelocytic leukaemia protein)-retinoic acid receptor alpha. The PML protein localises to a subnuclear structure called the PML nuclear domain (PML-ND), of which PML is the essential structural component. In APL, PML-NDs are disrupted, thus implicating these structures in the pathogenesis of this leukaemia. Unexpectedly, recent studies indicate that PML and the PML-ND play a tumour suppressive role in several different types of human neoplasms in addition to APL. Because of PML's extreme versatility and involvement in multiple cellular pathways, understanding the mechanisms underlying its function, and therefore role in tumour suppression, has been a challenging task. In this review, we attempt to critically appraise the more recent advances in this field and propose new avenues of investigation.
Collapse
Affiliation(s)
- P Salomoni
- MRC Toxicology Unit, Lancaster Road Box 138, Leicester, LE 9HN, UK.
| | | | | | | |
Collapse
|
40
|
Krieghoff-Henning E, Hofmann TG. Role of nuclear bodies in apoptosis signalling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2185-94. [PMID: 18680765 DOI: 10.1016/j.bbamcr.2008.07.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2008] [Revised: 06/20/2008] [Accepted: 07/04/2008] [Indexed: 01/10/2023]
Abstract
Promyelocytic leukemia nuclear bodies (PML NBs) are dynamic macromolecular multiprotein complexes that recruit and release a plethora of proteins. A considerable number of PML NB components play vital roles in apoptosis, senescence regulation and tumour suppression. The molecular basis by which PML NBs control these cellular responses is still just beginning to be understood. In addition to PML itself, numerous further tumour suppressors including transcriptional regulator p53, acetyl transferase CBP (CREB binding protein) and protein kinase HIPK2 (homeodomain interacting protein kinase 2) are recruited to PML NBs in response to genotoxic stress or oncogenic transformation and drive the senescence and apoptosis response by regulating p53 activity. Moreover, in response to death-receptor activation, PML NBs may act as nuclear depots that release apoptotic factors, such as the FLASH (FLICE-associated huge) protein, to amplify the death signal. PML NBs are also associated with other nuclear domains including Cajal bodies and nucleoli and share apoptotic regulators with these domains, implying crosstalk between NBs in apoptosis regulation. In conclusion, PML NBs appear to regulate cell death decisions through different, pathway-specific molecular mechanisms.
Collapse
Affiliation(s)
- Eva Krieghoff-Henning
- Cellular Senescence Group, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | | |
Collapse
|
41
|
McNally BA, Trgovcich J, Maul GG, Liu Y, Zheng P. A role for cytoplasmic PML in cellular resistance to viral infection. PLoS One 2008; 3:e2277. [PMID: 18509536 PMCID: PMC2386554 DOI: 10.1371/journal.pone.0002277] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 04/05/2008] [Indexed: 11/23/2022] Open
Abstract
PML gene was discovered as a fusion partner with retinoic acid receptor (RAR) α in the t(15:17) chromosomal translocation associated with acute promyelocytic leukemia (APL). Nuclear PML protein has been implicated in cell growth, tumor suppression, apoptosis, transcriptional regulation, chromatin remodeling, DNA repair, and anti-viral defense. The localization pattern of promyelocytic leukemia (PML) protein is drastically altered during viral infection. This alteration is traditionally viewed as a viral strategy to promote viral replication. Although multiple PML splice variants exist, we demonstrate that the ratio of a subset of cytoplasmic PML isoforms lacking exons 5 & 6 is enriched in cells exposed to herpes simplex virus-1 (HSV-1). In particular, we demonstrate that a PML isoform lacking exons 5 & 6, called PML Ib, mediates the intrinsic cellular defense against HSV-1 via the cytoplasmic sequestration of the infected cell protein (ICP) 0 of HSV-1. The results herein highlight the importance of cytoplasmic PML and call for an alternative, although not necessarily exclusive, interpretation regarding the redistribution of PML that is seen in virally infected cells.
Collapse
Affiliation(s)
- Beth A. McNally
- Division of Cancer Immunology, Department of Pathology, The Ohio State University Medical Center, Columbus, Ohio, United States of America
- Department of Surgery, Comprehensive Cancer Center, Program of Molecular Mechanism of Diseases, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Joanne Trgovcich
- Division of Cancer Immunology, Department of Pathology, The Ohio State University Medical Center, Columbus, Ohio, United States of America
| | - Gerd G. Maul
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Yang Liu
- Division of Cancer Immunology, Department of Pathology, The Ohio State University Medical Center, Columbus, Ohio, United States of America
- Department of Surgery, Comprehensive Cancer Center, Program of Molecular Mechanism of Diseases, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Pan Zheng
- Division of Cancer Immunology, Department of Pathology, The Ohio State University Medical Center, Columbus, Ohio, United States of America
- Department of Surgery, Comprehensive Cancer Center, Program of Molecular Mechanism of Diseases, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
42
|
Ohbayashi N, Kawakami S, Muromoto R, Togi S, Ikeda O, Kamitani S, Sekine Y, Honjoh T, Matsuda T. The IL-6 family of cytokines modulates STAT3 activation by desumoylation of PML through SENP1 induction. Biochem Biophys Res Commun 2008; 371:823-8. [PMID: 18474224 DOI: 10.1016/j.bbrc.2008.04.179] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 04/29/2008] [Indexed: 01/14/2023]
Abstract
Post-translational modification by small ubiquitin-like modifier (SUMO) plays an important role in the regulation of different signaling pathways and is involved in the formation of promyelocytic leukemia (PML) protein nuclear bodies following sumoylation of PML. In the present study, we found that IL-6 induces desumoylation of PML and dissociation between PML and SUMO1 in hepatoma cells. We also found that IL-6 induces mRNA expression of SENP1, a member of the SUMO-specific protease family. Furthermore, wild-type SENP1 but not an inactive SENP1 mutant restored the PML-mediated suppression of STAT3 activation. These results indicate that the IL-6 family of cytokines modulates STAT3 activation by desumoylation and inactivation PML through SENP1 induction.
Collapse
Affiliation(s)
- Norihiko Ohbayashi
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-Ku Kita 12 Nishi 6, Sapporo 060-0812, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Zhu J, Nasr R, Pérès L, Riaucoux-Lormière F, Honoré N, Berthier C, Kamashev D, Zhou J, Vitoux D, Lavau C, de Thé H. RXR is an essential component of the oncogenic PML/RARA complex in vivo. Cancer Cell 2007; 12:23-35. [PMID: 17613434 DOI: 10.1016/j.ccr.2007.06.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 04/04/2007] [Accepted: 06/01/2007] [Indexed: 11/19/2022]
Abstract
Although PML-enforced RARA homodimerization allows PML/RARA to bind DNA independently of its coreceptor RXR, the latter was identified within the PML/RARA complex. We demonstrate that a PML/RARA mutant defective for RXR binding fails to trigger APL development in transgenic mice, although it still transforms primary hematopoietic progenitors ex vivo. RXR enhances PML/RARA binding to DNA and is required for rexinoid-induced APL differentiation. In RA-treated PML/RARA-transformed cells, the absence of RXR binding results in monocytic, rather than granulocytic, differentiation. PML/RARA enhances posttranslational modifications of RXRA, including its sumoylation, suggesting that PML-bound sumoylation enzymes target RXRA and possibly other PML/RARA-bound chromatin proteins, further contributing to deregulated transcription. Thus, unexpectedly, RXR contributes to several critical aspects of in vivo transformation.
Collapse
Affiliation(s)
- Jun Zhu
- CNRS/University Paris VII UMR 7151, laboratoire associé N11 de la Ligue contre le Cancer, Hôpital St. Louis, 1, avenue Claude Vellefaux, 75475 Paris Cedex 10, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Li XL, Arai Y, Harada H, Shima Y, Yoshida H, Rokudai S, Aikawa Y, Kimura A, Kitabayashi I. Mutations of the HIPK2 gene in acute myeloid leukemia and myelodysplastic syndrome impair AML1- and p53-mediated transcription. Oncogene 2007; 26:7231-9. [PMID: 17533375 DOI: 10.1038/sj.onc.1210523] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The AML1 transcription factor complex is the most frequent target of leukemia-associated chromosomal translocations. Homeodomain-interacting protein kinase 2 (HIPK2) is a part of the AML1 complex and activates AML1-mediated transcription. However, chromosomal translocations and mutations of HIPK2 have not been reported. In the current study, we screened mutations of the HIPK2 gene in 50 cases of acute myeloid leukemia (AML) and in 80 cases of myelodysplastic syndrome (MDS). Results indicated there were two missense mutations (R868W and N958I) in the speckle-retention signal (SRS) domain of HIPK2. Subcellular localization analyses indicated that the two mutants were largely localized to nuclear regions with conical or ring shapes, and were somewhat diffused in the nucleus, in contrast to the wild type, which were mainly localized in nuclear speckles. The mutations impaired the overlapping localization of AML1 and HIPK2. The mutants showed decreased activities and a dominant-negative function over wild-type protein in AML1- and p53-dependent transcription. These findings suggest that dysfunction of HIPK2 may play a role in the pathogenesis of leukemia.
Collapse
Affiliation(s)
- X-L Li
- Molecular Oncology Division, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Reineke EL, Liu H, Lam M, Liu Y, Kao HY. Aberrant association of promyelocytic leukemia protein-retinoic acid receptor-alpha with coactivators contributes to its ability to regulate gene expression. J Biol Chem 2007; 282:18584-18596. [PMID: 17475621 DOI: 10.1074/jbc.m700330200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The aberrant association of promyelocytic leukemia protein-retinoic acid receptor-alpha (PML-RARalpha) with corepressor complexes is generally thought to contribute to the ability of PML-RARalpha to regulate transcription. We report here that PML-RARalpha acquires aberrant association with coactivators. We show that endogenous PML-RARalpha interacts with the histone acetyltransferases CBP, p300, and SRC-1 in a hormoneindependent manner, an association not seen for RARalpha. This hormone-independent coactivator binding activity requires an intact ligand-binding domain and the NR box of the coactivators. Confocal microscopy studies demonstrate that exogenous PML-RARalpha sequesters and colocalizes with coactivators. These observations correlate with the ability of PML-RARalpha to attenuate the transcription activation of the Notch signaling downstream effector, CBF1, and of the glucocorticoid receptor. This includes attenuation of the glucocorticoid-induced leucine zipper (GILZ) and FLJ25390 target genes of the endogenous glucocorticoid receptor. Furthermore, treatment of NB4 cells with all-trans-retinoic acid, which promotes PML-RARalpha degradation, resulted in increased activation of GILZ. On the basis of these findings, we propose a model in which the hormone-independent association between PML-RARalpha and coactivators contributes to its ability to regulate gene expression.
Collapse
Affiliation(s)
- Erin L Reineke
- Department of Biochemistry, School of Medicine, Case Western Reserve University, University Hospitals of Cleveland, Cleveland, Ohio 44106
| | - Heng Liu
- Department of Biochemistry, School of Medicine, Case Western Reserve University, University Hospitals of Cleveland, Cleveland, Ohio 44106
| | - Minh Lam
- Research Institute of University Hospitals of Cleveland and the Comprehensive Cancer Center of Case Western Reserve University and University Hospitals of Cleveland, Cleveland, Ohio 44106
| | - Yu Liu
- Department of Biochemistry, School of Medicine, Case Western Reserve University, University Hospitals of Cleveland, Cleveland, Ohio 44106
| | - Hung-Ying Kao
- Department of Biochemistry, School of Medicine, Case Western Reserve University, University Hospitals of Cleveland, Cleveland, Ohio 44106.
| |
Collapse
|
46
|
Janer A, Martin E, Muriel MP, Latouche M, Fujigasaki H, Ruberg M, Brice A, Trottier Y, Sittler A. PML clastosomes prevent nuclear accumulation of mutant ataxin-7 and other polyglutamine proteins. ACTA ACUST UNITED AC 2006; 174:65-76. [PMID: 16818720 PMCID: PMC2064165 DOI: 10.1083/jcb.200511045] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The pathogenesis of spinocerebellar ataxia type 7 and other neurodegenerative polyglutamine (polyQ) disorders correlates with the aberrant accumulation of toxic polyQ-expanded proteins in the nucleus. Promyelocytic leukemia protein (PML) nuclear bodies are often present in polyQ aggregates, but their relation to pathogenesis is unclear. We show that expression of PML isoform IV leads to the formation of distinct nuclear bodies enriched in components of the ubiquitin-proteasome system. These bodies recruit soluble mutant ataxin-7 and promote its degradation by proteasome-dependent proteolysis, thus preventing the aggregate formation. Inversely, disruption of the endogenous nuclear bodies with cadmium increases the nuclear accumulation and aggregation of mutant ataxin-7, demonstrating their role in ataxin-7 turnover. Interestingly, β-interferon treatment, which induces the expression of endogenous PML IV, prevents the accumulation of transiently expressed mutant ataxin-7 without affecting the level of the endogenous wild-type protein. Therefore, clastosomes represent a potential therapeutic target for preventing polyQ disorders.
Collapse
Affiliation(s)
- Alexandre Janer
- Institut National de la Santé et de la Recherche Médicale U679, Neurologie et Thérapeutique Expérimentale, 75651 Paris Cedex 13, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Wang JG, Barsky LW, Davicioni E, Weinberg KI, Triche TJ, Zhang XK, Wu L. Retinoic acid induces leukemia cell G1arrest and transition into differentiation by inhibiting cyclin‐dependent kinase‐activating kinase binding and phosphorylation of PML/RAR. FASEB J 2006; 20:2142-4. [PMID: 16935935 DOI: 10.1096/fj.06-5900fje] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Acute promyelocytic leukemia (APL) cells express promyelocytic leukemia/retinoic acid receptor alpha (PML/RARalpha) fusion protein, which leads to the blocking of APL cell differentiation. Treatment of APL with all-trans-retinoic acid (ATRA) induces disease remission by in vivo differentiation of APL cells. Differentiation requires cell cycle exit; yet how ATRA couples cell cycle exit to differentiation of APL remains largely unknown. We previously found that ATRA-induced cell differentiation accompanies ubiquitination-proteolysis of ménage à trois 1 (MAT1), an assembly factor and targeting subunit of cyclin-dependent kinase (CDK)-activating kinase (CAK) that regulates G1 exit. We report here that CAK binds to and phosphorylates PML/RARalpha in actively proliferating APL cells. In response to ATRA, PML/RARalpha is dissociated from CAK, leading to MAT1 degradation, G1 arrest, and decreased CAK phosphorylation of PML/RARalpha. CAK phosphorylation of PML/RARalpha is inhibited when MAT1 levels are reduced. Both MAT1 degradation and PML/RARalpha hypophosphorylation occur in ATRA-induced G1-arresting cells undergoing differentiation but not in the synchronized G1 cells that do not differentiate. These findings reveal a novel ATRA signaling on APL cell differentiation, in which ATRA coordinates G1 arrest and transition into differentiation by inducing MAT1 degradation and PML/RARalpha hypophosphorylation through disrupting PML/RARalpha binding and phosphorylation by CAK.
Collapse
Affiliation(s)
- Jian-guang Wang
- Department of Pathology, Childrens Hospital Los Angeles Saban Research Institute, Los Angeles, California 90027, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Condemine W, Takahashi Y, Zhu J, Puvion-Dutilleul F, Guegan S, Janin A, de Thé H. Characterization of endogenous human promyelocytic leukemia isoforms. Cancer Res 2006; 66:6192-8. [PMID: 16778193 DOI: 10.1158/0008-5472.can-05-3792] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Promyelocytic leukemia (PML) has been implicated in a variety of functions, including control of TP53 function and modulation of cellular senescence. Sumolated PML is the organizer of mature PML bodies, recruiting a variety of proteins onto these nuclear domains. The PML gene is predicted to encode a variety of protein isoforms. Overexpression of only one of them, PML-IV, promotes senescence in human diploid fibroblasts, whereas PML-III was proposed to specifically interact with the centrosome. We show that all PML isoform proteins are expressed in cell lines or primary cells. Unexpectedly, we found that PML-III, PML-IV, and PML-V are quantitatively minor isoforms compared with PML-I/II and could not confirm the centrosomal targeting of PML-III. Stable expression of each isoform, in a pml-null background, yields distinct subcellular localization patterns, suggesting that, like in other RBCC/TRIM proteins, the COOH-terminal domains of PML are involved in interactions with specific cellular components. Only the isoform-specific sequences of PML-I and PML-V are highly conserved between man and mouse. That PML-I contains all conserved exons and is more abundantly expressed than PML-IV suggests that it is a critical contributor to PML function(s).
Collapse
Affiliation(s)
- Wilfried Condemine
- Centre National de la Recherche Scientifique UMR7151, Equipe Labellisée par La Ligne Contre le Cancer, Paris Cedex, France
| | | | | | | | | | | | | |
Collapse
|
49
|
Yang S, Jeong JH, Brown AL, Lee CH, Pandolfi PP, Chung JH, Kim MK. Promyelocytic leukemia activates Chk2 by mediating Chk2 autophosphorylation. J Biol Chem 2006; 281:26645-54. [PMID: 16835227 DOI: 10.1074/jbc.m604391200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chk2 is a kinase critical for DNA damage-induced apoptosis and is considered a tumor suppressor. Chk2 is essential for p53 transcriptional and apoptotic activities. Although mutations of p53 are present in more than half of all tumors, mutations of Chk2 in cancers are rare, suggesting that Chk2 may be inactivated by unknown alternative mechanisms. Here we elucidate one such alternative mechanism regulated by PML (promyelocytic leukemia) that is involved in acute promyelocytic leukemia (APL). Although p53-inactivating mutations are extremely rare in APL, t(15;17) chromosomal translocation which fuses retinoic acid receptor (RARalpha) to PML is almost always present in APL, while the other PML allele is intact. We demonstrate that PML interacts with Chk2 and activates Chk2 by mediating its autophosphorylation step, an essential step for Chk2 activity that occurs after phosphorylation by the upstream kinase ATM (ataxia telangiectasia-mutated). PML/RARalpha in APL suppresses Chk2 by dominantly inhibiting the auto-phosphorylation step, but inactivation of PML/RARalpha with alltrans retinoic acid (ATRA) restores Chk2 autophosphorylation and activity. Thus, by fusing PML with RARalpha, the APL cells appear to have achieved functional suppression of Chk2 compromising the Chk2-p53 apoptotic pathway.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/metabolism
- Apoptosis/physiology
- Ataxia Telangiectasia Mutated Proteins
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Checkpoint Kinase 2
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Enzyme Activation
- HeLa Cells
- Humans
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Phosphorylation
- Promyelocytic Leukemia Protein
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Retinoic Acid Receptor alpha
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Tretinoin/metabolism
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
Collapse
Affiliation(s)
- Shutong Yang
- Laboratory of Biochemical Genetics, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Li YJ, Macnaughton T, Gao L, Lai MMC. RNA-templated replication of hepatitis delta virus: genomic and antigenomic RNAs associate with different nuclear bodies. J Virol 2006; 80:6478-86. [PMID: 16775335 PMCID: PMC1488965 DOI: 10.1128/jvi.02650-05] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Lacking an RNA-dependent RNA polymerase, hepatitis delta virus (HDV), which contains a circular RNA of 1.7 kilobases, is nonetheless able to replicate its RNA by use of cellular transcription machineries. Previously, we have shown that the replications of genomic- and antigenomic-strand HDV RNAs have different sensitivities to alpha-amanitin, suggesting that these two strands are synthesized in different transcription machineries in the cells, but the nature of these transcription machineries is not clear. In this study, we performed metabolic labeling and immunofluorescence staining of newly synthesized HDV RNA with bromouridine after HDV RNA transfection into hepatocytes and confirmed that HDV RNA synthesis had both alpha-amanitin-sensitive and -resistant components. The antigenomic RNA labeling was alpha-amanitin resistant and localized to the nucleolus. The genomic RNA labeling was alpha-amanitin sensitive and more diffusely localized in the nucleoplasm. Most of the genomic RNA labeling appeared to colocalize with the PML nuclear bodies. Furthermore, promyelocytic leukemia protein, RNA polymerase II (Pol II), and the Pol I-associated transcription factor SL1 could be precipitated together with hepatitis delta antigen, suggesting the association of HDV replication complex with the Pol I and Pol II transcription machineries. This conclusion was further confirmed by an in vitro replication assay. These findings provide additional evidence that HDV RNA synthesis occurs in the Pol I and Pol II transcription machineries, thus extending the capability of the cellular DNA-dependent RNA polymerases to utilizing RNA as templates.
Collapse
MESH Headings
- Amanitins/pharmacology
- Cell Line, Tumor
- Cell-Free System/metabolism
- Genome, Viral/physiology
- HeLa Cells
- Hepatitis Delta Virus/physiology
- Hepatitis delta Antigens/biosynthesis
- Hepatocytes/metabolism
- Hepatocytes/virology
- Humans
- Immunoprecipitation
- Intranuclear Space/metabolism
- Intranuclear Space/virology
- Microscopy, Fluorescence
- Neoplasm Proteins/metabolism
- Nuclear Proteins/metabolism
- Nucleic Acid Synthesis Inhibitors/pharmacology
- Pol1 Transcription Initiation Complex Proteins/metabolism
- Promyelocytic Leukemia Protein
- RNA/biosynthesis
- RNA/genetics
- RNA Polymerase I/metabolism
- RNA Polymerase II/antagonists & inhibitors
- RNA Polymerase II/metabolism
- RNA, Antisense/biosynthesis
- RNA, Antisense/genetics
- RNA, Circular
- RNA, Viral/biosynthesis
- RNA, Viral/genetics
- Transcription Factors/metabolism
- Transcription, Genetic/drug effects
- Transcription, Genetic/physiology
- Tumor Suppressor Proteins/metabolism
- Virus Replication/drug effects
- Virus Replication/physiology
Collapse
Affiliation(s)
- Yi-Jia Li
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, 2011 Zonal Ave., Los Angeles, CA 90033-1054, USA
| | | | | | | |
Collapse
|