1
|
Jung JY, Jeong HJ, Han GD. Antimelanogenic effect of fermented licorice water extract on murine melanoma B16F10 cells. Food Sci Biotechnol 2025; 34:2571-2580. [PMID: 40492052 PMCID: PMC12145374 DOI: 10.1007/s10068-025-01878-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 03/28/2025] [Accepted: 04/03/2025] [Indexed: 06/11/2025] Open
Abstract
This study investigated the skin-whitening effect of fermented licorice water extract (FLWE) on B16F10 melanocytes. Bioconversion mediated by Issatchenkia orientalis MFST-based fermentation altered licorice's bioactive components. FLWE significantly increased polyphenol and flavonoid content compared with non-fermented licorice water extract (LWE). FLWE more effectively inhibited melanocyte-stimulating hormone-induced melanin production and tyrosinase activity than LWE. RT-PCR and Western blotting revealed that FLWE inhibits the expression of microphthalmia-associated transcription factor (MITF), the transcription factor for TRP-1, TRP-2, and tyrosinase. On analyzing FLWE's inhibitory activity against preexisting tyrosinase within melanocytes, FLWE did not directly inhibit tyrosinase itself, suggesting that FLWE exerts its whitening effect by inhibiting MITF activation. TLC and HPLC indicated that FLWE's superior whitening effect emanates from increased levels of aglycone compounds (isoliquiritigenin, glycyrrhizic acid, licochalcone A, and glabridin) after licorice fermentation. Overall, FLWE is a potentially effective skin-whitening material without side effects (vitiligo) commonly associated with direct tyrosinase inhibition. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-025-01878-z.
Collapse
Affiliation(s)
- Jin Yeong Jung
- Department of Food Science and Technology, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541 Republic of Korea
| | - Ho Jeong Jeong
- Department of Food Science and Technology, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541 Republic of Korea
| | - Gi Dong Han
- Department of Food Science and Technology, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541 Republic of Korea
| |
Collapse
|
2
|
Perez Palomeque G, Khacha-ananda S, Monum T, Wunnapuk K. Prediction of Skin Color Using Forensic DNA Phenotyping in Asian Populations: A Focus on Thailand. Biomolecules 2025; 15:548. [PMID: 40305359 PMCID: PMC12024907 DOI: 10.3390/biom15040548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 05/02/2025] Open
Abstract
Forensic DNA phenotyping (FDP) has emerged as an essential tool in criminal investigations, enabling the prediction of physical traits based on genetic information. This review explores the genetic factors influencing skin pigmentation, particularly within Asian populations, with a focus on Thailand. Key genes such as Oculocutaneous Albinism II (OCA2), Dopachrome Tautomerase (DCT), KIT Ligand (KITLG), and Solute Carrier Family 24 Member 2 (SLC24A2) are examined for their roles in melanin production and variations that lead to different skin tones. The OCA2 gene is highlighted for its role in transporting ions that help stabilize melanosomes, while specific variants in the DCT gene, including single nucleotide polymorphisms (SNPs) rs2031526 and rs3782974, are discussed for their potential effects on pigmentation in Asian groups. The KITLG gene, crucial for developing melanocytes, includes the SNP rs642742, which is linked to lighter skin in East Asians. Additionally, recent findings on the SLC24A2 gene are presented, emphasizing its connection to pigmentation through calcium regulation in melanin production. Finally, the review addresses the ethical considerations of using FDP in Thailand, where advances in genetic profiling raise concerns about privacy, consent, and discrimination. Establishing clear guidelines is vital to balancing the benefits of forensic DNA applications with the protection of individual rights.
Collapse
Affiliation(s)
- Gabriel Perez Palomeque
- PhD Program in Medical Sciences, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Supakit Khacha-ananda
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (T.M.); (K.W.)
| | - Tawachai Monum
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (T.M.); (K.W.)
| | - Klintean Wunnapuk
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (T.M.); (K.W.)
| |
Collapse
|
3
|
Lee JH, Lee J, Dej-adisai S, Hwang JS. Piperine Regulates Melanogenesis through ERK Activation and Proteasomal Degradation of MITF. Biomol Ther (Seoul) 2025; 33:408-414. [PMID: 39933952 PMCID: PMC11893493 DOI: 10.4062/biomolther.2024.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 02/13/2025] Open
Abstract
Melanin is a bio-pigment molecule synthesized by melanocytes. Its role is to shield the skin from ultraviolet radiation. Nonetheless, aberrant melanin production, whether excessive or deficient, can lead to conditions such as vitiligo, freckles, melanocytic nevi, and even melanoma. The biosynthetic pathway of melanin is known as melanogenesis, which is regulated by various transcription factors and enzymatic processes. Piperine (PPN), an alkaloid compound extracted from Piper retrofractum Vahl., was investigated for its potential anti-fungal and anti-inflammatory effects. Our hypothesis centered on the inhibition of melanin biosynthesis in response to PPN treatment. Subsequently, it was observed that PPN treatment resulted in a dose-dependent reduction in melanin production, accompanied by a decrease in tyrosinase activity. Furthermore, PPN was found to downregulate the protein levels of key melanogenesis-related genes. Additionally, PPN was observed to elevate the phosphorylation levels of ERK. To assess the role of ERK signaling in PPN-induced melanogenesis regulation, PD98059, an ERK inhibitor, was used. When Melan-A cells were treated with PD98059, the reduced expression level of MITF and melanin content induced by piperine were restored. Additionally, phosphorylation of ERK increased the phosphorylation of MITF at Ser73. This phosphorylated MITF leads to ubiquitination, and ultimately, the protein level of MITF decreases through proteasomal degradation. Likewise, when Melan-A cells were treated with MG132, a proteasomal inhibitor, the reduced expression level of MITF and melanin content induced by piperine were restored. Consequently, PPN can be a potential candidate for application as a skin whitening agent or in formulations to mitigate hyperpigmentation.
Collapse
Affiliation(s)
- Jun Hyeong Lee
- Department of Genetics and Biotechnology, Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jieun Lee
- Department of Genetics and Biotechnology, Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Sukanya Dej-adisai
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai 90112, Thailand
| | - Jae Sung Hwang
- Department of Genetics and Biotechnology, Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
4
|
Li Y, Chen W, Zhang X, Deng R, Zhang Z, Wang J, Liu L, Zhang C, Cao W. Modulating the γ-ray Protection Properties of Melanin via a Highly Conjugated Catechol Structure. ACS Biomater Sci Eng 2025; 11:661-671. [PMID: 39693217 DOI: 10.1021/acsbiomaterials.4c02058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Melanin is a dark pigment found in many organisms that interacts with various forms of electromagnetic radiation, such as X-rays, γ-rays, and Ultraviolet visible light, providing protection against radiation damage to the host. The mechanism by which melanin protects against ionizing radiation involves dissipating energy around the cell nucleus to form a perinuclear cap. Additionally, melanin reacts with the free radicals produced by the radiolysis of water, quenching reactive oxygen species. In this study, we introduced a conjugated monomer, hexahydroxytriphenylene (HHTP), which has a rigid planar structure, into selenomelanin. The aim was to increase the physical shielding ability of selenomelanin while increasing its free radical content. Our findings indicated that incorporating HHTP molecules into selenomelanin effectively increased the unpaired electron content of selenomelanin and protected immortalized human keratinocyte (HaCaT) cells from 10 Gy γ-rays exposure. Additionally, eumelanin supplemented with HHTP molecules demonstrated excellent biocompatibility and offered similar protection to HaCaT cells exposed to 10 Gy γ-rays at high concentrations. This study is important for optimizing the functionality of melanin through the modulation of its conjugated structure.
Collapse
Affiliation(s)
- Yuxi Li
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wei Chen
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiaolong Zhang
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang 330013, China
| | - Ruotong Deng
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ziwei Zhang
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jian Wang
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lixia Liu
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Chunlei Zhang
- College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
| | - Wei Cao
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
5
|
Su Y, Xu S, Hu X, Wang R, Dong M, Wang Y, Wang S, Zhang Y, Tian Q, Han L. Rapid discovery of natural skin-lightening ingredients based on an integrated screening strategy based on molecular docking and zebrafish model. J Cosmet Dermatol 2024; 23:3724-3734. [PMID: 38923657 DOI: 10.1111/jocd.16439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Natural herbs have been widely considered a reservoir for skin-lightening ingredients, but discovery of the effective ingredients from herbs remains a large challenge. AIM This research aimed to rapidly identify compounds with skin-lightening activity in Chinese herbs. METHODS The structure information of herbal compounds was collected and selected from the open-source data. High throughput virtual screening (HTVS) and Extra precision (XP) docking modes were used to screen for compounds that could bind to the mushroom tyrosinase involved in melanin synthesis. Furthermore, molecular dynamics (MD) simulations were introduced to assess the binding stability of those compounds with the key target protein. The candidate compounds found by this kind of multidimensional molecular screening were finally tested for their ability to inhibit pigmentation and potential toxicity using an in vivo zebrafish animal model. RESULTS A Natural Compounds Database was established with 5616 natural compounds. Fourteen compounds with favorable binding capability were screened by the XP docking mode with mushroom tyrosinase and five compounds among them were found to have superior dynamic binding performance through MD simulations. Then the Zebrafish animal experiments revealed that two components, sennoside B (SB) and sennoside C (SC), could significantly inhibit melanogenesis rather than the other three compounds. Meanwhile, there were no obvious side effects observed in SB and SC about the morphology, heart rate, or body length of zebrafish. CONCLUSION A strategy for rapid screening of compounds with whitening activity has been established, and two potent skin-lightening compounds, SB and SC, have been identified from a vast library of herbal compounds. This study revealed that SB and SC have potential for topical use in skin lightening for the first time. The findings of this study would provide an important theoretical basis for the application of these two compounds in the cosmetic field in the future.
Collapse
Affiliation(s)
- Yonghui Su
- School of Pharmaceutical Sciences, Shanxi Medical University, Taiyuan, China
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China
| | - Shanshan Xu
- School of Pharmaceutical Sciences, Shanxi Medical University, Taiyuan, China
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China
| | - Xinqi Hu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China
| | - Ruifen Wang
- School of Pharmaceutical Sciences, Shanxi Medical University, Taiyuan, China
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China
| | - Mengxuan Dong
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China
| | - Yihan Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China
| | - Songsong Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China
| | - Yougang Zhang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China
| | - Qingping Tian
- School of Pharmaceutical Sciences, Shanxi Medical University, Taiyuan, China
| | - Liwen Han
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China
| |
Collapse
|
6
|
Hu J, Xu Y, Ma X, Hu W, Zhang Y, Ye Y, Yang S, Lin H, Sheng X, Wu J, Zhang T, Gao J. Hair follicle-targeted delivery for hair recoloration using scalp-curvature-conforming microneedles based on sodium alginate and polyvinylpyrrolidone. Int J Biol Macromol 2024; 280:135917. [PMID: 39326608 DOI: 10.1016/j.ijbiomac.2024.135917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/30/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024]
Abstract
Hair-related disorders are currently widely concerned issues for not only the scientific society but also the public attentions. Microneedle-based drug delivery system has been regarded as a promise hair follicle-targeted drug delivery approach, largely because they can effectively penetrate the stratum corneum barrier and deliver drugs to hair follicles within dermis. However, the currently reported microneedles for treating hair-related disorders usually rely on rigid backings, showing poor adaptability to the curved scalp and thereby restricting their usability for hair follicles targeted drug delivery. To this end, this study utilized sodium alginate and polyvinylpyrrolidone to construct a scalp-curvature-conforming microneedle with flexible backing. Subsequently, Psoralea corylifolia extract (PE) was loaded into the microneedles to investigate its capability in delivering PE to the hair follicle site for treating leukotrichia associated with vitiligo. These PE-loaded microneedles can effectively conform to the curvature of skin, enhancing the efficiency of microneedle insertion and ensuring stable drug delivery. Moreover, animal studies demonstrate that the PE loaded microneedles can effectively penetrate the stratum corneum, benefiting the drug delivery to hair follicles located site, and consequently showing a successful inhibition of hair graying. In summary, the present study reports a design and preparation of scalp-curvature-conforming microneedle. This design may offer a potential solution for efficient drug delivery using microneedles to the curved skin.
Collapse
Affiliation(s)
- Jingyi Hu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yihua Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaolu Ma
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weitong Hu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yunting Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Jinhua Institute of Zhejiang University, Jinhua 321000, China
| | - Yuxian Ye
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Institute of Innovation and Entrepreneurship, Zhejiang University, Hangzhou 310018, China
| | - Shengfei Yang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hangjuan Lin
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, Zhejiang 315010, China
| | | | - Jiahe Wu
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Pharmacy, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Tianyuan Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Jinhua Institute of Zhejiang University, Jinhua 321000, China; Institute of Innovation and Entrepreneurship, Zhejiang University, Hangzhou 310018, China; Jiangsu Engineering Research Center for New-type External and Transdermal Preparations, Changzhou 213149, China.
| |
Collapse
|
7
|
Wang F, Ma W, Fan D, Hu J, An X, Wang Z. The biochemistry of melanogenesis: an insight into the function and mechanism of melanogenesis-related proteins. Front Mol Biosci 2024; 11:1440187. [PMID: 39228912 PMCID: PMC11368874 DOI: 10.3389/fmolb.2024.1440187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/22/2024] [Indexed: 09/05/2024] Open
Abstract
Melanin is an amino acid derivative produced by melanocyte through a series of enzymatic reactions using tyrosinase as substrate. Human skin and hair color is also closely related to melanin, so understanding the mechanisms and proteins that produce melanin is very important. There are many proteins involved in the process of melanin expression, For example, proteins involved in melanin formation such as p53, HNF-1α (Hepatocyte nuclear factor 1α), SOX10 (Sry-related HMg-Box gene 10) and pax3 (paired box gene 3), MC1R(Melanocortin 1 Receptor), MITF (Microphthalmia-associated transcription factor), TYR (tyrosinase), TYRP1 (tyrosinase-related protein-1), TYRP2 (tyrosinase-related protein-2), and can be regulated by changing their content to control the production rate of melanin. Others, such as OA1 (ocular albinism type 1), Par-2 (protease-activated receptor 2) and Mlph (Melanophilin), have been found to control the transfer rate of melanosomes from melanocytes to keratinocytes, and regulate the amount of human epidermal melanin to control the depth of human skin color. In addition to the above proteins, there are other protein families also involved in the process of melanin expression, such as BLOC, Rab and Rho. This article reviews the origin of melanocytes, the related proteins affecting melanin and the basic causes of related gene mutations. In addition, we also summarized the active ingredients of 5 popular whitening cosmetics and their mechanisms of action.
Collapse
Affiliation(s)
- Feifei Wang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
- Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, China
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Shanghai Jiyan Bio-Pharmaceutical Co., Ltd., Shanghai, China
| | - Wenjing Ma
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
- Shanghai Jiyan Bio-Pharmaceutical Co., Ltd., Shanghai, China
| | - Dongjie Fan
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
- Shanghai Jiyan Bio-Pharmaceutical Co., Ltd., Shanghai, China
| | - Jing Hu
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
- Shanghai Jiyan Bio-Pharmaceutical Co., Ltd., Shanghai, China
| | - Xiaohong An
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
- Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, China
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Shanghai Jiyan Bio-Pharmaceutical Co., Ltd., Shanghai, China
| | - Zuding Wang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
- Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, China
| |
Collapse
|
8
|
Kim J, Hwang SJ, Lee GS, Lee JR, An HI, Im HS, Kim M, Lee SS, Lee HJ, Kim CS. Collagenase and Tyrosinase Inhibitory Compounds from Fish Gut Bacteria Ruegeria atlantica and Pseudoalteromonas neustonica. ACS OMEGA 2024; 9:34259-34267. [PMID: 39157099 PMCID: PMC11325404 DOI: 10.1021/acsomega.3c09585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 08/20/2024]
Abstract
Ruegeria atlantica and Pseudoalteromonas neustonica are fish gut bacteria that have been isolated from the guts of Pagrus major and Acanthopagrus schlegelii, respectively. A total of 22 compounds (1-22) were isolated from these two bacteria; 16 compounds (1-16) from R. atalantica and 6 compounds (17-22) from P. neustonica. Their chemical structures were elucidated by spectroscopic and spectrometric data analysis and chemical synthesis. Compounds 11 and 13 showed strong collagenase inhibitory activity, with 31.91% and 36.43% at 20 μM, respectively, comparable to or surpassing that of the positive control epigallocatechin gallate (EGCG, 34.66%). Also, compounds 11 and 14 exhibited a mild tyrosinase inhibitory effect of 6.73% and 13.68%, respectively. All of the tested compounds displayed no significant antibacterial activity against Escherichia coli and Bacillus subtilis up to 100 μM. The collagenase- and tyrosinase-inhibitory compound 11, cyclo(l-Pro-d-Leu), was found to be stable under heat (50 °C) and UV light (254 and 365 nm) for up to 6 days. These results indicate that compound 11 could be developed into a cosmeceutical with antiaging effects.
Collapse
Affiliation(s)
- Jonghwan Kim
- Department
of Biopharmaceutical Convergence, Sungkyunkwan
University, Suwon 16419, Republic
of Korea
| | - Su Jung Hwang
- School
of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gyu Sung Lee
- Department
of Biopharmaceutical Convergence, Sungkyunkwan
University, Suwon 16419, Republic
of Korea
| | - Ju Ryeong Lee
- Department
of Biopharmaceutical Convergence, Sungkyunkwan
University, Suwon 16419, Republic
of Korea
| | - Hye In An
- School
of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hong Sik Im
- College
of Biotechnology and Bioengineering, Sungkyunkwan
University, Suwon 16419, Republic
of Korea
| | - Minji Kim
- Department
of Biopharmaceutical Convergence, Sungkyunkwan
University, Suwon 16419, Republic
of Korea
| | - Sang-Seob Lee
- College
of Biotechnology and Bioengineering, Sungkyunkwan
University, Suwon 16419, Republic
of Korea
| | - Hyo-Jong Lee
- School
of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chung Sub Kim
- Department
of Biopharmaceutical Convergence, Sungkyunkwan
University, Suwon 16419, Republic
of Korea
- School
of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
9
|
Tedasen A, Chiabchalard A, Tencomnao T, Yamasaki K, Majima HJ, Phongphithakchai A, Chatatikun M. Anti-Melanogenic Activity of Ethanolic Extract from Garcinia atroviridis Fruits Using In Vitro Experiments, Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation. Antioxidants (Basel) 2024; 13:713. [PMID: 38929152 PMCID: PMC11200473 DOI: 10.3390/antiox13060713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Melanin, the pigment responsible for human skin color, increases susceptibility to UV radiation, leading to excessive melanin production and hyperpigmentation disorders. This study investigated the ethanolic extract of Garcinia atroviridis fruits for its phenolic and flavonoid contents, antioxidant activity, and impact on melanogenesis pathways using qRT-PCR and Western blot analysis. Utilizing network pharmacology, molecular docking, and dynamics simulations, researchers explored G. atroviridis fruit extract's active compounds, targets, and pharmacological effects on hyperpigmentation. G. atroviridis fruit extract exhibited antioxidant properties, scavenging DPPH• and ABTS•+ radicals radicals and chelating copper. It inhibited cellular tyrosinase activity and melanin content in stimulated B16F10 cells, downregulating TYR, TRP-1, phosphorylated CREB, CREB, and MITF proteins along with transcription levels of MITF, TYR, and TRP-2. LC-MS analysis identified thirty-three metabolites, with seventeen compounds selected for further investigation. Network pharmacology revealed 41 hyperpigmentation-associated genes and identified significant GO terms and KEGG pathways, including cancer-related pathways. Kaempferol-3-O-α-L-rhamnoside exhibited high binding affinity against MAPK3/ERK1, potentially regulating melanogenesis by inhibiting tyrosinase activity. Stable ligand-protein interactions in molecular dynamics simulations supported these findings. Overall, this study suggests that the ethanolic extract of G. atroviridis fruits possesses significant antioxidant, tyrosinase inhibitory, and anti-melanogenic properties mediated through key molecular targets and pathways.
Collapse
Affiliation(s)
- Aman Tedasen
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand; (A.T.); (H.J.M.)
- Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Anchalee Chiabchalard
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (A.C.); (T.T.)
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (A.C.); (T.T.)
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kenshi Yamasaki
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan;
| | - Hideyuki J. Majima
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand; (A.T.); (H.J.M.)
- Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Atthaphong Phongphithakchai
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Moragot Chatatikun
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand; (A.T.); (H.J.M.)
- Center of Excellence Research for Melioidosis and Microorganisms, Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
10
|
Xie W, Dhinojwala A, Gianneschi NC, Shawkey MD. Interactions of Melanin with Electromagnetic Radiation: From Fundamentals to Applications. Chem Rev 2024; 124:7165-7213. [PMID: 38758918 DOI: 10.1021/acs.chemrev.3c00858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Melanin, especially integumentary melanin, interacts in numerous ways with electromagnetic radiation, leading to a set of critical functions, including radiation protection, UV-protection, pigmentary and structural color productions, and thermoregulation. By harnessing these functions, melanin and melanin-like materials can be widely applied to diverse applications with extraordinary performance. Here we provide a unified overview of the melanin family (all melanin and melanin-like materials) and their interactions with the complete electromagnetic radiation spectrum (X-ray, Gamma-ray, UV, visible, near-infrared), which until now has been absent from the literature and is needed to establish a solid fundamental base to facilitate their future investigation and development. We begin by discussing the chemistries and morphologies of both natural and artificial melanin, then the fundamentals of melanin-radiation interactions, and finally the exciting new developments in high-performance melanin-based functional materials that exploit these interactions. This Review provides both a comprehensive overview and a discussion of future perspectives for each subfield of melanin that will help direct the future development of melanin from both fundamental and applied perspectives.
Collapse
Affiliation(s)
- Wanjie Xie
- Department of Biology, Evolution and Optics of Nanostructure Group, University of Ghent, Gent 9000, Belgium
| | - Ali Dhinojwala
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Nathan C Gianneschi
- Department of Chemistry, Department of Materials Science and Engineering, Department of Biomedical Engineering, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, and International Institute of Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Matthew D Shawkey
- Department of Biology, Evolution and Optics of Nanostructure Group, University of Ghent, Gent 9000, Belgium
| |
Collapse
|
11
|
Guo P, Chen J, Luo L, Zhang X, Li X, Huang Y, Wu Z, Tian Y. Identification of Differentially Expressed Genes and microRNAs in the Gray and White Feather Follicles of Shitou Geese. Animals (Basel) 2024; 14:1508. [PMID: 38791725 PMCID: PMC11117251 DOI: 10.3390/ani14101508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
The Shitou goose, a highly recognized indigenous breed with gray plumage originating from Chaozhou Raoping in Guangdong Province, China, is renowned for being the largest goose species in the country. Notably, during the pure breeding process of Shitou geese, approximately 2% of the offspring in each generation unexpectedly exhibited white plumage. To better understand the mechanisms underlying white plumage color formation in Shitou geese, we conducted a comparative transcriptome analysis between white and gray feather follicles, aiming to identify key genes and microRNAs that potentially regulate white plumage coloration in this unique goose breed. Our results revealed a number of pigmentation genes, encompassing TYR, TYRP1, EDNRB2, MLANA, SOX10, SLC45A2, GPR143, TRPM1, OCA2, ASIP, KIT, and SLC24A5, which were significantly down-regulated in the white feather follicles of Shitou geese. Among these genes, EDNRB2 and KIT emerged as the most promising candidate genes for white plumage coloration in Shitou geese. Additionally, our analysis also uncovered 46 differentially expressed miRNAs. Of these, miR-144-y may play crucial roles in the regulation of feather pigmentation. Furthermore, the expression of novel-m0086-5p, miR-489-y, miR-223-x, miR-7565-z, and miR-3535-z exhibits a significant negative correlation with the expression of pigmentation genes including TYRP1, EDNRB2, MLANA, SOX10, TRPM1, and KIT, suggesting these miRNAs may indirectly regulate the expression of these genes, thereby influencing feather color. Our findings provide valuable insights into the genetic mechanisms underlying white plumage coloration in Shitou geese and contribute to the broader understanding of avian genetics and coloration research.
Collapse
Affiliation(s)
- Pengyun Guo
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (P.G.); (L.L.); (X.Z.); (X.L.); (Y.H.); (Y.T.)
| | - Junpeng Chen
- Shantou Baisha Research Institute of Original Species of Poultry and Stock, Shantou 515800, China;
| | - Lei Luo
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (P.G.); (L.L.); (X.Z.); (X.L.); (Y.H.); (Y.T.)
| | - Xumeng Zhang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (P.G.); (L.L.); (X.Z.); (X.L.); (Y.H.); (Y.T.)
| | - Xiujin Li
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (P.G.); (L.L.); (X.Z.); (X.L.); (Y.H.); (Y.T.)
| | - Yunmao Huang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (P.G.); (L.L.); (X.Z.); (X.L.); (Y.H.); (Y.T.)
| | - Zhongping Wu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (P.G.); (L.L.); (X.Z.); (X.L.); (Y.H.); (Y.T.)
| | - Yunbo Tian
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (P.G.); (L.L.); (X.Z.); (X.L.); (Y.H.); (Y.T.)
| |
Collapse
|
12
|
Choi BM, Kim M, Hong H, Park TJ, Kim C, Park JS, Chi WJ, Kim SY. Melanin Inhibitory Effect of Tuber himalayense Isolated in Incheon, Korea. J Microbiol Biotechnol 2024; 34:949-957. [PMID: 38480002 DOI: 10.4014/jmb.2311.11021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/28/2023] [Accepted: 01/18/2024] [Indexed: 05/16/2024]
Abstract
There has been a growing interest in skin beauty and antimelanogenic products. Melanogenesis is the process of melanin synthesis whereby melanocytes are activated by UV light or hormone stimulation to produce melanin. Melanogenesis is mediated by several enzymes, such as tyrosinase (TYR), microphthalmia-associated transcription factor (MITF), tyrosinase-related protein-1 (TRP-1), and TRP-2. In this study, we investigated the effect of Tuber himalayense extract on melanin synthesis in α-melanocyte-stimulating hormone (α-MSH)-treated B16F10 melanoma cells. We confirmed that T. himalayense extract was not toxic to α-MSH-treated B16F10 melanoma cells and exhibited a significant inhibitory effect on melanin synthesis at concentrations of 25, 50, and 100 μg/ml. Additionally, the T. himalayense extract inhibited melanin, TRP-1, TRP-2, tyrosinase, and MITF, which are enzymes involved in melanin synthesis, in a concentration-dependent manner. Furthermore, T. himalayense extract inhibited the mitogen-activated protein kinase (MAPK) pathways, such as extracellular signal-regulated kinase-1/2 (ERK), c-Jun N-terminal kinase (JNK), and p38. Therefore, we hypothesized that various components of T. himalayense extract affect multiple factors involved in melanogenesis in B16F10 cells. Our results indicate that T. himalayense extract could potentially be used as a new material for preparing whitening cosmetics.
Collapse
Affiliation(s)
- Byeong Min Choi
- Department of Pharmaceutical Engineering and Biotechnology, Sunmoon University, Chungnam 31460, Republic of Korea
| | - Minkyeong Kim
- Biodiversity Research Department Species Diversity Research Division, National Institute of Biological Resources, Incheon 22689, Korea
| | - Hyehyun Hong
- Department of Pharmaceutical Engineering and Biotechnology, Sunmoon University, Chungnam 31460, Republic of Korea
| | - Tae-Jin Park
- Department of Pharmaceutical Engineering and Biotechnology, Sunmoon University, Chungnam 31460, Republic of Korea
| | - Changmu Kim
- Biodiversity Research Department Species Diversity Research Division, National Institute of Biological Resources, Incheon 22689, Korea
| | - Jin-Soo Park
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
| | - Won-Jae Chi
- Biodiversity Research Department Species Diversity Research Division, National Institute of Biological Resources, Incheon 22689, Korea
| | - Seung-Young Kim
- Department of Pharmaceutical Engineering and Biotechnology, Sunmoon University, Chungnam 31460, Republic of Korea
| |
Collapse
|
13
|
Wang L, Xue Z, Tian Y, Zeng W, Zhang T, Lu H. A single-cell transcriptome atlas of Lueyang black-bone chicken skin. Poult Sci 2024; 103:103513. [PMID: 38350389 PMCID: PMC10875617 DOI: 10.1016/j.psj.2024.103513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/15/2024] Open
Abstract
As the largest organ of the body, the skin participates in various physiological activities, such as barrier function, sensory function, and temperature regulation, thereby maintaining the balance between the body and the natural environment. To date, compositional and transcriptional profiles in chicken skin cells have not been reported. Here, we report detailed transcriptome analyses of cell populations present in the skin of a black-feather chicken and a white-feather chicken using single-cell RNA sequencing (scRNA-seq). By analyzing cluster-specific gene expression profiles, we identified 12 cell clusters, and their corresponding cell types were also characterized. Subsequently, we characterized the subpopulations of keratinocytes, myocytes, mesenchymal cells, fibroblasts, and melanocytes. It is worth noting that we have identified a subpopulation of keratinocytes involved in pigment granule capture and a subpopulation of melanocytes involved in pigment granule deposition, both of which have a higher cell abundance in black-feather chicken compared to white-feather chicken. Meanwhile, we also compared the cellular heterogeneity features of Lueyang black-bone chicken skin with different feather colors. In addition, we also screened out 12 genes those could be potential markers of melanocytes. Finally, we validated the specific expression of SGK1, WNT5A, CTSC, TYR, and LAPTM5 in black-feather chicken, which may be the key candidate genes determining the feather color differentiation of Lueyang black-bone chicken. In summary, this study first revealed the transcriptome characteristics of chicken skin cells via scRNA-seq technology. These datasets provide valuable information for the study of avian skin characteristics and have important implications for future poultry breeding.
Collapse
Affiliation(s)
- Ling Wang
- School of Biological Science and Engineering, Shaanxi University of Technology, 723001 Hanzhong, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 723001 Hanzhong, China
- Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, Universities of Shaanxi Province, 723001 Hanzhong, China
- QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Shaanxi University of Technology, 723001 Hanzhong, China
| | - Zhen Xue
- School of Biological Science and Engineering, Shaanxi University of Technology, 723001 Hanzhong, China
| | - Yingmin Tian
- School of Mathematics and Computer Science, Shaanxi University of Technology, 723001 Hanzhong, China
| | - Wenxian Zeng
- School of Biological Science and Engineering, Shaanxi University of Technology, 723001 Hanzhong, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 723001 Hanzhong, China
- Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, Universities of Shaanxi Province, 723001 Hanzhong, China
| | - Tao Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, 723001 Hanzhong, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 723001 Hanzhong, China
- Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, Universities of Shaanxi Province, 723001 Hanzhong, China
- QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Shaanxi University of Technology, 723001 Hanzhong, China
| | - Hongzhao Lu
- School of Biological Science and Engineering, Shaanxi University of Technology, 723001 Hanzhong, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 723001 Hanzhong, China
- Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, Universities of Shaanxi Province, 723001 Hanzhong, China
- QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Shaanxi University of Technology, 723001 Hanzhong, China
| |
Collapse
|
14
|
Sugumaran M, Evans JJ. Catecholamine Derivatives as Novel Crosslinkers for the Synthesis of Versatile Biopolymers. J Funct Biomater 2023; 14:449. [PMID: 37754863 PMCID: PMC10531651 DOI: 10.3390/jfb14090449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/07/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
Catecholamine metabolites are not only involved in primary metabolism, but also in secondary metabolism, serving a diverse array of physiologically and biochemically important functions. Melanin, which originates from dopa and dopamine, found in the hair, eye, and skin of all animals, is an important biopolymeric pigment. It provides protection against damaging solar radiation to animals. N-Acetyldopamine and N-β-alanyldopamine play a crucial role in the hardening of the exoskeletons of all insects. In addition, insects and other arthropods utilize the melanogenic process as a key component of their defense systems. Many marine organisms utilize dopyl peptides and proteins as bonding materials to adhere to various substrata. Moreover, the complex dopa derivatives that are precursors to the formation of the exoskeletons of numerous marine organisms also exhibit antibiotic properties. The biochemistry and mechanistic transformations of different catecholamine derivatives to produce various biomaterials with antioxidant, antibiotic, crosslinking, and gluing capabilities are highlighted. These reactivities are exhibited through the transient and highly reactive quinones, quinone methides, and quinone methide imine amide intermediates, as well as chelation to metal ions. A careful consideration of the reactivities summarized in this review will inspire numerous strategies for synthesizing novel biomaterials for future medical and industrial use.
Collapse
Affiliation(s)
- Manickam Sugumaran
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA;
| | - Jason J. Evans
- Department of Chemistry, University of Massachusetts Boston, Boston, MA 02125, USA
| |
Collapse
|
15
|
Wang JH, Hwang SJ, Lee SK, Choi Y, Byun CK, Son CG. Anti-Melanogenic Effects of Fractioned Cynanchum atratum by Regulation of cAMP/MITF Pathway in a UVB-Stimulated Mice Model. Cells 2023; 12:1390. [PMID: 37408224 PMCID: PMC10216695 DOI: 10.3390/cells12101390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 07/07/2023] Open
Abstract
Based on traditional pharmacological applications and partial in vitro data, Cynanchum atratum (CA) is proposed to act on skin whitening. However, its functional evaluation and underlying mechanisms have yet to be identified. This study aimed to examine the anti-melanogenesis activity of CA fraction B (CAFB) on UVB-induced skin hyperpigmentation. Forty C57BL/6j mice were exposed to UVB (100 mJ/cm2, five times/week) for eight weeks. After irradiation, CAFB was applied to the left ear once a day for 8 weeks (the right ear served as an internal control). The results showed that CAFB significantly reduced melanin production in the ear skin, as indicated by the gray value and Mexameter melanin index. In addition, CAFB treatment notably decreased melanin production in α-MSH-stimulated B16F10 melanocytes, along with a significant reduction in tyrosinase activity. Cellular cAMP (cyclic adenosine monophosphate), MITF (microphthalmia-associated transcription factor), and tyrosinase-related protein 1 (TRP1) were also noticeably downregulated by CAFB. In conclusion, CAFB is a promising ingredient for treating skin disorders caused by the overproduction of melanin and its underlying mechanisms involving the modulation of tyrosinase, mainly mediated by the regulation of the cAMP cascade and MITF pathway.
Collapse
Affiliation(s)
- Jing-Hua Wang
- Institute of Bioscience & Integrative Medicine, Daejeon University, 75, Daedeok-daero 176, Seo-gu, Daejeon 35235, Republic of Korea; (J.-H.W.); (S.-J.H.)
| | - Seung-Ju Hwang
- Institute of Bioscience & Integrative Medicine, Daejeon University, 75, Daedeok-daero 176, Seo-gu, Daejeon 35235, Republic of Korea; (J.-H.W.); (S.-J.H.)
| | - Sam-Keun Lee
- Department of Applied Chemistry, Daejeon University, Daejeon 34520, Republic of Korea; (S.-K.L.); (C.K.B.)
| | - Yujin Choi
- Department of Internal Medicine, College of Korean Medicine, Se-Myung University, Jecheon-si 27136, Republic of Korea;
| | - Chang Kyu Byun
- Department of Applied Chemistry, Daejeon University, Daejeon 34520, Republic of Korea; (S.-K.L.); (C.K.B.)
| | - Chang-Gue Son
- Institute of Bioscience & Integrative Medicine, Daejeon University, 75, Daedeok-daero 176, Seo-gu, Daejeon 35235, Republic of Korea; (J.-H.W.); (S.-J.H.)
| |
Collapse
|
16
|
Wagatsuma T, Suzuki E, Shiotsu M, Sogo A, Nishito Y, Ando H, Hashimoto H, Petris MJ, Kinoshita M, Kambe T. Pigmentation and TYRP1 expression are mediated by zinc through the early secretory pathway-resident ZNT proteins. Commun Biol 2023; 6:403. [PMID: 37072620 PMCID: PMC10113262 DOI: 10.1038/s42003-023-04640-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/28/2023] [Indexed: 04/20/2023] Open
Abstract
Tyrosinase (TYR) and tyrosinase-related proteins 1 and 2 (TYRP1 and TYRP2) are essential for pigmentation. They are generally classified as type-3 copper proteins, with binuclear copper active sites. Although there is experimental evidence for a copper cofactor in TYR, delivered via the copper transporter, ATP7A, the presence of copper in TYRP1 and TYRP2 has not been demonstrated. Here, we report that the expression and function of TYRP1 requires zinc, mediated by ZNT5-ZNT6 heterodimers (ZNT5-6) or ZNT7-ZNT7 homodimers (ZNT7). Loss of ZNT5-6 and ZNT7 function results in hypopigmentation in medaka fish and human melanoma cells, and is accompanied by immature melanosomes and reduced melanin content, as observed in TYRP1 dysfunction. The requirement of ZNT5-6 and ZNT7 for TYRP1 expression is conserved in human, mouse, and chicken orthologs. Our results provide novel insights into the pigmentation process and address questions regarding metalation in tyrosinase protein family.
Collapse
Affiliation(s)
- Takumi Wagatsuma
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Eisuke Suzuki
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Miku Shiotsu
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Akiko Sogo
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Yukina Nishito
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Hideya Ando
- Department of Applied Chemistry and Biotechnology, Okayama University of Science, Okayama, 700-0005, Japan
| | - Hisashi Hashimoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Michael J Petris
- Departments of Ophthalmology, University of Missouri, Columbia, MO, 65211, USA
- Biochemistry, University of Missouri, Columbia, MO, 65211, USA
- Bond Life Sciences Center, Columbia, MO, 65211, USA
| | - Masato Kinoshita
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
17
|
Tokudome Y, Fukutomi M. Sphingomyelin reduces melanogenesis in murine B16 melanoma cells through indirect suppression of tyrosinase. Cytotechnology 2023; 75:93-101. [PMID: 36969571 PMCID: PMC10030692 DOI: 10.1007/s10616-022-00562-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Growing consumer interest in skin whitening has led to intensive investigations of whitening methods. In this study, we evaluated the effect of sphingomyelin, a component of cell membranes, on melanin production. B16 mouse melanoma cells were treated with lauroyl-sphingomyelin (SM) or its metabolite lauroyl-ceramide (CER) and measured for cell viability, melanin content, and direct and indirect tyrosinase activity. Expression of melanin synthesis-related genes encoding tyrosinase (Tyr), tyrosinase-related proteins (Trp1 and Trp2), and microphthalmia-associated transcription factor (Mitf) were quantified by real-time PCR, and SM content in cells was measured by fluorescence high-performance liquid chromatography. SM treatment decreased melanin content in a concentration-dependent manner, without significantly altering the number of viable cells. By contrast, treatment with CER at the same concentrations did not decrease melanin content. SM inhibited the activity of intracellular tyrosinase, but not mushroom-derived tyrosinase. Gene expression levels of Tyr and Mitf were significantly reduced by treatment with SM, while those of Trp2 and Mitf were significantly reduced by CER. Fluorescence-labeled SM was converted to fluorescence-labeled CER in cells over time. In conclusion, CER was found to inhibit melanogenesis without inhibiting tyrosinase activity, suggesting that SM is more water soluble than CER, and is more effectively taken up into cells.
Collapse
Affiliation(s)
- Yoshihiro Tokudome
- Laboratory of Cosmetic Sciences, Regional Innovation Center, Saga University, 1 Honjo, Saga, 840-8502 Japan
- Laboratory of Cosmetic Sciences, Graduate School of Advanced Health Sciences, Saga University, 1 Honjo, Saga, 840-8502 Japan
- Laboratory of Dermatological Physiology, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295 Japan
| | - Moeko Fukutomi
- Laboratory of Dermatological Physiology, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295 Japan
| |
Collapse
|
18
|
Irfan A, Faisal S, Ahmad S, Al-Hussain SA, Javed S, Zahoor AF, Parveen B, Zaki MEA. Structure-Based Virtual Screening of Furan-1,3,4-Oxadiazole Tethered N-phenylacetamide Derivatives as Novel Class of hTYR and hTYRP1 Inhibitors. Pharmaceuticals (Basel) 2023; 16:344. [PMID: 36986444 PMCID: PMC10059052 DOI: 10.3390/ph16030344] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 03/30/2023] Open
Abstract
Human tyrosinase (hTYR) is a key and rate-limiting enzyme along with human tyrosinase-related protein-1 (hTYRP1), which are among the most prominent targets of inhibiting hyper pigmentation and melanoma skin cancer. In the current in-silico computer-aided drug design (CADD) study, the structure-based screening of sixteen furan-1,3,4-oxadiazole tethered N-phenylacetamide structural motifs BF1-BF16 was carried out to assess their potential as hTYR and hTYRP1 inhibitors. The results revealed that the structural motifs BF1-BF16 showed higher binding affinities towards hTYR and hTYRP1 than the standard inhibitor kojic acid. The most bioactive lead furan-1,3,4-oxadiazoles BF4 and BF5 displayed stronger binding in affinities (-11.50 kcal/mol and -13.30 kcal/mol) than the standard drug kojic acid against hTYRP1 and hTYR enzymes, respectively. These were further confirmed by MM-GBSA and MM-PBSA binding energy computations. The stability studies involving the molecular dynamics simulations also provided stability insights into the binding of these compounds with the target enzymes, wherein it was found that they remain stable in the active sites during the 100 ns virtual simulation time. Moreover, the ADMET, as well as the medicinal properties of these novel furan-1,3,4-oxadiazole tethered N-phenylacetamide structural hybrids, also showed a good prospect. The excellent in-silico profiling of furan-1,3,4--oxadiazole structural motifs BF4 and BF5 provide a hypothetical gateway to use these compounds as potential hTYRP1 and hTYR inhibitors against melanogenesis.
Collapse
Affiliation(s)
- Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Shah Faisal
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
| | - Sami A. Al-Hussain
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Sadia Javed
- Department of Biochemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Bushra Parveen
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Magdi E. A. Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| |
Collapse
|
19
|
Niki Y, Adachi N, Fukata M, Fukata Y, Oku S, Makino-Okamura C, Takeuchi S, Wakamatsu K, Ito S, Declercq L, Yarosh DB, Mammone T, Nishigori C, Saito N, Ueyama T. S-Palmitoylation of Tyrosinase at Cysteine 500 Regulates Melanogenesis. J Invest Dermatol 2023; 143:317-327.e6. [PMID: 36063887 DOI: 10.1016/j.jid.2022.08.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 01/25/2023]
Abstract
Palmitoylation is a lipid modification involving the attachment of palmitic acid to a cysteine residue, thereby affecting protein function. We investigated the effect of palmitoylation of tyrosinase, the rate-limiting enzyme in melanin synthesis, using a human three-dimensional skin model system and melanocyte culture. The palmitoylation inhibitor, 2-bromopalmitate, increased melanin content and tyrosinase protein levels in melanogenic cells by suppressing tyrosinase degradation. The palmitoylation site was Cysteine500 in the C-terminal cytoplasmic tail of tyrosinase. The nonpalmitoylatable mutant, tyrosinase (C500A), was slowly degraded and less ubiquitinated than wild-type tyrosinase. Screening for the Asp-His-His-Cys (DHHC) family of proteins for tyrosinase palmitoylation suggested that DHHC2, 3, 7, and 15 are involved in tyrosinase palmitoylation. Knockdown of DHHC2, 3, or 15 increased tyrosinase protein levels and melanin content. Determination of their subcellular localization in primary melanocytes revealed that DHHC2, 3, and 15 were localized in the endoplasmic reticulum, Golgi apparatus, and/or melanosomes, whereas only DHHC2 was localized in the melanosomes. Immunoprecipitation showed that DHHC2 and DHHC3 predominantly bind to mature and immature tyrosinase, respectively. Taken together, tyrosinase palmitoylation at Cysteine500 by DHHC2, 3, and/or 15, especially DHHC2 in trans-Golgi apparatus and melanosomes and DHHC3 in the endoplasmic reticulum and cis-Golgi apparatus, regulate melanogenesis by modulating tyrosinase protein levels.
Collapse
Affiliation(s)
- Yoko Niki
- Kobe Skin Research Department, Biosignal Research Center, Kobe University, Kobe, Japan; School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | - Naoko Adachi
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan
| | - Masaki Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi, Japan
| | - Yuko Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi, Japan
| | - Shinichiro Oku
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi, Japan
| | - Chieko Makino-Okamura
- Kobe Skin Research Department, Biosignal Research Center, Kobe University, Kobe, Japan
| | - Seiji Takeuchi
- Kobe Skin Research Department, Biosignal Research Center, Kobe University, Kobe, Japan; Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan
| | | | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Aichi, Japan
| | - Lieve Declercq
- Research & Development, Estee Lauder Companies, Melville, New York, USA
| | - Daniel B Yarosh
- Research & Development, Estee Lauder Companies, Melville, New York, USA
| | - Tomas Mammone
- Research & Development, Estee Lauder Companies, Melville, New York, USA
| | - Chikako Nishigori
- Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Naoaki Saito
- Kobe Skin Research Department, Biosignal Research Center, Kobe University, Kobe, Japan; Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan
| | - Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan.
| |
Collapse
|
20
|
The mechanisms of melanogenesis inhibition by glabridin: molecular docking, PKA/MITF and MAPK/MITF pathways. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Osuna I, Dolinska MB, Sergeev YV. In Vitro Reconstitution of the Melanin Pathway's Catalytic Activities Using Tyrosinase Nanoparticles. Int J Mol Sci 2022; 24:639. [PMID: 36614088 PMCID: PMC9820814 DOI: 10.3390/ijms24010639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
The melanogenesis pathway is characterized by a series of reactions catalyzed by key enzymes, such as tyrosinase (TYR), tyrosinase-related protein 2 (TYRP2), and tyrosinase-related protein 1 (TYRP1), to produce melanin pigment. However, in vitro studies of the catalytic activity were incomplete because of a lack of commercially available enzyme substrates, such as dopachrome. Herein, human recombinant intra-melanosomal domains of key enzymes were produced in Trichoplusia ni (T. ni) larvae and then purified using a combination of chromatography techniques in catalytically active form. Using Michaelis-Menten kinetics, the diphenol oxidase activity of tyrosinase achieved the maximum production of native dopachrome at 10 min of incubation at 37 °C for TYR immobilized to magnetic beads (TYR-MB). The presence of dopachrome was confirmed spectrophotometrically at 475 nm through HPLC analysis and in the TYRP2-catalyzed reaction, yielding 5,6-dihydroxyindole-2-carboxylic acid (DHICA). In the TYRP1-driven oxidation of DHICA, the formation of 5,6-indolequinone-2-carboxylic acid (IQCA) was confirmed at ~560 nm. This is the first in vitro reconstitution of the reactions from the melanogenic pathway based on intra-melanosomal domains. In the future, this approach could be used for quantitative in vitro analysis of the melanin pathway, biochemical effects associated with inherited disease-related mutations, and drug screens.
Collapse
Affiliation(s)
| | | | - Yuri V. Sergeev
- National Eye Institute, National Institutes of Health, Bethesda, MD 20891, USA
| |
Collapse
|
22
|
Bouhoute M, Amen Y, Bejaoui M, Mizushima AKO, Shimizu K, Isoda H. New Butyroside D from Argan Press Cake Possess Anti-Melanogenesis Effect via MITF Downregulation in B16F10 and HEM Cells. Int J Mol Sci 2022; 23:ijms232416021. [PMID: 36555664 PMCID: PMC9785346 DOI: 10.3390/ijms232416021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Hyperpigmentation is a skin condition where patches of skin become darker in color due to excess melanin production upon UV exposure leading to melasma, which are lentigines or post inflammatory hyperpigmentation that psychologically affecting a great number of people. The present study investigates the anti-melanogenic effect of Butyroside D and the underling mechanism. After the confirmation of the non-cytotoxic effect of Butyroside D on B16F10 cells, we proceeded with analyzing the impact of the treatment at low and high concentration (i.e., 0.2 μM and 2 μM) using gene profiling analysis and examined the differentiation in gene expression. Our results identify cyclic adenosine monophosphate (cAMP), Wnt/β-catenin and Mitogen-Activated Protein Kinase (MAPK) signaling pathways to be downregulated upon treatment with Butyroside D. These pathways were targeted to further validate the effect of Butyroside D on membrane receptors melanocortin 1 receptor (MC1R) and receptor tyrosine kinase (c-Kit), related microphthalmia-associated transcription factor (MITF) and consequently tyrosinase (TYR), and tyrosine-related protein-1 (TYRP-1) that were all shown to be downregulated and, therefore, leading to the repression of melanin biosynthesis. Finally, the anti-melanogenic effect of Butyroside D was confirmed on human epidermal melanocytes (HEM) cells by inhibiting the activation of cAMP pathway generally mediated through α-melanocyte-stimulating hormone (α-MSH) and MC1R. Overall, this study suggests the potential applicability of this purified compound for the prevention of hyperpigmentation conditions.
Collapse
Affiliation(s)
- Meryem Bouhoute
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-0006, Japan
| | - Yhiya Amen
- Department of Agro-Environmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Meriem Bejaoui
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-0006, Japan
- Research and Development Center for Tailor-Made QOL Program, University of Tsukuba, Tsukuba 305-8550, Japan
| | - Aprill Kee Oliva Mizushima
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-0006, Japan
- Research and Development Center for Tailor-Made QOL Program, University of Tsukuba, Tsukuba 305-8550, Japan
| | - Kuniyoshi Shimizu
- Department of Agro-Environmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-0006, Japan
- Research and Development Center for Tailor-Made QOL Program, University of Tsukuba, Tsukuba 305-8550, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
- Correspondence:
| |
Collapse
|
23
|
Melanogenesis and the Targeted Therapy of Melanoma. Biomolecules 2022; 12:biom12121874. [PMID: 36551302 PMCID: PMC9775438 DOI: 10.3390/biom12121874] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Pigment production is a unique character of melanocytes. Numerous factors are linked with melanin production, including genetics, ultraviolet radiation (UVR) and inflammation. Understanding the mechanism of melanogenesis is crucial to identify new preventive and therapeutic strategies in the treatment of melanoma. Here, we reviewed the current available literatures on the mechanisms of melanogenesis, including the signaling pathways of UVR-induced pigment production, MC1R's central determinant roles and MITF as a master transcriptional regulator in melanogenesis. Moreover, we further highlighted the role of targeting BRAF, NRAS and MC1R in melanoma prevention and treatment. The combination therapeutics of immunotherapy and targeted kinase inhibitors are becoming the newest therapeutic option in advanced melanoma.
Collapse
|
24
|
SNA077, an Extract of Marine Streptomyces sp., Inhibits Melanogenesis by Downregulating Melanogenic Proteins via Inactivation of cAMP/PKA/CREB Signaling. Int J Mol Sci 2022; 23:ijms232314922. [PMID: 36499251 PMCID: PMC9737552 DOI: 10.3390/ijms232314922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Excess melanin in skin is known to be the main cause of hyper-pigmentary skin diseases such as freckles and lentigo. This study aimed to evaluate the depigmenting efficacy of an extract from the marine microorganism strain, Streptomyces sp. SNA077. To determine the anti-melanogenic efficacy of SNA077, we assessed the melanin contents of SNA077-treated B16, Melan-a, and MNT-1 cells. We observed the expression of key enzymes in melanogenesis via qRT-PCR and Western blot analyses. We further estimated the skin-whitening effect of SNA077 using a skin-equivalent model. SNA077 dramatically decreased the melanin production of B16 cells, Melan-a, and MNT-1 cells. In B16 cells treated with SNA077, the activity of cellular tyrosinase was clearly inhibited. In addition, the mRNA and protein expression levels of melanogenic genes were suppressed by SNA077 treatment in B16 and MNT-1 cells. Upstream of tyrosinase, the expression levels of phospho-CREB, phospho-p38, PKA activity, cyclic AMP production, and MC1R gene expression were inhibited by SNA077. Finally, SNA077 clearly showed a skin-brightening effect with a reduced melanin content in the skin tissue model. Collectively, our results suggest for the first time that an extract of marine Streptomyces sp. SNA077 could be a novel anti-melanogenic material for skin whitening.
Collapse
|
25
|
Al-Khalaifah H. Cellular and humoral immune response between snail hosts and their parasites. Front Immunol 2022; 13:981314. [PMID: 36439176 PMCID: PMC9685329 DOI: 10.3389/fimmu.2022.981314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/19/2022] [Indexed: 09/09/2023] Open
Abstract
In invertebrates, the innate immune system protects against a wide range of microbiological infections. Several immunological processes are involved in the interactive immune response between snails and their parasites, including phagocytosis, nitric oxide synthesis, phenol oxidase activity, lysozymes, and lectin formation. The immunological responses connected to the interaction between snails and parasites are discussed in detail in the current research. Understanding the nature of these interactive reactions will enable scientists to explore approaches to eliminate and cure parasitic infections.
Collapse
Affiliation(s)
- Hanan Al-Khalaifah
- Environment and Life Sciences Research Centre, Kuwait Institute for Scientific Research, Kuwait, Kuwait
| |
Collapse
|
26
|
Uto T, Ohta T, Nakayama E, Nakagawa M, Hatada M, Shoyama Y. Bioassay-guided Fractionation of Clove Buds Extract Identifies Eugenol as Potent Melanogenic Inducer in Melanoma Cells. J Oleo Sci 2022; 71:1403-1412. [PMID: 36047244 DOI: 10.5650/jos.ess22157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Clove, a dried flower buds of Syzygium aromaticum, is used in traditional medicine, for culinary purposes, and in essential oil production. In our preliminary screening of crude drugs used in Japanese Kampo formulas, a methanol (MeOH) extract of clove buds was found to exhibit a melanin induction. To date, the effects of clove buds or their constituents on the activation of melanogenesis remain unclear. Thus, this study aimed to isolate active compounds from the MeOH extract of clove buds associated with melanin synthesis in melanoma cells and to investigate the molecular mechanism involved. The MeOH extract of clove buds increased melanin content in murine B16-F1 melanoma cells. To identify the active compounds responsible for melanin induction, the MeOH extract was suspended in water and successively partitioned using hexane, ethyl acetate (EtOAc), and n-butanol (n-BuOH). Comparative analysis revealed that the EtOAc fraction induced melanin synthesis. Bioassay-guided separation of the EtOAc fraction isolated three compounds including eugenol. The analysis of structure-activity relationships of eugenol and structurally related compounds indicated that eugenol was the most potent melanin inducer among the 11 compounds, and that a hydroxyl group at C-1 and a methoxy group at C-2 may contribute to melanin induction. Eugenol induced melanin synthesis in human HMV-II melanoma cells as well as in B16-F1 cells. Further analysis indicated that eugenol may invoke intracellular tyrosinase activity and expression of tyrosinase, tyrosinaserelated protein (TRP)-1, TRP-2, and microphthalmia-associated transcription factor (MITF). These results suggest that eugenol enhances melanin synthesis by upregulating the expression of MITF and subsequent expression of melanogenic enzymes, and that it may be a potent therapeutic agent for hypopigmentation.
Collapse
Affiliation(s)
- Takuhiro Uto
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Nagasaki International University
| | - Tomoe Ohta
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Nagasaki International University
| | - Eri Nakayama
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Nagasaki International University
| | - Mina Nakagawa
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Nagasaki International University
| | - Maki Hatada
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Nagasaki International University
| | - Yukihiro Shoyama
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Nagasaki International University
| |
Collapse
|
27
|
Valli F, García Vior MC, Ezquerra Riega SD, Roguin LP, Marino J. Melanosomal targeting via caveolin-1 dependent endocytosis mediates ZN(II) phthalocyanine phototoxic action in melanoma cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112505. [PMID: 35839543 DOI: 10.1016/j.jphotobiol.2022.112505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Melanosomes have been considered crucial targets in melanoma treatments. In this study we explored the role of melanosomes in photodynamic therapy (PDT), employing the synthetic Zn(II) phthalocyanine Pc13, a potent photosensitizer that promotes melanoma cell death after irradiation. Phototoxic action is mediated by reactive oxygen species increase. The internalization mechanism of Pc13 and its consequent subcellular localization were evaluated in melanotic B16-F0 cells. Pharmacological inhibitors of dynamin or caveolae, but not of clathrin, decreased Pc13 cellular uptake and phototoxicity. Similar results were obtained when cells over-expressed dominant negative mutants of dynamin-2 and caveolin-1, indicating that Pc13 is internalized by caveolae-mediated endocytosis. Confocal microscopy analysis revealed that Pc13 targets melanosomes and damage of these structures after irradiation was demonstrated by transmission electron microscopy. Treatment of pigmented B16-F0 and WM35 melanoma cells with the melanin synthesis inhibitor phenylthiourea for 48 h led to cell depigmentation and enhanced cell death after irradiation, whereas a 3-h period of inhibition did not modify melanin content but produced a marked reduction of Pc13 phototoxicity, together with a decrease of oxidative melanin synthesis intermediates. In contrast, the effect of Pc13 in amelanotic A375 cells was not altered by phenylthiourea treatment. These results provide evidence that melanosomes have a dual role in the efficacy of PDT. While melanin antagonizes the phototoxic action of Pc13, the release of cytotoxic synthetic intermediates to cytosol after irradiation and melanosome damage is conducive to the phototoxic response. Based on these findings, we demonstrate that melanosome-targeted PDT could be an effective approach for melanoma treatment.
Collapse
Affiliation(s)
- Federico Valli
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, CONICET-UBA, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Junín 956, C1113AAD Buenos Aires, Argentina
| | - María C García Vior
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Orgánica, CONICET, Junín 956, C1113AAD Buenos Aires, Argentina
| | - Sergio D Ezquerra Riega
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Orgánica, CONICET, Junín 956, C1113AAD Buenos Aires, Argentina
| | - Leonor P Roguin
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, CONICET-UBA, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Junín 956, C1113AAD Buenos Aires, Argentina
| | - Julieta Marino
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, CONICET-UBA, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Junín 956, C1113AAD Buenos Aires, Argentina.
| |
Collapse
|
28
|
Baek EJ, Ha YB, Kim JH, Lee KW, Lim SS, Kang NJ. Dehydroglyasperin D Suppresses Melanin Synthesis through MITF Degradation in Melanocytes. J Microbiol Biotechnol 2022; 32:982-988. [PMID: 35909194 PMCID: PMC9628959 DOI: 10.4014/jmb.2207.07043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 12/15/2022]
Abstract
Licorice (Glycyrrhiza) has been used as preventive and therapeutic material for hyperpigmentation disorders. Previously, we isolated noble compounds including dehydroglyasperin C (DGC), dehydroglyasperin D (DGD) and isoangustone A (IAA) from licorice hexane/ethanol extracts. However, their anti-melanogenic effects and underlying molecular mechanisms are unknown. The present study compared effects of DGC, DGD and IAA on pigmentation in melan-a melanocytes and human epidermal melanocytes (HEMn). DGD exerted the most excellent anti-melanogenic effect, followed by DGC and IAA at non-cytotoxic concentrations. In addition, DGD significantly inhibited tyrosinase activity in vitro cell-free system and cell system. Western blot result showed that DGD decreased expression of microphthalmia-associated transcription factor (MITF), tyrosinase and tyrosinase-related protein-1 (TRP-1) in melan-a cells and HEMn cells. DGD induced phosphorylation of MITF, ERK and Akt signal pathway promoting MITF degradation system. However, DGD did not influence p38 and cAMP-dependent protein kinase (PKA)/CREB signal pathway in melan-a cells. These result indicated that DGD inhibited melanogenesis not only direct regulation of tyrosinase but also modulating intracellular signaling related with MITF level. Collectively, these results suggested a protective role for DGD against melanogenesis.
Collapse
Affiliation(s)
- Eun Ji Baek
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yu-Bin Ha
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ji Hye Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ki Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Soon Sung Lim
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Republic of Korea
| | - Nam Joo Kang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea,Corresponding author Phone: +82-53-950-5753 Fax: +82-53-950-6750 E-mail:
| |
Collapse
|
29
|
A systematic exploration reveals the potential of spermidine for hypopigmentation treatment through the stabilization of melanogenesis-associated proteins. Sci Rep 2022; 12:14478. [PMID: 36008447 PMCID: PMC9411574 DOI: 10.1038/s41598-022-18629-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/16/2022] [Indexed: 11/08/2022] Open
Abstract
Spermidine (SPD), a polyamine naturally present in living organisms, is known to prolong the lifespan of animals. In this study, the role of SPD in melanogenesis was investigated, showing potential as a pigmenting agent. SPD treatment increased melanin production in melanocytes in a dose dependent manner. Computational analysis with RNA-sequencing data revealed the alteration of protein degradation by SPD treatment without changes in the expressions of melanogenesis-related genes. Indeed, SPD treatment significantly increased the stabilities of tyrosinase-related protein (TRP)-1 and -2 while inhibiting ubiquitination, which was confirmed by treatment of proteasome inhibitor MG132. Inhibition of protein synthesis by cycloheximide (CHX) showed that SPD treatment increased the resistance of TRP-1 and TRP-2 to protein degradation. To identify the proteins involved in SPD transportation in melanocytes, the expression of several solute carrier (SLC) membrane transporters was assessed and, among 27 transporter genes, SLC3A2, SLC7A1, SLC18B1, and SLC22A18 were highly expressed, implying they are putative SPD transporters in melanocytes. Furthermore, SLC7A1 and SLC22A18 were downregulated by SPD treatment, indicating their active involvement in polyamine homeostasis. Finally, we applied SPD to a human skin equivalent and observed elevated melanin production. Our results identify SPD as a potential natural product to alleviate hypopigmentation.
Collapse
|
30
|
Uto T, Tung NH, Shoyama Y. Hirsutanone Isolated from the Bark of Alnus japonica Attenuates Melanogenesis via Dual Inhibition of Tyrosinase Activity and Expression of Melanogenic Proteins. PLANTS (BASEL, SWITZERLAND) 2022; 11:1875. [PMID: 35890509 PMCID: PMC9321039 DOI: 10.3390/plants11141875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/16/2022] [Accepted: 07/17/2022] [Indexed: 12/16/2022]
Abstract
Hirsutanone (Hir) and oregonin (Ore) are diarylheptanoids isolated from the bark of Alnus japonica. In this study, we investigated the anti-melanogenic activity of Hir and Ore in B16-F1 murine melanoma and normal human epidermal melanocytes (HEMn-DP) and elucidated the mechanisms of action. In B16-F1 cells, Hir and Ore suppressed melanin synthesis induced by α-melanocyte-stimulating hormone (α-MSH) without cytotoxicity. The inhibitory effect of Hir on melanin synthesis was much stronger than that of Ore. In addition, Hir reduced melanin content in HEMn-DP cells. As tyrosinase is a key enzyme in melanin synthesis, the effect of Hir on tyrosinase activity was assessed. The results demonstrated that Hir partially decreased tyrosinase activity and intracellular tyrosinase activity. Moreover, Hir suppressed the protein expression of melanogenic enzymes, including tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2, leading to reduced melanin biosynthesis. Hir also led to the suppression of cAMP response element-binding protein (CREB) phosphorylation and microphthalmia-associated transcription factor (MITF) expression, which control the expression of melanogenic enzymes. These results suggest that Hir suppressed melanin synthesis by dual inhibition of tyrosinase activity and the CREB/MITF pathway leading to the expression of melanogenic enzymes and may be a potent cosmetic and therapeutic agent for hyperpigmentation disorders.
Collapse
Affiliation(s)
- Takuhiro Uto
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan;
| | - Nguyen Huu Tung
- Faculty of Pharmacy, Phenikaa University, Hanoi 100000, Vietnam;
| | - Yukihiro Shoyama
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan;
| |
Collapse
|
31
|
Lee HJ, An S, Bae S, Lee JH. Diarylpropionitrile inhibits melanogenesis via protein kinase A/cAMP-response element-binding protein/microphthalmia-associated transcription factor signaling pathway in α-MSH-stimulated B16F10 melanoma cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2022; 26:113-123. [PMID: 35203061 PMCID: PMC8890945 DOI: 10.4196/kjpp.2022.26.2.113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/10/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023]
Abstract
Diarylpropionitrile (DPN), a selective agonist for estrogen receptor β (ERβ), has been reported to regulate various hormonal responses through activation of ERβ in tissues including the mammary gland and brain. However, the effect of DPN on melanogenesis independent of ERβ has not been studied. The aim of this study is to examine the possibility of anti-melanogenic effect of DPN and its underlying mechanism. Melanin contents and cellular tyrosinase activity assay indicated that DPN inhibited melanin biosynthesis in alpha-melanocyte stimulating hormone-stimulated B16F10 melanoma cell line. However, DPN had no direct influence on in vitro tyrosinase catalytic activity. On the other hand, 17β-estradiol had no effect on inhibition of melanogenesis, suggesting that the DPN-mediated suppression of melanin production was not related with estrogen signaling pathway. Immunoblotting analysis showed that DPN down-regulated the expression of microphthalmia-associated transcription factor (MITF), a central transcription factor of melanogenesis and its down-stream genes including tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2. Also, DPN attenuated the phosphorylation of protein kinase A (PKA) and cAMP-response element-binding protein (CREB). Additionally, DPN suppressed the melanin synthesis in UVB-irradiated HaCaT conditioned media culture system suggesting that DPN has potential as an anti-melanogenic activity in physiological conditions. Collectively, our data show that DPN inhibits melanogenesis via down-regulation of PKA/CREB/MITF signaling pathway.
Collapse
Affiliation(s)
- Hyun Jeong Lee
- Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Korea
| | - Sungkwan An
- Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Korea
| | - Seunghee Bae
- Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Korea
| | - Jae Ho Lee
- Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
32
|
Enkhtaivan E, Kim HJ, Kim B, Byun HJ, Yu L, Nguyen TM, Nguyen TH, Do PA, Kim EJ, Kim KS, Huy HP, Rahman M, Jang JY, Rho SB, Lee H, Kang GJ, Park MK, Kim NH, Choi CI, Lee K, Han HK, Cho J, Lee AY, Lee CH. Loss of EMP2 Inhibits Melanogenesis of MNT1 Melanoma Cells via Regulation of TRP-2. Biomol Ther (Seoul) 2022; 30:203-211. [PMID: 35221300 PMCID: PMC8902453 DOI: 10.4062/biomolther.2022.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 01/10/2023] Open
Abstract
Melanogenesis is the production of melanin from tyrosine by a series of enzyme-catalyzed reactions, in which tyrosinase and DOPA oxidase play key roles. The melanin content in the skin determines skin pigmentation. Abnormalities in skin pigmentation lead to various skin pigmentation disorders. Recent research has shown that the expression of EMP2 is much lower in melanoma than in normal melanocytes, but its role in melanogenesis has not yet been elucidated. Therefore, we investigated the role of EMP2 in the melanogenesis of MNT1 human melanoma cells. We examined TRP-1, TRP-2, and TYR expression levels during melanogenesis in MNT1 melanoma cells by gene silencing of EMP2. Western blot and RT-PCR results confirmed that the expression levels of TYR and TRP-2 were decreased when EMP2 expression was knocked down by EMP2 siRNA in MNT1 cells, and these changes were reversed when EMP2 was overexpressed. We verified the EMP2 gene was knocked out of the cell line (EMP2 CRISPR/Cas9) by using a CRISPR/Cas9 system and found that the expression levels of TRP-2 and TYR were significantly lower in the EMP2 CRISPR/Cas9 cell lines. Loss of EMP2 also reduced migration and invasion of MNT1 melanoma cells. In addition, the melanosome transfer from the melanocytes to keratinocytes in the EMP2 KO cells cocultured with keratinocytes was reduced compared to the cells in the control coculture group. In conclusion, these results suggest that EMP2 is involved in melanogenesis via the regulation of TRP-2 expression.
Collapse
Affiliation(s)
- Enkhmend Enkhtaivan
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Hyun Ji Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Boram Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Hyung Jung Byun
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Lu Yu
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Tuan Minh Nguyen
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Thi Ha Nguyen
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Phuong Anh Do
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Eun Ji Kim
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kyung Sung Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Hiệu Phùng Huy
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Mostafizur Rahman
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Ji Yun Jang
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea.,National Cancer Center, Goyang 10408, Republic of Korea
| | - Seung Bae Rho
- National Cancer Center, Goyang 10408, Republic of Korea
| | - Ho Lee
- National Cancer Center, Goyang 10408, Republic of Korea
| | - Gyeoung Jin Kang
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mi Kyung Park
- National Cancer Center, Goyang 10408, Republic of Korea
| | - Nan-Hyung Kim
- Department of Dermatology, Dongguk University Ilsan Hospital, Goyang 10326, Republic of Korea
| | - Chang Ick Choi
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Kyeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Hyo Kyung Han
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Jungsook Cho
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Ai Young Lee
- Department of Dermatology, Dongguk University Ilsan Hospital, Goyang 10326, Republic of Korea
| | - Chang Hoon Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
33
|
Moon SY, Akter KM, Ahn MJ, Kim KD, Yoo J, Lee JH, Lee JH, Hwangbo C. Fraxinol Stimulates Melanogenesis in B16F10 Mouse Melanoma Cells through CREB/MITF Signaling. Molecules 2022; 27:1549. [PMID: 35268650 PMCID: PMC8911637 DOI: 10.3390/molecules27051549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/10/2022] Open
Abstract
Melanin pigment produced in melanocytes plays a protective role against ultraviolet radiation. Selective destruction of melanocytes causes chronic depigmentation conditions such as vitiligo, for which there are very few specific medical treatments. Here, we found that fraxinol, a natural coumarin from Fraxinus plants, effectively stimulated melanogenesis. Treatment of B16-F10 cells with fraxinol increased the melanin content and tyrosinase activity in a concentration-dependent manner without causing cytotoxicity. Additionally, fraxinol enhanced the mRNA expression of melanogenic enzymes such as tyrosinase, tyrosinase-related protein-1, and tyrosinase-related protein-2. Fraxinol also increased the expression of microphthalmia-associated transcription factor at both mRNA and protein levels. Fraxinol upregulated the phosphorylation of cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB). Furthermore, H89, a cAMP-dependent protein kinase A inhibitor, decreased fraxinol-induced CREB phosphorylation and microphthalmia-associated transcription factor expression and significantly attenuated the fraxinol-induced melanin content and intracellular tyrosinase activity. These results suggest that fraxinol enhances melanogenesis via a protein kinase A-mediated mechanism, which may be useful for developing potent melanogenesis stimulators.
Collapse
Affiliation(s)
- Sun Young Moon
- Division of Applied Life Science (BK21), PMBBRC and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (S.Y.M.); (K.D.K.); (J.Y.)
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - Kazi-Marjahan Akter
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Korea; (K.-M.A.); (M.-J.A.)
| | - Mi-Jeong Ahn
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Korea; (K.-M.A.); (M.-J.A.)
| | - Kwang Dong Kim
- Division of Applied Life Science (BK21), PMBBRC and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (S.Y.M.); (K.D.K.); (J.Y.)
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - Jiyun Yoo
- Division of Applied Life Science (BK21), PMBBRC and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (S.Y.M.); (K.D.K.); (J.Y.)
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - Joon-Hee Lee
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Korea;
| | - Jeong-Hyung Lee
- Department of Biochemistry (BK21), College of Natural Sciences, Kangwon National University, Chuncheon 24341, Korea;
| | - Cheol Hwangbo
- Division of Applied Life Science (BK21), PMBBRC and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (S.Y.M.); (K.D.K.); (J.Y.)
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
34
|
Barek H, Zhao H, Heath K, Veraksa A, Sugumaran M. Drosophila yellow-h encodes dopaminechrome tautomerase: A new enzyme in the eumelanin biosynthetic pathway. Pigment Cell Melanoma Res 2022; 35:26-37. [PMID: 34388859 DOI: 10.1111/pcmr.13008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 11/26/2022]
Abstract
Melanin is a widely distributed phenolic pigment that is biosynthesized from tyrosine and its hydroxylated product, dopa, in all animals. However, recent studies reveal a significant deviation from this paradigm, as insects appear to use dopamine rather than dopa as the major precursor of melanin. This observation calls for a reconsideration of the insect melanogenic pathway. While phenoloxidases and laccases can oxidize dopamine for dopaminechrome production, the fate of dopaminechrome remains undetermined. Dopachrome decarboxylase/tautomerase, encoded by yellow-f/f2 of Drosophila melanogaster, can convert dopaminechrome into 5,6-dihydroxyindole, but the same enzyme from other organisms does not act on dopaminechrome, suggesting the existence of a specific dopaminechrome tautomerase (DPT). We now report the identification of this novel enzyme that biosynthesizes 5,6-dihydroxyindole from dopaminechrome in Drosophila. Dopaminechrome tautomerase acted on both dopaminechrome and N-methyl dopaminechrome but not on dopachrome or other aminochromes tested. Our biochemical and molecular studies reveal that this enzyme is encoded by the yellow-h gene, a member of the yellow gene family, and advance our understanding of the physiological functions of this gene family. Identification and characterization of DPT clarifies the precursor for melanin biosynthetic pathways and proves the existence of an independent melanogenic pathway in insects that utilizes dopamine as the primary precursor.
Collapse
Affiliation(s)
- Hanine Barek
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Heya Zhao
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Katerina Heath
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Alexey Veraksa
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Manickam Sugumaran
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, USA
| |
Collapse
|
35
|
Xue G, Zheng N, Fang J, Jin G, Li X, Dotti G, Yi Q, Lu Y. Adoptive cell therapy with tumor-specific Th9 cells induces viral mimicry to eliminate antigen-loss-variant tumor cells. Cancer Cell 2021; 39:1610-1622.e9. [PMID: 34678150 PMCID: PMC8678313 DOI: 10.1016/j.ccell.2021.09.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/06/2021] [Accepted: 09/21/2021] [Indexed: 02/04/2023]
Abstract
Resistance can occur in patients receiving adoptive cell therapy (ACT) due to antigen-loss-variant (ALV) cancer cell outgrowth. Here we demonstrate that murine and human T helper (Th) 9 cells, but not Th1/Tc1 or Th17 cells, expressing tumor-specific T cell receptors (TCRs) or chimeric antigen receptors (CARs), eradicate advanced tumors that contain ALVs. This unprecedented antitumor capacity of Th9 cells is attributed to both enhanced direct tumor cell killing and bystander antitumor effects promoted by intratumor release of interferon (IFN) α/β. Mechanistically, tumor-specific Th9 cells increase the intratumor accumulation of extracellular ATP (eATP; released from dying tumor cells), because of a unique feature of Th9 cells that lack the expression of ATP degrading ectoenzyme cluster of differentiation (CD) 39. Intratumor enrichment of eATP promotes the monocyte infiltration and stimulates their production of IFNα/β by inducing eATP-endogenous retrovirus-Toll-like receptor 3 (TLR3)/mitochondrial antiviral signaling (MAVS) pathway activation. These results identify tumor-specific Th9 cells as a unique T cell subset endowed with the unprecedented capacity to eliminate ALVs for curative responses.
Collapse
Affiliation(s)
- Gang Xue
- Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Ningbo Zheng
- Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Jing Fang
- Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Guangxu Jin
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Xiaoyin Li
- Department of Mathematics and Statistics, St. Cloud State University, St Cloud, MN 56301, USA
| | - Gianpietro Dotti
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Qing Yi
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center, Houston, TX 77030, USA.
| | - Yong Lu
- Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA.
| |
Collapse
|
36
|
Theoretical Exploring of a Molecular Mechanism for Melanin Inhibitory Activity of Calycosin in Zebrafish. Molecules 2021; 26:molecules26226998. [PMID: 34834088 PMCID: PMC8622928 DOI: 10.3390/molecules26226998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 11/26/2022] Open
Abstract
Tyrosinase is an oxidase that is the rate-limiting enzyme for controlling the production of melanin in the human body. Overproduction of melanin can lead to a variety of skin disorders. Calycosin is an isoflavone from Astragali Radix, which is a traditional Chinese medicine that exhibits several pharmacological activities including skin whitening. In our study, the inhibitory effect of calycosin on melanin production is confirmed in a zebrafish in vivo model by comparing with hydroquinone, kojic acid, and arbutin, known as tyrosinase inhibitors. Moreover, the inhibitory kinetics of calycosin on tyrosinase and their binding mechanisms are determined using molecular docking techniques, molecular dynamic simulations, and free energy analysis. The results indicate that calycosin has an obvious inhibitory effect on zebrafish pigmentation at the concentration of 7.5 μM, 15 μM, and 30 μM. The IC50 of calycosin is 30.35 μM, which is lower than hydroquinone (37.35 μM), kojic acid (6.51 × 103 μM), and arbutin (3.67 × 104 μM). Furthermore, all the results of molecular docking, molecular dynamics simulations, and free energy analysis suggest that calycosin can directly bind to the active site of tyrosinase with very good binding affinity. The study indicates that the combination of computer molecular modeling and zebrafish in vivo assay would be feasible in confirming the result of the in vitro test and illustrating the target-binding information.
Collapse
|
37
|
Pss R, Madhunapantula SV, Betkerur JB, Bovilla VR, Shastry V. Melanogenesis markers expression in premature graying of hair- a cross-sectional study. Skin Pharmacol Physiol 2021; 35:180-186. [PMID: 34700322 DOI: 10.1159/000520172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 10/07/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Studies on mice and aging human hair follicles provide compelling evidence that graying of hair results from premature differentiation of Melanocyte stem cells (MeSC) in the niche/bulge. OBJECTIVE To analyze whether differentiation of melanocyte stem cells is responsible for premature graying of hair (PGH). METHODS Twenty- five patients of PGH (n=25) attending dermatology department were recruited. Five unpigmented and five pigmented hairs were obtained per patient by separating individual follicles by 1 mm punch biopsies. The hairs were dissected at a distance of 2 mm from the bulb to separate the stem cells (upper segment) (US) from the melanocytes (lower segment) (LS). RNA was extracted from hair follicle segments US and LS, and expression of GP100, Tyrosinase (TYR) and Tyrosinase related protein-1 (TYRP1) genes was quantified using Qiagen one-step RT-PCR kit. RESULTS We found melanogenesis gene expression in both temporary (US) and permanent (LS) segments of unpigmented and pigmented hair follicles. When compared between the US and LS of white hair, the expression of TYR and GP100 was much higher in US than LS, suggestive of melanogenesis in the bulge. Similarly, when compared between white and black US, the expression of all three genes was higher in white US than black US, although not statistically significant. LIMITATIONS Low samples size and lack of data pertaining to the expression of genes at protein level are the limitations of current study. CONCLUSION Even though this pilot study data yielded key information about the expression of GP100, TYR and TYRP-1 at mRNA level, further studies quantifying the expression of these genes at protein level are needed to provide additional clues to further address the results in detail.
Collapse
Affiliation(s)
- Ranugha Pss
- Department of Dermatology, JSS Medical College, JSSAHER, Mysore, India
| | | | | | | | - Veeranna Shastry
- Department of Dermatology, JSS Medical College, JSSAHER, Mysore, India
| |
Collapse
|
38
|
Le L, Sirés-Campos J, Raposo G, Delevoye C, Marks MS. Melanosome Biogenesis in the Pigmentation of Mammalian Skin. Integr Comp Biol 2021; 61:1517-1545. [PMID: 34021746 PMCID: PMC8516112 DOI: 10.1093/icb/icab078] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Melanins, the main pigments of the skin and hair in mammals, are synthesized within membrane-bound organelles of melanocytes called melanosomes. Melanosome structure and function are determined by a cohort of resident transmembrane proteins, many of which are expressed only in pigment cells and localize specifically to melanosomes. Defects in the genes that encode melanosome-specific proteins or components of the machinery required for their transport in and out of melanosomes underlie various forms of ocular or oculocutaneous albinism, characterized by hypopigmentation of the hair, skin, and eyes and by visual impairment. We review major components of melanosomes, including the enzymes that catalyze steps in melanin synthesis from tyrosine precursors, solute transporters that allow these enzymes to function, and structural proteins that underlie melanosome shape and melanin deposition. We then review the molecular mechanisms by which these components are biosynthetically delivered to newly forming melanosomes-many of which are shared by other cell types that generate cell type-specific lysosome-related organelles. We also highlight unanswered questions that need to be addressed by future investigation.
Collapse
Affiliation(s)
- Linh Le
- Department of Pathology & Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Julia Sirés-Campos
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, Paris, 75005, France
| | - Graça Raposo
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, Paris, 75005, France
| | - Cédric Delevoye
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, Paris, 75005, France
| | - Michael S Marks
- Department of Pathology & Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
39
|
Recent advances in the design and discovery of synthetic tyrosinase inhibitors. Eur J Med Chem 2021; 224:113744. [PMID: 34365131 DOI: 10.1016/j.ejmech.2021.113744] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 02/08/2023]
Abstract
Tyrosinase is a copper-containing metalloenzyme that is responsible for the rate-limiting catalytic step in the melanin biosynthesis and enzymatic browning. As a promising target, tyrosinase inhibitors can be used as skin whitening agents and food preservatives, thus having broad potential in the fields of food, cosmetics, agriculture and medicine. From 2015 to 2020, numerous synthetic inhibitors of tyrosinase have been developed to overcome the challenges of low efficacy and side effects. This review summarizes the enzyme structure and biological functions of tyrosinase and demonstrates the recent advances of synthetic tyrosinase inhibitors from the perspective of medicinal chemistry, providing a better understanding of the catalytic mechanisms and more effective tyrosinase inhibitors.
Collapse
|
40
|
Regan T, Stevens L, Peñaloza C, Houston RD, Robledo D, Bean TP. Ancestral Physical Stress and Later Immune Gene Family Expansions Shaped Bivalve Mollusc Evolution. Genome Biol Evol 2021; 13:6337976. [PMID: 34343278 PMCID: PMC8382680 DOI: 10.1093/gbe/evab177] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 02/06/2023] Open
Abstract
Bivalve molluscs comprise 20,000 species occupying a wide diversity of marine habitats. As filter feeders and detritivores they act as ecosystem engineers clarifying water, creating reefs, and protecting coastlines. The global decline of natural oyster reefs has led to increased restoration efforts in recent years. Bivalves also play an important role in global food security contributing to >20% of worldwide aquaculture production. Despite this importance, relatively little is known about bivalve evolutionary adaptation strategies. Difficulties previously associated with highly heterozygous and repetitive regions of bivalve genomes have been overcome by long-read sequencing, enabling the generation of accurate bivalve assemblies. With these resources we have analyzed the genomes of 32 species representing each molluscan class, including 15 bivalve species, to identify gene families that have undergone expansion during bivalve evolution. Gene family expansions across bivalve genomes occur at the point of evolutionary pressures. We uncovered two key factors that shape bivalve evolutionary history: expansion of bivalvia into environmental niches with high stress followed by later exposure to specific pathogenic pressures. The conserved expansion of protein recycling gene families we found across bivalvia is mirrored by adaptations to a sedentary lifestyle seen in plants. These results reflect the ability of bivalves to tolerate high levels of environmental stress and constant exposure to pathogens as filter feeders. The increasing availability of accurate genome assemblies will provide greater resolution to these analyses allowing further points of evolutionary pressure to become clear in other understudied taxa and potentially different populations of a single species.
Collapse
Affiliation(s)
- Tim Regan
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, United Kingdom
| | - Lewis Stevens
- Tree of Life Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Carolina Peñaloza
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, United Kingdom
| | - Ross D Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, United Kingdom
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, United Kingdom
| | - Tim P Bean
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, United Kingdom
| |
Collapse
|
41
|
Enkhtaivan E, Lee CH. Role of Amine Neurotransmitters and Their Receptors in Skin Pigmentation: Therapeutic Implication. Int J Mol Sci 2021; 22:ijms22158071. [PMID: 34360837 PMCID: PMC8348573 DOI: 10.3390/ijms22158071] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/09/2021] [Accepted: 07/24/2021] [Indexed: 12/27/2022] Open
Abstract
Skin pigmentation can occur due to increased melanin, including melanocyte proliferation, melanin biosynthesis, or melanocyte migration. There are many factors that influence the melanin production process, but the role of neurotransmitters in this process is still unclear. We found that histamine and serotonin influence the different stages of melanogenesis and melanogenesis, which increase melanogenesis. Since then, several related papers have been published, and from these papers, it has been recognised that the role of neurotransmitters in skin-pigment-related diseases needs to be summarised. By introducing the role of neurotransmitters in the regulation of various pigment disorders, including vitiligo and melasma, through this review, many researchers can be expected to try to apply neurotransmitter-related agonists and antagonists as treatments for skin pigment disorders.
Collapse
|
42
|
Barros MR, da Silva LP, Menezes TM, Garcia YS, Neves JL. Efficient tyrosinase nano-inhibitor based on carbon dots behaving as a gathering of hydrophobic cores and key chemical group. Colloids Surf B Biointerfaces 2021; 207:112006. [PMID: 34343910 DOI: 10.1016/j.colsurfb.2021.112006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022]
Abstract
Small organic molecules have been extensively applied to achieve enzymatic inhibition. Although numerous efforts have been made to deliver efficient inhibitors, small inhibitors applications are hindered by many drawbacks. Moreover, reporters comprising nanoparticle inhibitory activity against enzymes are very scarce in the literature. In this scenario, carbon nanodots (CDs) emerge as promising candidates for efficient enzyme inhibition due to their unique properties. Here, CDs specific molecular characteristics (core composition and chemical surface groups) have been investigated to produce a more potent enzyme inhibition. Mushroom tyrosinase (mTyr) has been adopted as an enzymatic prototype. The CDs revealed a high affinity to mTyr (Ka ≈ 106 M-1), mainly through hydrophobic forces and followed by slight mTyr structural alteration. CDs competitively inhibit mTyr, with low inhibition constant (KI = 517.7 ± 17.0 nM), which is up 70 fold smaller then the commercial inhibitor (kojic acid) and the starch nanoparticles previously reported. The results expose that the CDs act as a hydrophobic agglomerate with carboxyl groups on its surface, mimicking characteristics found on small molecule inhibitors (but with superior performance). All these results highlight the CD excellent potential as an efficient low toxic Tyr inhibitor, opening the prospect of using these nanoparticles in the cosmetic and food industries.
Collapse
Affiliation(s)
- Marcela Rodrigues Barros
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil.
| | - Lucas Pereira da Silva
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil.
| | - Thais Meira Menezes
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil.
| | - Yarima Sanchez Garcia
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; Centro de estudos avanzados de Cuba, CEA, Valle Grande, La Lisa 17100, La Habana, Cuba.
| | - Jorge Luiz Neves
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil.
| |
Collapse
|
43
|
Zhang C, Li Y, Qin J, Yu C, Ma G, Chen H, Xu X. TMT-Based Quantitative Proteomic Analysis Reveals the Effect of Bone Marrow Derived Mesenchymal Stem Cell on Hair Follicle Regeneration. Front Pharmacol 2021; 12:658040. [PMID: 34194323 PMCID: PMC8237093 DOI: 10.3389/fphar.2021.658040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/12/2021] [Indexed: 01/01/2023] Open
Abstract
Hair loss (HL) is a common chronic problem of poorly defined etiology. Herein, we explored the functionality of bone marrow-derived mesenchymal stem cell (BMSC) and conditioned medium (MSC-CM) as regulators of hair follicle proliferation and regeneration, and the mechanistic basis for such activity. BMSC were cultured and identified in vitro through the induction of multilineage differentiation and the use of a CCK-8 kit. The dorsal skin of mice was then injected with BMSC and MSC-CM, and the impact of these injections on hair cycle transition and hair follicle stem cell (HFSC) proliferation was then evaluated via hematoxylin and eosin (H&E) staining and immunofluorescent (IF) staining. We then conducted a tandem mass tags (TMT)-based quantitative proteomic analysis of control mice and mice treated with BMSC or MSC-CM to identify differentially expressed proteins (DEPs) associated with these treatments. Parallel reaction monitoring (PRM) was utilized as a means of verifying our proteomic analysis results. Herein, we found that BMSC and MSC-CM injection resulted in the transition of telogen hair follicles to anagen hair follicles, and we observed the enhanced proliferation of HFSCs positive for Krt15 and Sox9. Our TMT analyses identified 1,060 and 770 DEPs (fold change>1.2 or<0.83 and p < 0.05) when comparing the BMSC vs. control and MSC-CM vs. control groups, respectively. Subsequent PRM validation of 14 selected DEPs confirmed these findings, and led to the identification of Stmn1, Ncapd2, Krt25, and Ctps1 as hub DEPs in a protein-protein interaction network. Together, these data suggest that BMSC and MSC-CM treatment can promote the proliferation of HFSCs, thereby facilitating hair follicle regeneration. Our proteomics analyses further indicate that Krt25, Cpm, Stmn1, and Mb may play central roles in hair follicle transition in this context and may represent viable clinical targets for the treatment of HL.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,NHC Key Laboratory of Immunodermatology (China Medical University), Shenyang, China.,Key Laboratory of Immunodermatology (China Medical University), Ministry of Education, Shenyang, China
| | - YuanHong Li
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,NHC Key Laboratory of Immunodermatology (China Medical University), Shenyang, China.,Key Laboratory of Immunodermatology (China Medical University), Ministry of Education, Shenyang, China
| | - Jie Qin
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,NHC Key Laboratory of Immunodermatology (China Medical University), Shenyang, China.,Key Laboratory of Immunodermatology (China Medical University), Ministry of Education, Shenyang, China
| | - ChengQian Yu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,NHC Key Laboratory of Immunodermatology (China Medical University), Shenyang, China.,Key Laboratory of Immunodermatology (China Medical University), Ministry of Education, Shenyang, China
| | - Gang Ma
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - HongDuo Chen
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,NHC Key Laboratory of Immunodermatology (China Medical University), Shenyang, China.,Key Laboratory of Immunodermatology (China Medical University), Ministry of Education, Shenyang, China
| | - XueGang Xu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,NHC Key Laboratory of Immunodermatology (China Medical University), Shenyang, China.,Key Laboratory of Immunodermatology (China Medical University), Ministry of Education, Shenyang, China
| |
Collapse
|
44
|
Bejaoui M, Taarji N, Saito M, Nakajima M, Isoda H. Argan (Argania Spinosa) press cake extract enhances cell proliferation and prevents oxidative stress and inflammation of human dermal papilla cells. J Dermatol Sci 2021; 103:33-40. [PMID: 34158211 DOI: 10.1016/j.jdermsci.2021.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 01/16/2023]
Abstract
BACKGROUND Hair follicle undergoes a growth cycle under the regulation of dermal papilla cells. Due to their enormous roles, these fibroblast cells have been used in various in vitro studies as a screening model to evaluate the effect of hair growth regulating agents. OBJECTIVE In the current study, we aim to check the hair growth potential effect of Argan press cake (APC) extracted using 50 or 80 % aqueous ethanol on human hair follicle dermal papilla cells (HFDPCs) and to determine the molecular mechanism. METHODS APC were applied to HFDPCs, then cell proliferation assays, mitochondrial biogenesis assay, and oxidative stress assay were assessed. DNA microarray was performed from the cells treated with our samples and minoxidil. Validation of the results was done using Quantitative Real-Time PCR with primers for hair-growth related genes. GC/MS analysis was used to determine the compounds contained in APC 50 and 80 %. RESULTS APC enhanced cell proliferation along with the stimulation of the ATP content. Additionally, APC had an anti-oxidant activity against H2O2 mediated oxidative stress preventing dermal papilla cell senescence. Consistent with this, global gene profiling analysis showed an activation of hair growth-related pathway, and a downregulation of inflammation- and oxidative stress-related genes by APC extracts. GC/MS analysis revealed that these extracts contained pure fatty acids, derived sugar chains, and pure compounds including tocopherols, squalene, and spinasterol. CONCLUSION Taken together, here we showed that APC extracts had an effect on stimulating hair growth while inhibiting the inflammation and the oxidative stress of HFDPCs and thus can potentially contribute to an anti-hair loss drug development.
Collapse
Affiliation(s)
- Meriem Bejaoui
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan; AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
| | - Noamane Taarji
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan; AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
| | - Masako Saito
- Planning Department R & D Division, ADEKA CORPORATION, Tokyo, Japan
| | - Mitsutoshi Nakajima
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan; AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan; AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
45
|
Morin Induces Melanogenesis via Activation of MAPK Signaling Pathways in B16F10 Mouse Melanoma Cells. Molecules 2021; 26:molecules26082150. [PMID: 33917985 PMCID: PMC8068350 DOI: 10.3390/molecules26082150] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/25/2022] Open
Abstract
Morin is a well-known flavonoid, and has been reported to have various properties, such as anti-cell death, antioxidant, and anti-inflammatory properties. Although studies on the biochemical and biological actions of morin have been reported, the melanin biosynthesis effects and molecular mechanisms are unknown. In this study, we first found that morin has the effect of enhancing melanin biosynthesis in B16F10 mouse melanoma cells, and analyzed the molecular mechanism. In this study, we examined the effects of morin on the melanin contents and tyrosinase activity, as well as the protein expression levels of the melanogenic enzymes TRP-1, TRP-2, and microphtalmia-associated transcription factor (MITF) in B16F10 mouse melanoma cells. Morin showed no cytotoxicity in the concentration range of 5–100 μM, and significantly increased the intracellular tyrosinase activity and melanin contents. In mechanism analysis, morin increased the protein expression of TRP-1, TRP-2, and MITF associated with melanogenesis. Furthermore, morin increased phosphorylated ERK and p38 at the early time, and decreased phosphorylated ERK after 12 h. The results suggest that morin enhances melanin synthesis through the MAPK signaling pathways in B16F10 mouse melanoma cells.
Collapse
|
46
|
Wakamatsu K, Zippin JH, Ito S. Chemical and biochemical control of skin pigmentation with special emphasis on mixed melanogenesis. Pigment Cell Melanoma Res 2021; 34:730-747. [PMID: 33751833 DOI: 10.1111/pcmr.12970] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/24/2021] [Accepted: 03/07/2021] [Indexed: 02/06/2023]
Abstract
Melanins are widely distributed in animals and plants; in vertebrates, most melanins are present on the body surface. The diversity of pigmentation in vertebrates is mainly attributed to the quantity and ratio of eumelanin and pheomelanin synthesis. Most natural melanin pigments in animals consist of both eumelanin and pheomelanin in varying ratios, and thus, their combined synthesis is called "mixed melanogenesis." Gene expression is an established mechanism for controlling melanin synthesis; however, there are multiple factors that affect melanin synthesis besides gene expression. Due to the differential sensitivity of the eumelanin and pheomelanin synthetic pathways to pH, melanosomal pH likely plays a major role in mixed melanogenesis. Here, we focused on various factors affecting mixed melanogenesis including (1) chemical regulation of melanin synthesis, (2) melanosomal pH regulation during normal melanogenesis and effect on mixed melanogenesis, and (3) mechanisms of melanosomal pH control (proton pumps, channels, transporters, and signaling pathways).
Collapse
Affiliation(s)
- Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Japan
| | - Jonathan H Zippin
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY, USA
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Japan
| |
Collapse
|
47
|
Gautron A, Migault M, Bachelot L, Corre S, Galibert MD, Gilot D. Human TYRP1: Two functions for a single gene? Pigment Cell Melanoma Res 2021; 34:836-852. [PMID: 33305505 DOI: 10.1111/pcmr.12951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/12/2020] [Accepted: 12/01/2020] [Indexed: 01/07/2023]
Abstract
In the animal kingdom, skin pigmentation is highly variable between species, and it contributes to phenotypes. In humans, skin pigmentation plays a part in sun protection. Skin pigmentation depends on the ratio of the two pigments pheomelanin and eumelanin, both synthesized by a specialized cell population, the melanocytes. In this review, we explore one important factor in pigmentation: the tyrosinase-related protein 1 (TYRP1) gene which is involved in eumelanin synthesis via the TYRP1 protein. Counterintuitively, high TYRP1 mRNA expression is associated with a poor clinical outcome for patients with metastatic melanomas. Recently, we were able to explain this unexpected TYRP1 function by demonstrating that TYRP1 mRNA sequesters microRNA-16, a tumor suppressor miRNA. Here, we focus on actors influencing TYRP1 mRNA abundance, particularly transcription factors, single nucleotide polymorphisms (SNPs), and miRNAs, as they all dictate the indirect oncogenic activity of TYRP1.
Collapse
Affiliation(s)
- Arthur Gautron
- CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Univ. Rennes, Rennes, France
| | - Mélodie Migault
- CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Univ. Rennes, Rennes, France.,Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Laura Bachelot
- CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Univ. Rennes, Rennes, France
| | - Sébastien Corre
- CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Univ. Rennes, Rennes, France
| | - Marie-Dominique Galibert
- CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Univ. Rennes, Rennes, France.,CHU Rennes, Génétique Moléculaire et Génomique, UMR 6290, F-35000, Rennes, France
| | - David Gilot
- CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Univ. Rennes, Rennes, France.,INSERM U1242, Centre Eugène Marquis, Rennes, France
| |
Collapse
|
48
|
Ultraviolet A irradiation induces ultraweak photon emission with characteristic spectral patterns from biomolecules present in human skin. Sci Rep 2020; 10:21667. [PMID: 33303911 PMCID: PMC7728812 DOI: 10.1038/s41598-020-78884-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/01/2020] [Indexed: 11/26/2022] Open
Abstract
Oxidative stress is associated with photoaging of the skin as well as with skin cancer, and is therefore, critical to monitor. Ultraweak photon emission (UPE) is extremely weak light generated during the oxidative process in the living body and has been used as a non-invasive and label-free marker for the evaluation of oxidative stress. However, the mechanism of UPE generation is not clear. Therefore, we aimed to elucidate the molecular mechanism underlying UPE generation by analyzing the spectra of UPE generated from biomolecules in the skin during ultraviolet A (UVA) exposure. The spectra of UVA-induced UPE generated from linoleic acid, linolenic acid, elastin, phospholipids, and 5,6-dihydroxyindole-2-carboxylic acid were measured, and the spectrum of human skin tissue was also obtained. The spectral patterns varied for the different biomolecules and the peaks were distinct from those of the skin tissue. These results suggested that the UPE generated from skin tissue is a collection of light emitted by biomolecules. Moreover, we proposed that UPE is generated through a photosensitization reaction and energy transfer. The identified characteristic spectral patterns of UPE can be useful to elucidate UVA-induced oxidative stress in the skin, with implications for prevention and treatment of photoaging and skin diseases.
Collapse
|
49
|
Lee JY, Kim J, Nam YJ, Kim HJ, No KT. Isolindleyin exerts anti-melanogenic effects in human epidermal melanocytes via direct binding to tyrosinase. Biochem Biophys Res Commun 2020; 534:802-807. [PMID: 33162034 DOI: 10.1016/j.bbrc.2020.10.105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 10/29/2020] [Indexed: 11/26/2022]
Abstract
To overcome dermatological concerns causing abnormally excessive melanin synthesis, highly effective and safe skin depigmentation compounds have been identified in the cosmetic and pharmaceutical industries. Among several methods used to achieve skin depigmentation, inhibition of tyrosinase is one of the most effective, since tyrosinase is a crucial enzyme in melanogenesis. Herein, isolindleyin, a novel inhibitor of human tyrosinase, was introduced and evaluated for its anti-melanogenic effects in human epidermal melanocytes. The results revealed that isolindleyin was directly bound to tyrosinase and it suppressed melanin synthesis. The binding mode between isolindleyin and the active sites of human tyrosinase was investigated using computational molecular docking at the atomic level. Isolindleyin binding was found to be stabilized by hydrophobic interactions between His 367 and Val 377 and by hydrogen bonds between Ser 380 and Asn 364. The results of this study revealed the anti-melanogenic effects of isolindleyin that could contribute toward overcoming dermatological concerns that cause abnormally excessive melanin synthesis.
Collapse
Affiliation(s)
- Ji Young Lee
- Amorepacific Corporation R&D Center, Yongin-si, 17074, Gyeonggi-do, Republic of Korea; Biomaterial Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Juewon Kim
- Amorepacific Corporation R&D Center, Yongin-si, 17074, Gyeonggi-do, Republic of Korea
| | - Yeon Joo Nam
- Biocenter, Gyeonggido Business & Science Acceleator, Suwon, 16229, Republic of Korea
| | - Hyoung-June Kim
- Amorepacific Corporation R&D Center, Yongin-si, 17074, Gyeonggi-do, Republic of Korea.
| | - Kyoung Tai No
- Biomaterial Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea; Bioinformatics and Molecular Design Research Center (BMDRC), Yonsei University, Incheon, 21983, Republic of Korea.
| |
Collapse
|
50
|
Shin JA, Sun M, Jeong JM. Borage Oil Treated with Immobilized Lipase Inhibits Melanogenesis. Lipids 2020; 55:649-659. [PMID: 33128473 DOI: 10.1002/lipd.12266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/11/2020] [Accepted: 06/12/2020] [Indexed: 11/12/2022]
Abstract
In the present study, we demonstrated that borage (Borago officinalis L.) seed oil subjected to immobilized lipase pretreatment are enriched with linoleic acid (LNA, 18:2n-6), γ-linolenic acid (GLA, 18:3n-6), and oleic acid (OLA, 18:1n-9). We further showed that lipase-treated borage oil (LT-BOL) regulates the activity and degradation of tyrosinase, an important enzyme implicated in the synthesis of melanin in murine melanocytes, B16F10. LT-BOL and its free fatty acid components reduced the levels of melanin and tyrosinase in melanocytes with GLA exerting similar or stronger effects compared with LNA and OLA. The brightening efficacy of LT-BOL on melanin metabolism in humans was tested by an 8-week, double-blind, randomized clinical trial, which enrolled 21 Korean female adults (mean age 48.57 ± 3.28). Visual evaluation showed that cream containing 1% LT-BOL significantly decreased (p < 0.05) melasma on the treated skin area after 6 and 8 weeks. The analysis of the skin brightness using Chromameter CR-400 confirmed that the brightness of the treated area was significantly increased (p < 0.01) after 4, 6, and 8 weeks. Together, our results suggest that LT-BOL may be suitable as a natural skin whitening cosmeceutical product.
Collapse
Affiliation(s)
- Jin A Shin
- Biotechnology Research Center, Ben's Lab., Co., Ltd., 17 Wauan-gil, Bongdam-eup, Hwasung-si, Gyeonggi-do, Republic of Korea
| | - Meixiang Sun
- Biotechnology Research Center, Ben's Lab., Co., Ltd., 17 Wauan-gil, Bongdam-eup, Hwasung-si, Gyeonggi-do, Republic of Korea
| | - Jong-Moon Jeong
- Department of Bioscience, College of Engineering, The University of Suwon, 17 Wauan-gil, Bongdam-eup, Hwasung-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|