1
|
Jeong J, Lee JH, Carcamo CC, Parker MW, Berger JM. DNA-Stimulated Liquid-Liquid phase separation by eukaryotic topoisomerase ii modulates catalytic function. eLife 2022; 11:e81786. [PMID: 36342377 PMCID: PMC9674351 DOI: 10.7554/elife.81786] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022] Open
Abstract
Type II topoisomerases modulate chromosome supercoiling, condensation, and catenation by moving one double-stranded DNA segment through a transient break in a second duplex. How DNA strands are chosen and selectively passed to yield appropriate topological outcomes - for example, decatenation vs. catenation - is poorly understood. Here, we show that at physiological enzyme concentrations, eukaryotic type IIA topoisomerases (topo IIs) readily coalesce into condensed bodies. DNA stimulates condensation and fluidizes these assemblies to impart liquid-like behavior. Condensation induces both budding yeast and human topo IIs to switch from DNA unlinking to active DNA catenation, and depends on an unstructured C-terminal region, the loss of which leads to high levels of knotting and reduced catenation. Our findings establish that local protein concentration and phase separation can regulate how topo II creates or dissolves DNA links, behaviors that can account for the varied roles of the enzyme in supporting transcription, replication, and chromosome compaction.
Collapse
Affiliation(s)
- Joshua Jeong
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Joyce H Lee
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Claudia C Carcamo
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Matthew W Parker
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
2
|
Paulson JR, Hudson DF, Cisneros-Soberanis F, Earnshaw WC. Mitotic chromosomes. Semin Cell Dev Biol 2021; 117:7-29. [PMID: 33836947 PMCID: PMC8406421 DOI: 10.1016/j.semcdb.2021.03.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 01/25/2023]
Abstract
Our understanding of the structure and function of mitotic chromosomes has come a long way since these iconic objects were first recognized more than 140 years ago, though many details remain to be elucidated. In this chapter, we start with the early history of chromosome studies and then describe the path that led to our current understanding of the formation and structure of mitotic chromosomes. We also discuss some of the remaining questions. It is now well established that each mitotic chromatid consists of a central organizing region containing a so-called "chromosome scaffold" from which loops of DNA project radially. Only a few key non-histone proteins and protein complexes are required to form the chromosome: topoisomerase IIα, cohesin, condensin I and condensin II, and the chromokinesin KIF4A. These proteins are concentrated along the axis of the chromatid. Condensins I and II are primarily responsible for shaping the chromosome and the scaffold, and they produce the loops of DNA by an ATP-dependent process known as loop extrusion. Modelling of Hi-C data suggests that condensin II adopts a spiral staircase arrangement with an extruded loop extending out from each step in a roughly helical pattern. Condensin I then forms loops nested within these larger condensin II loops, thereby giving rise to the final compaction of the mitotic chromosome in a process that requires Topo IIα.
Collapse
Affiliation(s)
- James R Paulson
- Department of Chemistry, University of Wisconsin Oshkosh, 800 Algoma Boulevard, Oshkosh, WI 54901, USA.
| | - Damien F Hudson
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Fernanda Cisneros-Soberanis
- Wellcome Trust Centre for Cell Biology, ICB, University of Edinburgh, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, ICB, University of Edinburgh, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK.
| |
Collapse
|
3
|
Cell Cycle-Dependent Control and Roles of DNA Topoisomerase II. Genes (Basel) 2019; 10:genes10110859. [PMID: 31671531 PMCID: PMC6896119 DOI: 10.3390/genes10110859] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022] Open
Abstract
Type II topoisomerases are ubiquitous enzymes in all branches of life that can alter DNA superhelicity and unlink double-stranded DNA segments during processes such as replication and transcription. In cells, type II topoisomerases are particularly useful for their ability to disentangle newly-replicated sister chromosomes. Growing lines of evidence indicate that eukaryotic topoisomerase II (topo II) activity is monitored and regulated throughout the cell cycle. Here, we discuss the various roles of topo II throughout the cell cycle, as well as mechanisms that have been found to govern and/or respond to topo II function and dysfunction. Knowledge of how topo II activity is controlled during cell cycle progression is important for understanding how its misregulation can contribute to genetic instability and how modulatory pathways may be exploited to advance chemotherapeutic development.
Collapse
|
4
|
Kabir A, Tilekar K, Upadhyay N, Ramaa C. Novel Anthraquinone Derivatives as Dual Inhibitors of Topoisomerase 2 and Casein Kinase 2: In Silico Studies, Synthesis and Biological Evaluation on Leukemic Cell Lines. Anticancer Agents Med Chem 2019; 18:1551-1562. [DOI: 10.2174/1871520618666180423111309] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/11/2018] [Accepted: 04/14/2018] [Indexed: 11/22/2022]
Abstract
Background:
Cancer being a complex disease, single targeting agents remain unsuccessful. This calls
for “multiple targeting”, wherein a single drug is so designed that it will modulate the activity of multiple protein
targets. Topoisomerase 2 (Top2) helps in removing DNA tangles and super-coiling during cellular replication,
Casein Kinase 2 (CK2) is involved in the phosphorylation of a multitude of protein targets. Thus, in the
present work, we have tried to develop dual inhibitors of Top2 and CK2.
Objective:
With this view, in the present work, 2 human proteins, Top2 and CK2 have been targeted to achieve
the anti-proliferative effects.
Methods:
Novel 1-acetylamidoanthraquinone (3a-3y) derivatives were designed, synthesized and their structures
were elucidated by analytical and spectral characterization techniques (FTIR, 1H NMR, 13C NMR and
Mass Spectroscopy). The synthesized compounds were then subjected to evaluation of cytotoxic potential by the
Sulforhodamine B (SRB) protein assay, using HL60 and K562 cell lines. Ten compounds were analyzed for
Top2, CK2 enzyme inhibitory potential. Further, top three compounds were subjected to cell cycle analysis.
Results:
The compounds 3a to 3c, 3e, 3f, 3i to 3p, 3t and 3x showed excellent cytotoxic activity to HL-60 cell
line indicating their high anti-proliferative potential in AML. The compounds 3a to 3c, 3e, 3f, 3i to 3p and 3y
have shown good to moderate activity on K-562 cell line. Compounds 3e, 3f, 3i, 3x and 3y were found more
cytotoxic than standard doxorubicin. In cell cycle analysis, the cells (79-85%) were found to arrest in the G0/G1
phase.
Conclusion:
We have successfully designed, synthesized, purified and structurally characterized 1-
acetylamidoanthraquinone derivatives. Even though our compounds need design optimization to further increase
enzyme inhibition, their overall anti-proliferative effects were found to be encouraging.
Collapse
Affiliation(s)
- Abbas Kabir
- Bharati Vidyapeeth's College of Pharmacy, Department of Pharmaceutical Chemistry, Sector 8, C. B. D. Belapur, Navi Mumbai 400614, Maharashtra, India
| | - Kalpana Tilekar
- Bharati Vidyapeeth's College of Pharmacy, Department of Pharmaceutical Chemistry, Sector 8, C. B. D. Belapur, Navi Mumbai 400614, Maharashtra, India
| | - Neha Upadhyay
- Bharati Vidyapeeth's College of Pharmacy, Department of Pharmaceutical Chemistry, Sector 8, C. B. D. Belapur, Navi Mumbai 400614, Maharashtra, India
| | - C.S. Ramaa
- Bharati Vidyapeeth's College of Pharmacy, Department of Pharmaceutical Chemistry, Sector 8, C. B. D. Belapur, Navi Mumbai 400614, Maharashtra, India
| |
Collapse
|
5
|
Nakazawa N, Arakawa O, Ebe M, Yanagida M. Casein kinase II-dependent phosphorylation of DNA topoisomerase II suppresses the effect of a catalytic topo II inhibitor, ICRF-193, in fission yeast. J Biol Chem 2019; 294:3772-3782. [PMID: 30635402 PMCID: PMC6416453 DOI: 10.1074/jbc.ra118.004955] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 01/04/2019] [Indexed: 11/06/2022] Open
Abstract
DNA topoisomerase II (topo II) regulates the topological state of DNA and is necessary for DNA replication, transcription, and chromosome segregation. Topo II has essential functions in cell proliferation and therefore is a critical target of anticancer drugs. In this study, using Phos-tag SDS-PAGE analysis in fission yeast (Schizosaccharomyces pombe), we identified casein kinase II (Cka1/CKII)-dependent phosphorylation at the C-terminal residues Ser1363 and Ser1364 in topo II. We found that this phosphorylation decreases the inhibitory effect of an anticancer catalytic inhibitor of topo II, ICRF-193, on mitosis. Consistent with the constitutive activity of Cka1/CKII, Ser1363 and Ser1364 phosphorylation of topo II was stably maintained throughout the cell cycle. We demonstrate that ICRF-193-induced chromosomal mis-segregation is further exacerbated in two temperature-sensitive mutants, cka1-372 and cka1/orb5-19, of the catalytic subunit of CKII or in the topo II nonphosphorylatable alanine double mutant top2-S1363A,S1364A but not in cells of the phosphomimetic glutamate double mutant top2-S1363E,S1364E Our results suggest that Ser1363 and Ser1364 in topo II are targeted by Cka1/CKII kinase and that their phosphorylation facilitates topo II ATPase activity in the N-terminal region, which regulates protein turnover on chromosome DNA. Because CKII-mediated phosphorylation of the topo II C-terminal domain appears to be evolutionarily conserved, including in humans, we propose that attenuation of CKII-controlled topo II phosphorylation along with catalytic topo II inhibition may promote anticancer effects.
Collapse
Affiliation(s)
- Norihiko Nakazawa
- From the G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Orie Arakawa
- From the G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Masahiro Ebe
- From the G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Mitsuhiro Yanagida
- From the G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
6
|
Bandyopadhyay M, Arbet S, Bishop CP, Bidwai AP. Drosophila Protein Kinase CK2: Genetics, Regulatory Complexity and Emerging Roles during Development. Pharmaceuticals (Basel) 2016; 10:E4. [PMID: 28036067 PMCID: PMC5374408 DOI: 10.3390/ph10010004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/12/2016] [Accepted: 12/19/2016] [Indexed: 01/06/2023] Open
Abstract
CK2 is a Ser/Thr protein kinase that is highly conserved amongst all eukaryotes. It is a well-known oncogenic kinase that regulates vital cell autonomous functions and animal development. Genetic studies in the fruit fly Drosophila are providing unique insights into the roles of CK2 in cell signaling, embryogenesis, organogenesis, neurogenesis, and the circadian clock, and are revealing hitherto unknown complexities in CK2 functions and regulation. Here, we review Drosophila CK2 with respect to its structure, subunit diversity, potential mechanisms of regulation, developmental abnormalities linked to mutations in the gene encoding CK2 subunits, and emerging roles in multiple aspects of eye development. We examine the Drosophila CK2 "interaction map" and the eye-specific "transcriptome" databases, which raise the prospect that this protein kinase has many additional targets in the developing eye. We discuss the possibility that CK2 functions during early retinal neurogenesis in Drosophila and mammals bear greater similarity than has been recognized, and that this conservation may extend to other developmental programs. Together, these studies underscore the immense power of the Drosophila model organism to provide new insights and avenues to further investigate developmentally relevant targets of this protein kinase.
Collapse
Affiliation(s)
| | - Scott Arbet
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA.
| | - Clifton P Bishop
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA.
| | - Ashok P Bidwai
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
7
|
Wang X, Gupta P, Fairbanks J, Hansen D. Protein kinase CK2 both promotes robust proliferation and inhibits the proliferative fate in the C. elegans germ line. Dev Biol 2014; 392:26-41. [PMID: 24824786 DOI: 10.1016/j.ydbio.2014.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 04/02/2014] [Accepted: 05/02/2014] [Indexed: 11/18/2022]
Abstract
Stem cells are capable of both self-renewal (proliferation) and differentiation. Determining the regulatory mechanisms controlling the balance between stem cell proliferation and differentiation is not only an important biological question, but also holds the key for using stem cells as therapeutic agents. The Caenorhabditis elegans germ line has emerged as a valuable model to study the molecular mechanisms controlling stem cell behavior. In this study, we describe a large-scale RNAi screen that identified kin-10, which encodes the β subunit of protein kinase CK2, as a novel factor regulating stem cell proliferation in the C. elegans germ line. While a loss of kin-10 in an otherwise wild-type background results in a decrease in the number of proliferative cells, loss of kin-10 in sensitized genetic backgrounds results in a germline tumor. Therefore, kin-10 is not only necessary for robust proliferation, it also inhibits the proliferative fate. We found that kin-10's regulatory role in inhibiting the proliferative fate is carried out through the CK2 holoenzyme, rather than through a holoenzyme-independent function, and that it functions downstream of GLP-1/Notch signaling. We propose that a loss of kin-10 leads to a defect in CK2 phosphorylation of its downstream targets, resulting in abnormal activity of target protein(s) that are involved in the proliferative fate vs. differentiation decision. This eventually causes a shift towards the proliferative fate in the stem cell fate decision.
Collapse
Affiliation(s)
- Xin Wang
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - Pratyush Gupta
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - Jared Fairbanks
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - Dave Hansen
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4.
| |
Collapse
|
8
|
Seol Y, Gentry AC, Osheroff N, Neuman KC. Chiral discrimination and writhe-dependent relaxation mechanism of human topoisomerase IIα. J Biol Chem 2013; 288:13695-703. [PMID: 23508957 PMCID: PMC3650406 DOI: 10.1074/jbc.m112.444745] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/04/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Human topoisomerase IIα unlinks catenated chromosomes and preferentially relaxes positive supercoils. RESULTS Supercoil chirality, twist density, and tension determine topoisomerase IIα relaxation rate and processivity. CONCLUSION Strand passage rate is determined by the efficiency of transfer segment capture that is modulated by the topoisomerase C-terminal domains. SIGNIFICANCE Single-molecule measurements reveal the mechanism of chiral discrimination and tension dependence of supercoil relaxation by human topoisomerase IIα. Type IIA topoisomerases (Topo IIA) are essential enzymes that relax DNA supercoils and remove links joining replicated chromosomes. Human topoisomerase IIα (htopo IIα), one of two human isoforms, preferentially relaxes positive supercoils, a feature shared with Escherichia coli topoisomerase IV (Topo IV). The mechanistic basis of this chiral discrimination remains unresolved. To address this important issue, we measured the relaxation of individual supercoiled and "braided" DNA molecules by htopo IIα using a magnetic tweezers-based single-molecule assay. Our study confirmed the chiral discrimination activity of htopo IIα and revealed that the strand passage rate depends on DNA twist, tension on the DNA, and the C-terminal domain (CTD). Similar to Topo IV, chiral discrimination by htopo IIα results from chiral interactions of the CTDs with DNA writhe. In contrast to Topo IV, however, these interactions lead to chiral differences in relaxation rate rather than processivity. Increasing tension or twist disrupts the CTD-DNA interactions with a subsequent loss of chiral discrimination. Together, these results suggest that transfer segment (T-segment) capture is the rate-limiting step in the strand passage cycle. We propose a model for T-segment capture that provides a mechanistic basis for chiral discrimination and provides a coherent explanation for the effects of DNA twist and tension on eukaryotic type IIA topoisomerases.
Collapse
Affiliation(s)
- Yeonee Seol
- From the Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Amanda C. Gentry
- the Departments of Biochemistry and Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Neil Osheroff
- the Departments of Biochemistry and Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Keir C. Neuman
- From the Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892 and
| |
Collapse
|
9
|
Structure of a topoisomerase II-DNA-nucleotide complex reveals a new control mechanism for ATPase activity. Nat Struct Mol Biol 2012; 19:1147-54. [PMID: 23022727 PMCID: PMC3492516 DOI: 10.1038/nsmb.2388] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 08/23/2012] [Indexed: 11/22/2022]
Abstract
Type IIA topoisomerases control DNA supercoiling and disentangle chromosomes by a complex, ATP-dependent strand passage mechanism. Although a general framework exists for type IIA topoisomerase function, the architecture of the full-length enzyme has remained undefined. Here we present the first structure of a fully-catalytic Saccharomyces cerevisiae topoisomerase II homodimer, complexed with DNA and a nonhydrolyzable ATP analog. The enzyme adopts a domain-swapped configuration wherein the ATPase domain of one protomer sits atop the nucleolytic region of its partner subunit. This organization produces an unexpected interaction between the bound DNA and a conformational transducing element in the ATPase domain, which we show is critical for both DNA-stimulated ATP hydrolysis and global topoisomerase activity. Our data indicate that the ATPase domains pivot about each other to ensure unidirectional strand passage and that this state senses bound DNA to promote ATP turnover and enzyme reset.
Collapse
|
10
|
McClendon AK, Gentry AC, Dickey JS, Brinch M, Bendsen S, Andersen AH, Osheroff N. Bimodal recognition of DNA geometry by human topoisomerase II alpha: preferential relaxation of positively supercoiled DNA requires elements in the C-terminal domain. Biochemistry 2008; 47:13169-78. [PMID: 19053267 PMCID: PMC2629653 DOI: 10.1021/bi800453h] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human topoisomerase IIalpha, but not topoisomerase IIbeta, can sense the geometry of DNA during relaxation and removes positive supercoils >10-fold faster than it does negative superhelical twists. In contrast, both isoforms maintain lower levels of DNA cleavage intermediates with positively supercoiled substrates. Since topoisomerase IIalpha and IIbeta differ primarily in their C-terminal domains (CTD), this portion of the protein may play a role in sensing DNA geometry. Therefore, to more fully assess the importance of the topoisomerase IIalpha CTD in the recognition of DNA topology, hTop2alphaDelta1175, a mutant human enzyme that lacks its CTD, was examined. The mutant enzyme relaxed negative and positive supercoils at similar rates but still maintained lower levels of cleavage complexes with positively supercoiled DNA. Furthermore, when the CTD of topoisomerase IIbeta was replaced with that of the alpha isoform, the resulting enzyme preferentially relaxed positively supercoiled substrates. In contrast, a chimeric topoisomerase IIalpha that carried the CTD of the beta isoform lost its ability to recognize the geometry of DNA supercoils during relaxation. These findings demonstrate that human topoisomerase IIalpha recognizes DNA geometry in a bimodal fashion, with the ability to preferentially relax positive DNA supercoils residing in the CTD. Finally, results with a series of human topoisomerase IIalpha mutants suggest that clusters of positively charged amino acid residues in the CTD are required for the enzyme to distinguish supercoil geometry during DNA relaxation and that deletion of even the most C-terminal cluster abrogates this recognition.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigens, Neoplasm/chemistry
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Binding Sites/genetics
- DNA Cleavage
- DNA Topoisomerases, Type II/chemistry
- DNA Topoisomerases, Type II/genetics
- DNA Topoisomerases, Type II/metabolism
- DNA, Superhelical/chemistry
- DNA, Superhelical/genetics
- DNA, Superhelical/metabolism
- DNA-Binding Proteins/antagonists & inhibitors
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Humans
- Molecular Sequence Data
- Protein Structure, Tertiary/genetics
- Sequence Deletion
- Topoisomerase II Inhibitors
Collapse
Affiliation(s)
- A Kathleen McClendon
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Grozav AG, Chikamori K, Kozuki T, Grabowski DR, Bukowski RM, Willard B, Kinter M, Andersen AH, Ganapathi R, Ganapathi MK. Casein kinase I delta/epsilon phosphorylates topoisomerase IIalpha at serine-1106 and modulates DNA cleavage activity. Nucleic Acids Res 2008; 37:382-92. [PMID: 19043076 PMCID: PMC2632902 DOI: 10.1093/nar/gkn934] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously reported that phosphorylation of topoisomerase (topo) IIα at serine-1106 (Ser-1106) regulates enzyme activity and sensitivity to topo II-targeted drugs. In this study we demonstrate that phosphorylation of Ser-1106, which is flanked by acidic amino acids, is regulated in vivo by casein kinase (CK) Iδ and/or CKIɛ, but not by CKII. The CKI inhibitors, CKI-7 and IC261, reduced Ser-1106 phosphorylation and decreased formation of etoposide-stabilized topo II–DNA cleavable complex. In contrast, the CKII inhibitor, 5,6-dichlorobenzimidazole riboside, did not affect etoposide-stabilized topo II–DNA cleavable complex formation. Since, IC261 specifically targets the Ca2+-regulated isozymes, CKIδ and CKIɛ, we examined the effect of down-regulating these enzymes on Ser-1106 phosphorylation. Down-regulation of these isozymes with targeted si-RNAs led to hypophosphorylation of the Ser-1106 containing peptide. However, si-RNA-mediated down-regulation of CKIIα and α′ did not alter Ser-1106 phosphorylation. Furthermore, reduced phosphorylation of Ser-1106, observed in HRR25 (CKIδ/ɛ homologous gene)-deleted Saccharomyces cerevisiae cells transformed with human topo IIα, was enhanced following expression of human CKIɛ. Down-regulation of CKIδ and CKIɛ also led to reduced formation of etoposide stabilized topo II–DNA cleavable complex. These results provide strong support for an essential role of CKIδ/ɛ in phosphorylating Ser-1106 in human topo IIα and in regulating enzyme function.
Collapse
Affiliation(s)
- Adrian G Grozav
- Clinical Pharmacology Program, Taussig Cancer Institute, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Meczes EL, Gilroy KL, West KL, Austin CA. The impact of the human DNA topoisomerase II C-terminal domain on activity. PLoS One 2008; 3:e1754. [PMID: 18335031 PMCID: PMC2262138 DOI: 10.1371/journal.pone.0001754] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 12/27/2007] [Indexed: 11/20/2022] Open
Abstract
Background Type II DNA topoisomerases (topos) are essential enzymes needed for the resolution of topological problems that occur during DNA metabolic processes. Topos carry out an ATP-dependent strand passage reaction whereby one double helix is passed through a transient break in another. Humans have two topoII isoforms, α and β, which while enzymatically similar are differentially expressed and regulated, and are thought to have different cellular roles. The C-terminal domain (CTD) of the enzyme has the most diversity, and has been implicated in regulation. We sought to investigate the impact of the CTD domain on activity. Methodology/Principle Findings We have investigated the role of the human topoII C-terminal domain by creating constructs encoding C-terminally truncated recombinant topoIIα and β and topoIIα+β-tail and topoIIβ+α-tail chimeric proteins. We then investigated function in vivo in a yeast system, and in vitro in activity assays. We find that the C-terminal domain of human topoII isoforms is needed for in vivo function of the enzyme, but not needed for cleavage activity. C-terminally truncated enzymes had similar strand passage activity to full length enzymes, but the presence of the opposite C-terminal domain had a large effect, with the topoIIα-CTD increasing activity, and the topoIIβ-CTD decreasing activity. Conclusions/Significance In vivo complementation data show that the topoIIα C-terminal domain is needed for growth, but the topoIIβ isoform is able to support low levels of growth without a C-terminal domain. This may indicate that topoIIβ has an additional localisation signal. In vitro data suggest that, while the lack of any C-terminal domain has little effect on activity, the presence of either the topoIIα or β C-terminal domain can affect strand passage activity. Data indicates that the topoIIβ-CTD may be a negative regulator. This is the first report of in vitro data with chimeric human topoIIs.
Collapse
Affiliation(s)
- Emma L. Meczes
- Institute for Cell and Molecular Biosciences, The University of Newcastle upon Tyne, Newcastle Upon Tyne, United Kingdom
| | - Kathryn L. Gilroy
- Institute for Cell and Molecular Biosciences, The University of Newcastle upon Tyne, Newcastle Upon Tyne, United Kingdom
| | - Katherine L. West
- Division of Cancer Sciences and Molecular Pathology, University of Glasgow, Glasgow, United Kingdom
| | - Caroline A. Austin
- Institute for Cell and Molecular Biosciences, The University of Newcastle upon Tyne, Newcastle Upon Tyne, United Kingdom
- * E-mail:
| |
Collapse
|
13
|
Too much of a good thing: The role of protein kinase CK2 in tumorigenesis and prospects for therapeutic inhibition of CK2. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:33-47. [DOI: 10.1016/j.bbapap.2007.08.017] [Citation(s) in RCA: 245] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 08/21/2007] [Accepted: 08/23/2007] [Indexed: 11/24/2022]
|
14
|
Angermayr M, Hochleitner E, Lottspeich F, Bandlow W. Protein kinase CK2 activates the atypical Rio1p kinase and promotes its cell-cycle phase-dependent degradation in yeast. FEBS J 2007; 274:4654-67. [PMID: 17725716 DOI: 10.1111/j.1742-4658.2007.05993.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Using co-immunoprecipitation combined with MS analysis, we identified the alpha' subunit of casein kinase 2 (CK2) as an interaction partner of the atypical Rio1 protein kinase in yeast. Co-purification of Rio1p with CK2 from Deltacka1 or Deltacka2 mutant extracts shows that Rio1p preferentially interacts with Cka2p in vitro. The C-terminal domain of Rio1p is essential and sufficient for this interaction. Six C-terminally located clustered serines were identified as the only CK2 sites present in Rio1p. Replacement of all six serine residues by aspartate, mimicking constitutive phosphorylation, stimulates Rio1p kinase activity about twofold in vitro compared with wild-type or the corresponding (S > A)(6) mutant proteins. Both mutant alleles (S > A)(6) or (S > D)(6) complement in vivo, however, growth of the RIO1 (S > A)(6) mutant is greatly retarded and shows a cell-cycle phenotype, whereas the behaviour of the RIO1 (S > D)(6) mutant is indistinguishable from wild-type. This suggests that phosphorylation by protein kinase CK2 leads to moderate activation of Rio1p in vivo and promotes cell proliferation. Physiological studies indicate that phosphorylation by CK2 renders the Rio1 protein kinase susceptible to proteolytic degradation at the G(1)/S transition in the cell-division cycle, whereas the non-phosphorylated version is resistant.
Collapse
Affiliation(s)
- Michaela Angermayr
- Department Biologie I, Bereich Genetik, Ludwig-Maximilians-Universität München, Germany.
| | | | | | | |
Collapse
|
15
|
McClendon AK, Osheroff N. DNA topoisomerase II, genotoxicity, and cancer. Mutat Res 2007; 623:83-97. [PMID: 17681352 PMCID: PMC2679583 DOI: 10.1016/j.mrfmmm.2007.06.009] [Citation(s) in RCA: 300] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 06/06/2007] [Accepted: 06/16/2007] [Indexed: 12/23/2022]
Abstract
Type II topoisomerases are ubiquitous enzymes that play essential roles in a number of fundamental DNA processes. They regulate DNA under- and overwinding, and resolve knots and tangles in the genetic material by passing an intact double helix through a transient double-stranded break that they generate in a separate segment of DNA. Because type II topoisomerases generate DNA strand breaks as a requisite intermediate in their catalytic cycle, they have the potential to fragment the genome every time they function. Thus, while these enzymes are essential to the survival of proliferating cells, they also have significant genotoxic effects. This latter aspect of type II topoisomerase has been exploited for the development of several classes of anticancer drugs that are widely employed for the clinical treatment of human malignancies. However, considerable evidence indicates that these enzymes also trigger specific leukemic chromosomal translocations. In light of the impact, both positive and negative, of type II topoisomerases on human cells, it is important to understand how these enzymes function and how their actions can destabilize the genome. This article discusses both aspects of human type II topoisomerases.
Collapse
Affiliation(s)
- A. Kathleen McClendon
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | - Neil Osheroff
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
- Department of Medicine (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
- Corresponding author. Tel: +1 615 3224338; fax: +1 615 3431166, E-mail address: (N. Osheroff)
| |
Collapse
|
16
|
Escargueil A, Larsen A. Mitosis-specific MPM-2 phosphorylation of DNA topoisomerase IIalpha is regulated directly by protein phosphatase 2A. Biochem J 2007; 403:235-42. [PMID: 17212588 PMCID: PMC1874246 DOI: 10.1042/bj20061460] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent results suggest a role for topoIIalpha (topoisomerase IIalpha) in the fine-tuning of mitotic entry. Mitotic entry is accompanied by the formation of specific phosphoepitopes such as MPM-2 (mitotic protein monoclonal 2) that are believed to control mitotic processes. Surprisingly, the MPM-2 kinase of topoIIalpha was identified as protein kinase CK2, otherwise known as a constitutive interphase kinase. This suggested the existence of alternative pathways for the creation of mitotic phosphoepitopes, different from the classical pathway where the substrate is phosphorylated by a mitotic kinase. In the present paper, we report that topoIIalpha is co-localized with both CK2 and PP2A (protein phosphatase 2A) during interphase. Simultaneous incubation of purified topoIIalpha with CK2 and PP2A had minimal influence on the total phosphorylation levels of topoIIalpha, but resulted in complete disappearance of the MPM-2 phosphoepitope owing to opposite sequence preferences of CK2 and PP2A. Accordingly, short-term exposure of interphase cells to okadaic acid, a selective PP2A inhibitor, was accompanied by the specific appearance of the MPM-2 phosphoepitope on topoIIalpha. During early mitosis, PP2A was translocated from the nucleus, while CK2 remained in the nucleus until pro-metaphase thus permitting the formation of the MPM-2 phosphoepitope. These results underline the importance of protein phosphatases as an alternative way of creating cell-cycle-specific phosphoepitopes.
Collapse
Affiliation(s)
- Alexandre E. Escargueil
- Group of Cancer Biology and Therapeutics, Inserm U673, Hôpital Saint-Antoine, 184 rue du Faubourg Saint-Antoine, 75572 Paris Cedex 12, France, and Université Pierre et Marie Curie, Hôpital Saint-Antoine, 184 rue du Faubourg Saint-Antoine, 75572 Paris Cedex 12, France
| | - Annette K. Larsen
- Group of Cancer Biology and Therapeutics, Inserm U673, Hôpital Saint-Antoine, 184 rue du Faubourg Saint-Antoine, 75572 Paris Cedex 12, France, and Université Pierre et Marie Curie, Hôpital Saint-Antoine, 184 rue du Faubourg Saint-Antoine, 75572 Paris Cedex 12, France
- To whom correspondence should be addressed (email )
| |
Collapse
|
17
|
Kallmeyer AK, Keeling KM, Bedwell DM. Eukaryotic release factor 1 phosphorylation by CK2 protein kinase is dynamic but has little effect on the efficiency of translation termination in Saccharomyces cerevisiae. EUKARYOTIC CELL 2006; 5:1378-87. [PMID: 16896221 PMCID: PMC1539132 DOI: 10.1128/ec.00073-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Accepted: 06/05/2006] [Indexed: 11/20/2022]
Abstract
Protein synthesis requires a large commitment of cellular resources and is highly regulated. Previous studies have shown that a number of factors that mediate the initiation and elongation steps of translation are regulated by phosphorylation. In this report, we show that a factor involved in the termination step of protein synthesis is also subject to phosphorylation. Our results indicate that eukaryotic release factor 1 (eRF1) is phosphorylated in vivo at serine 421 and serine 432 by the CK2 protein kinase (previously casein kinase II) in the budding yeast Saccharomyces cerevisiae. Phosphorylation of eRF1 has little effect on the efficiency of stop codon recognition or nonsense-mediated mRNA decay. Also, phosphorylation is not required for eRF1 binding to the other translation termination factor, eRF3. In addition, we provide evidence that the putative phosphatase Sal6p does not dephosphorylate eRF1 and that the state of eRF1 phosphorylation does not influence the allosuppressor phenotype associated with a sal6Delta mutation. Finally, we show that phosphorylation of eRF1 is a dynamic process that is dependent upon carbon source availability. Since many other proteins involved in protein synthesis have a CK2 protein kinase motif near their extreme C termini, we propose that this represents a common regulatory mechanism that is shared by factors involved in all three stages of protein synthesis.
Collapse
Affiliation(s)
- Adam K Kallmeyer
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA
| | | | | |
Collapse
|
18
|
Olsten MEK, Weber JE, Litchfield DW. CK2 interacting proteins: emerging paradigms for CK2 regulation? Mol Cell Biochem 2006; 274:115-24. [PMID: 16335533 DOI: 10.1007/s11010-005-3072-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Protein kinase CK2 represents a small family of highly conserved protein kinases involved in a complex series of cellular events. Furthermore, CK2 has been localised to many discrete cellular sites and has an extensive and diverse array of substrates and interaction partners in cells. Despite considerable investigation, the precise mechanism(s) of regulation of CK2 in cells remains poorly understood. In consideration of the prospect that cells contain many distinct sub-populations of CK2 that are distinguished on the basis of localisation and/or interactions with other cellular components, one possibility is that there may be differential regulation of specific sub-populations of CK2. With this in mind, some of the individual sub-populations of CK2 may be regulated through particular protein-protein interactions that may play a role in recruiting CK2 into the vicinity of its substrates and/or modulating its ability to phosphorylate specific cellular targets. In this respect, here we examine two CK2-interacting proteins, namely Pin1 and CKIP-1 that have been shown to participate in the modulation of CK2 specificity or the subcellular localisation of CK2, respectively. One aspect of this work has been focused on the prospect that Pin1 interacts with CK2 in response to UV stimulation in a manner analogous to the phosphorylation-dependent interactions of CK2 that occur following the mitotic phosphorylation of CK2. A second aspect of this work involves an examination of the structural basis for interactions between CK2 and CKIP-1 with emphasis on a putative HIKE domain in CK2.
Collapse
Affiliation(s)
- Mary Ellen K Olsten
- Department of Biochemistry, Siebens-Drake Research Institute, University of Western Ontario, London, Ontario, Canada N6A 5CI
| | | | | |
Collapse
|
19
|
Poole A, Poore T, Bandhakavi S, McCann RO, Hanna DE, Glover CVC. A global view of CK2 function and regulation. Mol Cell Biochem 2006; 274:163-70. [PMID: 16342414 DOI: 10.1007/s11010-005-2945-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The wealth of biochemical, molecular, genetic, genomic, and bioinformatic resources available in S. cerevisiae make it an excellent system to explore the global role of CK2 in a model organism. Traditional biochemical and genetic studies have revealed that CK2 is required for cell viability, cell cycle progression, cell polarity, ion homeostasis, and other functions, and have identified a number of potential physiological substrates of the enzyme. Data mining of available bioinformatic resources indicates that (1) there are likely to be hundreds of CK2 targets in this organism, (2) the majority of predicted CK2 substrates are involved in various aspects of global gene expression, (3) CK2 is present in several nuclear protein complexes predicted to have a role in chromatin structure and remodeling, transcription, or RNA metabolism, and (4) CK2 is localized predominantly in the nucleus. These bioinformatic results suggest that the observed phenotypic consequences of CK2 depletion may lie downstream of primary defects in chromatin organization and/or global gene expression. Further progress in defining the physiological role of CK2 will almost certainly require a better understanding of the mechanism of regulation of the enzyme. Beginning with the crystal structure of the human CK2 holoenzyme, we present a molecular model of filamentous CK2 that is consistent with earlier proposals that filamentous CK2 represents an inactive form of the enzyme. The potential role of filamentous CK2 in regulation in vivo is discussed.
Collapse
Affiliation(s)
- Allison Poole
- Department of Biochemistry and Molecular Biology, Life Sciences Building, The University of Georgia, Athens, GA, USA
| | | | | | | | | | | |
Collapse
|
20
|
Bjørling-Poulsen M, Siehler S, Wiesmüller L, Meek D, Niefind K, Issinger OG. The 'regulatory' beta-subunit of protein kinase CK2 negatively influences p53-mediated allosteric effects on Chk2 activation. Oncogene 2005; 24:6194-200. [PMID: 15940255 DOI: 10.1038/sj.onc.1208762] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The 'regulatory' beta-subunit of protein kinase CK2 has previously been shown to interact with protein kinases such as A-Raf, c-Mos, Lyn and Chk1 in addition to the catalytic subunit of CK2. Sequence alignments suggest that these interactions have a structural basis, and hence other protein kinases harboring corresponding sequences may be potential interaction partners for CK2beta. We show here that Chk2 specifically interacts with CK2beta in vitro and in cultured cells, and that activation of Chk2 leads to a reduction of this interaction. Additionally, we show that the presence of the CK2beta-subunit significantly reduces the Chk2-catalysed phosphorylation of p53 in vitro. These findings support the notion that CK2beta can act as a general modulator of remote docking sites in protein kinase--substrate interactions.
Collapse
|
21
|
Olsten MEK, Litchfield DW. Order or chaos? An evaluation of the regulation of protein kinase CK2. Biochem Cell Biol 2005; 82:681-93. [PMID: 15674436 DOI: 10.1139/o04-116] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CK2 is a highly conserved, ubiquitously expressed protein serine/threonine kinase present in all eukaryotes. Circumscribed as having a vast array of substrates located in a number of cellular compartments, CK2 has been implicated in critical cellular processes such as proliferation, apoptosis, differentiation, and transformation. Despite advances in elucidating its substrates and involvement in cellular regulation, its precise mode of regulation remains poorly defined. In this respect, there are currently conflicting views as to whether CK2 is constitutively active or modulated in response to specific stimuli. Perhaps an important consideration in resolving these apparent discrepancies is recognition of the existence of many discrete CK2 subpopulations that are distinguished from one another by localization or association with distinct cellular components. The existence of these subpopulations brings to light the possibility of each population being regulated independently rather than the entire cellular CK2 content being regulated globally. Logically, each local population may then be regulated in a distinct manner to carry out its precise function(s). This review will examine those mechanisms including regulated expression and assembly of CK2 subunits, phosphorylation of CK2, and interactions with small molecules or cellular proteins that could contribute to the local regulation of distinct CK2 populations.
Collapse
Affiliation(s)
- Mary Ellen K Olsten
- Department of Biochemistry, Siebens-Drake Research Institute, University of Western Ontario, London, ON N6A 5C1, Canada
| | | |
Collapse
|
22
|
Olsten MEK, Canton DA, Zhang C, Walton PA, Litchfield DW. The Pleckstrin Homology Domain of CK2 Interacting Protein-1 Is Required for Interactions and Recruitment of Protein Kinase CK2 to the Plasma Membrane. J Biol Chem 2004; 279:42114-27. [PMID: 15254037 DOI: 10.1074/jbc.m407628200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
CKIP-1 is a recently identified interaction partner of protein kinase CK2 with a number of protein-protein interaction motifs, including an N-terminal pleckstrin homology domain. To test the hypothesis that CKIP-1 has a role in targeting CK2 to specific locations, we examined the effects of CKIP-1 on the localization of CK2. These studies demonstrated that CKIP-1 can recruit CK2 to the plasma membrane. Furthermore, the pleckstrin homology domain of CKIP-1 was found to be required for interactions with CK2 and for the recruitment of CK2 to the plasma membrane. In this regard, point mutations in this domain abolish membrane localization and compromise interactions with CK2. In addition, replacement of the pleckstrin homology domain with a myristoylation signal was insufficient to elicit any interaction with CK2. An investigation of the lipid binding of CKIP-1 reveals that it has broad specificity. A comparison with other pleckstrin homology domains revealed that the pleckstrin homology domain of CKIP-1 is distinct from other defined classes of pleckstrin homology domains. Finally, examination of CK2alpha for a region that mediates interactions with CKIP-1 revealed a putative HIKE domain, a complex motif found exclusively in proteins that bind pleckstrin homology domains. However, mutations within this motif were not able to abolish CKIP-1-CK2 interactions suggesting that this motif by itself may not be sufficient to mediate interactions. Overall, these results provide novel insights into how CK2, a predominantly nuclear enzyme, is targeted to the plasma membrane, and perhaps more importantly how it may be regulated.
Collapse
Affiliation(s)
- Mary Ellen K Olsten
- Departments of Biochemistry and Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | | | |
Collapse
|
23
|
Schwindling SL, Noll A, Montenarh M, Götz C. Mutation of a CK2 phosphorylation site in cdc25C impairs importin α/β binding and results in cytoplasmic retention. Oncogene 2004; 23:4155-65. [PMID: 15064744 DOI: 10.1038/sj.onc.1207566] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
cdc25C is a phosphatase, which activates the mitosis-promoting factor cyclin B1/cdc2 by dephosphorylation, and thus triggers G(2)/M transition. The activity of cdc25C itself is controlled by phosphorylation of certain amino-acid residues, which among other things determines the subcellular localization of the enzyme. Here, we describe a new phosphorylation site at threonine 236 of cdc25C, which is phosphorylated by protein kinase CK2. This phosphorylation site is located near the nuclear localization signal (amino acids 239-245). We demonstrate that cdc25C interacts with importin beta and the importin alpha/beta heterodimer but not with importin alpha. We further found that a cdc25C phosphorylation mutant where threonine 236 was replaced by aspartic acid as well as cdc25C phosphorylated by CK2 binds importin beta or the importin alpha/beta heterodimer less efficiently than wild type or the corresponding alanine mutant. Furthermore, the cdc25C(T236D) shows a retarded uptake into the nucleus in a cell import assay. Inhibition of protein kinase CK2 enzyme activity in vivo resulted in an enhanced nuclear localization of cdc25C. Thus, phosphorylation of cdc25C at threonine 236 is an important signal for the retention of cdc25C in the cytoplasm.
Collapse
Affiliation(s)
- Sandra L Schwindling
- Universität des Saarlandes, Medizinische Biochemie und Molekularbiologie, Gebäude 44, D-66421 Homburg, Germany
| | | | | | | |
Collapse
|
24
|
Chikamori K, Grabowski DR, Kinter M, Willard BB, Yadav S, Aebersold RH, Bukowski RM, Hickson ID, Andersen AH, Ganapathi R, Ganapathi MK. Phosphorylation of serine 1106 in the catalytic domain of topoisomerase II alpha regulates enzymatic activity and drug sensitivity. J Biol Chem 2003; 278:12696-702. [PMID: 12569090 DOI: 10.1074/jbc.m300837200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Topoisomerases alter DNA topology and are vital for the maintenance of genomic integrity. Topoisomerases I and II are also targets for widely used antitumor agents. We demonstrated previously that in the human leukemia cell line, HL-60, resistance to topoisomerase (topo) II-targeting drugs such as etoposide is associated with site-specific hypophosphorylation of topo II alpha. This effect can be mimicked in sensitive cells treated with the intracellular Ca(2+) chelator, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA-AM). Here we identify Ser-1106 as a major phosphorylation site in the catalytic domain of topo II alpha. This site lies within the consensus sequence for the acidotrophic kinases, casein kinase I and casein kinase II. Mutation of serine 1106 to alanine (S1106A) abrogates phosphorylation of phosphopeptides that were found to be hypophosphorylated in resistant HL-60 cells or sensitive cells treated with BAPTA-AM. Purified topo II alpha containing a S1106A substitution is 4-fold less active than wild type topo II alpha in decatenating kinetoplast DNA and also exhibits a 2-4-fold decrease in the level of etoposide-stabilized DNA cleavable complex formation. Saccharomyces cerevisiae (JN394t2-4) cells expressing S1106A mutant topo II alpha protein are more resistant to the cytotoxic effects of etoposide or amsacrine. These results demonstrate that Ca(2+)-regulated phosphorylation of Ser-1106 in the catalytic domain of topo II alpha modulates the enzymatic activity of this protein and sensitivity to topo II-targeting drugs.
Collapse
Affiliation(s)
- Kenichi Chikamori
- Experimental Therapeutics Program, Taussig Cancer Center, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Cortés F, Pastor N. Induction of endoreduplication by topoisomerase II catalytic inhibitors. Mutagenesis 2003; 18:105-12. [PMID: 12621064 DOI: 10.1093/mutage/18.2.105] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The striking phenomenon of endoreduplication has long attracted attention from cytogeneticists and researchers into cell cycle enzymology and dynamics alike. Because of the variety of agents able to induce endoreduplication and the various cell types where it has been described, until now no clear or unique mechanism of induction of this phenomenon, rare in animals but otherwise quite common in plants, has been proposed. Recent years, however, have witnessed the unfolding of a number of essential physiological roles for DNA topoisomerase II, with special emphasis on its major role in mitotic chromosome segregation after DNA replication. In spite of the lack of mammalian mutants defective in topoisomerase II as compared with yeast, experiments with inhibitors of the enzyme have supported the hypothesis that this crucial untangling of daughter DNA molecules by passing an intact helix through a transient double-stranded break carried out by the enzyme, when it fails, leads to aberrant mitosis that results in endoreduplication, polyploidy and eventually cell death. Anticancer drugs that interfere with topoisomerase II can be classified into two groups. The classical poisons act by stabilizing the enzyme in the so-called cleavable complex and result in DNA damage, which represents a problem in the study of endoreduplication. The true catalytic inhibitors, which are not cleavable complex stabilizers, allow us to use doses efficient in the induction of endoreduplication while eliminating high levels of DNA and chromosome damage. This review will discuss the basic and applied aspects of this as yet scarcely explored field.
Collapse
Affiliation(s)
- Felipe Cortés
- Department of Cell Biology, Faculty of Biology, University of Seville, Av Reina Mercedes, 6, E-41012 Seville, Spain.
| | | |
Collapse
|
26
|
Abstract
It is thought that when tumor cells are treated with anticancer drugs, they die through the apoptotic pathway and that cell resistance to cancer chemotherapy is mainly a resistance to apoptosis commitment. p53 is not functional in nearly half of the tumors examined and because of its involvement (directly or through its target genes) in the apoptotic pathway, drug resistance to chemotherapy has been largely attributed to the status of this "tumor suppressor protein". Topoisomerase II (topo II) inhibitors are widely used not only as single agents, but also in the majority of combination treatment protocols for hematologic malignancies and solid tumors. The relationship between p53 and topo II raises many questions about basic regulatory, biochemical, structural and functional characteristics that could be different in cells in different tissues, and most importantly, between different tumor cell types and their normal tissue counterpart. Understanding these relationships may lead to strategies for chemotherapy optimization and further precision targeting of tumor cells in order to avoid drug resistance and thereby chemotherapy failure.
Collapse
Affiliation(s)
- Nikola I Valkov
- Department of Interdisciplinary Oncology, H Lee Moffitt Cancer Center and Research Institute, University of South Florida, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | | |
Collapse
|
27
|
Bandhakavi S, McCann RO, Hanna DE, Glover CVC. A positive feedback loop between protein kinase CKII and Cdc37 promotes the activity of multiple protein kinases. J Biol Chem 2003; 278:2829-36. [PMID: 12435747 DOI: 10.1074/jbc.m206662200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report here the identification of CDC37, which encodes a putative Hsp90 co-chaperone, as a multicopy suppressor of a temperature-sensitive allele (cka2-13(ts)) of the CKA2 gene encoding the alpha' catalytic subunit of protein kinase CKII. Unlike wild-type cells, cka2-13 cells were sensitive to the Hsp90-specific inhibitor geldanamycin, and this sensitivity was suppressed by overexpression of either Hsp90 or Cdc37. However, only CDC37 was capable of suppressing the temperature sensitivity of a cka2-13 strain, implying that Cdc37 is the limiting component. Immunoprecipitation of metabolically labeled Cdc37 from wild-type versus cka2-13 strains revealed that Cdc37 is a physiological substrate of CKII, and Ser-14 and/or Ser-17 were identified as the most likely sites of CKII phosphorylation in vivo. A cdc37-S14,17A strain lacking these phosphorylation sites exhibited severe growth and morphological defects that were partially reversed in a cdc37-S14,17E strain. Reduced CKII activity was observed in both cdc37-S14A and cdc37-S17A mutants at 37 degrees C, and cdc37-S14A or cdc37-S14,17A overexpression was incapable of protecting cka2-13 mutants on media containing geldanamycin. Additionally, CKII activity was elevated in cells arrested at the G(1) and G(2)/M phases of the cell cycle, the same phases during which Cdc37 function is essential. Collectively, these data define a positive feedback loop between CKII and Cdc37. Additional genetic assays demonstrate that this CKII/Cdc37 interaction positively regulates the activity of multiple protein kinases in addition to CKII.
Collapse
Affiliation(s)
- Sricharan Bandhakavi
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-7229, USA
| | | | | | | |
Collapse
|
28
|
Maiti T, Bandyopadhyay A, Maitra U. Casein kinase II phosphorylates translation initiation factor 5 (eIF5) in Saccharomyces cerevisiae. Yeast 2003; 20:97-108. [PMID: 12518314 DOI: 10.1002/yea.937] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Eukaryotic translation initiation factor 5 (eIF5) interacts with the 40S initiation complex (40S-eIF3-mRNA-Met-tRNA(f)-eIF2-GTP) to promote the hydrolysis of ribosome-bound GTP. In Saccharomyces cerevisiae, eIF5 is encoded by a single-copy essential gene, TIF5, that is required for cell growth and viability. In this work, we show that eIF5 immunoprecipitated from cell-free extracts of (32)P-labelled yeast cells is phosphorylated on multiple serine residues. Phosphopeptide mapping reveals four major sites of phosphorylation that appear to be identical to recombinant yeast eIF5 sites phosphorylated in vitro by casein kinase II. Furthermore, analysis of eIF5 isolated from a yeast strain having a conditional mutant of casein kinase II indicates that phosphorylation of eIF5 is completely abolished at the non-permissive temperature. Additionally, haploid yeast strains were constructed to contain Ser-to-Ala mutations at the five casein kinase II consensus sequences in eIF5; in these cells, eIF5 phosphorylation was absent. Surprisingly, substitution of the TIF5 gene mutated at these sites for the wild-type gene had no obvious effect on cell growth under normal growth conditions. The implications of these results in eIF5 function are discussed.
Collapse
Affiliation(s)
- Tapan Maiti
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, USA
| | | | | |
Collapse
|
29
|
Messenger MM, Saulnier RB, Gilchrist AD, Diamond P, Gorbsky GJ, Litchfield DW. Interactions between protein kinase CK2 and Pin1. Evidence for phosphorylation-dependent interactions. J Biol Chem 2002; 277:23054-64. [PMID: 11940573 DOI: 10.1074/jbc.m200111200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The peptidyl-prolyl isomerase Pin1 interacts in a phosphorylation-dependent manner with several proteins involved in cell cycle events. In this study, we demonstrate that Pin1 interacts with protein kinase CK2, an enzyme that generally exists in tetrameric complexes composed of two catalytic CK2 alpha and/or CK2 alpha' subunits together with two regulatory CK2 beta subunits. Our results indicate that Pin1 can interact with CK2 complexes that contain CK2 alpha. Furthermore, Pin1 can interact directly with the C-terminal domain of CK2 alpha that contains residues that are phosphorylated in vitro by p34(Cdc2) and in mitotic cells. Substitution of the phosphorylation sites of CK2 alpha with alanines resulted in decreased interactions between Pin1 and CK2. The other catalytic isoform of CK2, designated CK2 alpha', is not phosphorylated in mitotic cells and does not interact with Pin1, but a chimeric protein consisting of CK2 alpha' with the C terminus of CK2 alpha was phosphorylated in mitotic cells and interacts with Pin1, further implicating the phosphorylation sites in the interaction. In vitro, Pin1 inhibits the phosphorylation of Thr-1342 on human topoisomerase II alpha by CK2. Topoisomerase II alpha also interacts with Pin1 suggesting that the effect of Pin1 on the phosphorylation of Thr-1342 could result from its interactions with CK2 and/or topoisomerase II alpha. As compared with wild-type Pin1, isomerase-deficient and WW domain-deficient mutants of Pin1 are impaired in their ability to interact with CK2 and to inhibit the CK2-catalyzed phosphorylation of topoisomerase II alpha. Collectively, these results indicate that Pin1 and CK2 alpha interact and suggest a possible role for Pin1 in the regulation of topoisomerase II alpha. Furthermore, these results provide new insights into the functional role of the mitotic phosphorylation of CK2 and provide a new mechanism for selectively regulating the ability of CK2 to phosphorylate one of its mitotic targets.
Collapse
Affiliation(s)
- Moira M Messenger
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Kalive M, Trott RL, Bidwai AP. A gene located at 72A in Drosophila melanogaster encodes a novel zinc-finger protein that interacts with protein kinase CK2. Mol Cell Biochem 2001; 227:99-105. [PMID: 11827180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Drosophila melanogaster protein kinase CK2 (DmCK2) is a Ser/Thr protein kinase composed of catalytic alpha and regulatory beta subunits associated as an alpha2beta2 heterotetramer. Using the two hybrid system, we have screened a Drosophila embryo cDNA library in order to identify proteins that interact with DmCK2alpha. One of these cDNAs encodes a novel previously undescribed zinc-finger protein, which we call ZFP47. ZFP47 interacts with DmCK2alpha but not with DmCK2beta, indicating that this interaction is specific for the catalytic subunit of CK2. In situ hybridization to polytene chromosomes indicates that the corresponding gene is located at the 72A interval of chromosome III. Sequence analysis indicates that ZFP47 contains a consensus site for phosphorylation by CK2, 4 C1H1-type zinc-fingers, and a bipartite nuclear localization signal. Consistent with the prediction of a site for phosphorylation by CK2, we demonstrate that ZFP47 is phosphorylated by CK2 purified from Drosophila embryos. These studies demonstrate that ZFP47 is a new physiological partner and substrate of CK2.
Collapse
Affiliation(s)
- M Kalive
- Department of Biology, West Virginia University, Morgantown 26506-6057, USA
| | | | | |
Collapse
|
31
|
Ishida R, Takashima R, Koujin T, Shibata M, Nozaki N, Seto M, Mori H, Haraguchi T, Hiraoka Y. Mitotic specific phosphorylation of serine-1212 in human DNA topoisomerase IIalpha. Cell Struct Funct 2001; 26:215-26. [PMID: 11699638 DOI: 10.1247/csf.26.215] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
It is known that topoisomerase IIalpha is phosphorylated by several kinases. To elucidate the role of phosphorylation of topoisomerase IIalpha in the cell cycle, we have examined the cell cycle behavior of phosphorylated topoisomerase IIalpha in HeLa cells using antibodies against several phospho-oligopeptides of this enzyme. Here we demonstrate that serine1212 in topoisomerase IIalpha is phosphorylated only in the mitotic phase. Using an antibody against an oligopeptide containing phosphoserine-1212 in topoisomerase IIalpha (PS1212), subcellular localization of topoisomerase IIalpha phosphorylated at serine1212 was examined by indirect immunofluorescence staining, and compared with that of overall topoisomerase IIalpha. Serine1212-phosphorylated topoisomerase IIalpha was localized specifically on mitotic chromosomes, but not on interphase chromosomes; this result contrasts with overall topoisomerase IIalpha which was observed on chomosomes in both interphase and mitosis. Serine1212-phosphorylated topoisomerase lIalpha first appeared on chromosome arms in prophase, became concentrated on the centromeres in metaphase, and disappeared in early telophase. In addition, ICRF-193, a catalytic inhibitor of topoisomerase II, prevented accumulation of serine1212-phosphorylated topoisomerase IIalpha at the centromeres. These results indicate that serine1212 of topoisomerase IIalpha is phosphorylated specifically during mitosis, and suggest that the serine1212-phosphorylated topoisomerase IIalpha acts on resolving topological constraint progressively from the chromosome arm to the centromere during metaphase chromosome condensation.
Collapse
Affiliation(s)
- R Ishida
- Laboratory of Chemotherapy, Aichi Cancer Center Research Institute, Nagoya, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Matsumoto Y, Takano H, Kunishio K, Nagao S, Fojo T. Expression of drug resistance genes in VP-16 and mAMSA-selected human carcinoma cells. Jpn J Cancer Res 2001; 92:778-84. [PMID: 11473729 PMCID: PMC5926780 DOI: 10.1111/j.1349-7006.2001.tb01161.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The cell lines described in the present study were isolated as part of an effort to understand resistance to topoisomerase (topo) II inhibitors. To that end, 50 sublines were isolated from four human breast cancer cell lines, i.e., MCF-7, T47D, MDA-MB-231, and ZR-75B. As an initial step, a concentration that would be lethal to the majority of cells (IC99) was selected for both VP-16 and mAMSA, for each cell line. The identification of an increasing number of putative drug resistance-related proteins provided the opportunity to examine expression of the corresponding genes in the selected cell lines. Northern blot analysis revealed different responses to the selecting agents in the different cell lines. Previous studies examining expression of multidrug resistance (MDR)-1 in resistant cell lines had found undetectable levels in all cells. In the ZR-75B sublines, increased expression of MDR-associated protein (MRP) and canalicular multispecific organic anion transporter (cMOAT) was observed, and when the relative levels of overexpression were compared, a high correlation was found. In contrast, increased expression of MRP was observed in some of the MDA-MB-231 sublines, without a concomitant increase in cMOAT expression. Finally, in both T47D and MCF-7 sublines, increased expression of cMOAT or MRP was observed infrequently, and where it occurred, was of a much smaller magnitude. In the analysis of expression of MRP, the highest levels were found in the ZR-75B and MDA-MB-231 sublines, with lower levels in the MCF-7 and T47D clones. Similarly, differences in the expression of topo IIalpha were observed among the sublines. Although the differences in expression appear to depend on the parental cell line from which the resistant sublines were derived, a strong correlation was observed between the expression of MRP and the levels of topo IIalpha. Cell lines with low levels of MRP had lower levels of topo IIalpha, while those with high levels of MRP maintained higher levels of topo IIalpha. While a reduced topo IIalpha level was common, there did not appear to be a compensating increase in the expression of topo IIbeta or topo I or casein kinase (CK) IIalpha in any of the cell lines. While the possibility that such compensation could occur has been discussed and even reported in some cell lines, such an adaptation was not observed in the present study, suggesting that it is not common.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP-Binding Cassette Transporters/biosynthesis
- ATP-Binding Cassette Transporters/genetics
- Amsacrine/pharmacology
- Anion Transport Proteins
- Antigens, Neoplasm
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents, Phytogenic/pharmacology
- Blotting, Northern
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Carcinoma/drug therapy
- Carcinoma/genetics
- Carcinoma/metabolism
- Carrier Proteins/biosynthesis
- Carrier Proteins/genetics
- DNA Topoisomerases, Type I/biosynthesis
- DNA Topoisomerases, Type I/genetics
- DNA Topoisomerases, Type II/biosynthesis
- DNA Topoisomerases, Type II/genetics
- DNA-Binding Proteins
- Drug Resistance, Multiple/genetics
- Drug Resistance, Neoplasm/genetics
- Drug Screening Assays, Antitumor
- Etoposide/pharmacology
- Humans
- Isoenzymes/biosynthesis
- Isoenzymes/genetics
- Multidrug Resistance-Associated Proteins
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Y Matsumoto
- Department of Neurological Surgery, Kagawa Medical University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | | | | | | | | |
Collapse
|
33
|
Matsumoto Y, Takano H, Kunishio K, Nagao S, Fojo T. Hypophosphorylation of topoisomerase IIalpha in etoposide (VP-16)-resistant human carcinoma cell lines associated with carboxy-terminal truncation. Jpn J Cancer Res 2001; 92:799-805. [PMID: 11473732 PMCID: PMC5926775 DOI: 10.1111/j.1349-7006.2001.tb01164.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Topoisomerase IIalpha is a target for many chemotherapeutic agents in clinical use. To define mechanisms of resistance and regions crucial for the function of topoisomerase IIalpha, drug-resistant cell lines have been isolated following exposure to topoisomerase II poisons. Two resistant sublines, T47D-VP and MCF-7-VP, were isolated from human carcinoma cell lines following exposure to 300 or 500 ng / ml etoposide (VP-16). Cytotoxicity studies confirmed resistance to etoposide and other topoisomerase II poisons. KCl-sodium dodecyl sulfate (K-SDS) precipitation assays using intact cells showed reduced DNA-topoisomerase II complex formation following VP-16 or amsacrine (m-AMSA). RNAse protection analysis identified a deletion of 200 base pairs in the topoisomerase IIalpha cDNA of T47D-VP and rising dbl quote, left (low)AA insertion" in the topoisomerase IIalpha cDNA of MCF-7-VP. Reduced topoisomerase IIalpha mRNA and protein levels were observed in both cell lines. It was somewhat surprising to find that nuclear extracts from T47D-VP and MCF-7-VP cells had comparable topoisomerase II activity to that of parental cells. Analysis of the extent of phosphorylation demonstrated that topoisomerase IIalpha from the resistant cells was relatively hypophosphorylated compared to that of parental cells. In these cell lines, hypophosphorylation secondary to loss of a portion of the C-terminal domain of topoisomerase IIalpha mediated the restored activity, despite a fall in topoisomerase IIalpha mRNA and protein, and this resulted in cross resistance to topoisomerase II poisons.
Collapse
Affiliation(s)
- Y Matsumoto
- Department of Neurological Surgery, Kagawa Medical University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | | | | | | | | |
Collapse
|
34
|
Fortune JM, Lavrukhin OV, Gurnon JR, Van Etten JL, Lloyd RS, Osheroff N. Topoisomerase II from Chlorella virus PBCV-1 has an exceptionally high DNA cleavage activity. J Biol Chem 2001; 276:24401-8. [PMID: 11323425 DOI: 10.1074/jbc.m101693200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chlorella virus PBCV-1 topoisomerase II is the only functional type II enzyme known to be encoded by a virus that infects eukaryotic cells. However, it has not been established whether the protein is expressed following viral infection or whether the enzyme has any catalytic features that distinguish it from cellular type II topoisomerases. Therefore, the present study characterized the physiological expression of PBCV-1 topoisomerase II and individual reaction steps catalyzed by the enzyme. Results indicate that the topoisomerase II gene is widely distributed among Chlorella viruses and that the protein is expressed 60-90 min after viral infection of algal cells. Furthermore, the enzyme has an extremely high DNA cleavage activity that sets it apart from all known eukaryotic type II topoisomerases. Levels of DNA scission generated by the viral enzyme are approximately 30 times greater than those observed with human topoisomerase IIalpha. The high levels of cleavage are not due to inordinately tight enzyme-DNA binding or to impaired DNA religation. Thus, they most likely reflect an elevated forward rate of scission. The robust DNA cleavage activity of PBCV-1 topoisomerase II provides a unique tool for studying the catalytic functions of type II topoisomerases.
Collapse
Affiliation(s)
- J M Fortune
- Departments of Biochemistry and Medicine (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | | | | | | | |
Collapse
|
35
|
Glover CV. On the physiological role of casein kinase II in Saccharomyces cerevisiae. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 59:95-133. [PMID: 9427841 DOI: 10.1016/s0079-6603(08)61030-2] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Casein kinase II (CKII) is a highly conserved serine/threonine protein kinase that is ubiquitous in eukaryotic organisms. This review summarizes available data on CKII of the budding yeast Saccharomyces cerevisiae, with a view toward defining the possible physiological role of the enzyme. Saccharomyces cerevisiae CKII is composed of two catalytic and two regulatory subunits encoded by the CKA1, CKA2, CKB1, and CKB2 genes, respectively. Analysis of null and conditional alleles of these genes identifies a requirement for CKII in at least four biological processes: flocculation (which may reflect an effect on gene expression), cell cycle progression, cell polarity, and ion homeostasis. Consistent with this, isolation of multicopy suppressors of conditional cka mutations has identified three genes that have a known or potential role in either the cell cycle or cell polarity: CDC37, which is required for cell cycle progression in both G1 and G2/M; ZDS1 and 2, which appear to have a function in cell polarity; and SUN2, which encodes a protein of the regulatory component of the 26S protease. The identity and properties of known CKII substrates in S. cerevisiae are also reviewed, and advantage is taken of the complete genomic sequence to predict globally the substrates of CKII in this organism. Although the combined data do not yield a definitive picture of the physiological role of CKII, it is proposed that CKII serves a signal transduction function in sensing and/or communicating information about the ionic status of the cell to the cell cycle machinery.
Collapse
Affiliation(s)
- C V Glover
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens 30602, USA
| |
Collapse
|
36
|
Trott RL, Kalive M, Paroush Z, Bidwai AP. Drosophila melanogaster casein kinase II interacts with and phosphorylates the basic helix-loop-helix proteins m5, m7, and m8 derived from the Enhancer of split complex. J Biol Chem 2001; 276:2159-67. [PMID: 11208814 DOI: 10.1074/jbc.m005996200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Drosophila melanogaster casein kinase II (DmCKII) is composed of catalytic (alpha) and regulatory (beta) subunits associated as an alpha2beta2 heterotetramer. Using the two-hybrid system, we have screened a D. melanogaster embryo cDNA library for proteins that interact with DmCKIIalpha. One of the cDNAs isolated in this screen encodes m7, a basic helix-loop-helix (bHLH)-type transcription factor encoded by the Enhancer of split complex (E(spl)C), which regulates neurogenesis. m7 interacts with DmCKIIalpha but not with DmCKIIbeta, suggesting that this interaction is specific for the catalytic subunit of DmCKII. In addition to m7, we demonstrate that DmCKIIalpha also interacts with two other E(spl)C-derived bHLH proteins, m5 and m8, but not with other members, such as m3 and mC. Consistent with the specificity observed for the interaction of DmCKIIalpha with these bHLH proteins, sequence alignment suggests that only m5, m7, and m8 contain a consensus site for phosphorylation by CKII within a subdomain unique to these three proteins. Accordingly, these three proteins are phosphorylated by DmCKIIalpha, as well as by the alpha2beta2 holoenzyme purified from Drosophila embryos. In line with the prediction of a single consensus site for CKII, replacement of Ser(159) of m8 with either Ala or Asp abolishes phosphorylation, identifying this residue as the site of phosphorylation. We also demonstrate that m8 forms a direct physical complex with purified DmCKII, corroborating the observed two-hybrid interaction between these proteins. Finally, substitution of Ser(159) of m8 with Ala attenuates interaction with DmCKIIalpha, whereas substitution with Asp abolishes the interaction. These studies constitute the first demonstration that DmCKII interacts with and phosphorylates m5, m7, and m8 and suggest a biochemical and/or structural basis for the functional equivalency of these bHLH proteins that is observed in the context of neurogenesis.
Collapse
Affiliation(s)
- R L Trott
- Department of Biology, West Virginia University, Morgantown, West Virginia 26506-6057, USA
| | | | | | | |
Collapse
|
37
|
Petruti-Mot AS, Earnshaw WC. Two differentially spliced forms of topoisomerase IIalpha and beta mRNAs are conserved between birds and humans. Gene 2000; 258:183-92. [PMID: 11111056 DOI: 10.1016/s0378-1119(00)00465-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Screening of chicken cDNA libraries has identified four distinct forms of topoisomerase IIalpha and beta cDNAs. Two of these, designated topo IIalpha-1 and topo IIbeta-1, were previously deposited in the database. The other two, topo IIalpha-2 and topo IIbeta-2, are novel variants that appear to be conserved between chicken and human. Topo IIalpha-2 encodes a protein with an additional 35 amino acids inserted after K321 of the chicken topo IIalpha-1 protein sequence. Topo IIbeta-2 encodes a protein missing 86 amino acids following V27 in the topo IIbeta-1 protein sequence. We have also detected several alternatively spliced forms of human topo IIalpha. One of these, topo IIalpha-3, appears to correspond to chicken topo IIalpha-2. The other two are novel. The existence of these alternatively spliced forms in mature cytoplasmic RNA was confirmed by RT-PCR in several cell lines. Interestingly, these alternatively spliced forms carry sites for post-translational modification, suggesting that they may be subject to differential regulation from the canonical forms. These results suggest that cells express a more complex repertoire of topo II isoforms than previously thought, raising the possibility that different forms of topo II may fulfil specialized functions in chromosome dynamics.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Antigens, Neoplasm
- Base Sequence
- Chickens/genetics
- Conserved Sequence
- DNA/chemistry
- DNA/genetics
- DNA Topoisomerases, Type II/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- DNA-Binding Proteins
- Genetic Variation
- HeLa Cells
- Humans
- Isoenzymes/genetics
- Molecular Sequence Data
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- A S Petruti-Mot
- Wellcome Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | | |
Collapse
|
38
|
Escargueil AE, Plisov SY, Filhol O, Cochet C, Larsen AK. Mitotic phosphorylation of DNA topoisomerase II alpha by protein kinase CK2 creates the MPM-2 phosphoepitope on Ser-1469. J Biol Chem 2000; 275:34710-8. [PMID: 10942766 DOI: 10.1074/jbc.m005179200] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
DNA topoisomerase II alpha is required for chromatin condensation during prophase. This process is temporally linked with the appearance of mitosis-specific phosphorylation sites on topoisomerase IIalpha including one recognized by the MPM-2 monoclonal antibody. We now report that the ability of mitotic extracts to create the MPM-2 epitope on human topoisomerase II alpha is abolished by immunodepletion of protein kinase CK2. Furthermore, the MPM-2 phosphoepitope on topoisomerase II alpha can be generated by purified CK2. Phosphorylation of C-truncated topoisomerase II alpha mutant proteins conclusively shows, that the MPM-2 epitope is present in the last 163 amino acids. Use of peptides containing all conserved CK2 consensus sites in this region indicates that only the peptide containing Arg-1466 to Ala-1485 is able to compete with topoisomerase II alpha for binding of the MPM-2 antibody. Replacement of Ser-1469 with Ala abolishes the ability of the phosphorylated peptide to bind to the MPM-2 antibody while a peptide containing phosphorylated Ser-1469 binds tightly. Surprisingly, the MPM-2 phosphoepitope influences neither the catalytic activity of topoisomerase II alpha nor its ability to form molecular complexes with CK2 in vitro. In conclusion, we have identified protein kinase CK2 as a new MPM-2 kinase able to phosphorylate an important mitotic protein, topoisomerase II alpha, on Ser-1469.
Collapse
Affiliation(s)
- A E Escargueil
- Laboratoire de Biologie et Pharmacologie des Tumeurs, CNRS UMR 8532, Institut Gustave-Roussy PR2, Villejuif 94805 Cedex, France
| | | | | | | | | |
Collapse
|
39
|
Tsai SC, Valkov N, Yang WM, Gump J, Sullivan D, Seto E. Histone deacetylase interacts directly with DNA topoisomerase II. Nat Genet 2000; 26:349-53. [PMID: 11062478 DOI: 10.1038/81671] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Histone deacetylases (HDACs) modify nucleosomal histones, have a key role in the regulation of gene transcription, and may be involved in cell-cycle regulation, differentiation and human cancer. Purified recombinant human HDAC1 protein was used to screen a cDNA expression library, and one of the clones identified encoded DNA topoisomerase II (Topo II), an enzyme known to have a role in transcriptional regulation and chromatin organization. Coimmunoprecipitation experiments indicate that HDAC1 and HDAC2 are associated with Topo II in vivo under normal physiological conditions. Complexes containing Topo II possess HDAC activities, and complexes containing HDAC1 or HDAC2 possess Topo II activities. HDAC and Topo II modify each other's activity in vitro and in vivo. Our results indicate the existence of a functionally coupled complex between these two enzymes and offer insights into the potential mechanisms of action of both enzymes.
Collapse
Affiliation(s)
- S C Tsai
- H. Lee Moffitt Cancer Center & Research Institute, University of South Florida, Tampa, Florida, USA
| | | | | | | | | | | |
Collapse
|
40
|
Rzepecki R, Fisher PA. During both interphase and mitosis, DNA topoisomerase II interacts with DNA as well as RNA through the protein's C-terminal domain. J Cell Sci 2000; 113 ( Pt 9):1635-47. [PMID: 10751154 DOI: 10.1242/jcs.113.9.1635] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA topoisomerase II (topo II) is thought to be a nuclear enzyme; during interphase most was insoluble and could be recovered in the pellet after centrifugation of cell homogenates at 10,000 g (P-10). Upon entry into mitosis, the majority of topo II did not associate with condensed chromosomes but was apparently solubilized and redistributed throughout the cell. Although two non-chromosomal subfractions of mitotic topo II were defined by centrifugation at 130,000 g, the vast majority (>90%) was recovered in the pellet (P-130). In vivo nucleic acid interactions with topo II were monitored by a recently developed approach of UV-photo-crosslinking, immunoprecipitation and (32)P-labeling. P-10 (interphase) topo II was largely associated with DNA. P-130 (mitotic non-chromosomal) topo II was primarily associated with RNA. These nucleic acid interactions with both interphase and mitotic topo II occurred through the catalytically inert and as yet, poorly understood C-terminal domain of the protein. P-10 topo II was highly active enzymatically. Activity, measured by the ability of topo II to decatenate kDNA minicircles, was reduced by treatment with phosphatase. In contrast, P-130 topo II was relatively inactive but activity could be increased by phosphatase treatment. In vivo, P-130 topo II was more heavily phosphorylated than P-10 topo II; in both, only the C-terminal domain of topo II was detectably modified. Our observations suggest that cell cycle-dependent changes in the distribution, nucleic acid interactions and enzymatic activity of topo II are regulated, at least in part, by phosphorylation/dephosphorylation.
Collapse
Affiliation(s)
- R Rzepecki
- The Department of Pharmacological Sciences, University Medical Center, The State University of New York at Stony Brook, Stony Brook, NY 11794-8651, USA
| | | |
Collapse
|
41
|
Bidwai AP, Saxena A, Zhao W, McCann RO, Glover CV. Multiple, closely spaced alternative 5' exons in the DmCKIIbeta gene of Drosophila melanogaster. MOLECULAR CELL BIOLOGY RESEARCH COMMUNICATIONS : MCBRC 2000; 3:283-91. [PMID: 10964752 DOI: 10.1006/mcbr.2000.0223] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Drosophila melanogaster casein kinase II (CKII) is composed of catalytic alpha and regulatory beta subunits. Using the two-hybrid system, we have isolated a number of cDNAs that are related to a previously published cDNA encoding the beta subunit, but exhibit divergent 5' sequences. To determine the source of this sequence variation, we have isolated the gene encoding the beta subunit of CKII. The beta gene contains five exons encompassing the complete open reading frame, as well as five alternative exons in the 5' untranslated region (UTR). Only one 5' UTR exon is contained in each cDNA, implying five distinct classes of transcript. In addition, the beta gene contains at least two poly(A) addition signals which generate additional complexity at the 3' end. The complex pattern of transcription may serve a role in the spatial and/or temporal expression of the beta subunit since, with one exception, all transcripts encode the full-length beta polypeptide. Phylogenetic comparison of the beta genes of Drosophila, C. elegans, and mammals reveals three invariant introns as well as evidence of recent intron gain/loss.
Collapse
Affiliation(s)
- A P Bidwai
- Department of Biology, West Virginia University, Morgantown, West Virginia 26506-6057, USA.
| | | | | | | | | |
Collapse
|
42
|
Fortune JM, Osheroff N. Topoisomerase II as a target for anticancer drugs: when enzymes stop being nice. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2000; 64:221-53. [PMID: 10697411 DOI: 10.1016/s0079-6603(00)64006-0] [Citation(s) in RCA: 259] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Topoisomerase II is an essential enzyme that plays a role in virtually every cellular DNA process. This enzyme interconverts different topological forms of DNA by passing one nucleic acid segment through a transient double-stranded break generated in a second segment. By virtue of its double-stranded DNA passage reaction, topoisomerase II is able to regulate DNA over- and underwinding, and can resolve knots and tangles in the genetic material. Beyond the critical physiological functions of the eukaryotic enzyme, topoisomerase II is the target for some of the most successful anticancer drugs used to treat human malignancies. These agents are referred to as topoisomerase II poisons, because they transform the enzyme into a potent cellular toxin. Topoisomerase II poisons act by increasing the concentration of covalent enzyme-cleaved DNA complexes that normally are fleeting intermediates in the catalytic cycle of topoisomerase II. As a result of their action, these drugs generate high levels of enzyme-mediated breaks in the genetic material of treated cells and ultimately trigger cell death pathways. Topoisomerase II is also the target for a second category of drugs referred to as catalytic inhibitors. Compounds in this category prevent topoisomerase II from carrying out its required physiological functions. Drugs from both categories vary widely in their mechanisms of actions. This review focuses on topoisomerase II function and how drugs alter the catalytic cycle of this important enzyme.
Collapse
Affiliation(s)
- J M Fortune
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
43
|
Karino A, Okano M, Hatomi M, Nakamura T, Ohtsuki K. Biochemical characterization of a casein kinase I-like actin kinase responsible for the actin-induced suppression of casein kinase II activity in vitro. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1472:603-16. [PMID: 10564775 DOI: 10.1016/s0304-4165(99)00187-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
By combination of column chromatographies (heparin-agarose, HiTrap heparin and HiTrap SP columns) and gel filtration on a Superdex 200-pg HPLC column, an actin kinase was partially purified from a 1. 5 M NaCl extract of porcine liver. The actin kinase was finally purified, by actin-Sepharose column chromatography (HPLC), as an actin-binding protein kinase. The biochemical properties, such as (1) requirements of divalent cations (10 mM Mg(2+) and 3 mM Mn(2+)) and effective phosphate acceptors (actin and alpha-casein), (2) phosphorylation of both Ser- and Thr-residues on these two phosphate acceptors, (3) autophosphorylation of the catalytic subunit (approximately 37 kDa), and (4) inhibition kinetics by CK-I-7 (a CK-I specific inhibitor), of the purified actin kinase were similar to those reported for CK-I purified from various mammalian cells, but it was distinguishable from three cellular actin kinases (A-kinase, C-kinase and actin-fragmin kinase (approximately 80 kDa)). The 37 kDa actin kinase-mediated phosphorylation of actin did not relate to its polymerizability. Inhibition of CK-II-mediated phosphorylation of functional cellular proteins, including calmodulin (CaM), by actin was significantly stimulated after its full phosphorylation by the purified 37 kDa actin kinase or rCK-I in vitro. These results suggest that: (1) the 37 kDa Ser/Thr actin-binding kinase may be classified as a member of the CK-I family; and (2) specific phosphorylation of actin by the actin kinase may be involved in the suppression mechanism of CK-II-mediated signal transduction at the cellular level.
Collapse
Affiliation(s)
- A Karino
- Laboratory of Genetical Biochemistry, Kitasato University School of Allied Health Sciences, Kitasato 1-15-1, Sagamihara, Japan
| | | | | | | | | |
Collapse
|
44
|
Dupuy LC, Dobson S, Bitko V, Barik S. Casein kinase 2-mediated phosphorylation of respiratory syncytial virus phosphoprotein P is essential for the transcription elongation activity of the viral polymerase; phosphorylation by casein kinase 1 occurs mainly at Ser(215) and is without effect. J Virol 1999; 73:8384-92. [PMID: 10482589 PMCID: PMC112856 DOI: 10.1128/jvi.73.10.8384-8392.1999] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The major site of in vitro phosphorylation by casein kinase 2 (CK2) was the conserved Ser(232) in the P proteins of human, bovine, and ovine strains of respiratory syncytial virus (RSV). Enzymatic removal of this phosphate group from the P protein instantly halted transcription elongation in vitro. Transcription reconstituted in the absence of P protein or in the presence of phosphate-free P protein produced abortive initiation products but no full-length transcripts. A recombinant P protein in which Ser(232) was mutated to Asp exhibited about half of the transcriptional activity of the wild-type phosphorylated protein, suggesting that the negative charge of the phosphate groups is an important contributor to P protein function. Use of a temperature-sensitive CK2 mutant yeast revealed that in yeast, phosphorylation of recombinant P by non-CK2 kinase(s) occurs mainly at Ser(215). In vitro, P protein could be phosphorylated by purified CK1 at Ser(215) but this phosphorylation did not result in transcriptionally active P protein. A triple mutant P protein in which Ser(215), Ser(232), and Ser(237) were all mutated to Ala was completely defective in phosphorylation in vitro as well as ex vivo. The xanthate compound D609 inhibited CK2 but not CK1 in vitro and had a very modest effect on P protein phosphorylation and RSV yield ex vivo. Together, these results suggest a role for CK2-mediated phosphorylation of the P protein in the promoter clearance and elongation properties of the viral RNA-dependent RNA polymerase.
Collapse
Affiliation(s)
- L C Dupuy
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | | | | | | |
Collapse
|
45
|
Scala D, Escargueil AE, Couprie J, Larsen AK. The catalytic activities of DNA topoisomerase II are most closely associated with the DNA cleavage/religation steps. Biochimie 1999; 81:771-9. [PMID: 10492025 DOI: 10.1016/s0300-9084(99)80136-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DNA topoisomerase II regulates the three-dimensional organisation of DNA and is the principal target of many important anticancer and antimicrobial agents. These drugs usually act on the DNA cleavage/religation steps of the catalytic cycle resulting in accumulation of covalent DNA-topoisomerase II complexes. We have studied the different steps of the catalytic cycle as a function of salt concentration, which is a classical way to evaluate the biochemical properties of proteins. The results show that the catalytic activity of topoisomerase II follows a bell-shaped curve with optimum between 100 and 225 mM KCl. No straight-forward correlation exists between DNA binding and catalytic activity. The highest levels of drug-induced covalent DNA-topoisomerase II complexes are observed between 100 and 150 mM KCl. Remarkably, at salt concentrations between 150 mM and 225 mM KCl, topoisomerase II is converted into a drug-resistant form with greatly reduced levels of drug-induced DNA-topoisomerase II complexes. This is due to efficient religation rather than to absence of DNA cleavage as witnessed by relaxation of the supercoiled DNA substrate. In the absence of DNA, ATP hydrolysis is strongest at low salt concentrations. Unexpectedly, the addition of DNA stimulates ATP hydrolysis at 100 and 150 mM KCl, but has little or no effect below 100 mM KCl in spite of strong non-covalent DNA binding at these salt concentrations. Therefore, DNA-stimulated ATP hydrolysis appears to be associated with covalent rather than non-covalent binding of DNA to topoisomerase II. Taken together, the results suggest that it is the DNA cleavage/religation steps that are most closely associated with the catalytic activities of topoisomerase II providing a unifying theme for the biological and pharmacological modulation of this enzyme.
Collapse
Affiliation(s)
- D Scala
- Laboratory of Biology and Pharmacology of DNA Topoisomerases, CNRS UMR 8532, Institut Gustave-Roussy, Villejuif, France
| | | | | | | |
Collapse
|
46
|
Kim JH, Kang JS, Chan CS. Sli15 associates with the ipl1 protein kinase to promote proper chromosome segregation in Saccharomyces cerevisiae. J Biophys Biochem Cytol 1999; 145:1381-94. [PMID: 10385519 PMCID: PMC2133162 DOI: 10.1083/jcb.145.7.1381] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The conserved Ipl1 protein kinase is essential for proper chromosome segregation and thus cell viability in the budding yeast Saccharomyces cerevisiae. Its human homologue has been implicated in the tumorigenesis of diverse forms of cancer. We show here that sister chromatids that have separated from each other are not properly segregated to opposite poles of ipl1-2 cells. Failures in chromosome segregation are often associated with abnormal distribution of the spindle pole-associated Nuf2-GFP protein, thus suggesting a link between potential spindle pole defects and chromosome missegregation in ipl1 mutant cells. A small fraction of ipl1-2 cells also appears to be defective in nuclear migration or bipolar spindle formation. Ipl1 associates, probably directly, with the novel and essential Sli15 protein in vivo, and both proteins are localized to the mitotic spindle. Conditional sli15 mutant cells have cytological phenotypes very similar to those of ipl1 cells, and the ipl1-2 mutation exhibits synthetic lethal genetic interaction with sli15 mutations. sli15 mutant phenotype, like ipl1 mutant phenotype, is partially suppressed by perturbations that reduce protein phosphatase 1 function. These genetic and biochemical studies indicate that Sli15 associates with Ipl1 to promote its function in chromosome segregation.
Collapse
Affiliation(s)
- J H Kim
- Department of Microbiology and Institute for Cellular and Molecular Biology, The University of Texas, Austin, Texas 78712, USA
| | | | | |
Collapse
|
47
|
Vilk G, Saulnier RB, St Pierre R, Litchfield DW. Inducible expression of protein kinase CK2 in mammalian cells. Evidence for functional specialization of CK2 isoforms. J Biol Chem 1999; 274:14406-14. [PMID: 10318865 DOI: 10.1074/jbc.274.20.14406] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinase CK2 (formerly casein kinase II) exhibits elevated expression in a variety of cancers, induces lymphocyte transformation in transgenic mice, and collaborates with Ha-Ras in fibroblast transformation. To systematically examine the cellular functions of CK2, human osteosarcoma U2-OS cells constitutively expressing a tetracycline-regulated transactivator were stably transfected with a bidirectional plasmid encoding either catalytic isoform of CK2 (i.e. CK2alpha or CK2alpha') together with the regulatory CK2beta subunit in order to increase the cellular levels of either CK2 isoform. To interfere with either CK2 isoform, cells were also transfected with kinase-inactive CK2alpha or CK2alpha' (i. e. GK2alpha (K68M) or CK2alpha'(K69M)) together with CK2beta. In these cells, removal of tetracycline from the growth medium stimulated coordinate expression of catalytic and regulatory CK2 subunits. Increased expression of active forms of CK2alpha or CK2alpha' resulted in modest decreases in cell proliferation, suggesting that optimal levels of CK2 are required for optimal proliferation. By comparison, the effects of induced expression of kinase-inactive CK2alpha differed significantly from the effects of induced expression of kinase-inactive CK2alpha'. Of particular interest is the dramatic attenuation of proliferation that is observed following induction of CK2alpha'(K69M), but not following induction of CK2alpha(K68M). These results provide evidence for functional specialization of CK2 isoforms in mammalian cells. Moreover, cell lines exhibiting regulatable expression of CK2 will facilitate efforts to systematically elucidate its cellular functions.
Collapse
Affiliation(s)
- G Vilk
- Department of Biochemistry, Health Sciences Center, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | |
Collapse
|
48
|
Shapiro PS, Whalen AM, Tolwinski NS, Wilsbacher J, Froelich-Ammon SJ, Garcia M, Osheroff N, Ahn NG. Extracellular signal-regulated kinase activates topoisomerase IIalpha through a mechanism independent of phosphorylation. Mol Cell Biol 1999; 19:3551-60. [PMID: 10207078 PMCID: PMC84147 DOI: 10.1128/mcb.19.5.3551] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The mitogen-activated protein (MAP) kinases, extracellular signal-related kinase 1 (ERK1) and ERK2, regulate cellular responses by mediating extracellular growth signals toward cytoplasmic and nuclear targets. A potential target for ERK is topoisomerase IIalpha, which becomes highly phosphorylated during mitosis and is required for several aspects of nucleic acid metabolism, including chromosome condensation and daughter chromosome separation. In this study, we demonstrated interactions between ERK2 and topoisomerase IIalpha proteins by coimmunoprecipitation from mixtures of purified enzymes and from nuclear extracts. In vitro, diphosphorylated active ERK2 phosphorylated topoisomerase IIalpha and enhanced its specific activity by sevenfold, as measured by DNA relaxation assays, whereas unphosphorylated ERK2 had no effect. However, activation of topoisomerase II was also observed with diphosphorylated inactive mutant ERK2, suggesting a mechanism of activation that depends on the phosphorylation state of ERK2 but not on its kinase activity. Nevertheless, activation of ERK by transient transfection of constitutively active mutant MAP kinase kinase 1 (MKK1) enhanced endogenous topoisomerase II activity by fourfold. Our findings indicate that ERK regulates topoisomerase IIalpha in vitro and in vivo, suggesting a potential target for the MKK/ERK pathway in the modulation of chromatin reorganization events during mitosis and in other phases of the cell cycle.
Collapse
Affiliation(s)
- P S Shapiro
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
BACKGROUND Heparin has many actions that may affect the malignant process, especially metastasis. METHODS The author conducted an extensive review of the available medical literature about heparin activity that may apply to important factors involved in the malignant process. RESULTS Thrombin is generated by tumors, and the resultant fibrin formation impedes natural killer cell activity. Microthrombi arrest tumor cells in capillaries. Heparin prevents the formation of thrombin and neutralizes its activity. Angiogenesis has an important role in metastasis; heparin minimizes angiogenesis via the inhibition of vascular endothelial growth factor, tissue factor, and platelet activating factor. It decreases tumor cell adhesion to vascular endothelium as it inhibits selectin and chemokine actions, and it also decreases the replication and activity of some oncogenic viruses. Matrix metalloproteinases, serine proteases, and heparanases have an important role in metastasis. Heparin decreases their activation and limits their effects. It competitively inhibits tumor cell attachment to heparan sulfate proteoglycans. It blocks the oncogenic action of ornithine decarboxylase and enhances the antineoplastic effect of transforming growth factor-beta. Heparin inhibits activator protein-1, which is the nuclear target of many oncogenic signal transduction pathways, and it potently inhibits casein kinase II, which has carcinogenic activity. Platelet-derived growth factor, which has oncogenic effects, is also inhibited by heparin, as are reverse transcriptase, telomerase, and topoisomerase prooncogenic actions. CONCLUSIONS These various heparin actions justify clinical investigation of its possible beneficial effect on malignant disease.
Collapse
Affiliation(s)
- H Engelberg
- California Arteriosclerosis Research Foundation, Beverly Hills 90210, USA
| |
Collapse
|
50
|
Egyházi E, Ossoinak A, Filhol-Cochet O, Cochet C, Pigon A. The binding of the alpha subunit of protein kinase CK2 and RAP74 subunit of TFIIF to protein-coding genes in living cells is DRB sensitive. Mol Cell Biochem 1999; 191:149-59. [PMID: 10094404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
In a previous report, we documented that a major portion of the nuclear protein kinase CK2alpha (CK2alpha) subunit does not form heterooligomeric structures with the beta subunit, but it binds tightly to nuclear structures in an epithelial Chironomus cell line. We report here that the CK2alpha, but not beta, subunit is co-localized with productively transcribing RNA polymerase II (pol II) on polytene chromosomes of Chironomus salivary gland cells. Likewise, the RAP74 subunit ofTFIIF, a potential substrate for CK2, is co-localized with pol II. The occupancies of chromosomes with the CK2alpha and RAP74 subunits are sensitive to DRB, an inhibitor of pol II-based transcription and the activity of CK2 and pol II carboxyl-terminal kinases. DRB alters the chromosomal distribution of the CK2alpha and RAP74 subunits: there is a time-dependent clearance from the chromosomes of CK2alpha and RAP74 subunits, which coincides in time the completion and release of preinitiated transcripts after addition of DRB. The results suggest that both the CK2alpha and RAP74 subunits travel with the elongating pol II molecules along the DNA template during the entire transcription cycle. No detectable re-association of CK2alpha and RAP74 with the promoters takes, however, place after the completion of the preinitiated transcripts in the presence of DRB. In contrast, the binding of hypophosporylated pol II and TFIIH to the active gene loci is not abolished by the DRB regimen. Our data are consistent with the possibility that in living Chironomus salivary gland cells, DRB interferes with the recruitment of TFIIF, but not of TFIIH, to the promoter by interference with the activity of the CK2alpha subunit enzyme and phosphorylation of RAP74 and thereby DRB blocks transcription initiation.
Collapse
Affiliation(s)
- E Egyházi
- Karolinska Institutet, Department of Cell and Molecular Biology, Stockholm, Sweden
| | | | | | | | | |
Collapse
|