1
|
Feathers JR, Vignogna RC, Fromme JC. Structural basis for Rab6 activation by the Ric1-Rgp1 complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592747. [PMID: 38766083 PMCID: PMC11100747 DOI: 10.1101/2024.05.06.592747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Rab GTPases act as molecular switches to regulate organelle homeostasis and membrane trafficking. Rab6 plays a central role in regulating cargo flux through the Golgi and is activated via nucleotide exchange by the Ric1-Rgp1 protein complex. Ric1-Rgp1 is conserved throughout eukaryotes but the structural and mechanistic basis for its function has not been established. Here we report the cryoEM structure of a Ric1-Rgp1-Rab6 complex representing a key intermediate of the nucleotide exchange reaction. This structure reveals the overall architecture of the complex and enabled us to identify interactions critical for proper recognition and activation of Rab6 on the Golgi membrane surface. Ric1-Rgp1 interacts with the nucleotide-binding domain of Rab6 using an uncharacterized helical domain, which we establish as a novel RabGEF domain by identifying residues required for Rab6 nucleotide exchange. Unexpectedly, the complex uses an arrestin fold to interact with the Rab6 hypervariable domain, indicating that interactions with the unstructured C-terminal regions of Rab GTPases may be a common specificity mechanism used by their activators. Collectively, our findings provide a detailed mechanistic understanding of regulated Rab6 activation at the Golgi.
Collapse
Affiliation(s)
- J. Ryan Feathers
- Department of Molecular Biology & Genetics and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14850 USA
- Current address: 201 Schultz Laboratory, Princeton University, Princeton, NJ 08544 USA
| | - Ryan C. Vignogna
- Department of Molecular Biology & Genetics and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14850 USA
| | - J. Christopher Fromme
- Department of Molecular Biology & Genetics and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14850 USA
| |
Collapse
|
2
|
Tawfeeq N, Lazarte JMS, Jin Y, Gregory MD, Lamango NS. Polyisoprenylated cysteinyl amide inhibitors deplete singly polyisoprenylated monomeric G-proteins in lung and breast cancer cell lines. Oncotarget 2023; 14:243-257. [PMID: 36961909 PMCID: PMC10038354 DOI: 10.18632/oncotarget.28390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023] Open
Abstract
Finding effective therapies against cancers driven by mutant and/or overexpressed hyperactive G-proteins remains an area of active research. Polyisoprenylated cysteinyl amide inhibitors (PCAIs) are agents that mimic the essential posttranslational modifications of G-proteins. It is hypothesized that PCAIs work as anticancer agents by disrupting polyisoprenylation-dependent functional interactions of the G-Proteins. This study tested this hypothesis by determining the effect of the PCAIs on the levels of RAS and related monomeric G-proteins. Following 48 h exposure, we found significant decreases in the levels of KRAS, RHOA, RAC1, and CDC42 ranging within 20-66% after NSL-YHJ-2-27 (5 μM) treatment in all four cell lines tested, A549, NCI-H1299, MDA-MB-231, and MDA-MB-468. However, no significant difference was observed on the G-protein, RAB5A. Interestingly, 38 and 44% decreases in the levels of the farnesylated and acylated NRAS were observed in the two breast cancer cell lines, MDA-MB-231, and MDA-MB-468, respectively, while HRAS levels showed a 36% decrease only in MDA-MB-468 cells. Moreover, after PCAIs treatment, migration, and invasion of A549 cells were inhibited by 72 and 70%, respectively while the levels of vinculin and fascin dropped by 33 and 43%, respectively. These findings implicate the potential role of PCAIs as anticancer agents through their direct interaction with monomeric G-proteins.
Collapse
Affiliation(s)
- Nada Tawfeeq
- Florida A&M University College of Pharmacy Pharmaceutical Sciences, Institute of Public Health, Tallahassee, FL 32307, USA
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman bin Faisal University, Dammam, Eastern Province, Kingdom of Saudi Arabia
| | - Jassy Mary S Lazarte
- Florida A&M University College of Pharmacy Pharmaceutical Sciences, Institute of Public Health, Tallahassee, FL 32307, USA
| | - Yonghao Jin
- Florida A&M University College of Pharmacy Pharmaceutical Sciences, Institute of Public Health, Tallahassee, FL 32307, USA
| | - Matthew D Gregory
- Florida A&M University College of Pharmacy Pharmaceutical Sciences, Institute of Public Health, Tallahassee, FL 32307, USA
| | - Nazarius S Lamango
- Florida A&M University College of Pharmacy Pharmaceutical Sciences, Institute of Public Health, Tallahassee, FL 32307, USA
| |
Collapse
|
3
|
Münzberg E, Stein M. Structure and Dynamics of Mono- vs. Doubly Lipidated Rab5 in Membranes. Int J Mol Sci 2019; 20:ijms20194773. [PMID: 31561436 PMCID: PMC6801778 DOI: 10.3390/ijms20194773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 01/13/2023] Open
Abstract
The Rab5 small GTPase is a regulator of endosomal trafficking and vesicle fusion. It possesses two adjacent cysteine residues for post-translational geranylgeranylation at its C-terminus for the protein to associate with the early endosome membrane. We compare the effect of mono-lipidification of only one cysteine residue with the doubly modified, fully functional Rab protein in both guanosine diphosphate (GDP)- and guanosine triphosphate (GTP)-bound states and in different membranes (one, three, and six-component membranes). Molecular simulations show that the mono-geranylgeranylated protein is less strongly associated with the membranes and diffuses faster than the doubly lipidated protein. The geranylgeranyl anchor membrane insertion depth is smaller and the protein–membrane distance distribution is broad and uncharacteristic for the membrane composition. The mono-geranylgeranylated protein reveals an unspecific association with the membrane and an orientation at the membrane that does not allow a nucleotide-specific recruitment of further effector proteins. This work shows that double-lipidification is critical for Rab5 to perform its physiological function and mono-geranylgeranylation renders it membrane-associated but non-functional.
Collapse
Affiliation(s)
- Eileen Münzberg
- Max Planck Institute for Dynamics of Complex Technical Systems, Molecular Simulations and Design Group, Sandtorstrasse 1, 39106 Magdeburg, Germany.
| | - Matthias Stein
- Max Planck Institute for Dynamics of Complex Technical Systems, Molecular Simulations and Design Group, Sandtorstrasse 1, 39106 Magdeburg, Germany.
| |
Collapse
|
4
|
Edler E, Stein M. Recognition and stabilization of geranylgeranylated human Rab5 by the GDP Dissociation Inhibitor (GDI). Small GTPases 2019; 10:227-242. [PMID: 29065764 PMCID: PMC6548291 DOI: 10.1080/21541248.2017.1371268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/18/2017] [Accepted: 08/18/2017] [Indexed: 01/13/2023] Open
Abstract
The small GTPase Rab5 is the key regulator of early endosomal fusion. It is post-translationally modified by covalent attachment of two geranylgeranyl (GG) chains to adjacent cysteine residues of the C-terminal hypervariable region (HVR). The GDP dissociation inhibitor (GDI) recognizes membrane-associated Rab5(GDP) and serves to release it into the cytoplasm where it is kept in a soluble state. A detailed new structural and dynamic model for human Rab5(GDP) recognition and binding with human GDI at the early endosome membrane and in its dissociated state is presented. In the cytoplasm, the GDI protein accommodates the GG chains in a transient hydrophobic binding pocket. In solution, two different binding modes of the isoprenoid chains inserted into the hydrophobic pocket of the Rab5(GDP):GDI complex can be identified. This equilibrium between the two states helps to stabilize the protein-protein complex in solution. Interprotein contacts between the Rab5 switch regions and characteristic patches of GDI residues from the Rab binding platform (RBP) and the C-terminus coordinating region (CCR) reveal insight on the formation of such a stable complex. GDI binding to membrane-anchored Rab5(GDP) is initially mediated by the solvent accessible switch regions of the Rab-specific RBP. Formation of the membrane-associated Rab5(GDP):GDI complex induces a GDI reorientation to establish additional interactions with the Rab5 HVR. These results allow to devise a detailed structural model for the process of extraction of GG-Rab5(GDP) by GDI from the membrane and the dissociation from targeting factors and effector proteins prior to GDI binding.
Collapse
Affiliation(s)
- Eileen Edler
- Molecular Simulations and Design Group, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Matthias Stein
- Molecular Simulations and Design Group, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| |
Collapse
|
5
|
Abstract
The Golgi apparatus is a central sorting station in the cell. It receives newly synthesized molecules from the endoplasmic reticulum and directs them to different subcellular destinations, such as the plasma membrane or the endocytic pathway. Importantly, in the last few years, it has emerged that the maintenance of Golgi structure is connected to the proper regulation of membrane trafficking. Rab proteins are small GTPases that are considered to be the master regulators of the intracellular membrane trafficking. Several of the over 60 human Rabs are involved in the regulation of transport pathways at the Golgi as well as in the maintenance of its architecture. This chapter will summarize the different roles of Rab GTPases at the Golgi, both as regulators of membrane transport, scaffold, and tethering proteins and in preserving the structure and function of this organelle.
Collapse
|
6
|
Thomas LL, van der Vegt SA, Fromme JC. A Steric Gating Mechanism Dictates the Substrate Specificity of a Rab-GEF. Dev Cell 2018; 48:100-114.e9. [PMID: 30528786 DOI: 10.1016/j.devcel.2018.11.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/23/2018] [Accepted: 11/07/2018] [Indexed: 10/27/2022]
Abstract
Correct localization of Rab GTPases in cells is critical for proper function in membrane trafficking, yet the mechanisms that target Rabs to specific subcellular compartments remain controversial. Guanine nucleotide exchange factors (GEFs) activate and consequently stabilize Rab substrates on membranes, thus implicating GEFs as the primary determinants of Rab localization. A competing hypothesis is that the Rab C-terminal hypervariable domain (HVD) serves as a subcellular targeting signal. In this study, we present a unifying mechanism in which the HVD controls targeting of certain Rabs by mediating interaction with their GEFs. We demonstrate that the TRAPP complexes, two related GEFs that use the same catalytic site to activate distinct Rabs, distinguish between Ypt1 (Rab1) and Ypt31/32 (Rab11) via their divergent HVDs. Remarkably, we find that HVD length gates Rab access to the TRAPPII complex by constraining the distance between the nucleotide-binding domain and the membrane surface.
Collapse
Affiliation(s)
- Laura L Thomas
- Department of Molecular Biology and Genetics/Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Solveig A van der Vegt
- Department of Molecular Biology and Genetics/Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - J Christopher Fromme
- Department of Molecular Biology and Genetics/Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
7
|
Elmogy M, Mohamed AA, Tufail M, Uno T, Takeda M. Molecular and functional characterization of the American cockroach, Periplaneta americana, Rab5: the first exopterygotan low molecular weight ovarian GTPase during oogenesis. INSECT SCIENCE 2018; 25:751-764. [PMID: 28548451 DOI: 10.1111/1744-7917.12485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 03/22/2017] [Accepted: 04/19/2017] [Indexed: 06/07/2023]
Abstract
The small Rab GTPases are key regulators of membrane vesicle trafficking. Ovaries of Periplaneta americana (Linnaeus) (Blattodea: Blattidae) have small molecular weight GTP/ATP-binding proteins during early and late vitellogenic periods of oogenesis. However, the identification and characterization of the detected proteins have not been yet reported. Herein, we cloned a cDNA encoding Rab5 from the American cockroach, P. americana, ovaries (PamRab5). It comprises 796 bp, encoding a protein of 213 amino acid residues with a predicted molecular weight of 23.5 kDa. PamRab5 exists as a single-copy gene in the P. americana genome, as revealed by Southern blot analysis. An approximate 2.6 kb ovarian mRNA was transcribed especially at high levels in the previtellogenic ovaries, detected by Northern blot analysis. The muscle and head tissues also showed high levels of PamRab5 transcript. PamRab5 protein was localized, via immunofluorescence labeling, to germline-derived cells of the oocytes, very early during oocyte differentiation. Immunoblotting detected a ∼25 kDa signal as a membrane-associated form revealed after application of detergent in the extraction buffer, and 23 kDa as a cytosolic form consistent with the predicted molecular weight from amino acid sequence in different tissues including ovary, muscles and head. The PamRab5 during late vitellogenic periods is required to regulate the endocytotic machinery during oogenesis in this cockroach. This is the first report on Rab5 from a hemimetabolan, and presents an inaugural step in probing the molecular premises of insect oocyte endocytotic trafficking important for oogenesis and embryonic development.
Collapse
Affiliation(s)
- Mohamed Elmogy
- Department of Entomology, Faculty of Science, Cairo University, Orman, Giza, Egypt
| | - Amr A Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Orman, Giza, Egypt
| | - Muhammad Tufail
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
- Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Japan
| | - Tomohide Uno
- Laboratory of Biological Chemistry, Faculty of Agriculture, Department of Biofunctional Chemistry, Kobe University, Nada-ku, Hyogo, Japan
| | - Makio Takeda
- Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Japan
| |
Collapse
|
8
|
Kwon H, Jang D, Choi M, Lee J, Jeong K, Pak Y. Alternative translation initiation of Caveolin-2 desensitizes insulin signaling through dephosphorylation of insulin receptor by PTP1B and causes insulin resistance. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2169-2182. [PMID: 29604334 DOI: 10.1016/j.bbadis.2018.03.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/08/2018] [Accepted: 03/26/2018] [Indexed: 12/30/2022]
Abstract
Insulin resistance, defined as attenuated sensitivity responding to insulin, impairs insulin action. Direct causes and molecular mechanisms of insulin resistance have thus far remained elusive. Here we show that alternative translation initiation (ATI) of Caveolin-2 (Cav-2) regulates insulin sensitivity. Cav-2β isoform yielded by ATI desensitizes insulin receptor (IR) via dephosphorylation by protein-tyrosine phosphatase 1B (PTP1B), and subsequent endocytosis and lysosomal degradation of IR, causing insulin resistance. Blockage of Cav-2 ATI protects against insulin resistance by preventing Cav-2β-PTP1B-directed IR desensitization, thereby normalizing insulin sensitivity and glucose uptake. Our findings show that Cav-2β is a negative regulator of IR signaling, and identify a mechanism causing insulin resistance through control of insulin sensitivity via Cav-2 ATI.
Collapse
Affiliation(s)
- Hayeong Kwon
- Division of Life Science, Graduate School of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Donghwan Jang
- Division of Life Science, Graduate School of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Moonjeong Choi
- Division of Life Science, Graduate School of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jaewoong Lee
- Division of Life Science, Graduate School of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Kyuho Jeong
- Division of Life Science, Graduate School of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Yunbae Pak
- Division of Life Science, Graduate School of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
9
|
Molecular Insights into the Roles of Rab Proteins in Intracellular Dynamics and Neurodegenerative Diseases. Neuromolecular Med 2018; 20:18-36. [PMID: 29423895 DOI: 10.1007/s12017-018-8479-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/27/2018] [Indexed: 02/01/2023]
Abstract
In eukaryotes, the cellular functions are segregated to membrane-bound organelles. This inherently requires sorting of metabolites to membrane-limited locations. Sorting the metabolites from ribosomes to various organelles along the intracellular trafficking pathways involves several integral cellular processes, including an energy-dependent step, in which the sorting of metabolites between organelles is catalyzed by membrane-anchoring protein Rab-GTPases (Rab). They contribute to relaying the switching of the secretory proteins between hydrophobic and hydrophilic environments. The intracellular trafficking routes include exocytic and endocytic pathways. In these pathways, numerous Rab-GTPases are participating in discrete shuttling of cargoes. Long-distance trafficking of cargoes is essential for neuronal functions, and Rabs are critical for these functions, including the transport of membranes and essential proteins for the development of axons and neurites. Rabs are also the key players in exocytosis of neurotransmitters and recycling of neurotransmitter receptors. Thus, Rabs are critical for maintaining neuronal communication, as well as for normal cellular physiology. Therefore, cellular defects of Rab components involved in neural functions, which severely affect normal brain functions, can produce neurological complications, including several neurodegenerative diseases. In this review, we provide a comprehensive overview of the current understanding of the molecular signaling pathways of Rab proteins and the impact of their defects on different neurodegenerative diseases. The insights gathered into the dynamics of Rabs that are described in this review provide new avenues for developing effective treatments for neurodegenerative diseases-associated with Rab defects.
Collapse
|
10
|
Hammerling BC, Shires SE, Leon LJ, Cortez MQ, Gustafsson ÅB. Isolation of Rab5-positive endosomes reveals a new mitochondrial degradation pathway utilized by BNIP3 and Parkin. Small GTPases 2017; 11:69-76. [PMID: 28696827 DOI: 10.1080/21541248.2017.1342749] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Degradation of mitochondria is an important cellular quality control mechanism mediated by two distinct pathways: one involving Parkin-mediated ubiquitination and the other dependent on mitophagy receptors. It is known that mitochondria are degraded by the autophagy pathway; however, we recently reported that the small GTPase Rab5 and early endosomes also participate in Parkin-mediated mitochondrial clearance. Here, we have developed a protocol to isolate Rab5-positive vesicles from cells for proteomics analysis and provide additional data confirming that mitophagy regulators and mitochondrial proteins are present in these vesicles. We also demonstrate that the mitophagy receptor BNIP3 utilizes the Rab5-endosomal pathway to clear mitochondria in cells. These findings indicate that a redundancy exists in the downstream degradation pathways to ensure efficient mitochondrial clearance.
Collapse
Affiliation(s)
- Babette C Hammerling
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Sarah E Shires
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Leonardo J Leon
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Melissa Q Cortez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Åsa B Gustafsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
11
|
Wang S, Hu C, Wu F, He S. Rab25 GTPase: Functional roles in cancer. Oncotarget 2017; 8:64591-64599. [PMID: 28969096 PMCID: PMC5610028 DOI: 10.18632/oncotarget.19571] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/19/2017] [Indexed: 12/17/2022] Open
Abstract
Rab25, a small GTPase belongs to the Rab protein family, has a pivotal role in cancer pathophysiology. Rab25 governs cell-surface receptors recycling and cellular signaling pathways activation, allowing it to control a diverse range of cellular functions, including cell proliferation, cell motility and cell death. Aberrant expression of Rab25 was linked to cancer development. Majority of research findings revealed that Rab25 is an oncogene. Elevated expression of Rab25 was correlated with poor prognosis and aggressiveness of renal, lung, breast, ovarian and other cancers. However, tumor suppressor function of Rab25 was reported in several cancers, such as colorectal cancer, indicating the tumor type-specific function of Rab25. In this review, we recapitulate the current knowledge of Rab25 in cancer development and therapy.
Collapse
Affiliation(s)
- Sisi Wang
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chunhong Hu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Wu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shasha He
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
12
|
Ballmer BA, Moos R, Liberali P, Pelkmans L, Hornemann S, Aguzzi A. Modifiers of prion protein biogenesis and recycling identified by a highly parallel endocytosis kinetics assay. J Biol Chem 2017; 292:8356-8368. [PMID: 28341739 DOI: 10.1074/jbc.m116.773283] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/17/2017] [Indexed: 11/06/2022] Open
Abstract
The cellular prion protein, PrPC, is attached by a glycosylphosphatidylinositol anchor to the outer leaflet of the plasma membrane. Its misfolded isoform PrPSc is the causative agent of prion diseases. Conversion of PrPC into PrPSc is thought to take place at the cell surface or in endolysosomal organelles. Understanding the intracellular trafficking of PrPC may, therefore, help elucidate the conversion process. Here we describe a time-resolved fluorescence energy transfer (FRET) assay reporting membrane expression and real-time internalization rates of PrPC The assay is suitable for high-throughput genetic and pharmaceutical screens for modulators of PrPC trafficking. Simultaneous administration of FRET donor and acceptor anti-PrPC antibodies to living cells yielded a measure of PrPC surface density, whereas sequential addition of each antibody visualized the internalization rate of PrPC (Z' factor >0.5). RNA interference assays showed that suppression of AP2M1 (AP-2 adaptor protein), RAB5A, VPS35 (vacuolar protein sorting 35 homolog), and M6PR (mannose 6-phosphate receptor) blocked PrPC internalization, whereas down-regulation of GIT2 and VPS28 increased PrPC internalization. PrPC cell-surface expression was reduced by down-regulation of RAB5A, VPS28, and VPS35 and enhanced by silencing EHD1. These data identify a network of proteins implicated in PrPC trafficking and demonstrate the power of this assay for identifying modulators of PrPC trafficking.
Collapse
Affiliation(s)
- Boris A Ballmer
- Institute of Neuropathology, University of Zurich, CH-8091 Zurich, Switzerland
| | - Rita Moos
- Institute of Neuropathology, University of Zurich, CH-8091 Zurich, Switzerland
| | - Prisca Liberali
- Institute of Molecular Life Sciences, University of Zurich, CH-8091 Zurich, Switzerland; Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Lucas Pelkmans
- Institute of Molecular Life Sciences, University of Zurich, CH-8091 Zurich, Switzerland
| | - Simone Hornemann
- Institute of Neuropathology, University of Zurich, CH-8091 Zurich, Switzerland.
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, CH-8091 Zurich, Switzerland.
| |
Collapse
|
13
|
Abstract
Rab proteins are the major regulators of vesicular trafficking in eukaryotic cells. Their activity can be tightly controlled within cells: Regulated by guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs), they switch between an active GTP-bound state and an inactive GDP-bound state, interacting with downstream effector proteins only in the active state. Additionally, they can bind to membranes via C-terminal prenylated cysteine residues and they can be solubilized and shuttled between membranes by chaperone-like molecules called GDP dissociation inhibitors (GDIs). In this review we give an overview of Rab proteins with a focus on the current understanding of their regulation by GEFs, GAPs and GDI.
Collapse
Affiliation(s)
- Matthias P Müller
- a Department of Structural Biochemistry , Max Planck Institute of Molecular Physiology , Dortmund , Germany
| | - Roger S Goody
- a Department of Structural Biochemistry , Max Planck Institute of Molecular Physiology , Dortmund , Germany
| |
Collapse
|
14
|
Johnson SA, Zitserman D, Roegiers F. Numb regulates the balance between Notch recycling and late-endosome targeting in Drosophila neural progenitor cells. Mol Biol Cell 2016; 27:2857-66. [PMID: 27466320 PMCID: PMC5025272 DOI: 10.1091/mbc.e15-11-0751] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 07/21/2016] [Indexed: 11/11/2022] Open
Abstract
Steady-state and pulse-labeling techniques are used to follow Notch receptors in sensory organ precursor cells in Drosophila. Numb and L(2)gl antagonize a pool of Notch receptors, and Numb promotes Notch targeting to late endosomes in Drosophila neural progenitors to regulate Notch signaling and cell fate. The Notch signaling pathway plays essential roles in both animal development and human disease. Regulation of Notch receptor levels in membrane compartments has been shown to affect signaling in a variety of contexts. Here we used steady-state and pulse-labeling techniques to follow Notch receptors in sensory organ precursor cells in Drosophila. We find that the endosomal adaptor protein Numb regulates levels of Notch receptor trafficking to Rab7-labeled late endosomes but not early endosomes. Using an assay we developed that labels different pools of Notch receptors as they move through the endocytic system, we show that Numb specifically suppresses a recycled Notch receptor subpopulation and that excess Notch signaling in numb mutants requires the recycling endosome GTPase Rab11 activity. Our data therefore suggest that Numb controls the balance between Notch receptor recycling and receptor targeting to late endosomes to regulate signaling output after asymmetric cell division in Drosophila neural progenitors.
Collapse
Affiliation(s)
- Seth A Johnson
- Fox Chase Cancer Center, Philadelphia, PA 19111 Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Diana Zitserman
- Fox Chase Cancer Center, Philadelphia, PA 19111 University of Bridgeport, Bridgeport, CT 06604
| | - Fabrice Roegiers
- Fox Chase Cancer Center, Philadelphia, PA 19111 Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
15
|
Endocytosis of Nanomedicines: The Case of Glycopeptide Engineered PLGA Nanoparticles. Pharmaceutics 2015; 7:74-89. [PMID: 26102358 PMCID: PMC4491652 DOI: 10.3390/pharmaceutics7020074] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/15/2015] [Accepted: 06/10/2015] [Indexed: 01/03/2023] Open
Abstract
The success of nanomedicine as a new strategy for drug delivery and targeting prompted the interest in developing approaches toward basic and clinical neuroscience. Despite enormous advances on brain research, central nervous system (CNS) disorders remain the world's leading cause of disability, in part due to the inability of the majority of drugs to reach the brain parenchyma. Many attempts to use nanomedicines as CNS drug delivery systems (DDS) were made; among the various non-invasive approaches, nanoparticulate carriers and, particularly, polymeric nanoparticles (NPs) seem to be the most interesting strategies. In particular, the ability of poly-lactide-co-glycolide NPs (PLGA-NPs) specifically engineered with a glycopeptide (g7), conferring to NPs' ability to cross the blood brain barrier (BBB) in rodents at a concentration of up to 10% of the injected dose, was demonstrated in previous studies using different routes of administrations. Most of the evidence on NP uptake mechanisms reported in the literature about intracellular pathways and processes of cell entry is based on in vitro studies. Therefore, beside the particular attention devoted to increasing the knowledge of the rate of in vivo BBB crossing of nanocarriers, the subsequent exocytosis in the brain compartments, their fate and trafficking in the brain surely represent major topics in this field.
Collapse
|
16
|
Matsuto M, Kano F, Murata M. Reconstitution of the targeting of Rab6A to the Golgi apparatus in semi-intact HeLa cells: A role of BICD2 in stabilizing Rab6A on Golgi membranes and a concerted role of Rab6A/BICD2 interactions in Golgi-to-ER retrograde transport. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2592-609. [PMID: 25962623 DOI: 10.1016/j.bbamcr.2015.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 05/02/2015] [Accepted: 05/05/2015] [Indexed: 12/21/2022]
Abstract
Rab is a small GTP-binding protein family that regulates various pathways of vesicular transport. Although more than 60 Rab proteins are targeted to specific organelles in mammalian cells, the mechanisms underlying the specificity of Rab proteins for the respective organelles remain unknown. In this study, we reconstituted the Golgi targeting of Rab6A in streptolysin O (SLO)-permeabilized HeLa cells in a cytosol-dependent manner and investigated the biochemical requirements of targeting. Golgi-targeting assays identified Bicaudal-D (BICD)2, which is reportedly involved in the dynein-mediated transport of mRNAs during oogenesis and embryogenesis in Drosophila, as a cytosolic factor for the Golgi targeting of Rab6A in SLO-permeabilized HeLa cells. Subsequent immunofluorescence analyses indicated decreased amounts of the GTP-bound active form of Rab6 in BICD2-knockdown cells. In addition, fluorescence recovery after photobleaching (FRAP) analyses revealed that overexpression of the C-terminal region of BICD2 decreased the exchange rate of GFP-Rab6A between the Golgi membrane and the cytosol. Collectively, these results indicated that BICD2 facilitates the binding of Rab6A to the Golgi by stabilizing its GTP-bound form. Moreover, several analyses of vesicular transport demonstrated that Rab6A and BICD2 play crucial roles in Golgi tubule fusion with the endoplasmic reticulum (ER) in brefeldin A (BFA)-treated cells, indicating that BICD2 is involved in coat protein I (COPI)-independent Golgi-to-ER retrograde vesicular transport.
Collapse
Affiliation(s)
- Mariko Matsuto
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
| | - Fumi Kano
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan; PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Masayuki Murata
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan.
| |
Collapse
|
17
|
Rab proteins: the key regulators of intracellular vesicle transport. Exp Cell Res 2014; 328:1-19. [PMID: 25088255 DOI: 10.1016/j.yexcr.2014.07.027] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/06/2014] [Accepted: 07/23/2014] [Indexed: 01/01/2023]
Abstract
Vesicular/membrane trafficking essentially regulates the compartmentalization and abundance of proteins within the cells and contributes in many signalling pathways. This membrane transport in eukaryotic cells is a complex process regulated by a large and diverse array of proteins. A large group of monomeric small GTPases; the Rabs are essential components of this membrane trafficking route. Most of the Rabs are ubiquitously expressed proteins and have been implicated in vesicle formation, vesicle motility/delivery along cytoskeleton elements and docking/fusion at target membranes through the recruitment of effectors. Functional impairments of Rabs affecting transport pathways manifest different diseases. Rab functions are accompanied by cyclical activation and inactivation of GTP-bound and GDP-bound forms between the cytosol and membranes which is regulated by upstream regulators. Rab proteins are characterized by their distinct sub-cellular localization and regulate a wide variety of endocytic, transcytic and exocytic transport pathways. Mutations of Rabs affect cell growth, motility and other biological processes.
Collapse
|
18
|
Booth AEG, Tarafder AK, Hume AN, Recchi C, Seabra MC. A role for Na+,K+-ATPase α1 in regulating Rab27a localisation on melanosomes. PLoS One 2014; 9:e102851. [PMID: 25051489 PMCID: PMC4106853 DOI: 10.1371/journal.pone.0102851] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/23/2014] [Indexed: 12/23/2022] Open
Abstract
The mechanism(s) by which Rab GTPases are specifically recruited to distinct intracellular membranes remains elusive. Here we used Rab27a localisation onto melanosomes as a model to investigate Rab targeting. We identified the α1 subunit of Na+,K+-ATPase (ATP1a1) as a novel Rab27a interacting protein in melanocytes and showed that this interaction is direct with the intracellular M4M5 loop of ATP1a1 and independent of nucleotide bound status of the Rab. Knockdown studies in melanocytes revealed that ATP1a1 plays an essential role in Rab27a-dependent melanosome transport. Specifically, expression of ATP1a1, like the Rab27a GDP/GTP exchange factor (Rab3GEP), is essential for targeting and activation of Rab27a to melanosomes. Finally, we showed that the ability of Rab27a mutants to target to melanosomes correlates with the efficiency of their interaction with ATP1a1. Altogether these studies point to a new role for ATP1a1 as a regulator of Rab27a targeting and activation.
Collapse
Affiliation(s)
- Antonia E. G. Booth
- Molecular Medicine, National Heart and Lung Institute, Sir Alexander Fleming Building, Imperial College London, London, United Kingdom
| | - Abul K. Tarafder
- Molecular Medicine, National Heart and Lung Institute, Sir Alexander Fleming Building, Imperial College London, London, United Kingdom
| | - Alistair N. Hume
- Molecular Medicine, National Heart and Lung Institute, Sir Alexander Fleming Building, Imperial College London, London, United Kingdom
- School of Biomedical Sciences, University of Nottingham, Medical School, Queens Medical Centre, Nottingham, United Kingdom
| | - Chiara Recchi
- Molecular Medicine, National Heart and Lung Institute, Sir Alexander Fleming Building, Imperial College London, London, United Kingdom
| | - Miguel C. Seabra
- Molecular Medicine, National Heart and Lung Institute, Sir Alexander Fleming Building, Imperial College London, London, United Kingdom
- CEDOC, Faculdade de Ciencias Medicas, FCM, Universidade Nova de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
19
|
Ong ST, Freeley M, Skubis-Zegadło J, Fazil MHUT, Kelleher D, Fresser F, Baier G, Verma NK, Long A. Phosphorylation of Rab5a protein by protein kinase Cϵ is crucial for T-cell migration. J Biol Chem 2014; 289:19420-34. [PMID: 24872409 DOI: 10.1074/jbc.m113.545863] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Rab GTPases control membrane traffic and receptor-mediated endocytosis. Within this context, Rab5a plays an important role in the spatial regulation of intracellular transport and signal transduction processes. Here, we report a previously uncharacterized role for Rab5a in the regulation of T-cell motility. We show that Rab5a physically associates with protein kinase Cϵ (PKCϵ) in migrating T-cells. After stimulation of T-cells through the integrin LFA-1 or the chemokine receptor CXCR4, Rab5a is phosphorylated on an N-terminal Thr-7 site by PKCϵ. Both Rab5a and PKCϵ dynamically interact at the centrosomal region of migrating cells, and PKCϵ-mediated phosphorylation on Thr-7 regulates Rab5a trafficking to the cell leading edge. Furthermore, we demonstrate that Rab5a Thr-7 phosphorylation is functionally necessary for Rac1 activation, actin rearrangement, and T-cell motility. We present a novel mechanism by which a PKCϵ-Rab5a-Rac1 axis regulates cytoskeleton remodeling and T-cell migration, both of which are central for the adaptive immune response.
Collapse
Affiliation(s)
- Seow Theng Ong
- From the From the Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin, Dublin 8, Ireland
| | - Michael Freeley
- From the From the Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin, Dublin 8, Ireland
| | - Joanna Skubis-Zegadło
- From the From the Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin, Dublin 8, Ireland, Department of Applied Pharmacy and Bioengineering, Medical University of Warsaw, 02-091 Warsaw, Poland
| | | | - Dermot Kelleher
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 637553, Faculty of Medicine, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom, and
| | - Friedrich Fresser
- the Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | - Gottfried Baier
- the Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | - Navin Kumar Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 637553,
| | - Aideen Long
- From the From the Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin, Dublin 8, Ireland,
| |
Collapse
|
20
|
Abstract
The ability to create and maintain a specialized organelle that supports bacterial replication is an important virulence property for many intracellular pathogens. Living in a membrane-bound vacuole presents inherent challenges, including the need to remodel a plasma membrane-derived organelle into a novel structure that will expand and provide essential nutrients to support replication, while also having the vacuole avoid membrane transport pathways that target bacteria for destruction in lysosomes. It is clear that pathogenic bacteria use different strategies to accomplish these tasks. The dynamics by which host Rab GTPases associate with pathogen-occupied vacuoles provide insight into the mechanisms used by different bacteria to manipulate host membrane transport. In this review we highlight some of the strategies bacteria use to maintain a pathogen-occupied vacuole by focusing on the Rab proteins involved in biogenesis and maintenance of these novel organelles.
Collapse
Affiliation(s)
- Racquel Kim Sherwood
- Department of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | | |
Collapse
|
21
|
Cabrera M, Ungermann C. Guanine nucleotide exchange factors (GEFs) have a critical but not exclusive role in organelle localization of Rab GTPases. J Biol Chem 2013; 288:28704-12. [PMID: 23979137 DOI: 10.1074/jbc.m113.488213] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Membrane fusion at eukaryotic organelles is initiated by Rab GTPases and tethering factors. Rabs in their GDP-bound form are kept soluble in the cytoplasm by the GDP dissociation inhibitor (GDI) chaperone. Guanine nucleotide exchange factors (GEFs) are found at organelles and are critical for Rab function. Here, we surveyed the overall role of GEFs in Rab localization. We show that GEFs, but none of the proposed GDI displacement factors, are essential for the correct membrane localization of yeast Rabs. In the absence of the GEF, Rabs lost their primary localization to the target organelle. Several Rabs, such as vacuolar Ypt7, were found at the endoplasmic reticulum and thus were still membrane-bound. Surprisingly, a Ypt7 mutant that undergoes facilitated nucleotide exchange localized to vacuoles independently of its GEF Mon1-Ccz1 and rescued vacuole morphology. In contrast, wild-type Ypt7 required its GEF for localization and to counteract the extraction by GDI. Our data agree with the emerging model that GEFs are critical for Rab localization but raise the possibility that additional factors can contribute to this process.
Collapse
Affiliation(s)
- Margarita Cabrera
- From the Biochemistry Section, Department of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany
| | | |
Collapse
|
22
|
Garrison AR, Radoshitzky SR, Kota KP, Pegoraro G, Ruthel G, Kuhn JH, Altamura LA, Kwilas SA, Bavari S, Haucke V, Schmaljohn CS. Crimean-Congo hemorrhagic fever virus utilizes a clathrin- and early endosome-dependent entry pathway. Virology 2013; 444:45-54. [PMID: 23791227 DOI: 10.1016/j.virol.2013.05.030] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 02/21/2013] [Accepted: 05/21/2013] [Indexed: 11/17/2022]
Abstract
The early events in Crimean-Congo hemorrhagic fever virus (CCHFV) have not been completely characterized. Earlier work indicated that CCHFV likely enters cells by clathrin-mediated endocytosis (CME). Here we provide confirmatory evidence for CME entry by showing that CCHFV infection is inhibited in cells treated with Pitstop 2, a drug that specifically and reversibly interferes with the dynamics of clathrin-coated pits. Additionally, we show that CCHFV infection is inhibited by siRNA depletion of the clathrin pit associated protein AP-2. Following CME entry, we show that CCHFV has a pH-dependent entry step, with virus inactivation occurring at pH 6.0 and below. To more precisely define the endosomal trafficking of CCHFV, we show for the first time that overexpression of the dominant negative forms of Rab5 protein but not Rab7 protein inhibits CCHFV infection. These results indicate that CCHFV likely enters cells through the early endosomal compartment.
Collapse
Affiliation(s)
- Aura R Garrison
- United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Rab27a and melanosomes: a model to investigate the membrane targeting of Rabs. Biochem Soc Trans 2013; 40:1383-8. [PMID: 23176485 DOI: 10.1042/bst20120200] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Rab proteins constitute the largest family within the Ras superfamily of small GTPases (>60 in mammals) and are essential regulators of transport between intracellular organelles. Key to this activity is their targeting to specific compartments within the cell. However, although great strides have been made over the last 25 years in assigning functions to individual Rabs and identifying their downstream effectors, the mechanism(s) regulating their targeting to specific subcellular membranes remains less well understood. In the present paper, we review the evidence supporting the proposed mechanisms of Rab targeting and highlight insights into this process provided by studies of Rab27a.
Collapse
|
24
|
Tsvetanova NG. The secretory pathway in control of endoplasmic reticulum homeostasis. Small GTPases 2012; 4:28-33. [PMID: 23235440 DOI: 10.4161/sgtp.22599] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In eukaryotic cells, proteins and membranes are transported between successive compartments by vesicle trafficking. Since precise protein localization is crucial for a range of cellular functions, it is not surprising that vesicle trafficking plays a role in many processes, including cell division, signaling, development, and even gene expression. We recently found evidence that the yeast secretory pathway directly regulates the dynamics of a key cell survival process, the unfolded protein response (UPR). UPR activation requires the processing of the transcription factor encoding RNA HAC1. We showed that the small yeast GTPase Ypt1, which regulates endoplasmic reticulum-to-Golgi trafficking, associates with and controls the RNA stability of unspliced HAC1 under normal growth conditions. Other small GTPases of the Ypt family also interacted with the unprocessed RNA. Here we speculate about the possible mechanism behind this novel secretory pathway-dependent regulation of endoplasmic reticulum homeostasis.
Collapse
Affiliation(s)
- Nikoleta G Tsvetanova
- Department of Psychiatry, University of California at San Francisco, San Francisco, CA, USA.
| |
Collapse
|
25
|
Gogolin L, Schroeder H, Itzen A, Goody RS, Niemeyer CM, Becker CFW. Protein-DNA arrays as tools for detection of protein-protein interactions by mass spectrometry. Chembiochem 2012. [PMID: 23208955 DOI: 10.1002/cbic.201200597] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Analysis of multiple protein-protein interactions using microarray technology remains challenging, and site-specific immobilization of functional proteins is a key step in these approaches. Here we establish the efficient synthesis of protein-DNA conjugates for several members of a small family of GTPases. The family of Rab/Ypt GTPases is intimately involved in vesicular trafficking in yeast and serves as a model for the much larger group of analogous human proteins, the Rab protein family, with more than 60 members. The Ypt-DNA hybrid molecules described here are used for DNA-directed immobilization on glass- and silica-based microarrays. Methods for the detection of protein-DNA conjugates, as well as approaches for nucleotide exchange and distinguishing between GDP- and GTP-bound Ypts on microarrays, are reported. The high specificity of different Rab/Ypt-effector interactions, which also depends on the bound nucleotide, is shown by fluorescence readout of microarrays. Furthermore, initial experiments demonstrate that direct readout by mass spectrometry can be achieved with commercially available instruments. These developments will significantly contribute to the elucidation of complex transport networks in eukaryotic cells.
Collapse
Affiliation(s)
- Lars Gogolin
- Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Despite over two decades of research, the mechanism of Rab targeting to specific intracellular membranes is still not completely understood. Present evidence suggests that the original hypothesis that the message for targeting resides solely in the hypervariable C-terminus is incorrect, and a second mechanism involving a GDF [GDI (guanine-nucleotide-dissociation inhibitor) displacement factor] to disrupt stable Rab–GDI complexes has only been shown to apply in one case, despite the need for targeting over 60 human Rab proteins. Evidence for the involvement of Rab–effector interactions has only been presented for a few cases or in a very specific context. There is mounting evidence that GEFs (guanine-nucleotide-exchange factors) are essential for membrane targeting, although contributions from additional factors are likely to be of importance, at least in specific cases.
Collapse
|
27
|
Cottam NP, Ungar D. Retrograde vesicle transport in the Golgi. PROTOPLASMA 2012; 249:943-55. [PMID: 22160157 DOI: 10.1007/s00709-011-0361-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 11/29/2011] [Indexed: 05/23/2023]
Abstract
The Golgi apparatus is the central sorting and biosynthesis hub of the secretory pathway, and uses vesicle transport for the recycling of its resident enzymes. This system must operate with high fidelity and efficiency for the correct modification of secretory glycoconjugates. In this review, we discuss recent advances on how coats, tethers, Rabs and SNAREs cooperate at the Golgi to achieve vesicle transport. We cover the well understood vesicle formation process orchestrated by the COPI coat, and the comprehensively documented fusion process governed by a set of Golgi localised SNAREs. Much less clear are the steps in-between formation and fusion of vesicles, and we therefore provide a much needed update of the latest findings about vesicle tethering. The interplay between Rab GTPases, golgin family coiled-coil tethers and the conserved oligomeric Golgi (COG) complex at the Golgi are thoroughly evaluated.
Collapse
Affiliation(s)
- Nathanael P Cottam
- Department of Biology (Area 9), University of York, Heslington, York, YO10 5DD, UK
| | | |
Collapse
|
28
|
Aiello D, Caffrey DR. Evolution of specific protein-protein interaction sites following gene duplication. J Mol Biol 2012; 423:257-72. [PMID: 22789570 DOI: 10.1016/j.jmb.2012.06.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 05/16/2012] [Accepted: 06/29/2012] [Indexed: 11/15/2022]
Abstract
Gene duplication is a common evolutionary process that leads to the expansion and functional diversification of protein subfamilies. The evolutionary events that cause paralogous proteins to bind different protein ligands (functionally diverged interfaces) are investigated and compared to paralogous proteins that bind the same protein ligand (functionally preserved interfaces). We find that functionally diverged interfaces possess more subfamily-specific residues than functionally preserved interfaces. These subfamily-specific residues are usually partially buried at the interface rim and achieve specific binding through optimized hydrogen bond geometries. In addition to optimized hydrogen bond geometries, side-chain modeling experiments suggest that steric effects are also important for binding specificity. Residues that are completely buried at the interface hub are also less conserved in functionally diverged interfaces than in functionally preserved interfaces. Consistent with this finding, hub residues contribute less to free energy of binding in functionally diverged interfaces than in functionally preserved interfaces. Therefore, we propose that protein binding is a delicate balance between binding affinity that primarily occurs at the interface hub and binding specificity that primarily occurs at the interface rim.
Collapse
Affiliation(s)
- Daniel Aiello
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
29
|
Rojas AM, Fuentes G, Rausell A, Valencia A. The Ras protein superfamily: evolutionary tree and role of conserved amino acids. ACTA ACUST UNITED AC 2012; 196:189-201. [PMID: 22270915 PMCID: PMC3265948 DOI: 10.1083/jcb.201103008] [Citation(s) in RCA: 285] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Ras superfamily is a fascinating example of functional diversification in the context of a preserved structural framework and a prototypic GTP binding site. Thanks to the availability of complete genome sequences of species representing important evolutionary branch points, we have analyzed the composition and organization of this superfamily at a greater level than was previously possible. Phylogenetic analysis of gene families at the organism and sequence level revealed complex relationships between the evolution of this protein superfamily sequence and the acquisition of distinct cellular functions. Together with advances in computational methods and structural studies, the sequence information has helped to identify features important for the recognition of molecular partners and the functional specialization of different members of the Ras superfamily.
Collapse
Affiliation(s)
- Ana Maria Rojas
- Computational Cell Biology Group, Institute for Predictive and Personalized Medicine of Cancer, 08916 Badalona, Barcelona, Spain.
| | | | | | | |
Collapse
|
30
|
Popa A, Carter JR, Smith SE, Hellman L, Fried MG, Dutch RE. Residues in the hendra virus fusion protein transmembrane domain are critical for endocytic recycling. J Virol 2012; 86:3014-26. [PMID: 22238299 PMCID: PMC3302302 DOI: 10.1128/jvi.05826-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 12/23/2011] [Indexed: 12/17/2022] Open
Abstract
Hendra virus is a highly pathogenic paramyxovirus classified as a biosafety level four agent. The fusion (F) protein of Hendra virus is critical for promoting viral entry and cell-to-cell fusion. To be fusogenically active, Hendra virus F must undergo endocytic recycling and cleavage by the endosomal/lysosomal protease cathepsin L, but the route of Hendra virus F following internalization and the recycling signals involved are poorly understood. We examined the intracellular distribution of Hendra virus F following endocytosis and showed that it is primarily present in Rab5- and Rab4-positive endosomal compartments, suggesting that cathepsin L cleavage occurs in early endosomes. Hendra virus F transmembrane domain (TMD) residues S490 and Y498 were found to be important for correct Hendra virus F recycling, with the hydroxyl group of S490 and the aromatic ring of Y498 important for this process. In addition, changes in association of isolated Hendra virus F TMDs correlated with alterations to Hendra virus F recycling, suggesting that appropriate TMD interactions play an important role in endocytic trafficking.
Collapse
Affiliation(s)
- Andreea Popa
- Department of Molecular and Cellular Biochemistry
| | | | | | | | - Michael G. Fried
- Department of Molecular and Cellular Biochemistry
- Center for Structural Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Rebecca Ellis Dutch
- Department of Molecular and Cellular Biochemistry
- Center for Structural Biology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
31
|
Abstract
Polarized cellular responses, for example, cell migration, require the co-ordinated assembly of signalling complexes at a particular subcellular location, such as the leading edge of cells. Small GTPases of the Ras superfamily play central roles in many (polarized) responses to growth factors, chemokines or integrin ligands. These small GTPases are functionally distinct, yet remarkably homologous in their primary sequence and especially in their effector domains. Therefore it has long been unclear how GTPase signalling specificity is regulated. Small GTPases carry a lipid anchor, in the context of a hypervariable region, which mediates membrane association. However, whereas the lipid has long been proposed to be the critical regulator of subcellular GTPase targeting, there is now increasing evidence that specific protein-protein interactions are important as well. This review discusses recent findings on GTPase targeting and proposes a revised model for GTPase signalling. In this model, the hypervariable domain acts in conjunction with the lipid tail to target the GTPase to specific membrane-associated protein complexes. Here, local GTPase activation occurs, leading to subsequent exposure of the effector domain, binding to effector proteins and the initiation of downstream signalling.
Collapse
Affiliation(s)
- Jean Paul ten Klooster
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands
| | | |
Collapse
|
32
|
Clark BS, Winter M, Cohen AR, Link BA. Generation of Rab-based transgenic lines for in vivo studies of endosome biology in zebrafish. Dev Dyn 2011; 240:2452-65. [PMID: 21976318 DOI: 10.1002/dvdy.22758] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2011] [Indexed: 12/31/2022] Open
Abstract
The Rab family of small GTPases function as molecular switches regulating membrane and protein trafficking. Individual Rab isoforms define and are required for specific endosomal compartments. To facilitate in vivo investigation of specific Rab proteins, and endosome biology in general, we have generated transgenic zebrafish lines to mark and manipulate Rab proteins. We also developed software to track and quantify endosome dynamics within time-lapse movies. The established transgenic lines ubiquitously express EGFP fusions of Rab5c (early endosomes), Rab11a (recycling endosomes), and Rab7 (late endosomes) to study localization and dynamics during development. Additionally, we generated UAS-based transgenic lines expressing constitutive active (CA) and dominant-negative (DN) versions for each of these Rab proteins. Predicted localization and functional consequences for each line were verified through a variety of assays, including lipophilic dye uptake and Crumbs2a localization. In summary, we have established a toolset for in vivo analyses of endosome dynamics and functions.
Collapse
Affiliation(s)
- Brian S Clark
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | |
Collapse
|
33
|
Heger CD, Wrann CD, Collins RN. Phosphorylation provides a negative mode of regulation for the yeast Rab GTPase Sec4p. PLoS One 2011; 6:e24332. [PMID: 21931684 PMCID: PMC3171412 DOI: 10.1371/journal.pone.0024332] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 08/06/2011] [Indexed: 12/31/2022] Open
Abstract
The Rab family of Ras-related GTPases are part of a complex signaling circuitry in eukaryotic cells, yet we understand little about the mechanisms that underlie Rab protein participation in such signal transduction networks, or how these networks are integrated at the physiological level. Reversible protein phosphorylation is widely used by cells as a signaling mechanism. Several phospho-Rabs have been identified, however the functional consequences of the modification appear to be diverse and need to be evaluated on an individual basis. In this study we demonstrate a role for phosphorylation as a negative regulatory event for the action of the yeast Rab GTPase Sec4p in regulating polarized growth. Our data suggest that the phosphorylation of the Rab Sec4p prevents interactions with its effector, the exocyst component Sec15p, and that the inhibition may be relieved by a PP2A phosphatase complex containing the regulatory subunit Cdc55p.
Collapse
Affiliation(s)
- Christopher D. Heger
- Graduate Program in Pharmacology, Cornell University, Ithaca, New York, United States of America
- Department of Molecular Medicine, Cornell University, Ithaca, New York, United States of America
| | - Christiane D. Wrann
- Leadership Program for Veterinary Students, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Ruth N. Collins
- Department of Molecular Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
34
|
Cai B, Katafiasz D, Horejsi V, Naslavsky N. Pre-sorting endosomal transport of the GPI-anchored protein, CD59, is regulated by EHD1. Traffic 2010; 12:102-20. [PMID: 20961375 DOI: 10.1111/j.1600-0854.2010.01135.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
EHD1 regulates the trafficking of multiple receptors from the endocytic recycling compartment (ERC) to the plasma membrane. However, the potential role of EHD1 in regulating the family of glycosylphosphatidylinositol-anchored proteins (GPI-APs) has not been determined. Here we demonstrate a novel role for EHD1 in regulating the trafficking of CD59, an endogenous GPI-AP, at early stages of trafficking through the endocytic pathway. EHD1 displays significant colocalization with newly internalized CD59. Upon EHD1 depletion, there is a rapid Rab5-independent coalescence of CD59 in the ERC region. However, expression of an active Arf6 mutant (Q67L), which traps internalized pre-sorting endosomal cargo in phosphatidylinositol(4,5)-bisphosphate enriched vacuoles, prevents this coalescence. It is of interest that sustained PKC activation leads to a similar coalescence of CD59 at the ERC, and treatment of EHD1-depleted cells with a PKC inhibitor (Go6976) blocked this rapid relocation of CD59. However, unlike sustained PKC activation, EHD1 depletion does not induce the translocation of PKCα to ERC. The results presented herein provide evidence that EHD1 is involved in the control of CD59 transport from pre-sorting endosomes to the ERC in a PKC-dependent manner. However, the mechanisms of EHD1-induced coalescence of CD59 at the ERC differ from those induced by sustained PKC activation.
Collapse
Affiliation(s)
- Bishuang Cai
- Department of Biochemistry and Molecular Biology and Eppley Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | | | | | | |
Collapse
|
35
|
Poteryaev D, Datta S, Ackema K, Zerial M, Spang A. Identification of the switch in early-to-late endosome transition. Cell 2010; 141:497-508. [PMID: 20434987 DOI: 10.1016/j.cell.2010.03.011] [Citation(s) in RCA: 511] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 11/26/2009] [Accepted: 02/25/2010] [Indexed: 11/16/2022]
Abstract
Sequential transport from early to late endosomes requires the coordinated activities of the small GTPases Rab5 and Rab7. The transition between early and late endosomes could be mediated either through transport carriers or by Rab conversion, a process in which the loss of Rab5 from an endosome occurs concomitantly to the acquisition of Rab7. We demonstrate that Rab conversion is the mechanism by which proteins pass from early to late endosomes in Caenorhabditis elegans coelomocytes. Moreover, we identified SAND-1/Mon1 as the critical switch for Rab conversion in metazoa. SAND-1 serves a dual role in this process. First, it interrupts the positive feedback loop of RAB-5 activation by displacing RABX-5 from endosomal membranes; second, it times the recruitment of RAB-7, probably through interaction with the HOPS complex to the same membranes. SAND-1/Mon1 thus acts as a switch by controlling the localization of RAB-5 and RAB-7 GEFs.
Collapse
Affiliation(s)
- Dmitry Poteryaev
- Biozentrum, University of Basel, Klingelbergstrasse 70, Basel 4056, Switzerland
| | | | | | | | | |
Collapse
|
36
|
Semerdjieva S, Shortt B, Maxwell E, Singh S, Fonarev P, Hansen J, Schiavo G, Grant BD, Smythe E. Coordinated regulation of AP2 uncoating from clathrin-coated vesicles by rab5 and hRME-6. ACTA ACUST UNITED AC 2008; 183:499-511. [PMID: 18981233 PMCID: PMC2575790 DOI: 10.1083/jcb.200806016] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Here we investigate the role of rab5 and its cognate exchange factors rabex-5 and hRME-6 in the regulation of AP2 uncoating from endocytic clathrin-coated vesicles (CCVs). In vitro, we show that the rate of AP2 uncoating from CCVs is dependent on the level of functional rab5. In vivo, overexpression of dominant-negative rab5(S34N), or small interfering RNA (siRNA)-mediated depletion of hRME-6, but not rabex-5, resulted in increased steady-state levels of AP2 associated with endocytic vesicles, which is consistent with reduced uncoating efficiency. hRME-6 guanine nucleotide exchange factor activity requires hRME-6 binding to alpha-adaptin ear, which displaces the ear-associated mu2 kinase AAK1. siRNA-mediated depletion of hRME-6 increases phospho-mu2 levels, and expression of a phosphomimetic mu2 mutant increases levels of endocytic vesicle-associated AP2. Depletion of hRME-6 or rab5(S35N) expression also increases the levels of phosphoinositide 4,5-bisphosphate (PtdIns(4,5)P(2)) associated with endocytic vesicles. These data are consistent with a model in which hRME-6 and rab5 regulate AP2 uncoating in vivo by coordinately regulating mu2 dephosphorylation and PtdIns(4,5)P(2) levels in CCVs.
Collapse
Affiliation(s)
- Sophia Semerdjieva
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, England, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Gastaldelli M, Imelli N, Boucke K, Amstutz B, Meier O, Greber UF. Infectious adenovirus type 2 transport through early but not late endosomes. Traffic 2008; 9:2265-78. [PMID: 18980614 DOI: 10.1111/j.1600-0854.2008.00835.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Receptor-mediated endocytosis is a major gate for pathogens into cells. In this study, we analyzed the trafficking of human adenovirus type 2 and 5 (Ad2/5) and the escape-defective temperature-sensitive Ad2-ts1 mutant in epithelial cancer cells. Ad2/5 and Ad2-ts1 uptake into endosomes containing transferrin, major histocompatibility antigen 1 and the Rab5 effector early endosome antigen 1 (EEA1) involved dynamin, amphiphysin, clathrin and Eps15. Cointernalization experiments showed that most of the Ad2/5 and Ad2-ts1 visited the same EEA1-positive endosomes. In contrast to Ad2/5, Ad2-ts1 required functional Rab5 for endocytosis and lysosomal transport and was sensitive to the phosphatidyl-inositol-3 (PI3)-kinase inhibitor wortmannin or the ubiquitin-binding protein Hrs for sorting from early to late endosomes. Endosomal escape of Ad2 was not affected by incubation at 19 degrees C, which blocked membrane sorting in early endosomes and inhibited Ad2-ts1 transport to lysosomes. Unlike Semliki Forest Virus (SFV), sorting of Ad2-ts1 to late endosomes was independent of Rab7 and Ad2/5 infection independent of EEA1. The data indicate that Ad2/5 and Ad2-ts1 use an invariant machinery for clathrin-mediated uptake to early endosomes. We suggest that the infectious Ad2 particles are either directly released from early endosomes to the cytosol or sorted by a temperature-insensitive and PI3-kinase-independent mechanism to an escape compartment different from late endosomes or lysosomes.
Collapse
Affiliation(s)
- Michele Gastaldelli
- Institute of Zoology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
38
|
McLaughlin NJD, Banerjee A, Khan SY, Lieber JL, Kelher MR, Gamboni-Robertson F, Sheppard FR, Moore EE, Mierau GW, Elzi DJ, Silliman CC. Platelet-activating factor-mediated endosome formation causes membrane translocation of p67phox and p40phox that requires recruitment and activation of p38 MAPK, Rab5a, and phosphatidylinositol 3-kinase in human neutrophils. THE JOURNAL OF IMMUNOLOGY 2008; 180:8192-203. [PMID: 18523285 DOI: 10.4049/jimmunol.180.12.8192] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neutrophils (polymorphonuclear leukocytes, PMNs) are vital to innate immunity and receive proinflammatory signals that activate G protein-coupled receptors (GPCRs). Because GPCRs transduce signals through clathrin-mediated endocytosis (CME), we hypothesized that platelet-activating factor (PAF), an effective chemoattractant that primes the PMN oxidase, would signal through CME, specifically via dynamin-2 activation and endosomal formation resulting in membrane translocation of cytosolic phagocyte oxidase (phox) proteins. PMNs were incubated with buffer or 2 muM PAF for 1-3 min, and in some cases activated with PMA, and O(2)(-) was measured, whole-cell lysates and subcellular fractions were prepared, or the PMNs were fixed onto slides for digital or electron microscopy. PAF caused activation of dynamin-2, resulting in endosomal formation that required PI3K and contained early endosomal Ag-1 (EEA-1) and Rab5a. The apoptosis signal-regulating kinase-1/MAPK kinase-3/p38 MAPK signalosome assembled on Rab5a and phosphorylated EEA-1 and Rab GDP dissociation inhibitor, with the latter causing Rab5a activation. Electron microscopy demonstrated that PAF caused two distinct sites for activation of p38 MAPK. EEA-1 provided a scaffold for recruitment of the p40(phox)-p67(phox) complex and PI3K-dependent Akt1 phosphorylation of these two phox proteins. PAF induced membrane translocation of p40(phox)-p67(phox) localizing to gp91(phox), which was PI3K-, but not p47(phox)-, dependent. In conclusion, PAF transduces signals through CME, and such GPCR signaling may allow for pharmacological manipulation of these cells to decrease PMN-mediated acute organ injury.
Collapse
Affiliation(s)
- Nathan J D McLaughlin
- Bonfils Blood Center, University of Colorado Denver School of Medicine, Children's Hospital, Denver, CO 80230, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Bonecchi R, Borroni EM, Anselmo A, Doni A, Savino B, Mirolo M, Fabbri M, Jala VR, Haribabu B, Mantovani A, Locati M. Regulation of D6 chemokine scavenging activity by ligand- and Rab11-dependent surface up-regulation. Blood 2008; 112:493-503. [PMID: 18480427 DOI: 10.1182/blood-2007-08-108316] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The decoy receptor D6 plays a nonredundant role in the control of inflammatory processes through scavenging of inflammatory chemokines. However it remains unclear how it is regulated. Here we show that D6 scavenging activity relies on unique trafficking properties. Under resting conditions, D6 constitutively recycled through both a rapid wortmannin (WM)-sensitive and a slower brefeldin A (BFA)-sensitive pathway, maintaining low levels of surface expression that required both Rab4 and Rab11 activities. In contrast to "conventional" chemokine receptors that are down-regulated by cognate ligands, chemokine engagement induced a dose-dependent BFA-sensitive Rab11-dependent D6 re-distribution to the cell membrane and a corresponding increase in chemokine degradation rate. Thus, the energy-expensive constitutive D6 cycling through Rab11 vesicles allows a rapid, ligand concentration-dependent increase of chemokine scavenging activity by receptor redistribution to the plasma membrane. D6 is not regulated at a transcriptional level in a variety of cellular contexts, thus ligand-dependent optimization of its scavenger performance represents a rapid and unique mechanism allowing D6 to control inflammation.
Collapse
Affiliation(s)
- Raffaella Bonecchi
- Istituto Clinico Humanitas, Istituti di ricovero e cura a carattere scientifico (IRCCS), Rozzano, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
All four of the C-terminal Eps15 homology domain (EHD) proteins have been implicated in the regulation of endocytic trafficking. However, the high level of amino acid sequence identity among these proteins has made it challenging to elucidate the precise function of individual EHD proteins. We demonstrate here with specific peptide antibodies that endogenous EHD4 localizes to Rab5-, early embryonic antigen 1 (EEA1)- and Arf6-containing endosomes and colocalizes with internalized transferrin in the cell periphery. Knock-down of EHD4 expression by both small interfering RNA and short hairpin RNA leads to the generation of enlarged early endosomal structures that contain Rab5 and EEA1 as well as internalized transferrin or major histocompatibility complex class I molecules. In addition, cargo destined for degradation, such as internalized low-density lipoprotein, also accumulates in the enlarged early endosomes in EHD4-depleted cells. Moreover, we have demonstrated that these enlarged early endosomes are enriched in levels of the activated GTP-bound Rab5. Finally, we show that endogenous EHD4 and EHD1 interact in cells, suggesting coordinated involvement in the regulation of receptor transport along the early endosome to endocytic recycling compartment axis. The results presented herein provide evidence that EHD4 is involved in the control of trafficking at the early endosome and regulates exit of cargo toward both the recycling compartment and the late endocytic pathway.
Collapse
Affiliation(s)
- Mahak Sharma
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | | | | |
Collapse
|
41
|
Diestel S, Schaefer D, Cremer H, Schmitz B. NCAM is ubiquitylated, endocytosed and recycled in neurons. J Cell Sci 2007; 120:4035-49. [DOI: 10.1242/jcs.019729] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The neural cell adhesion molecule NCAM plays an important role during neural development and in the adult brain. To study the intracellular trafficking of NCAM in neurons, two major isoforms, NCAM140 or NCAM180, were expressed in primary cortical neurons and in the rat B35 neuroblastoma cell line. NCAM was endocytosed and subsequently recycled to the plasma membrane, whereas only a minor fraction was degraded in lysosomes. In cortical neurons, endocytosis of NCAM was detected in the soma, neurites and growth cones in a developmentally regulated fashion. Furthermore, we found that NCAM is mono-ubiquitylated at the plasma membrane and endocytosis was significantly increased in cells overexpressing ubiquitin. Therefore, we propose that ubiquitylation represents an endocytosis signal for NCAM.
Collapse
Affiliation(s)
- Simone Diestel
- Institute of Animal Sciences, Department of Biochemistry, University of Bonn, Katzenburgweg 9a, 53115 Bonn, Germany
| | - Daniel Schaefer
- Institute of Animal Sciences, Department of Biochemistry, University of Bonn, Katzenburgweg 9a, 53115 Bonn, Germany
| | - Harold Cremer
- Institut de Biologie du Développement de Marseille-Luminy, UMR 6216, CNRS/Université de la Méditeranée, Campus de Luminy-case 907, 13288 Marseille cedex 9, France
| | - Brigitte Schmitz
- Institute of Animal Sciences, Department of Biochemistry, University of Bonn, Katzenburgweg 9a, 53115 Bonn, Germany
| |
Collapse
|
42
|
Trombone APF, Silva CL, Lima KM, Oliver C, Jamur MC, Prescott AR, Coelho-Castelo AAM. Endocytosis of DNA-Hsp65 alters the pH of the late endosome/lysosome and interferes with antigen presentation. PLoS One 2007; 2:e923. [PMID: 17895965 PMCID: PMC1976595 DOI: 10.1371/journal.pone.0000923] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 08/30/2007] [Indexed: 11/18/2022] Open
Abstract
Background Experimental models using DNA vaccine has shown that this vaccine is efficient in generating humoral and cellular immune responses to a wide variety of DNA-derived antigens. Despite the progress in DNA vaccine development, the intracellular transport and fate of naked plasmid DNA in eukaryotic cells is poorly understood, and need to be clarified in order to facilitate the development of novel vectors and vaccine strategies. Methodology and Principal Findings Using confocal microscopy, we have demonstrated for the first time that after plasmid DNA uptake an inhibition of the acidification of the lysosomal compartment occurs. This lack of acidification impaired antigen presentation to CD4 T cells, but did not alter the recruitment of MyD88. The recruitment of Rab 5 and Lamp I were also altered since we were not able to co-localize plasmid DNA with Rab 5 and Lamp I in early endosomes and late endosomes/lysosomes, respectively. Furthermore, we observed that the DNA capture process in macrophages was by clathrin-mediated endocytosis. In addition, we observed that plasmid DNA remains in vesicles until it is in a juxtanuclear location, suggesting that the plasmid does not escape into the cytoplasmic compartment. Conclusions and Significance Taken together our data suggests a novel mechanism involved in the intracellular trafficking of plasmid DNA, and opens new possibilities for the use of lower doses of plasmid DNA to regulate the immune response.
Collapse
Affiliation(s)
- Ana Paula F. Trombone
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
- Brazilian Tuberculosis Research Network of School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Célio L. Silva
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
- Brazilian Tuberculosis Research Network of School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Karla M. Lima
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Constance Oliver
- Department of Cellular and Molecular Biology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Maria Célia Jamur
- Department of Cellular and Molecular Biology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Alan R. Prescott
- Division of Cell Biology and Immunology, School of Life Sciences, University of Dundee, Dundee, Scotland
| | - Arlete A. M. Coelho-Castelo
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
- Brazilian Tuberculosis Research Network of School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
43
|
Yang J, Guo SY, Pan FY, Geng HX, Gong Y, Lou D, Shu YQ, Li CJ. Prokaryotic expression and polyclonal antibody preparation of a novel Rab-like protein mRabL5. Protein Expr Purif 2007; 53:1-8. [PMID: 17251037 DOI: 10.1016/j.pep.2006.10.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 09/23/2006] [Accepted: 10/02/2006] [Indexed: 11/26/2022]
Abstract
Rab GTPases, which belong to the Ras superfamily, represent a group of small molecular weight GTP binding proteins that are involved in various steps along the exocytic and endocytic pathways. We first identified mRabL5 (GenBank Accession No. NP_080349), a novel Mus musculus Rab-like protein, present as a Golgi-associated protein. Here we presented the results of the cloning, prokaryotic expression, purification, and polyclonal antibody production of the novel Rab-like protein. In order to obtain a specific antibody against mRabL5, we prepared two GST fusion proteins, full-length mRabL5 GST fusion protein and mRabL5 C terminus GST fusion protein, to immunize rabbits. Western blot analysis showed that both antibodies prepared against full length of mRabL5 and its C terminus, respectively, can recognize mRabL5 protein. Immunofluorescence of mRabL5 in NIH3T3 cells using the two antibodies showed its perinuclear clustering distribution pattern. The polyclonal antibodies preparation against mRabL5 provided a good tool for us to study the functional involvement of mRabL5.
Collapse
Affiliation(s)
- Jie Yang
- Jiangsu Key Laboratory for Molecular & Medical Biotechnology, Life Science College, Nanjing Normal University, Nanjing 210097, China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Derby MC, Gleeson PA. New Insights into Membrane Trafficking and Protein Sorting. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 261:47-116. [PMID: 17560280 DOI: 10.1016/s0074-7696(07)61002-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein transport in the secretory and endocytic pathways is a multistep process involving the generation of transport carriers loaded with defined sets of cargo, the shipment of the cargo-loaded transport carriers between compartments, and the specific fusion of these transport carriers with a target membrane. The regulation of these membrane-mediated processes involves a complex array of protein and lipid interactions. As the machinery and regulatory processes of membrane trafficking have been defined, it is increasingly apparent that membrane transport is intimately connected with a number of other cellular processes, such as quality control in the endoplasmic reticulum (ER), cytoskeletal dynamics, receptor signaling, and mitosis. The fidelity of membrane trafficking relies on the correct assembly of components on organelles. Recruitment of peripheral proteins plays a critical role in defining organelle identity and the establishment of membrane subdomains, essential for the regulation of vesicle transport. The molecular mechanisms for the biogenesis of membrane subdomains are also central to understanding how cargo is sorted and segregated and how different populations of transport carriers are generated. In this review we will focus on the emerging themes of organelle identity, membrane subdomains, regulation of Golgi trafficking, and advances in dissecting pathways in physiological systems.
Collapse
Affiliation(s)
- Merran C Derby
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | | |
Collapse
|
45
|
Pirovano W, Feenstra KA, Heringa J. Sequence comparison by sequence harmony identifies subtype-specific functional sites. Nucleic Acids Res 2006; 34:6540-8. [PMID: 17130172 PMCID: PMC1702503 DOI: 10.1093/nar/gkl901] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Multiple sequence alignments are often used to reveal functionally important residues within a protein family. They can be particularly useful for the identification of key residues that determine functional differences between protein subfamilies. We present a new entropy-based method, Sequence Harmony (SH) that accurately detects subfamily-specific positions from a multiple sequence alignment. The SH algorithm implements a novel formula, able to score compositional differences between subfamilies, without imposing conservation, in a simple manner on an intuitive scale. We compare our method with the most important published methods, i.e. AMAS, TreeDet and SDP-pred, using three well-studied protein families: the receptor-binding domain (MH2) of the Smad family of transcription factors, the Ras-superfamily of small GTPases and the MIP-family of integral membrane transporters. We demonstrate that SH accurately selects known functional sites with higher coverage than the other methods for these test-cases. This shows that compositional differences between protein subfamilies provide sufficient basis for identification of functional sites. In addition, SH selects a number of sites of unknown function that could be interesting candidates for further experimental investigation.
Collapse
Affiliation(s)
| | | | - Jaap Heringa
- To whom correspondence should be addressed. Tel: +31 20 59 87649; Fax: +31 20 59 87653;
| |
Collapse
|
46
|
Abstract
The human genome encodes approximately 70 Rab GTPases that localize to the surfaces of distinct membrane compartments. To investigate the mechanism of Rab localization, chimeras containing heterologous Rab hypervariable domains were generated, and their ability to bind seven Rab effectors was quantified. Two chimeras could bind effectors for two distinctly localized Rabs; a Rab5/9 hybrid bound both Rab5 and Rab9 effectors, and a Rab1/9 hybrid bound to certain Rab1 and Rab9 effectors. These unusual chimeras permitted a test of the importance of effector binding for Rab localization. In both cases, changing the cellular concentration of a key Rab9 effector, which is called tail-interacting protein of 47 kD, moved a fraction of the proteins from their parental Rab localization to that of Rab9. Thus, relative concentrations of certain competing effectors could determine a chimera's localization. These data confirm the importance of effector interactions for Rab9 localization, and support a model in which effector proteins rely on Rabs as much as Rabs rely on effectors to achieve their correct steady state localizations.
Collapse
Affiliation(s)
- Dikran Aivazian
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
47
|
Cooper A, Shaul Y. Clathrin-mediated endocytosis and lysosomal cleavage of hepatitis B virus capsid-like core particles. J Biol Chem 2006; 281:16563-9. [PMID: 16618702 DOI: 10.1074/jbc.m601418200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The hepatitis B virus (HBV) core particle serves as a protective capsid shell for the viral genome and is highly immunogenic. Recombinant capsid-like core particles are used as effective carriers of foreign T and B cell epitopes and as delivery vehicles for oligonucleotides. The core monomer contains an arginine-rich C terminus that directs core particle attachment to cells via membrane heparan sulfate proteoglycans. Here we investigated the mechanism of recombinant core particle uptake and its intracellular fate following heparan sulfate binding. We found that the core particles are internalized in an energy-dependent manner. Core particle uptake is inhibited by chlorpromazine and by cytosol acidification known to block clathrin-mediated endocytosis but not by nystatin, which blocks lipid raft endocytosis. Particle uptake is abolished by expression of dominant negative forms of eps15 and Rab5, adaptors involved in clathrin-mediated endocytosis and early endosome transport, respectively. Endocytosed particles are transported to lysosomes where the core monomer is endoproteolytically cleaved into its distinct domains. Using protease inhibitors, cathepsin B was identified as the enzyme responsible for core monomer cleavage. Finally we found that monomer cleavage promotes particle dissociation within cells. Together, our results show that HBV capsid-like core particles are internalized through clathrin-mediated endocytosis, leading to lysosomal cleavage of the core monomer and particle dissociation.
Collapse
Affiliation(s)
- Arik Cooper
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
48
|
Abstract
The human genome encodes almost 70 Rab GTPases. These proteins are C-terminally geranylgeranylated and are localized to the surfaces of distinct membrane-bound compartments in eukaryotic cells. This mini review presents a working model for how Rabs achieve and maintain their steady-state localizations. Data from a number of laboratories suggest that Rabs participate in the generation of macromolecular assemblies that generate functional microdomains within a given membrane compartment. Our data suggest that these complex interactions are important for the cellular localization of Rab proteins at steady state.
Collapse
Affiliation(s)
- S Pfeffer
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307, USA.
| |
Collapse
|
49
|
Marois E, Mahmoud A, Eaton S. The endocytic pathway and formation of the Wingless morphogen gradient. Development 2005; 133:307-17. [PMID: 16354714 DOI: 10.1242/dev.02197] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Controlling the spread of morphogens is crucial for pattern formation during development. In the Drosophila wing disc, Wingless secreted at the dorsal-ventral compartment boundary forms a concentration gradient in receiving tissue, where it activates short- and long-range target genes. The glypican Dally-like promotes Wingless spreading by unknown mechanisms, while Dynamin-dependent endocytosis is thought to restrict Wingless spread. We have utilized short-term expression of dominant negative Rab proteins to examine the polarity of endocytic trafficking of Wingless and its receptors and to determine the relative contributions of endocytosis, degradation and recycling to the establishment of the Wingless gradient. Our results show that Wingless is internalized via two spatially distinct routes: one on the apical, and one on the basal, side of the disc. Both restrict the spread of Wingless, with little contribution from subsequent degradation or recycling. As previously shown for Frizzled receptors, depleting Arrow does not prevent Wingless from entering endosomes. We find that both Frizzled and Arrow are internalized mainly from the apical membrane. Thus, the basal Wingless internalization route must be independent of these proteins. We find that Dally-like is not required for Wingless spread when endocytosis is blocked, and propose that Dally-like promotes the spread of Wingless by directing it to lateral membranes, where its endocytosis is less efficient. Thus, subcellular localization of Wingless along the apical-basal axis of receiving cells may be instrumental in shaping the Wingless gradient.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Body Patterning
- Drosophila/genetics
- Drosophila/growth & development
- Drosophila/metabolism
- Drosophila Proteins/genetics
- Drosophila Proteins/metabolism
- Endocytosis
- Endosomes/metabolism
- Frizzled Receptors
- Genes, Insect
- Models, Biological
- Proteoglycans/genetics
- Proteoglycans/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- RNA Interference
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, G-Protein-Coupled
- Receptors, Neurotransmitter/genetics
- Receptors, Neurotransmitter/metabolism
- Signal Transduction
- Wings, Animal/growth & development
- Wings, Animal/metabolism
- Wnt1 Protein
- rab GTP-Binding Proteins/genetics
- rab GTP-Binding Proteins/metabolism
- rab5 GTP-Binding Proteins/genetics
- rab5 GTP-Binding Proteins/metabolism
- rab7 GTP-Binding Proteins
Collapse
Affiliation(s)
- Eric Marois
- Max-Planck Institute for Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | | | | |
Collapse
|
50
|
Kail M, Hollinshead M, Kaufmann M, Boettcher J, Vaux D, Barnekow A. Yeast Ypt11 is targeted to recycling endosomes in mammalian cells. Biol Cell 2005; 97:651-8. [PMID: 15850457 DOI: 10.1042/bc20040139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND INFORMATION In yeast, Ypt11 or Ypt32 along with the highly homologous Ypt8 or Ypt31 has been reported to be an essential component of intra-Golgi trafficking and has been implicated in the budding of vesicles from the most distal Golgi compartment. RESULTS AND CONCLUSIONS In the present study, we show that, in human cells, after heterologous expression of GFP-Ypt11 (where GFP stands for green fluorescent protein), the protein is targeted to transferrin-positive recycling endosomes. This compartment has been shown to form extensive tubular networks on applying the drug Brefeldin A. We also show, by confocal fluorescent microscopy, that these networks also contain Rab11 in cells expressing CFP-Rab11a (where CFP stands for cyan fluorescent protein) fusion protein and that these structures are identical with those targeted by GFP-Ypt11.
Collapse
Affiliation(s)
- Mark Kail
- Department of Experimental Tumorbiology, University Muenster, Badestr. 9, 48149 Muenster, Germany.
| | | | | | | | | | | |
Collapse
|