1
|
Xie Q, Du Y, Ghosh S, Rajendran S, Cohen-Gadol AA, Baizabal JM, Nephew KP, Han L, Shen J. Multi-omics analysis identifies glioblastoma dependency on H3K9me3 methyltransferase activity. NPJ Precis Oncol 2025; 9:78. [PMID: 40113969 PMCID: PMC11926169 DOI: 10.1038/s41698-025-00829-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 02/01/2025] [Indexed: 03/22/2025] Open
Abstract
Histone H3 lysine 9 dimethylation and trimethylation (H3K9me2/3) are prevalent in human genomes, especially in heterochromatin and specific euchromatic genes. Methylation of H3K9 is modulated by enzymes such as SUV39H1, SUV39H2, SETDB1, SETDB2, and EHMT1/2, which influence cancer progression. This study reveals differential expression of these six H3K9 methyltransferases in tumors, with SUV39H1, SUV39H2, and SETDB1 showing significant links to cancer phenotypes. We developed the "H3K9me3 MtSig" (H3K9me3 methyltransferases signature) based on these findings. H3K9me3 MtSig is unique to various tumors, with prognostic significance and associations with key signaling pathways, especially in glioblastoma (GBM). Elevated H3K9me3 MtSig was observed in GBM samples, correlating with the G2/M cell cycle and reduced immune responses. H3K9me3-mediated repetitive sequence silencing by H3K9me3 MtSig contributed to these phenotypes, and inhibiting H3K9me3 MtSig in patient-derived GBM cells suppressed proliferation and increased immune responses. H3K9me3 MtSig serves as an independent prognostic factor and potential therapeutic target.
Collapse
Affiliation(s)
- Qiqi Xie
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN, 47405, USA
| | - Yuanning Du
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN, 47405, USA
| | - Sugata Ghosh
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN, 47405, USA
- Cell, Molecular and Cancer Biology Graduate Program, Indiana University School of Medicine, Bloomington, IN, 47405, USA
| | - Saranya Rajendran
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN, 47405, USA
| | - Aaron A Cohen-Gadol
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | | | - Kenneth P Nephew
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN, 47405, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Leng Han
- Brown Center for Immunotherapy, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Jia Shen
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN, 47405, USA.
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA.
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
2
|
LaRue-Nolan KC, Arul GLR, Sigafoos AN, Shi J, Fernandez-Zapico ME. Insights into the mechanisms driven by H3K4 KMTs in pancreatic cancer. Biochem J 2024; 481:983-997. [PMID: 39078225 PMCID: PMC11332384 DOI: 10.1042/bcj20230374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024]
Abstract
Pancreatic cancer is a malignancy arising from the endocrine or exocrine compartment of this organ. Tumors from exocrine origin comprise over 90% of all pancreatic cancers diagnosed. Of these, pancreatic ductal adenocarcinoma (PDAC) is the most common histological subtype. The five-year survival rate for PDAC ranged between 5 and 9% for over four decades, and only recently saw a modest increase to ∼12-13%, making this a severe and lethal disease. Like other cancers, PDAC initiation stems from genetic changes. However, therapeutic targeting of PDAC genetic drivers has remained relatively unsuccessful, thus the focus in recent years has expanded to the non-genetic factors underlying the disease pathogenesis. Specifically, it has been proposed that dynamic changes in the epigenetic landscape promote tumor growth and metastasis. Emphasis has been given to the re-organization of enhancers, essential regulatory elements controlling oncogenic gene expression, commonly marked my histone 3 lysine 4 monomethylation (H3K4me1). H3K4me1 is typically deposited by histone lysine methyltransferases (KMTs). While well characterized as oncogenes in other cancer types, recent work has expanded the role of KMTs as tumor suppressor in pancreatic cancer. Here, we review the role and translational significance for PDAC development and therapeutics of KMTs.
Collapse
Affiliation(s)
- Kayla C. LaRue-Nolan
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, MN, U.S.A
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, U.S.A
| | | | - Ashley N. Sigafoos
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, MN, U.S.A
| | - Jiaqi Shi
- Department of Pathology and Clinical Labs, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, U.S.A
| | | |
Collapse
|
3
|
Ni Y, Qiao Y, Tian X, Li H, Meng Y, Li C, Du W, Sun T, Zhu K, Huang W, Yan H, Li J, Zhou R, Ding C, Gao X. Unraveling the mechanism of thermotolerance by Set302 in Cryptococcus neoformans. Microbiol Spectr 2024; 12:e0420223. [PMID: 38874428 PMCID: PMC11302353 DOI: 10.1128/spectrum.04202-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/12/2024] [Indexed: 06/15/2024] Open
Abstract
The underlying mechanism of thermotolerance, which is a key virulence factor essential for pathogenic fungi such as Cryptococcus neoformans, is largely unexplored. In this study, our findings suggest that Set302, a homolog of Set3 and a subunit of histone deacetylase complex Set3C, contributes to thermotolerance in C. neoformans. Specifically, the deletion of the predicted Set3C core subunit, Set302, resulted in further reduction in the growth of C. neoformans at 39°C, and survival of transient incubation at 50°C. Transcriptomics analysis revealed that the expression levels of numerous heat stress-responsive genes altered at both 30°C and 39°C due to the lack of Set302. Notably, at 39°C, the absence of Set302 led to the downregulation of gene expression related to the ubiquitin-proteasome system (UPS). Based on the GFP-α-synuclein overexpression model to characterize misfolded proteins, we observed a pronounced accumulation of misfolded GFP-α-synuclein at 39°C, consequently inhibiting C. neoformans thermotolerance. Furthermore, the loss of Set302 exacerbated the accumulation of misfolded GFP-α-synuclein during heat stress. Interestingly, the set302∆ strain exhibited a similar phenotype under proteasome stress as it did at 39°C. Moreover, the absence of Set302 led to reduced production of capsule and melanin. set302∆ strain also displayed significantly reduced pathogenicity and colonization ability compared to the wild-type strain in the murine infection model. Collectively, our findings suggest that Set302 modulates thermotolerance by affecting the degradation of misfolded proteins and multiple virulence factors to mediate the pathogenicity of C. neoformans.IMPORTANCECryptococcus neoformans is a pathogenic fungus that poses a potential and significant threat to public health. Thermotolerance plays a crucial role in the wide distribution in natural environments and host colonization of this fungus. Herein, Set302, a critical core subunit for the integrity of histone deacetylase complex Set3C and widely distributed in various fungi and mammals, governs thermotolerance and affects survival at extreme temperatures as well as the formation of capsule and melanin in C. neoformans. Additionally, Set302 participates in regulating the expression of multiple genes associated with the ubiquitin-proteasome system (UPS). By eliminating misfolded proteins under heat stress, Set302 significantly contributes to the thermotolerance of C. neoformans. Moreover, Set302 regulates the pathogenicity and colonization ability of C. neoformans in a murine model. Overall, this study provides new insight into the mechanism of thermotolerance in C. neoformans.
Collapse
Affiliation(s)
- Yue Ni
- College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning, China
| | - Yue Qiao
- College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning, China
| | - Xing Tian
- Department of Emergency, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hailong Li
- NHC Key Laboratory of AIDS Immunology, National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yang Meng
- College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning, China
| | - Chao Li
- College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning, China
| | - Wei Du
- Department of Clinical Laboratory, National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tianshu Sun
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
- Medical Research Centre, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Keting Zhu
- Department of Emergency, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Wei Huang
- Department of Emergency, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - He Yan
- Department of Emergency, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jia Li
- Department of Emergency, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Renjie Zhou
- Department of Emergency, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Chen Ding
- College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning, China
| | - Xindi Gao
- Department of Emergency, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
4
|
Jamali M, Barar E, Shi J. Unveiling the Molecular Landscape of Pancreatic Ductal Adenocarcinoma: Insights into the Role of the COMPASS-like Complex. Int J Mol Sci 2024; 25:5069. [PMID: 38791111 PMCID: PMC11121229 DOI: 10.3390/ijms25105069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is poised to become the second leading cause of cancer-related death by 2030, necessitating innovative therapeutic strategies. Genetic and epigenetic alterations, including those involving the COMPASS-like complex genes, have emerged as critical drivers of PDAC progression. This review explores the genetic and epigenetic landscape of PDAC, focusing on the role of the COMPASS-like complex in regulating chromatin accessibility and gene expression. Specifically, we delve into the functions of key components such as KDM6A, KMT2D, KMT2C, KMT2A, and KMT2B, highlighting their significance as potential therapeutic targets. Furthermore, we discuss the implications of these findings for developing novel treatment modalities for PDAC.
Collapse
Affiliation(s)
- Marzieh Jamali
- Department of Pathology & Clinical Labs, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Erfaneh Barar
- Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Jiaqi Shi
- Department of Pathology & Clinical Labs, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
5
|
Lee KH, Kim J, Kim JH. 3D epigenomics and 3D epigenopathies. BMB Rep 2024; 57:216-231. [PMID: 38627948 PMCID: PMC11139681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/15/2024] [Accepted: 03/18/2024] [Indexed: 05/25/2024] Open
Abstract
Mammalian genomes are intricately compacted to form sophisticated 3-dimensional structures within the tiny nucleus, so called 3D genome folding. Despite their shapes reminiscent of an entangled yarn, the rapid development of molecular and next-generation sequencing technologies (NGS) has revealed that mammalian genomes are highly organized in a hierarchical order that delicately affects transcription activities. An increasing amount of evidence suggests that 3D genome folding is implicated in diseases, giving us a clue on how to identify novel therapeutic approaches. In this review, we will study what 3D genome folding means in epigenetics, what types of 3D genome structures there are, how they are formed, and how the technologies have developed to explore them. We will also discuss the pathological implications of 3D genome folding. Finally, we will discuss how to leverage 3D genome folding and engineering for future studies. [BMB Reports 2024; 57(5): 216-231].
Collapse
Affiliation(s)
- Kyung-Hwan Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Jungyu Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Ji Hun Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
6
|
Osorio-Concepción M, Lax C, Lorenzo-Gutiérrez D, Cánovas-Márquez JT, Tahiri G, Navarro E, Binder U, Nicolás FE, Garre V. H3K4 methylation regulates development, DNA repair, and virulence in Mucorales. IMA Fungus 2024; 15:6. [PMID: 38481304 PMCID: PMC10938801 DOI: 10.1186/s43008-023-00136-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/13/2023] [Indexed: 03/17/2024] Open
Abstract
Mucorales are basal fungi that opportunistically cause a potentially fatal infection known as mucormycosis (black fungus disease), which poses a significant threat to human health due to its high mortality rate and its recent association with SARS-CoV-2 infections. On the other hand, histone methylation is a regulatory mechanism with pleiotropic effects, including the virulence of several pathogenic fungi. However, the role of epigenetic changes at the histone level never has been studied in Mucorales. Here, we dissected the functional role of Set1, a histone methyltransferase that catalyzes the methylation of H3K4, which is associated with the activation of gene transcription and virulence. A comparative analysis of the Mucor lusitanicus genome (previously known as Mucor circinelloides f. lusitanicus) identified only one homolog of Set1 from Candida albicans and Saccharomyces cerevisiae that contains the typical SET domain. Knockout strains in the gene set1 lacked H3K4 monomethylation, dimethylation, and trimethylation enzymatic activities. These strains also showed a significant reduction in vegetative growth and sporulation. Additionally, set1 null strains were more sensitive to SDS, EMS, and UV light, indicating severe impairment in the repair process of the cell wall and DNA lesions and a correlation between Set1 and these processes. During pathogen-host interactions, strains lacking the set1 gene exhibited shortened polar growth within the phagosome and attenuated virulence both in vitro and in vivo. Our findings suggest that the histone methyltransferase Set1 coordinates several cell processes related to the pathogenesis of M. lusitanicus and may be an important target for future therapeutic strategies against mucormycosis.
Collapse
Affiliation(s)
- Macario Osorio-Concepción
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Carlos Lax
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Damaris Lorenzo-Gutiérrez
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | | | - Ghizlane Tahiri
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Eusebio Navarro
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Ulrike Binder
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Francisco Esteban Nicolás
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain.
| | - Victoriano Garre
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain.
| |
Collapse
|
7
|
Koryakov DE. Diversity and functional specialization of H3K9-specific histone methyltransferases. Bioessays 2024; 46:e2300163. [PMID: 38058121 DOI: 10.1002/bies.202300163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
Histone modifications play a critical role in the control over activities of the eukaryotic genome; among these chemical alterations, the methylation of lysine K9 in histone H3 (H3K9) is one of the most extensively studied. The number of enzymes capable of methylating H3K9 varies greatly across different organisms: in fission yeast, only one such methyltransferase is present, whereas in mammals, 10 are known. If there are several such enzymes, each of them must have some specific function, and they can interact with one another. Thus arises a complex system of interchangeability, "division of labor," and contacts with each other and with diverse proteins. Histone methyltransferases specialize in the number of methyl groups that they attach and have different intracellular localizations as well as different distributions on chromosomes. Each also shows distinct binding to different types of sequences and has a specific set of nonhistone substrates.
Collapse
Affiliation(s)
- Dmitry E Koryakov
- Lab of Molecular Cytogenetics, Institute of Molecular and Cellular Biology, Novosibirsk, Russia
| |
Collapse
|
8
|
Jian H, Wei F, Chen P, Hu T, Lv X, Wang B, Wang H, Guo X, Ma L, Lu J, Fu X, Wei H, Yu S. Genome-wide analysis of SET domain genes and the function of GhSDG51 during salt stress in upland cotton (Gossypium hirsutum L.). BMC PLANT BIOLOGY 2023; 23:653. [PMID: 38110862 PMCID: PMC10729455 DOI: 10.1186/s12870-023-04657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 12/01/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND Cotton, being extensively cultivated, holds immense economic significance as one of the most prominent crops globally. The SET (Su(var), E, and Trithorax) domain-containing protein is of significant importance in plant development, growth, and response to abiotic stress by modifying the lysine methylation status of histone. However, the comprehensive identification of SET domain genes (SDG) have not been conducted in upland cotton (Gossypium hirsutum L.). RESULTS A total of 229 SDGs were identified in four Gossypium species, including G. arboretum, G. raimondii, G. hirsutum, and G. barbadense. These genes could distinctly be divided into eight groups. The analysis of gene structure and protein motif revealed a high degree of conservation among the SDGs within the same group. Collinearity analysis suggested that the SDGs of Gossypium species and most of the other selected plants were mainly expanded by dispersed duplication events and whole genome duplication (WGD) events. The allopolyploidization event also has a significant impact on the expansion of SDGs in tetraploid Gossypium species. Furthermore, the characteristics of these genes have been relatively conserved during the evolution. Cis-element analysis revealed that GhSDGs play a role in resistance to abiotic stresses and growth development. Furthermore, the qRT-PCR results have indicated the ability of GhSDGs to respond to salt stress. Co-expression analysis revealed that GhSDG51 might co-express with genes associated with salt stress. In addition, the silencing of GhSDG51 in cotton by the virus-induced gene silencing (VIGS) method suggested a potential positive regulatory role of GhSDG51 in salt stress. CONCLUSIONS The results of this study comprehensively analyze the SDGs in cotton and provide a basis for understanding the biological role of SDGs in the stress resistance in upland cotton.
Collapse
Affiliation(s)
- Hongliang Jian
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Fei Wei
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Pengyun Chen
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Tingli Hu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Xiaolan Lv
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Bingqin Wang
- Zhucheng Agricultural Technology Promotion Center, Zhucheng, Shandong, 262200, China
| | - Hantao Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Xiaohao Guo
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Liang Ma
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Jianhua Lu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Xiaokang Fu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Hengling Wei
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China.
| | - Shuxun Yu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China.
| |
Collapse
|
9
|
Romanov SE, Shloma VV, Maksimov DA, Koryakov DE. SetDB1 and Su(var)3-9 are essential for late stages of larval development of Drosophila melanogaster. Chromosome Res 2023; 31:35. [PMID: 38099968 DOI: 10.1007/s10577-023-09743-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023]
Abstract
Methylation of H3K9 histone residue is a marker of gene silencing in eukaryotes. Three enzymes responsible for adding this modification - G9a, SetDB1/Egg, and Su(var)3-9 - are known in Drosophila. To understand how simultaneous mutations of SetDB1 and Su(var)3-9 may affect the fly development, appropriate combinations were obtained. Double mutants egg; Su(var)3-9 displayed pronounced embryonic lethality, slower larval growth and died before or during metamorphosis. Analysis of transcription in larval salivary glands and wing imaginal disks indicated that the effect of double mutation is tissue-specific. In salivary gland chromosomes, affected genes display low H3K9me2 enrichment and are rarely bound by SetDB1 or Su(var)3-9. We suppose that each of these enzymes directly or indirectly controls its own set of gene targets in different organs, and double mutation results in an imbalanced developmental program. This also indicates that SetDB1 and Su(var)3-9 may affect transcription via H3K9-independent mechanisms. Unexpectedly, in double and triple mutants, amount of di- and tri-methylated H3K9 is drastically reduced, but not completely absent. We hypothesize that this residual methylation implies the existence of additional H3K9-specific methyltransferase in Drosophila.
Collapse
Affiliation(s)
- Stanislav E Romanov
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, 630090, Russia
| | - Viktor V Shloma
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, 630090, Russia
| | - Daniil A Maksimov
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, 630090, Russia
| | - Dmitry E Koryakov
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, 630090, Russia.
| |
Collapse
|
10
|
Kent D, Marchetti L, Mikulasova A, Russell LJ, Rico D. Broad H3K4me3 domains: Maintaining cellular identity and their implication in super-enhancer hijacking. Bioessays 2023; 45:e2200239. [PMID: 37350339 DOI: 10.1002/bies.202200239] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/24/2023]
Abstract
The human and mouse genomes are complex from a genomic standpoint. Each cell has the same genomic sequence, yet a wide array of cell types exists due to the presence of a plethora of regulatory elements in the non-coding genome. Recent advances in epigenomic profiling have uncovered non-coding gene proximal promoters and distal enhancers of transcription genome-wide. Extension of promoter-associated H3K4me3 histone mark across the gene body, known as a broad H3K4me3 domain (H3K4me3-BD), is a signature of constitutive expression of cell-type-specific regulation and of tumour suppressor genes in healthy cells. Recently, it has been discovered that the presence of H3K4me3-BDs over oncogenes is a cancer-specific feature associated with their dysregulated gene expression and tumourigenesis. Moreover, it has been shown that the hijacking of clusters of enhancers, known as super-enhancers (SE), by proto-oncogenes results in the presence of H3K4me3-BDs over the gene body. Therefore, H3K4me3-BDs and SE crosstalk in healthy and cancer cells therefore represents an important mechanism to identify future treatments for patients with SE driven cancers.
Collapse
Affiliation(s)
- Daniel Kent
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Letizia Marchetti
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Aneta Mikulasova
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Lisa J Russell
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel Rico
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
11
|
Marzullo M, Romano G, Pellacani C, Riccardi F, Ciapponi L, Feiguin F. Su(var)3-9 mediates age-dependent increase in H3K9 methylation on TDP-43 promoter triggering neurodegeneration. Cell Death Discov 2023; 9:357. [PMID: 37758732 PMCID: PMC10533867 DOI: 10.1038/s41420-023-01643-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Aging progressively modifies the physiological balance of the organism increasing susceptibility to both genetic and sporadic neurodegenerative diseases. These changes include epigenetic chromatin remodeling events that may modify the transcription levels of disease-causing genes affecting neuronal survival. However, how these events interconnect is not well understood. Here, we found that Su(var)3-9 causes increased methylation of histone H3K9 in the promoter region of TDP-43, the most frequently altered factor in amyotrophic lateral sclerosis (ALS), affecting the mRNA and protein expression levels of this gene through epigenetic modifications that appear to be conserved in aged Drosophila brains, mouse, and human cells. Remarkably, augmented Su(var)3-9 activity causes a decrease in TDP-43 expression followed by early defects in locomotor activities. In contrast, decreasing Su(var)3-9 action promotes higher levels of TDP-43 expression, improving motility parameters in old flies. The data uncover a novel role of this enzyme in regulating TDP-43 expression and locomotor senescence and indicate conserved epigenetic mechanisms that may play a role in the pathogenesis of ALS.
Collapse
Affiliation(s)
- Marta Marzullo
- Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Roma, Italy
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, 00185, Roma, Italy
| | - Giulia Romano
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149, Trieste, Italy
| | - Claudia Pellacani
- Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Roma, Italy
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, 00185, Roma, Italy
| | - Federico Riccardi
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149, Trieste, Italy
| | - Laura Ciapponi
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, 00185, Roma, Italy.
| | - Fabian Feiguin
- Department of Life and Environmental Sciences, University of Cagliari, 09042, Monserrato, Cagliari, Italy.
| |
Collapse
|
12
|
Delanoue R, Clot C, Leray C, Pihl T, Hudry B. Y chromosome toxicity does not contribute to sex-specific differences in longevity. Nat Ecol Evol 2023; 7:1245-1256. [PMID: 37308701 PMCID: PMC10406604 DOI: 10.1038/s41559-023-02089-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 04/14/2023] [Indexed: 06/14/2023]
Abstract
While sex chromosomes carry sex-determining genes, they also often differ from autosomes in size and composition, consisting mainly of silenced heterochromatic repetitive DNA. Even though Y chromosomes show structural heteromorphism, the functional significance of such differences remains elusive. Correlative studies suggest that the amount of Y chromosome heterochromatin might be responsible for several male-specific traits, including sex-specific differences in longevity observed across a wide spectrum of species, including humans. However, experimental models to test this hypothesis have been lacking. Here we use the Drosophila melanogaster Y chromosome to investigate the relevance of sex chromosome heterochromatin in somatic organs in vivo. Using CRISPR-Cas9, we generated a library of Y chromosomes with variable levels of heterochromatin. We show that these different Y chromosomes can disrupt gene silencing in trans, on other chromosomes, by sequestering core components of the heterochromatin machinery. This effect is positively correlated to the level of Y heterochromatin. However, we also find that the ability of the Y chromosome to affect genome-wide heterochromatin does not generate physiological sex differences, including sexual dimorphism in longevity. Instead, we discovered that it is the phenotypic sex, female or male, that controls sex-specific differences in lifespan, rather than the presence of a Y chromosome. Altogether, our findings dismiss the 'toxic Y' hypothesis that postulates that the Y chromosome leads to reduced lifespan in XY individuals.
Collapse
Affiliation(s)
- Rénald Delanoue
- Institut de Biologie Valrose, Université Côte d'Azur, CNRS, INSERM, Nice, France.
| | - Charlène Clot
- Institut de Biologie Valrose, Université Côte d'Azur, CNRS, INSERM, Nice, France
| | - Chloé Leray
- Institut de Biologie Valrose, Université Côte d'Azur, CNRS, INSERM, Nice, France
| | - Thomas Pihl
- Institut de Biologie Valrose, Université Côte d'Azur, CNRS, INSERM, Nice, France
| | - Bruno Hudry
- Institut de Biologie Valrose, Université Côte d'Azur, CNRS, INSERM, Nice, France.
| |
Collapse
|
13
|
Zhu JY, Liu C, Huang X, van de Leemput J, Lee H, Han Z. H3K36 Di-Methylation Marks, Mediated by Ash1 in Complex with Caf1-55 and MRG15, Are Required during Drosophila Heart Development. J Cardiovasc Dev Dis 2023; 10:307. [PMID: 37504562 PMCID: PMC10380788 DOI: 10.3390/jcdd10070307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
Methyltransferases regulate transcriptome dynamics during development and aging, as well as in disease. Various methyltransferases have been linked to heart disease, through disrupted expression and activity, and genetic variants associated with congenital heart disease. However, in vivo functional data for many of the methyltransferases in the context of the heart are limited. Here, we used the Drosophila model system to investigate different histone 3 lysine 36 (H3K36) methyltransferases for their role in heart development. The data show that Drosophila Ash1 is the functional homolog of human ASH1L in the heart. Both Ash1 and Set2 H3K36 methyltransferases are required for heart structure and function during development. Furthermore, Ash1-mediated H3K36 methylation (H3K36me2) is essential for healthy heart function, which depends on both Ash1-complex components, Caf1-55 and MRG15, together. These findings provide in vivo functional data for Ash1 and its complex, and Set2, in the context of H3K36 methylation in the heart, and support a role for their mammalian homologs, ASH1L with RBBP4 and MORF4L1, and SETD2, during heart development and disease.
Collapse
Affiliation(s)
- Jun-yi Zhu
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Chen Liu
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Xiaohu Huang
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joyce van de Leemput
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hangnoh Lee
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Zhe Han
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
14
|
Deshpande N, Bryk M. Diverse and dynamic forms of gene regulation by the S. cerevisiae histone methyltransferase Set1. Curr Genet 2023; 69:91-114. [PMID: 37000206 DOI: 10.1007/s00294-023-01265-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 04/01/2023]
Abstract
Gene transcription is an essential and highly regulated process. In eukaryotic cells, the structural organization of nucleosomes with DNA wrapped around histone proteins impedes transcription. Chromatin remodelers, transcription factors, co-activators, and histone-modifying enzymes work together to make DNA accessible to RNA polymerase. Histone lysine methylation can positively or negatively regulate gene transcription. Methylation of histone 3 lysine 4 by SET-domain-containing proteins is evolutionarily conserved from yeast to humans. In higher eukaryotes, mutations in SET-domain proteins are associated with defects in the development and segmentation of embryos, skeletal and muscle development, and diseases, including several leukemias. Since histone methyltransferases are evolutionarily conserved, the mechanisms of gene regulation mediated by these enzymes are also conserved. Budding yeast Saccharomyces cerevisiae is an excellent model system to study the impact of histone 3 lysine 4 (H3K4) methylation on eukaryotic gene regulation. Unlike larger eukaryotes, yeast cells have only one enzyme that catalyzes H3K4 methylation, Set1. In this review, we summarize current knowledge about the impact of Set1-catalyzed H3K4 methylation on gene transcription in S. cerevisiae. We describe the COMPASS complex, factors that influence H3K4 methylation, and the roles of Set1 in gene silencing at telomeres and heterochromatin, as well as repression and activation at euchromatic loci. We also discuss proteins that "read" H3K4 methyl marks to regulate transcription and summarize alternate functions for Set1 beyond H3K4 methylation.
Collapse
Affiliation(s)
- Neha Deshpande
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Mary Bryk
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
15
|
Nakamura R, Nakayama JI. Regulation of the SUV39H Family Methyltransferases: Insights from Fission Yeast. Biomolecules 2023; 13:biom13040593. [PMID: 37189341 DOI: 10.3390/biom13040593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Histones, which make up nucleosomes, undergo various post-translational modifications, such as acetylation, methylation, phosphorylation, and ubiquitylation. In particular, histone methylation serves different cellular functions depending on the location of the amino acid residue undergoing modification, and is tightly regulated by the antagonistic action of histone methyltransferases and demethylases. The SUV39H family of histone methyltransferases (HMTases) are evolutionarily conserved from fission yeast to humans and play an important role in the formation of higher-order chromatin structures called heterochromatin. The SUV39H family HMTases catalyzes the methylation of histone H3 lysine 9 (H3K9), and this modification serves as a binding site for heterochromatin protein 1 (HP1) to form a higher-order chromatin structure. While the regulatory mechanism of this family of enzymes has been extensively studied in various model organisms, Clr4, a fission yeast homologue, has made an important contribution. In this review, we focus on the regulatory mechanisms of the SUV39H family of proteins, in particular, the molecular mechanisms revealed by the studies of the fission yeast Clr4, and discuss their generality in comparison to other HMTases.
Collapse
|
16
|
Levinsky AJ, McEdwards G, Sethna N, Currie MA. Targets of histone H3 lysine 9 methyltransferases. Front Cell Dev Biol 2022; 10:1026406. [PMID: 36568972 PMCID: PMC9768651 DOI: 10.3389/fcell.2022.1026406] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/05/2022] [Indexed: 12/12/2022] Open
Abstract
Histone H3 lysine 9 di- and trimethylation are well-established marks of constitutively silenced heterochromatin domains found at repetitive DNA elements including pericentromeres, telomeres, and transposons. Loss of heterochromatin at these sites causes genomic instability in the form of aberrant DNA repair, chromosome segregation defects, replication stress, and transposition. H3K9 di- and trimethylation also regulate cell type-specific gene expression during development and form a barrier to cellular reprogramming. However, the role of H3K9 methyltransferases extends beyond histone methylation. There is a growing list of non-histone targets of H3K9 methyltransferases including transcription factors, steroid hormone receptors, histone modifying enzymes, and other chromatin regulatory proteins. Additionally, two classes of H3K9 methyltransferases modulate their own function through automethylation. Here we summarize the structure and function of mammalian H3K9 methyltransferases, their roles in genome regulation and constitutive heterochromatin, as well as the current repertoire of non-histone methylation targets including cases of automethylation.
Collapse
Affiliation(s)
- Aidan J. Levinsky
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Gregor McEdwards
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Nasha Sethna
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Mark A. Currie
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada,*Correspondence: Mark A. Currie,
| |
Collapse
|
17
|
Phylogenomic and Evolutionary Analyses Reveal Diversifications of SET-Domain Proteins in Fungi. J Fungi (Basel) 2022; 8:jof8111159. [DOI: 10.3390/jof8111159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
In recent years, many publications have established histone lysine methylation as a central epigenetic modification in the regulation of chromatin and transcription. The histone lysine methyltransferases contain a conserved SET domain and are widely distributed in various organisms. However, a comprehensive study on the origin and diversification of the SET-domain-containing genes in fungi has not been conducted. In this study, a total of 3816 SET-domain-containing genes, which were identified and characterized using HmmSearch from 229 whole genomes sequenced fungal species, were used to ascertain their evolution and diversification in fungi. Using the CLANS program, all the SET-domain-containing genes were grouped into three main clusters, and each cluster contains several groups. Domain organization analysis showed that genes belonging to the same group have similar sequence structures. In contrast, different groups process domain organizations or locations differently, suggesting the SET-domain-containing genes belonging to different groups may have obtained distinctive regulatory mechanisms during their evolution. These genes that conduct the histone methylations (such as H3K4me, H3K9me, H3K27me, H4K20me, H3K36me) are mainly grouped into Cluster 1 while the other genes grouped into Clusters 2 and 3 are still functionally undetermined. Our results also showed that numerous gene duplication and loss events have happened during the evolution of those fungal SET-domain-containing proteins. Our results provide novel insights into the roles of SET-domain genes in fungal evolution and pave a fundamental path to further understanding the epigenetic basis of gene regulation in fungi.
Collapse
|
18
|
Huang M, Hong M, Hou X, Zhu C, Chen D, Chen X, Guang S, Feng X. H3K9me1/2 methylation limits the lifespan of daf-2 mutants in C. elegans. eLife 2022; 11:74812. [PMID: 36125117 PMCID: PMC9514849 DOI: 10.7554/elife.74812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 09/16/2022] [Indexed: 11/29/2022] Open
Abstract
Histone methylation plays crucial roles in the development, gene regulation, and maintenance of stem cell pluripotency in mammals. Recent work shows that histone methylation is associated with aging, yet the underlying mechanism remains unclear. In this work, we identified a class of putative histone 3 lysine 9 mono/dimethyltransferase genes (met-2, set-6, set-19, set-20, set-21, set-32, and set-33), mutations in which induce synergistic lifespan extension in the long-lived DAF-2 (insulin growth factor 1 [IGF-1] receptor) mutant in Caenorhabditis elegans. These putative histone methyltransferase plus daf-2 double mutants not only exhibited an average lifespan nearly three times that of wild-type animals and a maximal lifespan of approximately 100 days, but also significantly increased resistance to oxidative and heat stress. Synergistic lifespan extension depends on the transcription factor DAF-16 (FOXO). mRNA-seq experiments revealed that the mRNA levels of DAF-16 Class I genes, which are activated by DAF-16, were further elevated in the daf-2;set double mutants. Among these genes, tts-1, F35E8.7, ins-35, nhr-62, sod-3, asm-2, and Y39G8B.7 are required for the lifespan extension of the daf-2;set-21 double mutant. In addition, treating daf-2 animals with the H3K9me1/2 methyltransferase G9a inhibitor also extends lifespan and increases stress resistance. Therefore, investigation of DAF-2 and H3K9me1/2 deficiency-mediated synergistic longevity will contribute to a better understanding of the molecular mechanisms of aging and therapeutic applications.
Collapse
Affiliation(s)
- Meng Huang
- Department of Obstetrics and Gynecology, University of Science and Technology of China, Hefei, China
| | - Minjie Hong
- Department of Obstetrics and Gynecology, University of Science and Technology of China, Hefei, China
| | - Xinhao Hou
- Department of Obstetrics and Gynecology, University of Science and Technology of China, Hefei, China
| | - Chengming Zhu
- Department of Obstetrics and Gynecology, University of Science and Technology of China, Hefei, China
| | - Di Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Xiangyang Chen
- Department of Obstetrics and Gynecology, University of Science and Technology of China, Hefei, China
| | - Shouhong Guang
- Department of Obstetrics and Gynecology, University of Science and Technology of China, Hefei, China
| | - Xuezhu Feng
- Department of Obstetrics and Gynecology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
19
|
Poreba E, Lesniewicz K, Durzynska J. Histone-lysine N-methyltransferase 2 (KMT2) complexes - a new perspective. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 790:108443. [PMID: 36154872 DOI: 10.1016/j.mrrev.2022.108443] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/25/2022] [Accepted: 09/19/2022] [Indexed: 01/01/2023]
Abstract
Histone H3 Lys4 (H3K4) methylation is catalyzed by the Histone-Lysine N-Methyltransferase 2 (KMT2) protein family, and its members are required for gene expression control. In vertebrates, the KMT2s function in large multisubunit complexes known as COMPASS or COMPASS-like complexes (COMplex of Proteins ASsociated with Set1). The activity of these complexes is critical for proper development, and mutation-induced defects in their functioning have frequently been found in human cancers. Moreover, inherited or de novo mutations in KMT2 genes are among the etiological factors in neurodevelopmental disorders such as Kabuki and Kleefstra syndromes. The canonical role of KMT2s is to catalyze H3K4 methylation, which results in a permissive chromatin environment that drives gene expression. However, current findings described in this review demonstrate that these enzymes can regulate processes that are not dependent on methylation: noncatalytic functions of KMT2s include DNA damage response, cell division, and metabolic activities. Moreover, these enzymes may also methylate non-histone substrates and play a methylation-dependent function in the DNA damage response. In this review, we present an overview of the new, noncanonical activities of KMT2 complexes in a variety of cellular processes. These discoveries may have crucial implications for understanding the functions of these methyltransferases in developmental processes, disease, and epigenome-targeting therapeutic strategies in the future.
Collapse
Affiliation(s)
- Elzbieta Poreba
- Department of Genetics, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| | - Krzysztof Lesniewicz
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Julia Durzynska
- Department of Genetics, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| |
Collapse
|
20
|
Feoli A, Viviano M, Cipriano A, Milite C, Castellano S, Sbardella G. Lysine methyltransferase inhibitors: where we are now. RSC Chem Biol 2022; 3:359-406. [PMID: 35441141 PMCID: PMC8985178 DOI: 10.1039/d1cb00196e] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/10/2021] [Indexed: 12/14/2022] Open
Abstract
Protein lysine methyltransferases constitute a large family of epigenetic writers that catalyse the transfer of a methyl group from the cofactor S-adenosyl-l-methionine to histone- and non-histone-specific substrates. Alterations in the expression and activity of these proteins have been linked to the genesis and progress of several diseases, including cancer, neurological disorders, and growing defects, hence they represent interesting targets for new therapeutic approaches. Over the past two decades, the identification of modulators of lysine methyltransferases has increased tremendously, clarifying the role of these proteins in different physio-pathological states. The aim of this review is to furnish an updated outlook about the protein lysine methyltransferases disclosed modulators, reporting their potency, their mechanism of action and their eventual use in clinical and preclinical studies.
Collapse
Affiliation(s)
- Alessandra Feoli
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| | - Monica Viviano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| | - Alessandra Cipriano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| | - Ciro Milite
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| | - Sabrina Castellano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| | - Gianluca Sbardella
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| |
Collapse
|
21
|
Lassak J, Sieber A, Hellwig M. Exceptionally versatile take II: post-translational modifications of lysine and their impact on bacterial physiology. Biol Chem 2022; 403:819-858. [PMID: 35172419 DOI: 10.1515/hsz-2021-0382] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/05/2022] [Indexed: 01/16/2023]
Abstract
Among the 22 proteinogenic amino acids, lysine sticks out due to its unparalleled chemical diversity of post-translational modifications. This results in a wide range of possibilities to influence protein function and hence modulate cellular physiology. Concomitantly, lysine derivatives form a metabolic reservoir that can confer selective advantages to those organisms that can utilize it. In this review, we provide examples of selected lysine modifications and describe their role in bacterial physiology.
Collapse
Affiliation(s)
- Jürgen Lassak
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 2-4, D-82152 Planegg, Germany
| | - Alina Sieber
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 2-4, D-82152 Planegg, Germany
| | - Michael Hellwig
- Technische Universität Braunschweig - Institute of Food Chemistry, Schleinitzstraße 20, D-38106 Braunschweig, Germany
| |
Collapse
|
22
|
Tchasovnikarova IA, Marr SK, Damle M, Kingston RE. TRACE generates fluorescent human reporter cell lines to characterize epigenetic pathways. Mol Cell 2022; 82:479-491.e7. [PMID: 34963054 PMCID: PMC8796053 DOI: 10.1016/j.molcel.2021.11.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/14/2021] [Accepted: 11/29/2021] [Indexed: 01/22/2023]
Abstract
Genetically encoded biosensors are powerful tools to monitor cellular behavior, but the difficulty in generating appropriate reporters for chromatin factors hampers our ability to dissect epigenetic pathways. Here, we present TRACE (transgene reporters across chromatin environments), a high-throughput, genome-wide technique to generate fluorescent human reporter cell lines responsive to manipulation of epigenetic factors. By profiling GFP expression from a large pool of individually barcoded lentiviral integrants in the presence and absence of a perturbation, we identify reporters responsive to pharmacological inhibition of the histone lysine demethylase LSD1 and genetic ablation of the PRC2 subunit SUZ12. Furthermore, by manipulating the HIV-1 host factor LEDGF through targeted deletion or fusion to chromatin reader domains, we alter lentiviral integration site preferences, thus broadening the types of chromatin examined by TRACE. The phenotypic reporters generated through TRACE will allow the genetic interrogation of a broad range of epigenetic pathways, furthering our mechanistic understanding of chromatin biology.
Collapse
Affiliation(s)
- Iva A. Tchasovnikarova
- Department of Molecular Biology, Massachusetts General
Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02114,
USA,The Gurdon Institute, University of Cambridge, Tennis Court
Road, Cambridge, CB2 1QN, UK,Lead Contact,Correspondence should be addressed to:
,
| | - Sharon K. Marr
- Department of Molecular Biology, Massachusetts General
Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02114,
USA
| | - Manashree Damle
- Department of Molecular Biology, Massachusetts General
Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02114,
USA
| | - Robert E. Kingston
- Department of Molecular Biology, Massachusetts General
Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02114,
USA,Correspondence should be addressed to:
,
| |
Collapse
|
23
|
Tellier M. Structure, Activity, and Function of SETMAR Protein Lysine Methyltransferase. Life (Basel) 2021; 11:life11121342. [PMID: 34947873 PMCID: PMC8704517 DOI: 10.3390/life11121342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/21/2022] Open
Abstract
SETMAR is a protein lysine methyltransferase that is involved in several DNA processes, including DNA repair via the non-homologous end joining (NHEJ) pathway, regulation of gene expression, illegitimate DNA integration, and DNA decatenation. However, SETMAR is an atypical protein lysine methyltransferase since in anthropoid primates, the SET domain is fused to an inactive DNA transposase. The presence of the DNA transposase domain confers to SETMAR a DNA binding activity towards the remnants of its transposable element, which has resulted in the emergence of a gene regulatory function. Both the SET and the DNA transposase domains are involved in the different cellular roles of SETMAR, indicating the presence of novel and specific functions in anthropoid primates. In addition, SETMAR is dysregulated in different types of cancer, indicating a potential pathological role. While some light has been shed on SETMAR functions, more research and new tools are needed to better understand the cellular activities of SETMAR and to investigate the therapeutic potential of SETMAR.
Collapse
Affiliation(s)
- Michael Tellier
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
24
|
Hu M, Li M, Wang J. Comprehensive Analysis of the SUV Gene Family in Allopolyploid Brassica napus and Its Diploid Ancestors. Genes (Basel) 2021; 12:genes12121848. [PMID: 34946800 PMCID: PMC8701781 DOI: 10.3390/genes12121848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
SUV (the Suppressor of variegation [Su(var)] homologs and related) gene family is a subgroup of the SET gene family. According to the SRA domain and WIYLD domain distributions, it can be divided into two categories, namely SUVH (the Suppressor of variegation [Su(var)] homologs) and SUVR (the Suppressor of variegation [Su(var)] related). In this study, 139 SUV genes were identified in allopolyploid Brassica napus and its diploid ancestors, and their evolutionary relationships, protein properties, gene structures, motif distributions, transposable elements, cis-acting elements and gene expression patterns were analyzed. Our results showed that the SUV gene family of B. napus was amplified during allopolyploidization, in which the segmental duplication and TRD played critical roles. After the separation of Brassica and Arabidopsis lineages, orthologous gene analysis showed that many SUV genes were lost during the evolutionary process in B. rapa, B. oleracea and B. napus. The analysis of the gene and protein structures and expression patterns of 30 orthologous gene pairs which may have evolutionary relationships showed that most of them were conserved in gene structures and protein motifs, but only four gene pairs had the same expression patterns.
Collapse
Affiliation(s)
- Meimei Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; (M.H.); (M.L.)
| | - Mengdi Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; (M.H.); (M.L.)
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; (M.H.); (M.L.)
- Correspondence:
| |
Collapse
|
25
|
Ren K, Mou YN, Ying SH, Feng MG. Conserved and Noncanonical Activities of Two Histone H3K36 Methyltransferases Required for Insect-Pathogenic Lifestyle of Beauveria bassiana. J Fungi (Basel) 2021; 7:956. [PMID: 34829243 PMCID: PMC8623635 DOI: 10.3390/jof7110956] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022] Open
Abstract
Set2 and Ash1 are histone methyltransferases (KMTs) in the KMT3 family normally used to catalyze methylation of histone H3K36 (H3K36me) but remain unexplored in fungal insect pathogens. Here, we report broader/greater roles of Set2 and Ash1 in mono-/di-/trimethylation (me1/me2/me3) of H3K4 than of H3K36 in Beauveria bassiana and function similarly to Set1/KMT2, which has been reported to catalyze H3K4me3 as an epigenetic mark of cre1 (carbon catabolite repressor) to upregulate the classes I and II hydrophobin genes hyd1 and hyd2 required for conidial hydrophobicity and adherence to insect cuticle. H3K4me3 was more attenuated than H3K36me3 in the absence of set2 (72% versus 67%) or ash1 (92% versus 12%), leading to sharply repressed or nearly abolished expression of cre1, hyd1 and hyd2, as well as reduced hydrophobicity. Consequently, the delta-set2 and delta-ash1 mutants were differentially compromised in radial growth on various media or under different stresses, aerial conidiation under normal culture conditions, virulence, and cellular events crucial for normal cuticle infection and hemocoel colonization, accompanied by transcriptional repression of subsets of genes involved in or required for asexual development and multiple stress responses. These findings unravel novel roles of Set2 and Ash1 in the co-catalysis of usually Set1-reliant H3K4me3 required for fungal insect-pathogenic lifestyle.
Collapse
Affiliation(s)
| | | | | | - Ming-Guang Feng
- MOE Laboratory of Biosystems Homeostasis & Protection, Collegeof Life Sciences, Zhejiang University, Hangzhou 310058, China; (K.R.); (Y.-N.M.); (S.-H.Y.)
| |
Collapse
|
26
|
Abstract
Cancer is an unpleasant, painful disease. It is one of the most devastating diseases worldwide diminishing many lives. Many genetic and epigenetic changes occur before cancer develops. Mutation in SETD2 gene is one such example. RNA splicing, DNA damage repair, DNA methylation and histone methylation are some of the biological processes mediated by SETD2. SETD2 (histone H3 lysine 36 methyltransferase) is a frequently mutated gene in different types of cancer. Loss of SETD2 is associated with worse prognosis and aggressive phenotypes. Histone modification is one of the epigenetic regulation having a significant effect on gene regulation. N6-methyladenosine (m6A) mRNA modification is a well-known posttranscriptional modification playing a pivotal role in many normal and pathological processes affecting RNA metabolism. SETD2 catalyses H3K36 trimethylation and in turn H3K36me3 guides the deposition of m6A on nascent RNA transcripts. Finally, this review summarizes the deep understanding of the role of SETD2 in RNA methylation/modification and how SETD2 mutation contributes to tumour development.
Collapse
|
27
|
Weirich S, Khella MS, Jeltsch A. Structure, Activity and Function of the Suv39h1 and Suv39h2 Protein Lysine Methyltransferases. Life (Basel) 2021; 11:life11070703. [PMID: 34357075 PMCID: PMC8303541 DOI: 10.3390/life11070703] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/01/2021] [Accepted: 07/13/2021] [Indexed: 12/26/2022] Open
Abstract
SUV39H1 and SUV39H2 were the first protein lysine methyltransferases that were identified more than 20 years ago. Both enzymes introduce di- and trimethylation at histone H3 lysine 9 (H3K9) and have important roles in the maintenance of heterochromatin and gene repression. They consist of a catalytically active SET domain and a chromodomain, which binds H3K9me2/3 and has roles in enzyme targeting and regulation. The heterochromatic targeting of SUV39H enzymes is further enhanced by the interaction with HP1 proteins and repeat-associated RNA. SUV39H1 and SUV39H2 recognize an RKST motif with additional residues on both sides, mainly K4 in the case of SUV39H1 and G12 in the case of SUV39H2. Both SUV39H enzymes methylate different non-histone proteins including RAG2, DOT1L, SET8 and HupB in the case of SUV39H1 and LSD1 in the case of SUV39H2. Both enzymes are expressed in embryonic cells and have broad expression profiles in the adult body. SUV39H1 shows little tissue preference except thymus, while SUV39H2 is more highly expressed in the brain, testis and thymus. Both enzymes are connected to cancer, having oncogenic or tumor-suppressive roles depending on the tumor type. In addition, SUV39H2 has roles in the brain during early neurodevelopment.
Collapse
Affiliation(s)
- Sara Weirich
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany; (S.W.); (M.S.K.)
| | - Mina S. Khella
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany; (S.W.); (M.S.K.)
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo 11566, Egypt
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany; (S.W.); (M.S.K.)
- Correspondence:
| |
Collapse
|
28
|
Atanasoff-Kardjalieff AK, Lünne F, Kalinina S, Strauss J, Humpf HU, Studt L. Biosynthesis of Fusapyrone Depends on the H3K9 Methyltransferase, FmKmt1, in Fusarium mangiferae. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:671796. [PMID: 37744112 PMCID: PMC10512364 DOI: 10.3389/ffunb.2021.671796] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/09/2021] [Indexed: 09/26/2023]
Abstract
The phytopathogenic fungus Fusarium mangiferae belongs to the Fusarium fujikuroi species complex (FFSC). Members of this group cause a wide spectrum of devastating diseases on diverse agricultural crops. F. mangiferae is the causal agent of the mango malformation disease (MMD) and as such detrimental for agriculture in the southern hemisphere. During plant infection, the fungus produces a plethora of bioactive secondary metabolites (SMs), which most often lead to severe adverse defects on plants health. Changes in chromatin structure achieved by posttranslational modifications (PTM) of histones play a key role in regulation of fungal SM biosynthesis. Posttranslational tri-methylation of histone 3 lysine 9 (H3K9me3) is considered a hallmark of heterochromatin and established by the SET-domain protein Kmt1. Here, we show that FmKmt1 is involved in H3K9me3 in F. mangiferae. Loss of FmKmt1 only slightly though significantly affected fungal hyphal growth and stress response and is required for wild type-like conidiation. While FmKmt1 is largely dispensable for the biosynthesis of most known SMs, removal of FmKMT1 resulted in an almost complete loss of fusapyrone and deoxyfusapyrone, γ-pyrones previously only known from Fusarium semitectum. Here, we identified the polyketide synthase (PKS) FmPKS40 to be involved in fusapyrone biosynthesis, delineate putative cluster borders by co-expression studies and provide insights into its regulation.
Collapse
Affiliation(s)
- Anna K. Atanasoff-Kardjalieff
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln an der Donau, Austria
| | - Friederike Lünne
- Institute of Food Chemistry, Westfälische Wilhelms-Universität, Münster, Germany
| | - Svetlana Kalinina
- Institute of Food Chemistry, Westfälische Wilhelms-Universität, Münster, Germany
| | - Joseph Strauss
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln an der Donau, Austria
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität, Münster, Germany
| | - Lena Studt
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln an der Donau, Austria
| |
Collapse
|
29
|
Lazaro-Camp VJ, Salari K, Meng X, Yang S. SETDB1 in cancer: overexpression and its therapeutic implications. Am J Cancer Res 2021; 11:1803-1827. [PMID: 34094655 PMCID: PMC8167684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023] Open
Abstract
SET Domain Bifurcated Histone Lysine Methyltransferase 1 (SETDB1, ESET, KMT1E) is a H3K9 methyltransferase involved in gene silencing. In recent years, SETDB1 has been implicated as an oncogene in various cancers, highlighting a critical need to better understand the mechanisms underlying SETDB1 amplification, overexpression, and activation. In the following review, we first examine the history of SETDB1, starting from its discovery in 1999 and ending with recent findings. We follow with an outline of the structure and subcellular location of SETDB1, as well as potential mechanisms for regulation of its nuclear transport. Subsequently, we introduce SETDB1's various functions, including its roles in promyelocytic leukemia nuclear body (PML-NB) formation, the methylation and activation of Akt, the silencing of the androgen receptor (AR) gene, retroelement silencing, the inhibition of tumor suppressor p53, and its role in promoting intestinal differentiation and survival. The Cancer Cell Line Encyclopedia (CCLE) screened SETDB1 dependency in 796 cancer cell lines, identifying SETDB1 as a common essential gene in 531 of them, demonstrating that SETDB1 expression is critical for the survival of the majority of cancers. Therefore, we provide a detailed review of the oncogenic effects of SETDB1 overexpression in breast cancer, non-small cell lung cancer, prostate cancer, colorectal cancer, acute myeloid leukemia, glioma, melanoma, pancreatic ductal adenocarcinoma, liver cancer, nasopharyngeal carcinoma, gastric carcinoma, and endometrial cancer. Accordingly, we review several methods that have been used to target SETDB1, such as using Mithramycin A, Mithralog EC-8042, 3'-deazaneplanocin A (DZNep), and paclitaxel. Finally, we conclude by highlighting remaining gaps in knowledge and challenges surrounding SETDB1. Ultimately, our review captures the wide scope of findings on SETDB1's history, function, its implications in cancer, and provides suggestions for future research in the field.
Collapse
Affiliation(s)
- Vanessa J Lazaro-Camp
- Department of Pathology, Carver College of Medicine, University of IowaIowa, IA, USA
| | - Kiarash Salari
- Department of Pathology, Carver College of Medicine, University of IowaIowa, IA, USA
| | - Xiangbing Meng
- Department of Pathology, Carver College of Medicine, University of IowaIowa, IA, USA
- Holden Comprehensive Cancer Center, Carver College of Medicine, University of IowaIA, USA
| | - Shujie Yang
- Department of Pathology, Carver College of Medicine, University of IowaIowa, IA, USA
- Holden Comprehensive Cancer Center, Carver College of Medicine, University of IowaIA, USA
| |
Collapse
|
30
|
Ren K, Mou YN, Tong SM, Ying SH, Feng MG. DIM5/KMT1 controls fungal insect pathogenicity and genome stability by methylation of histone H3K4, H3K9 and H3K36. Virulence 2021; 12:1306-1322. [PMID: 33955325 PMCID: PMC8115510 DOI: 10.1080/21505594.2021.1923232] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mono-, di- and tri-methylation of histone H3 Lys 9, Lys 4, and Lys 36 (H3K_me1/me2/me3) required for mediation of DNA-based cellular events in eukaryotes usually rely upon the activities of histone lysine methyltransferases (KMTs) classified to the KMT1, KMT2, and KMT3 families, respectively. Here, an H3K9-specific DIM5/KMT1 orthologue, which lacks a C-terminal post-SET domain and localizes mainly in nucleus, is reported to have both conserved and noncanonical roles in methylating the H3 core lysines in Beauveria bassiana, an insect-pathogenic fungus serving as a main source of wide-spectrum fungal insecticides. Disruption of dim5 led to abolishment of H3K9me3 and marked attenuation of H3K4me1/me2, H3K9me1/me2 and H3K36me2. Consequently, the Δdim5 mutant lost the whole insect pathogenicity through normal cuticle infection, and was compromised severely in virulence through cuticle-bypassing infection (hemocoel injection) and also in a series of cellular events critical for the fungal virulence and lifecycle in vivo and in vitro, including reduced hyphal growth, blocked conidiation, impeded proliferation in vivo, altered carbohydrate epitopes, disturbed cell cycle, reduced biosynthesis and secretion of cuticle-degrading enzymes, and increased sensitivities to various stresses. Among 1,201 dysregulated genes (up/down ratio: 712:489) associated with those phenotypic changes, 92 (up/down ratio: 59:33) encode transcription factors and proteins or enzymes involved in posttranslational modifications, implying that the DIM5-methylated H3 core lysines could act as preferential marks of those transcription-active genes crucial for global gene regulation. These findings uncover a novel scenario of DIM5 and its indispensability for insect-pathogenic lifestyle and genome stability of B. bassiana.
Collapse
Affiliation(s)
- Kang Ren
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ya-Ni Mou
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Sen-Miao Tong
- College of Agricultural and Food Science, Zhejiang A & F University, Lin'an, Zhejiang, China
| | - Sheng-Hua Ying
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ming-Guang Feng
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
31
|
Ji Z, Chuen J, Kiparaki M, Baker N. Cell competition removes segmental aneuploid cells from Drosophila imaginal disc-derived tissues based on ribosomal protein gene dose. eLife 2021; 10:61172. [PMID: 33847264 PMCID: PMC8043752 DOI: 10.7554/elife.61172] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 03/08/2021] [Indexed: 12/22/2022] Open
Abstract
Aneuploidy causes birth defects and miscarriages, occurs in nearly all cancers and is a hallmark of aging. Individual aneuploid cells can be eliminated from developing tissues by unknown mechanisms. Cells with ribosomal protein (Rp) gene mutations are also eliminated, by cell competition with normal cells. Because Rp genes are spread across the genome, their copy number is a potential marker for aneuploidy. We found that elimination of imaginal disc cells with irradiation-induced genome damage often required cell competition genes. Segmentally aneuploid cells derived from targeted chromosome excisions were eliminated by the RpS12-Xrp1 cell competition pathway if they differed from neighboring cells in Rp gene dose, whereas cells with normal doses of the Rp and eIF2γ genes survived and differentiated adult tissues. Thus, cell competition, triggered by differences in Rp gene dose between cells, is a significant mechanism for the elimination of aneuploid somatic cells, likely to contribute to preventing cancer. Aneuploid cells emerge when cellular division goes awry and a cell ends up with the wrong number of chromosomes, the tiny genetic structures carrying the instructions that control life’s processes. Aneuploidy can lead to fatal conditions during development, and to cancer in an adult organism. A safety mechanism may exist that helps the body to detect and remove these cells. Yet, exactly this happens is still poorly understood: in particular, it is unclear how cells manage to ‘count’ their chromosomes. One way they could do so is through the ribosomes, the molecular ‘factories’ that create the building blocks required for life. In a cell, every chromosome carries genes that code for the proteins (known as Rps) forming ribosomes. Aneuploidy will alter the number of Rp genes, and in turn the amount and type of Rps the cell produces, so that ribosomes and the genes for Rps could act as a ‘readout’ of aneuploidy. Ji et al set out to test this theory in fruit flies. The first experiment used a genetic manipulation technique called site-specific recombination to remove parts of chromosomes from cells in the developing eye and wing. Cells which retained all their Rp genes survived, while those that were missing some usually died – but only when the surrounding cells were normal. In this situation, healthy cells eliminated their damaged neighbours through a process known as cell competition. A second experiment, using radiation as an alternative method of damaging chromosomes, also gave similar results. The work by Ji et al. reveals how the body can detect and eliminate aneuploid cells, potentially before they can cause harm. If the same mechanism applies in humans, boosting cell competition may, one day, helps to combat diseases like cancer.
Collapse
Affiliation(s)
- Zhejun Ji
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States
| | - Jacky Chuen
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States
| | - Marianthi Kiparaki
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States
| | - Nicholas Baker
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States
| |
Collapse
|
32
|
Zhou S, Liu X, Sun W, Zhang M, Yin Y, Pan S, He D, Shen M, Yang J, Zheng Q, Wang W. The COMPASS-like complex modulates fungal development and pathogenesis by regulating H3K4me3-mediated targeted gene expression in Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2021; 22:422-439. [PMID: 33559339 PMCID: PMC7938624 DOI: 10.1111/mpp.13035] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 12/01/2020] [Accepted: 01/05/2021] [Indexed: 05/07/2023]
Abstract
Histone-3-lysine-4 (H3K4) methylation is catalysed by the multiprotein complex known as the Set1/COMPASS or MLL/COMPASS-like complex, an element that is highly evolutionarily conserved from yeast to humans. However, the components and mechanisms by which the COMPASS-like complex targets the H3K4 methylation of plant-pathogenic genes in fungi remain elusive. Here we present a comprehensive analysis combining biochemical, molecular, and genome-wide approaches to characterize the roles of the COMPASS-like family in the rice blast fungus Magnaporthe oryzae, a model plant pathogen. We purified and identified six conserved subunits of COMPASS from M. oryzae: MoBre2 (Cps60/ASH2L), MoSpp1 (Cps40/Cfp1), MoSwd2 (Cps35), MoSdc1 (Cps25/DPY30), MoSet1 (MLL/ALL), and MoRbBP5 (Cps50), using an affinity tag on MoBre2. We determined the sequence repeat in dual-specificity kinase splA and ryanodine receptors domain of MoBre2 can interact directly with the DPY30 domain of MoSdc1 in vitro. Furthermore, we found that deletion of the genes encoding COMPASS subunits of MoBre2, MoSPP1, and MoSwd2 caused similar defects regarding invasive hyphal development and pathogenicity. Genome-wide profiling of H3K4me3 revealed that it has remarkable co-occupancy at the transcription start site regions of target genes. Significantly, these target genes are often involved in spore germination and pathogenesis. Decreased gene expression caused by the deletion of MoBre2, MoSwd2, or MoSpp1 was highly correlated with a decrease in H3K4me3. These results suggest that MoBre2, MoSpp1, and MoSwd2 function as a whole COMPASS complex, contributing to fungal development and pathogenesis by regulating H3K4me3-targeted genes in M. oryzae.
Collapse
Affiliation(s)
- Sida Zhou
- Beijing Key Laboratory of New Technology in Agricultural ApplicationNational Demonstration Center for Experimental Plant Production EducationBeijing University of AgricultureBeijingChina
| | - Xiuying Liu
- Center for Research and CooperationNovogene Bioinformatics InstituteBeijingChina
| | - Wanyu Sun
- Beijing Key Laboratory of New Technology in Agricultural ApplicationNational Demonstration Center for Experimental Plant Production EducationBeijing University of AgricultureBeijingChina
| | - Mengyu Zhang
- Beijing Key Laboratory of New Technology in Agricultural ApplicationNational Demonstration Center for Experimental Plant Production EducationBeijing University of AgricultureBeijingChina
| | - Yue Yin
- Beijing Key Laboratory of New Technology in Agricultural ApplicationNational Demonstration Center for Experimental Plant Production EducationBeijing University of AgricultureBeijingChina
| | - Song Pan
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Dan He
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Mi Shen
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Jun Yang
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Qi Zheng
- Center for Research and CooperationNovogene Bioinformatics InstituteBeijingChina
| | - Weixiang Wang
- Beijing Key Laboratory of New Technology in Agricultural ApplicationNational Demonstration Center for Experimental Plant Production EducationBeijing University of AgricultureBeijingChina
| |
Collapse
|
33
|
Functional characterization of a special dicistronic transcription unit encoding histone methyltransferase su(var)3-9 and translation regulator eIF2γ in Tribolium castaneum. Biochem J 2021; 477:3059-3074. [PMID: 32749451 DOI: 10.1042/bcj20200444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 11/17/2022]
Abstract
Operons are rare in eukaryotes, where they often allow concerted expression of functionally related genes. While a dicistronic transcription unit encoding two unrelated genes, the suppressor of position-effect variegation su(var)3-9 and the gamma subunit of eukaryotic translation initiation factor 2 (eIF2γ) has been found in insecta, and its significance is not well understood. Here, we analyzed the evolutionary history of this transcription unit in arthropods and its functions by using model Coleoptera insect Tribolium castaneum. In T. castaneum, Tcsu(var)3-9 fused into the 80 N-terminal amino acids of TceIF2γ, the transcription of these two genes are resolved by alternative splicing. Phylogenetic analysis supports the natural gene fusion of su(var)3-9 and eIF2γ occurred in the ancestral line of winged insects and silverfish, but with frequent re-fission during the evolution of insects. Functional analysis by using RNAi for these two genes revealed that gene fusion did not invoke novel functions for the gene products. As a histone methyltransferase, Tcsu(var)3-9 is primarily responsible for H3K9 di-, and tri-methylation and plays important roles in metamorphosis and embryogenesis in T. castaneum. While TceIF2γ plays essential roles in T. castaneum by positively regulating protein translation mediated ecdysteroid biosynthesis. The vulnerability of the gene fusion and totally different role of su(var)3-9 and eIF2γ in T. castaneum confirm this gene fusion is a non-selected, constructive neutral evolution event in insect. Moreover, the positive relationship between protein translation and ecdysteroid biosynthesis gives new insights into correlations between translation regulation and hormonal signaling.
Collapse
|
34
|
Wang X, Wang D, Xu W, Kong L, Ye X, Zhuang Q, Fan D, Luo K. Histone methyltransferase ATX1 dynamically regulates fiber secondary cell wall biosynthesis in Arabidopsis inflorescence stem. Nucleic Acids Res 2021; 49:190-205. [PMID: 33332564 PMCID: PMC7797065 DOI: 10.1093/nar/gkaa1191] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/29/2020] [Accepted: 11/24/2020] [Indexed: 11/21/2022] Open
Abstract
Secondary wall thickening in the sclerenchyma cells is strictly controlled by a complex network of transcription factors in vascular plants. However, little is known about the epigenetic mechanism regulating secondary wall biosynthesis. In this study, we identified that ARABIDOPSIS HOMOLOG of TRITHORAX1 (ATX1), a H3K4-histone methyltransferase, mediates the regulation of fiber cell wall development in inflorescence stems of Arabidopsis thaliana. Genome-wide analysis revealed that the up-regulation of genes involved in secondary wall formation during stem development is largely coordinated by increasing level of H3K4 tri-methylation. Among all histone methyltransferases for H3K4me3 in Arabidopsis, ATX1 is markedly increased during the inflorescence stem development and loss-of-function mutant atx1 was impaired in secondary wall thickening in interfascicular fibers. Genetic analysis showed that ATX1 positively regulates secondary wall deposition through activating the expression of secondary wall NAC master switch genes, SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN1 (SND1) and NAC SECONDARY WALL THICKENING PROMOTING FACTOR1 (NST1). We further identified that ATX1 directly binds the loci of SND1 and NST1, and activates their expression by increasing H3K4me3 levels at these loci. Taken together, our results reveal that ATX1 plays a key role in the regulation of secondary wall biosynthesis in interfascicular fibers during inflorescence stem development of Arabidopsis.
Collapse
Affiliation(s)
- Xianqiang Wang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Denghui Wang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Wenjian Xu
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Genetics and Birth Defects Control Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Lingfei Kong
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiao Ye
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Qianye Zhuang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Di Fan
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China.,Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China.,Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
35
|
Kalashnikova DA, Maksimov DA, Romanov SE, Laktionov PP, Koryakov DE. SetDB1 and Su(var)3-9 play non-overlapping roles in somatic cell chromosomes of Drosophila melanogaster. J Cell Sci 2021; 134:jcs.253096. [PMID: 33288549 DOI: 10.1242/jcs.253096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/30/2020] [Indexed: 11/20/2022] Open
Abstract
We explored functional roles of two H3K9-specific histone methyltransferases of Drosophila melanogaster, SetDB1 (also known as Eggless) and Su(var)3-9. Using the DamID approach, we generated the binding profile for SetDB1 in Drosophila salivary gland chromosomes, and matched it to the profile of Su(var)3-9. Unlike Su(var)3-9, SetDB1 turned out to be an euchromatic protein that is absent from repeated DNA compartments, and is largely restricted to transcription start sites (TSSs) and 5' untranslated regions (5'UTRs) of ubiquitously expressed genes. Significant SetDB1 association is also observed at binding sites for the insulator protein CP190. SetDB1 and H3K9 di- and tri-methylated (me2 and me3)-enriched sites tend to display poor overlap. At the same time, SetDB1 has a clear connection with the distribution of H3K27me3 mark. SetDB1 binds outside the domains possessing this modification, and about half of the borders of H3K27me3 domains are decorated by SetDB1 together with actively transcribed genes. On the basis of poor correlation between the distribution of SetDB1 and H3K9 methylation marks, we speculate that, in somatic cells, SetDB1 may contribute to the methylation of a broader set of chromosomal proteins than just H3K9. In addition, SetDB1 can be expected to play a role in the establishment of chromatin functional domains.
Collapse
Affiliation(s)
| | - Daniil A Maksimov
- Institute of Molecular and Cellular Biology, Novosibirsk 630090, Russia
| | - Stanislav E Romanov
- Institute of Molecular and Cellular Biology, Novosibirsk 630090, Russia.,Laboratory of Epigenetics, Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Petr P Laktionov
- Institute of Molecular and Cellular Biology, Novosibirsk 630090, Russia.,Laboratory of Epigenetics, Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Dmitry E Koryakov
- Institute of Molecular and Cellular Biology, Novosibirsk 630090, Russia
| |
Collapse
|
36
|
Saha N, Muntean AG. Insight into the multi-faceted role of the SUV family of H3K9 methyltransferases in carcinogenesis and cancer progression. Biochim Biophys Acta Rev Cancer 2020; 1875:188498. [PMID: 33373647 DOI: 10.1016/j.bbcan.2020.188498] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022]
Abstract
Growing evidence implicates histone H3 lysine 9 methylation in tumorigenesis. The SUV family of H3K9 methyltransferases, which include G9a, GLP, SETDB1, SETDB2, SUV39H1 and SUV39H2 deposit H3K9me1/2/3 marks at euchromatic and heterochromatic regions, catalyzed by their conserved SET domain. In cancer, this family of enzymes can be deregulated by genomic alterations and transcriptional mis-expression leading to alteration of transcriptional programs. In solid and hematological malignancies, studies have uncovered pro-oncogenic roles for several H3K9 methyltransferases and accordingly, small molecule inhibitors are being tested as potential therapies. However, emerging evidence demonstrate onco-suppressive roles for these enzymes in cancer development as well. Here, we review the role H3K9 methyltransferases play in tumorigenesis focusing on gene targets and biological pathways affected due to misregulation of these enzymes. We also discuss molecular mechanisms regulating H3K9 methyltransferases and their influence on cancer. Finally, we describe the impact of H3K9 methylation on therapy induced resistance in carcinoma. Converging evidence point to multi-faceted roles for H3K9 methyltransferases in development and cancer that encourages a deeper understanding of these enzymes to inform novel therapy.
Collapse
Affiliation(s)
- Nirmalya Saha
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States of America
| | - Andrew G Muntean
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States of America.
| |
Collapse
|
37
|
Aberrant Activity of Histone-Lysine N-Methyltransferase 2 (KMT2) Complexes in Oncogenesis. Int J Mol Sci 2020; 21:ijms21249340. [PMID: 33302406 PMCID: PMC7762615 DOI: 10.3390/ijms21249340] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 02/06/2023] Open
Abstract
KMT2 (histone-lysine N-methyltransferase subclass 2) complexes methylate lysine 4 on the histone H3 tail at gene promoters and gene enhancers and, thus, control the process of gene transcription. These complexes not only play an essential role in normal development but have also been described as involved in the aberrant growth of tissues. KMT2 mutations resulting from the rearrangements of the KMT2A (MLL1) gene at 11q23 are associated with pediatric mixed-lineage leukemias, and recent studies demonstrate that KMT2 genes are frequently mutated in many types of human cancers. Moreover, other components of the KMT2 complexes have been reported to contribute to oncogenesis. This review summarizes the recent advances in our knowledge of the role of KMT2 complexes in cell transformation. In addition, it discusses the therapeutic targeting of different components of the KMT2 complexes.
Collapse
|
38
|
Hoyer-Fender S. Transgenerational effect of drug-mediated inhibition of LSD1 on eye pigment expression in Drosophila. BMC Ecol 2020; 20:62. [PMID: 33228645 PMCID: PMC7684728 DOI: 10.1186/s12898-020-00330-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 11/11/2020] [Indexed: 11/25/2022] Open
Abstract
Background The Drosophila melanogaster mutant white-mottled is a well-established model for position-effect variegation (PEV). Transposition of the euchromatic white gene into the vicinity of the pericentric heterochromatin caused variegated expression of white due to heterochromatin spreading. The establishment of the euchromatin-heterochromatin boundary and spreading of silencing is regulated by mutually exclusive histone modifications, i.e. the methylations of histone H3 at lysine 9 and lysine 4. Demethylation of H3K4, catalysed by lysine-specific demethylase LSD1, is required for subsequent methylation of H3K9 to establish heterochromatin. LSD1 is therefore essential for heterochromatin formation and spreading. We asked whether drug-mediated inhibition of LSD affects the expression of white and if this induced change can be transmitted to those generations that have never been exposed to the triggering signal, i.e. transgenerational epigenetic inheritance. Results We used the lysine-specific demethylase 1 (LSD1)-inhibitor Tranylcypromine to investigate its effect on eye colour expression in consecutive generations by feeding the parental and F1 generations of the Drosophila melanogaster mutant white-mottled. Quantitative Western blotting revealed that Tranylcypromine inhibits H3K4-demethylation both in vitro in S2 cells as well as in embryos when used as feeding additive. Eye colour expression in male flies was determined by optical measurement of pigment extracts and qRT-PCR of white gene expression. Flies raised in the presence of Tranylcypromine and its solvent DMSO showed increased eye pigment expression. Beyond that, eye pigment expression was also affected in consecutive generations including F3, which is the first generation without contact with the inhibitor. Conclusions Our results show that feeding of Tranylcypromine and DMSO caused desilencing of white in treated flies of generation F1. Consecutive generations, raised on standard food without further supplements, are also affected by the drug-induced alteration of histone modifications. Although eye pigment expression eventually returned to the basal state, the observed long-lasting effect points to a memory capacity of previous epigenomes. Furthermore, our results indicate that food compounds potentially affect chromatin modification and hence gene expression and that the alteration is putatively inherited not only parentally but transgenerationally.
Collapse
Affiliation(s)
- Sigrid Hoyer-Fender
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology-Developmental Biology, GZMB, Ernst-Caspari-Haus, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, Göttingen, Germany.
| |
Collapse
|
39
|
Batra R, Gautam T, Pal S, Chaturvedi D, Rakhi, Jan I, Balyan HS, Gupta PK. Identification and characterization of SET domain family genes in bread wheat (Triticum aestivum L.). Sci Rep 2020; 10:14624. [PMID: 32884064 PMCID: PMC7471321 DOI: 10.1038/s41598-020-71526-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/18/2020] [Indexed: 01/21/2023] Open
Abstract
SET domain genes (SDGs) that are involved in histone methylation have been examined in many plant species, but have never been examined in bread wheat; the histone methylation caused due to SDGs is associated with regulation of gene expression at the transcription level. We identified a total of 166 bread wheat TaSDGs, which carry some interesting features including the occurrence of tandem/interspersed duplications, SSRs (simple sequence repeats), transposable elements, lncRNAs and targets for miRNAs along their lengths and transcription factor binding sites (TFBS) in the promoter regions. Only 130 TaSDGs encoded proteins with complete SET domain, the remaining 36 proteins had truncated SET domain. The TaSDG encoded proteins were classified into six classes (I–V and VII). In silico expression analysis indicated relatively higher expression (FPKM > 20) of eight of the 130 TaSDGs in different tissues, and downregulation of 30 TaSDGs under heat and drought at the seedling stage. qRT-PCR was also conducted to validate the expression of seven genes at the seedling stage in pairs of contrasting genotypes in response to abiotic stresses (water and heat) and biotic stress (leaf rust). These genes were generally downregulated in response to the three stresses examined.
Collapse
Affiliation(s)
- Ritu Batra
- Department of Genetics and Plant Breeding, CCS University, Meerut, Uttar Pradesh, 250004, India
| | - Tinku Gautam
- Department of Genetics and Plant Breeding, CCS University, Meerut, Uttar Pradesh, 250004, India
| | - Sunita Pal
- Department of Genetics and Plant Breeding, CCS University, Meerut, Uttar Pradesh, 250004, India
| | - Deepti Chaturvedi
- Department of Genetics and Plant Breeding, CCS University, Meerut, Uttar Pradesh, 250004, India
| | - Rakhi
- Department of Genetics and Plant Breeding, CCS University, Meerut, Uttar Pradesh, 250004, India
| | - Irfat Jan
- Department of Genetics and Plant Breeding, CCS University, Meerut, Uttar Pradesh, 250004, India
| | - Harindra Singh Balyan
- Department of Genetics and Plant Breeding, CCS University, Meerut, Uttar Pradesh, 250004, India
| | - Pushpendra Kumar Gupta
- Department of Genetics and Plant Breeding, CCS University, Meerut, Uttar Pradesh, 250004, India.
| |
Collapse
|
40
|
Liu J, Ali M, Zhou Q. Establishment and evolution of heterochromatin. Ann N Y Acad Sci 2020; 1476:59-77. [PMID: 32017156 PMCID: PMC7586837 DOI: 10.1111/nyas.14303] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/31/2019] [Accepted: 01/02/2020] [Indexed: 12/12/2022]
Abstract
The eukaryotic genome is packaged into transcriptionally active euchromatin and silent heterochromatin, with most studies focused on the former encompassing the majority of protein-coding genes. The recent development of various sequencing techniques has refined this classic dichromatic partition and has better illuminated the composition, establishment, and evolution of this genomic and epigenomic "dark matter" in the context of topologically associated domains and phase-separated droplets. Heterochromatin includes genomic regions that can be densely stained by chemical dyes, which have been shown to be enriched for repetitive elements and epigenetic marks, including H3K9me2/3 and H3K27me3. Heterochromatin is usually replicated late, concentrated at the nuclear periphery or around nucleoli, and usually lacks highly expressed genes; and now it is considered to be as neither genetically inert nor developmentally static. Heterochromatin guards genome integrity against transposon activities and exerts important regulatory functions by targeting beyond its contained genes. Both its nucleotide sequences and regulatory proteins exhibit rapid coevolution between species. In addition, there are dynamic transitions between euchromatin and heterochromatin during developmental and evolutionary processes. We summarize here the ever-changing characteristics of heterochromatin and propose models and principles for the evolutionary transitions of heterochromatin that have been mainly learned from studies of Drosophila and yeast. Finally, we highlight the role of sex chromosomes in studying heterochromatin evolution.
Collapse
Affiliation(s)
- Jing Liu
- MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences InstituteZhejiang UniversityHangzhouChina
- Department of Molecular Evolution and DevelopmentUniversity of ViennaViennaAustria
| | - Mujahid Ali
- Department of Molecular Evolution and DevelopmentUniversity of ViennaViennaAustria
| | - Qi Zhou
- MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences InstituteZhejiang UniversityHangzhouChina
- Department of Molecular Evolution and DevelopmentUniversity of ViennaViennaAustria
- Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| |
Collapse
|
41
|
Meyer-Nava S, Nieto-Caballero VE, Zurita M, Valadez-Graham V. Insights into HP1a-Chromatin Interactions. Cells 2020; 9:E1866. [PMID: 32784937 PMCID: PMC7465937 DOI: 10.3390/cells9081866] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 12/17/2022] Open
Abstract
Understanding the packaging of DNA into chromatin has become a crucial aspect in the study of gene regulatory mechanisms. Heterochromatin establishment and maintenance dynamics have emerged as some of the main features involved in genome stability, cellular development, and diseases. The most extensively studied heterochromatin protein is HP1a. This protein has two main domains, namely the chromoshadow and the chromodomain, separated by a hinge region. Over the years, several works have taken on the task of identifying HP1a partners using different strategies. In this review, we focus on describing these interactions and the possible complexes and subcomplexes associated with this critical protein. Characterization of these complexes will help us to clearly understand the implications of the interactions of HP1a in heterochromatin maintenance, heterochromatin dynamics, and heterochromatin's direct relationship to gene regulation and chromatin organization.
Collapse
Affiliation(s)
| | | | | | - Viviana Valadez-Graham
- Instituto de Biotecnología, Departamento de Genética del Desarrollo y Fisiología Molecular, Universidad Nacional Autónoma de México, Cuernavaca Morelos 62210, Mexico; (S.M.-N.); (V.E.N.-C.); (M.Z.)
| |
Collapse
|
42
|
Molecular Regulation of Circadian Chromatin. J Mol Biol 2020; 432:3466-3482. [PMID: 31954735 DOI: 10.1016/j.jmb.2020.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/13/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023]
Abstract
Circadian rhythms are generated by transcriptional negative feedback loops and require histone modifications and chromatin remodeling to ensure appropriate timing and amplitude of clock gene expression. Circadian modifications to histones are important for transcriptional initiation and feedback inhibition serving as signaling platform for chromatin-remodeling enzymes. Current models indicate circadian-regulated facultative heterochromatin (CRFH) is a conserved mechanism at clock genes in Neurospora, Drosophila, and mice. CRFH consists of antiphasic rhythms in activating and repressive modifications generating chromatin states that cycle between transcriptionally permissive and nonpermissive. There are rhythms in histone H3 lysine 9 and 27 acetylation (H3K9ac and H3K27ac) and histone H3 lysine 4 methylation (H3K4me) during activation; while deacetylation, histone H3 lysine 9 methylation (H3K9me) and heterochromatin protein 1 (HP1) are hallmarks of repression. ATP-dependent chromatin-remodeling enzymes control accessibility, nucleosome positioning/occupancy, and nuclear organization. In Neurospora, the rhythm in facultative heterochromatin is mediated by the frequency (frq) natural antisense transcript (NAT) qrf. While in mammals, histone deacetylases (HDACs), histone H3 lysine 9 methyltransferase (KMT1/SUV39), and components of nucleosome remodeling and deacetylase (NuRD) are part of the nuclear PERIOD complex (PER complex). Genomics efforts have found relationships among rhythmic chromatin modifications at clock-controlled genes (ccg) revealing circadian control of genome-wide chromatin states. There are also circadian clock-regulated lncRNAs with an emerging function that includes assisting in chromatin dynamics. In this review, we explore the connections between circadian clock, chromatin remodeling, lncRNAs, and CRFH and how these impact rhythmicity, amplitude, period, and phase of circadian clock genes.
Collapse
|
43
|
Kranz A, Anastassiadis K. The role of SETD1A and SETD1B in development and disease. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194578. [PMID: 32389824 DOI: 10.1016/j.bbagrm.2020.194578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/16/2020] [Accepted: 05/03/2020] [Indexed: 12/13/2022]
Abstract
The Trithorax-related Set1 H3K4 methyltransferases are conserved from yeast to human. In yeast loss of Set1 causes pleiotropic effects but is compatible with life. In contrast, both mammalian Set1 orthologs: SETD1A and SETD1B are essential for embryonic development, however they have distinct functions. SETD1A is required shortly after epiblast formation whereas SETD1B becomes indispensible during early organogenesis. In adult mice both SETD1A and SETD1B regulate hematopoiesis differently: SETD1A is required for the establishment of definitive hematopoiesis whereas SETD1B is important for the maintenance of long-term hematopoietic stem cells. Both are implicated in different diseases with accumulating evidence for the association of SETD1A variants in neurological disorders and SETD1B variants with cancer. Why the two paralogs cannot or only partially compensate for the loss of each other is part of the puzzle that we try to sort out in this review.
Collapse
Affiliation(s)
- Andrea Kranz
- Genomics, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47, 01307 Dresden, Germany
| | - Konstantinos Anastassiadis
- Stem Cell Engineering, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47, 01307 Dresden, Germany.
| |
Collapse
|
44
|
Leung J, Gaudin V. Who Rules the Cell? An Epi-Tale of Histone, DNA, RNA, and the Metabolic Deep State. FRONTIERS IN PLANT SCIENCE 2020; 11:181. [PMID: 32194593 PMCID: PMC7066317 DOI: 10.3389/fpls.2020.00181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/06/2020] [Indexed: 05/23/2023]
Abstract
Epigenetics refers to the mode of inheritance independent of mutational changes in the DNA. Early evidence has revealed methylation, acetylation, and phosphorylation of histones, as well as methylation of DNA as part of the underlying mechanisms. The recent awareness that many human diseases have in fact an epigenetic basis, due to unbalanced diets, has led to a resurgence of interest in how epigenetics might be connected with, or even controlled by, metabolism. The Next-Generation genomic technologies have now unleashed torrents of results exposing a wondrous array of metabolites that are covalently attached to selective sites on histones, DNA and RNA. Metabolites are often cofactors or targets of chromatin-modifying enzymes. Many metabolites themselves can be acetylated or methylated. This indicates that the acetylome and methylome can actually be deep and pervasive networks to ensure the nuclear activities are coordinated with the metabolic status of the cell. The discovery of novel histone marks also raises the question on the types of pathways by which their corresponding metabolites are replenished, how they are corralled to the specific histone residues and how they are recognized. Further, atypical cytosines and uracil have also been found in eukaryotic genomes. Although these new and extensive connections between metabolism and epigenetics have been established mostly in animal models, parallels must exist in plants, inasmuch as many of the basic components of chromatin and its modifying enzymes are conserved. Plants are chemical factories constantly responding to stress. Plants, therefore, should lend themselves readily for identifying new endogenous metabolites that are also modulators of nuclear activities in adapting to stress.
Collapse
Affiliation(s)
- Jeffrey Leung
- Institut Jean-Pierre Bourgin, ERL3559 CNRS, INRAE, Versailles, France
| | - Valérie Gaudin
- Institut Jean-Pierre Bourgin, UMR1318 INRAE-AgroParisTech, Université Paris-Saclay, Versailles, France
| |
Collapse
|
45
|
Walther M, Schrahn S, Krauss V, Lein S, Kessler J, Jenuwein T, Reuter G. Heterochromatin formation in Drosophila requires genome-wide histone deacetylation in cleavage chromatin before mid-blastula transition in early embryogenesis. Chromosoma 2020; 129:83-98. [PMID: 31950239 PMCID: PMC7021753 DOI: 10.1007/s00412-020-00732-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/13/2019] [Accepted: 01/02/2020] [Indexed: 02/05/2023]
Abstract
Su(var) mutations define epigenetic factors controlling heterochromatin formation and gene silencing in Drosophila. Here, we identify SU(VAR)2-1 as a novel chromatin regulator that directs global histone deacetylation during the transition of cleavage chromatin into somatic blastoderm chromatin in early embryogenesis. SU(VAR)2-1 is heterochromatin-associated in blastoderm nuclei but not in later stages of development. In larval polytene chromosomes, SU(VAR)2-1 is a band-specific protein. SU(VAR)2-1 directs global histone deacetylation by recruiting the histone deacetylase RPD3. In Su(var)2-1 mutants H3K9, H3K27, H4K8 and H4K16 acetylation shows elevated levels genome-wide and heterochromatin displays aberrant histone hyper-acetylation. Whereas H3K9me2- and HP1a-binding appears unaltered, the heterochromatin-specific H3K9me2S10ph composite mark is impaired in heterochromatic chromocenters of larval salivary polytene chromosomes. SU(VAR)2-1 contains an NRF1/EWG domain and a C2HC zinc-finger motif. Our study identifies SU(VAR)2-1 as a dosage-dependent, heterochromatin-initiating SU(VAR) factor, where the SU(VAR)2-1-mediated control of genome-wide histone deacetylation after cleavage and before mid-blastula transition (pre-MBT) is required to enable heterochromatin formation.
Collapse
Affiliation(s)
- Matthias Walther
- Developmental Genetics, Institute of Biology, Martin Luther University Halle, Weinbergweg 10, 06120, Halle/S., Germany
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108, Freiburg, Germany
| | - Sandy Schrahn
- Developmental Genetics, Institute of Biology, Martin Luther University Halle, Weinbergweg 10, 06120, Halle/S., Germany
| | - Veiko Krauss
- Cluster of Excellence in Plant Science (CEPLAS), University of Cologne, Biocenter, 50674, Cologne, Germany
| | - Sandro Lein
- Developmental Genetics, Institute of Biology, Martin Luther University Halle, Weinbergweg 10, 06120, Halle/S., Germany
| | - Jeannette Kessler
- Developmental Genetics, Institute of Biology, Martin Luther University Halle, Weinbergweg 10, 06120, Halle/S., Germany
| | - Thomas Jenuwein
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108, Freiburg, Germany
| | - Gunter Reuter
- Developmental Genetics, Institute of Biology, Martin Luther University Halle, Weinbergweg 10, 06120, Halle/S., Germany.
| |
Collapse
|
46
|
Chen DH, Qiu HL, Huang Y, Zhang L, Si JP. Genome-wide identification and expression profiling of SET DOMAIN GROUP family in Dendrobium catenatum. BMC PLANT BIOLOGY 2020; 20:40. [PMID: 31992218 PMCID: PMC6986063 DOI: 10.1186/s12870-020-2244-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/13/2020] [Indexed: 05/14/2023]
Abstract
BACKGROUND Dendrobium catenatum, as a precious Chinese herbal medicine, is an epiphytic orchid plant, which grows on the trunks and cliffs and often faces up to diverse environmental stresses. SET DOMAIN GROUP (SDG) proteins act as histone lysine methyltransferases, which are involved in pleiotropic developmental events and stress responses through modifying chromatin structure and regulating gene transcription, but their roles in D. catenatum are unknown. RESULTS In this study, we identified 44 SDG proteins from D. catenatum genome. Subsequently, comprehensive analyses related to gene structure, protein domain organization, and phylogenetic relationship were performed to evaluate these D. catenatum SDG (DcSDG) proteins, along with the well-investigated homologs from the model plants Arabidopsis thaliana and Oryza sativa as well as the newly characterized 42 SDG proteins from a closely related orchid plant Phalaenopsis equestris. We showed DcSDG proteins can be grouped into eight distinct classes (I~VII and M), mostly consistent with the previous description. Based on the catalytic substrates of the reported SDG members mainly in Arabidopsis, Class I (E(z)-Like) is predicted to account for the deposition of H3K27me2/3, Class II (Ash-like) for H3K36me, Class III (Trx/ATX-like) for H3K4me2/3, Class M (ATXR3/7) for H3K4me, Class IV (Su (var)-like) for H3K27me1, Class V (Suv-like) for H3K9me, as well as class VI (S-ET) and class VII (RBCMT) for methylation of both histone and non-histone proteins. RNA-seq derived expression profiling showed that DcSDG proteins usually displayed wide but distinguished expressions in different tissues and organs. Finally, environmental stresses examination showed the expressions of DcASHR3, DcSUVR3, DcATXR4, DcATXR5b, and DcSDG49 are closely associated with drought-recovery treatment, the expression of DcSUVH5a, DcATXR5a and DcSUVR14a are significantly influenced by low temperature, and even 61% DcSDG genes are in response to heat shock. CONCLUSIONS This study systematically identifies and classifies SDG genes in orchid plant D. catenatum, indicates their functional divergence during the evolution, and discovers their broad roles in the developmental programs and stress responses. These results provide constructive clues for further functional investigation and epigenetic mechanism dissection of SET-containing proteins in orchids.
Collapse
Affiliation(s)
- Dong-Hong Chen
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China.
| | - Han-Lin Qiu
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Yong Huang
- Key Laboratory of Education Department of Hunan Province on Plant Genetics and Molecular Biology, Hunan Agricultural University, Changsha, 410128, China
| | - Lei Zhang
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Jin-Ping Si
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
47
|
Lavery WJ, Barski A, Wiley S, Schorry EK, Lindsley AW. KMT2C/D COMPASS complex-associated diseases [K CDCOM-ADs]: an emerging class of congenital regulopathies. Clin Epigenetics 2020; 12:10. [PMID: 31924266 PMCID: PMC6954584 DOI: 10.1186/s13148-019-0802-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/23/2019] [Indexed: 12/15/2022] Open
Abstract
The type 2 lysine methyltransferases KMT2C and KMT2D are large, enzymatically active scaffold proteins that form the core of nuclear regulatory structures known as KMT2C/D COMPASS complexes (complex of proteins associating with Set1). These evolutionarily conserved proteins regulate DNA promoter and enhancer elements, modulating the activity of diverse cell types critical for embryonic morphogenesis, central nervous system development, and post-natal survival. KMT2C/D COMPASS complexes and their binding partners enhance active gene expression of specific loci via the targeted modification of histone-3 tail residues, in general promoting active euchromatic conformations. Over the last 20 years, mutations in five key COMPASS complex genes have been linked to three human congenital syndromes: Kabuki syndrome (type 1 [KMT2D] and 2 [KDM6A]), Rubinstein-Taybi syndrome (type 1 [CBP] and 2 [EP300]), and Kleefstra syndrome type 2 (KMT2C). Here, we review the composition and biochemical function of the KMT2 complexes. The specific cellular and embryonic roles of the KMT2C/D COMPASS complex are highlight with a focus on clinically relevant mechanisms sensitive to haploinsufficiency. The phenotypic similarities and differences between the members of this new family of disorders are outlined and emerging therapeutic strategies are detailed.
Collapse
Affiliation(s)
- William J Lavery
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue, Cincinnati, OH, 45229-3026, USA
| | - Artem Barski
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue, Cincinnati, OH, 45229-3026, USA
- Division of Human Genetics, CCHMC, Cincinnati, OH, USA
| | - Susan Wiley
- Division of Developmental and Behavioral Pediatrics, CCHMC, Cincinnati, OH, USA
| | | | - Andrew W Lindsley
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue, Cincinnati, OH, 45229-3026, USA.
| |
Collapse
|
48
|
I. Fedoreyeva L, F. Vanyushin B, N. Baranova E. Peptide AEDL alters chromatin conformation via histone binding. AIMS BIOPHYSICS 2020. [DOI: 10.3934/biophy.2020001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
49
|
Ancestral male recombination in Drosophila albomicans produced geographically restricted neo-Y chromosome haplotypes varying in age and onset of decay. PLoS Genet 2019; 15:e1008502. [PMID: 31738748 PMCID: PMC6897423 DOI: 10.1371/journal.pgen.1008502] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/06/2019] [Accepted: 11/01/2019] [Indexed: 12/30/2022] Open
Abstract
Male Drosophila typically have achiasmatic meiosis, and fusions between autosomes and the Y chromosome have repeatedly created non-recombining neo-Y chromosomes that degenerate. Intriguingly, Drosophila nasuta males recombine, but their close relative D. albomicans reverted back to achiasmy after evolving neo-sex chromosomes. Here we use genome-wide polymorphism data to reconstruct the complex evolutionary history of neo-sex chromosomes in D. albomicans and examine the effect of recombination and its cessation on the initiation of neo-Y decay. Population and phylogenomic analyses reveal three distinct neo-Y types that are geographically restricted. Due to ancestral recombination with the neo-X, overall nucleotide diversity on the neo-Y is similar to the neo-X but severely reduced within neo-Y types. Consistently, the neo-Y chromosomes fail to form a monophyletic clade in sliding window trees outside of the region proximal to the fusion. Based on tree topology changes, we inferred the recombination breakpoints that produced haplotypes specific to each neo-Y type. We show that recombination became suppressed at different time points for the different neo-Y haplotypes. Haplotype age correlates with onset of neo-Y decay, and older neo-Y haplotypes show more fixed gene disruption via frameshift indels and down-regulation of neo-Y alleles. Genes are downregulated independently on the different neo-Ys, but are depleted of testes-expressed genes across all haplotypes. This indicates that genes important for male function are initially shielded from degeneration. Our results offer a time course of the early progression of Y chromosome evolution, showing how the suppression of recombination, through the reversal to achiasmy in D. albomicans males, initiates the process of degeneration.
Collapse
|
50
|
Osumi K, Sato K, Murano K, Siomi H, Siomi MC. Essential roles of Windei and nuclear monoubiquitination of Eggless/SETDB1 in transposon silencing. EMBO Rep 2019; 20:e48296. [PMID: 31576653 DOI: 10.15252/embr.201948296] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/02/2019] [Accepted: 09/11/2019] [Indexed: 11/09/2022] Open
Abstract
Eggless/SETDB1 (Egg), the only essential histone methyltransferase (HMT) in Drosophila, plays a role in gene repression, including piRNA-mediated transposon silencing in the ovaries. Previous studies suggested that Egg is post-translationally modified and showed that Windei (Wde) regulates Egg nuclear localization through protein-protein interaction. Monoubiquitination of mammalian SETDB1 is necessary for the HMT activity. Here, using cultured ovarian somatic cells, we show that Egg is monoubiquitinated and phosphorylated but that only monoubiquitination is required for piRNA-mediated transposon repression. Egg monoubiquitination occurs in the nucleus. Egg has its own nuclear localization signal, and the nuclear import of Egg is Wde-independent. Wde recruits Egg to the chromatin at target gene silencing loci, but their interaction is monoubiquitin-independent. The abundance of nuclear Egg is governed by that of nuclear Wde. These results illuminate essential roles of nuclear monoubiquitination of Egg and the role of Wde in piRNA-mediated transposon repression.
Collapse
Affiliation(s)
- Ken Osumi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kaoru Sato
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kensaku Murano
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|