1
|
Abstract
SCL, a transcription factor of the basic helix-loop-helix family, is a master regulator of hematopoiesis. Scl specifies lateral plate mesoderm to a hematopoietic fate and establishes boundaries by inhibiting the cardiac lineage. A combinatorial interaction between Scl and Vegfa/Flk1 sets in motion the first wave of primitive hematopoiesis. Subsequently, definitive hematopoietic stem cells (HSCs) emerge from the embryo proper via an endothelial-to-hematopoietic transition controlled by Runx1, acting with Scl and Gata2. Past this stage, Scl in steady state HSCs is redundant with Lyl1, a highly homologous factor. However, Scl is haploinsufficient in stress response, when a rare subpopulation of HSCs with very long term repopulating capacity is called into action. SCL activates transcription by recruiting a core complex on DNA that necessarily includes E2A/HEB, GATA1-3, LIM-only proteins LMO1/2, LDB1, and an extended complex comprising ETO2, RUNX1, ERG, or FLI1. These interactions confer multifunctionality to a complex that can control cell proliferation in erythroid progenitors or commitment to terminal differentiation through variations in single component. Ectopic SCL and LMO1/2 expression in immature thymocytes activates of a stem cell gene network and reprogram cells with a finite lifespan into self-renewing preleukemic stem cells (pre-LSCs), an initiating event in T-cell acute lymphoblastic leukemias. Interestingly, fate conversion of fibroblasts to hematoendothelial cells requires not only Scl and Lmo2 but also Gata2, Runx1, and Erg, indicating a necessary collaboration between these transcription factors for hematopoietic reprogramming. Nonetheless, full reprogramming into self-renewing multipotent HSCs may require additional factors and most likely, a permissive microenvironment.
Collapse
Affiliation(s)
- T Hoang
- Laboratory of Hematopoiesis and Leukemia, Institute of Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada.
| | - J A Lambert
- Laboratory of Hematopoiesis and Leukemia, Institute of Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
| | - R Martin
- Laboratory of Hematopoiesis and Leukemia, Institute of Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
| |
Collapse
|
2
|
Abstract
SCL/TAL1, a tissue-specific transcription factor of the basic helix-loop-helix family, and c-Kit, a tyrosine kinase receptor, control hematopoietic stem cell survival and quiescence. Here we report that SCL levels are limiting for the clonal expansion of Kit⁺ multipotent and erythroid progenitors. In addition, increased SCL expression specifically enhances the sensitivity of these progenitors to steel factor (KIT ligand) without affecting interleukin-3 response, whereas a DNA-binding mutant antagonizes KIT function and induces apoptosis in progenitors. Furthermore, a twofold increase in SCL levels in mice bearing a hypomorphic Kit allele (W41/41) corrects their hematocrits and deficiencies in erythroid progenitor numbers. At the molecular level, we found that SCL and c-Kit signaling control a common gene expression signature, of which 19 genes are associated with apoptosis. Half of those were decreased in purified megakaryocyte/erythroid progenitors (MEPs) from W41/41 mice and rescued by the SCL transgene. We conclude that Scl operates downstream of Kit to support the survival of MEPs. Finally, higher SCL expression upregulates Kit in normal bone marrow cells and increases chimerism after bone marrow transplantation, indicating that Scl is also upstream of Kit. We conclude that Scl and Kit establish a positive feedback loop in multipotent and MEPs.
Collapse
|
3
|
Cardoso BA, de Almeida SF, Laranjeira ABA, Carmo-Fonseca M, Yunes JA, Coffer PJ, Barata JT. TAL1/SCL is downregulated upon histone deacetylase inhibition in T-cell acute lymphoblastic leukemia cells. Leukemia 2011; 25:1578-86. [PMID: 21647153 DOI: 10.1038/leu.2011.140] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The transcription factor T-cell acute lymphocytic leukemia (TAL)-1 is a major T-cell oncogene associated with poor prognosis in T-cell acute lymphoblastic leukemia (T-ALL). TAL1 binds histone deacetylase 1 and incubation with histone deacetylase inhibitors (HDACis) promotes apoptosis of leukemia cells obtained from TAL1 transgenic mice. Here, we show for the first time that TAL1 protein expression is strikingly downregulated upon histone deacetylase inhibition in T-ALL cells. This is due to decreased TAL1 gene transcription in cells with native TAL1 promoter, and due to impaired TAL1 mRNA translation in cells that harbor the TAL1(d) microdeletion and consequently express TAL1 under the control of the SCL/TAL1 interrupting locus (SIL) promoter. Notably, HDACi-triggered apoptosis of T-ALL cells is significantly reversed by TAL1 forced overexpression. Our results indicate that the HDACi-mediated apoptotic program in T-ALL cells is partially dependent on their capacity to downregulate TAL1 and provide support for the therapeutic use of HDACi in T-ALL.
Collapse
Affiliation(s)
- B A Cardoso
- Cancer Biology Unit, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
The 2 related basic helix loop helix genes, LYL1 and TAL-1 are active in hematopoietic and endothelial lineages. While Tal-1 is essential for both hematopoietic and vascular development, the role of Lyl1 appears to be distinct as deficient mice are viable and display modest hematopoietic defects. Here, we reveal a role for Lyl1 as a major regulator of adult neovascularization. Tumors implanted into Lyl1-deficient mice showed higher proliferation and angiogenesis, as evidenced by enlarged lumens, reduced pericyte coverage and increased permeability, compared with wild type littermates. Of note, Lyl1-deficient tumor vessels exhibited an up-regulation of Tal-1, the VE-Cadherin target gene, as well as Angiopoietin-2, 3 major actors in angiogenesis. Hematopoietic reconstitution experiments demonstrated that this sustained tumor angiogenesis was of endothelial origin. Moreover, the angiogenic phenotype observed in the absence of Lyl1 function was not tumor-restricted as microvessels forming in Matrigel or originating from aortic explants were also more numerous and larger than their wild-type counterparts. Finally, LYL1 depletion in human endothelial cells revealed that LYL1 controls the expression of molecules involved in the stabilization of vascular structures. Together, our data show a role for LYL1 in the postnatal maturation of newly formed blood vessels.
Collapse
|
5
|
Madson JG, Lynch DT, Tinkum KL, Putta SK, Hansen LA. Erbb2 regulates inflammation and proliferation in the skin after ultraviolet irradiation. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:1402-14. [PMID: 17003495 PMCID: PMC1780187 DOI: 10.2353/ajpath.2006.060082] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Exposure to ultraviolet (UV) irradiation is the major cause of nonmelanoma skin cancer, the most common form of cancer in the United States. UV irradiation has a variety of effects on the skin associated with carcinogenesis, including DNA damage and effects on signal transduction. The alterations in signaling caused by UV regulate inflammation, cell proliferation, and apoptosis. UV also activates the orphan receptor tyrosine kinase and proto-oncogene Erbb2 (HER2/neu). In this study, we demonstrate that the UV-induced activation of Erbb2 regulates the response of the skin to UV. Inhibition or knockdown of Erbb2 before UV irradiation suppressed cell proliferation, cell survival, and inflammation after UV. In addition, Erbb2 was necessary for the UV-induced expression of numerous proinflammatory genes that are regulated by the transcription factors nuclear factor-kappaB and Comp1, including interleukin-1beta, prostaglandin-endoperoxidase synthase 2 (Cyclooxygenase-2), and multiple chemokines. These results reveal the influence of Erbb2 on the UV response and suggest a role for Erbb2 in UV-induced pathologies such as skin cancer.
Collapse
Affiliation(s)
- Justin G Madson
- Department of Biomedical Sciences, School of Medicine, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | | | | | | | | |
Collapse
|
6
|
Ikeda H, Nagashima K, Yanase M, Tomiya T, Arai M, Inoue Y, Tejima K, Nishikawa T, Watanabe N, Kitamura K, Isono T, Yahagi N, Noiri E, Inao M, Mochida S, Kume Y, Yatomi Y, Nakahara K, Omata M, Fujiwara K. The herbal medicine inchin-ko-to (TJ-135) induces apoptosis in cultured rat hepatic stellate cells. Life Sci 2006; 78:2226-33. [PMID: 16280138 DOI: 10.1016/j.lfs.2005.09.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Accepted: 09/09/2005] [Indexed: 11/21/2022]
Abstract
Use of herbal remedies in the treatment of various diseases has a long tradition in Eastern medicine and the liver diseases are not an exception. In their use, lack of elucidation of mechanism(s) as well as randomized, placebo-controlled clinical trials has been a problem. Recently, we and others reported that inchin-ko-to (TJ-135), one of herbal remedies, suppressed hepatic fibrosis in animal models. In the course of clarifying the mechanism, we directed our focus on hepatic stellate cells (HSCs), playing a pivotal role in hepatic fibrosis, and found that rat HSCs cultured with TJ-135 changed their morphology to star-like configuration with thin, slender and dendritic processes with fewer stress fibers, which might be the features in apoptosis. In fact, TJ-135 induced HSC apoptosis in a time- and concentration-dependent manner as judged by the nuclear morphology, quantitation of cytoplasmic histone-associated DNA oligonucleosome fragments and caspase 3 activity. In HSCs treated with TJ-135, increased expression of p53 and decreased expression of Bcl-2 and phosphorylated Akt and Bad were determined. HSC apoptosis is shown to be involved in the mechanisms of spontaneous resolution of rat hepatic fibrosis and the agent which induces HSC apoptosis has been shown to reduce experimental hepatic fibrosis in rats. Thus, the induction of HSC apoptosis could be the mechanism how TJ-135 works on the resolution of hepatic fibrosis. Our current data may shed light on the novel effect of the herbal remedy.
Collapse
Affiliation(s)
- Hitoshi Ikeda
- Department of Gastroenterology, University of Tokyo, Bunkyo-ku, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Goardon N, Lambert JA, Rodriguez P, Nissaire P, Herblot S, Thibault P, Dumenil D, Strouboulis J, Romeo PH, Hoang T. ETO2 coordinates cellular proliferation and differentiation during erythropoiesis. EMBO J 2006; 25:357-66. [PMID: 16407974 PMCID: PMC1383517 DOI: 10.1038/sj.emboj.7600934] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Accepted: 12/02/2005] [Indexed: 01/08/2023] Open
Abstract
The passage from proliferation to terminal differentiation is critical for normal development and is often perturbed in malignancies. To define the molecular mechanisms that govern this process during erythropoiesis, we have used tagging/proteomics approaches and characterized protein complexes nucleated by TAL-1/SCL, a basic helix-loop-helix transcription factor that specifies the erythrocytic lineage. In addition to known TAL-1 partners, GATA-1, E2A, HEB, LMO2 and Ldb1, we identify the ETO2 repressor as a novel component recruited to TAL-1 complexes through interaction with E2A/HEB. Ectopic expression and siRNA knockdown experiments in hematopoietic progenitor cells show that ETO2 actively represses erythroid TAL-1 target genes and governs the expansion of erythroid progenitors. At the onset of erythroid differentiation, a change in the stoichiometry of ETO2 within the TAL-1 complex activates the expression of known erythroid-specific TAL-1 target genes and of Gfi-1b and p21(Cip), encoding two essential regulators of erythroid cell proliferation. These results suggest that the dynamics of ETO2 recruitment within nuclear complexes couple cell proliferation to cell differentiation and determine the onset of terminal erythroid maturation.
Collapse
Affiliation(s)
- Nicolas Goardon
- Département d'Hématologie, Institut Cochin, INSERM U567, CNRS UMR 8104, Université Paris V, Paris, France
- These authors contributed equally to this work
| | - Julie A Lambert
- Institute of Research in Immunology and Cancer (IRIC)—Pharmacology, Chemistry, Biochemistry and Molecular Biology Departments, University of Montreal, Montréal, Québec, Canada
- These authors contributed equally to this work
| | - Patrick Rodriguez
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Philippe Nissaire
- Institute of Research in Immunology and Cancer (IRIC)—Pharmacology, Chemistry, Biochemistry and Molecular Biology Departments, University of Montreal, Montréal, Québec, Canada
| | - Sabine Herblot
- Institute of Research in Immunology and Cancer (IRIC)—Pharmacology, Chemistry, Biochemistry and Molecular Biology Departments, University of Montreal, Montréal, Québec, Canada
| | - Pierre Thibault
- Institute of Research in Immunology and Cancer (IRIC)—Pharmacology, Chemistry, Biochemistry and Molecular Biology Departments, University of Montreal, Montréal, Québec, Canada
| | - Dominique Dumenil
- Département d'Hématologie, Institut Cochin, INSERM U567, CNRS UMR 8104, Université Paris V, Paris, France
| | - John Strouboulis
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Paul-Henri Romeo
- Département d'Hématologie, Institut Cochin, INSERM U567, CNRS UMR 8104, Université Paris V, Paris, France
- These authors contributed equally to this work
| | - Trang Hoang
- Institute of Research in Immunology and Cancer (IRIC)—Pharmacology, Chemistry, Biochemistry and Molecular Biology Departments, University of Montreal, Montréal, Québec, Canada
- These authors contributed equally to this work
| |
Collapse
|
8
|
Zhang Y, Payne KJ, Zhu Y, Price MA, Parrish YK, Zielinska E, Barsky LW, Crooks GM. SCL expression at critical points in human hematopoietic lineage commitment. Stem Cells 2005; 23:852-60. [PMID: 15917481 DOI: 10.1634/stemcells.2004-0260] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The stem cell leukemia (SCL or tal-1) gene was initially identified as a translocation partner in a leukemia that possessed both lymphoid and myeloid differentiation potential. Mice that lacked SCL expression showed a complete block in hematopoiesis; thus, SCL was associated with hematopoietic stem cell (HSC) function. More recent studies show a role for SCL in murine erythroid differentiation. However, the expression pattern and the role of SCL during early stages of human hematopoietic differentiation are less clear. In this study we chart the pattern of human SCL expression from HSCs, through developmentally sequential populations of lymphoid and myeloid progenitors to mature cells of the hematopoietic lineages. Using recently defined surface immunophenotypes, we fluorescence-activated cell-sorted (FACS) highly purified populations of primary human hematopoietic progenitors for reverse transcription-polymerase chain reaction (RT-PCR) analysis of SCL expression. Our data show that SCL mRNA is easily detectable in all hematopoietic populations with erythroid potential, including HSCs, multipotential progenitors, common myeloid progenitors, megakaryocyte/erythrocyte progenitors, and nucleated erythroid lineage cells. SCL mRNA expression was present but rapidly downregulated in the common lymphoid progenitor and granulocyte/monocyte progenitor populations that lack erythroid potential. SCL expression was undetectable in immature cells of nonerythroid lineages, including pro-B cells, early thymic progenitors, and myeloid precursors expressing the M-CSF receptor. SCL expression was also absent from all mature cells of the nonerythroid lineages. Although low levels of SCL were detected in lymphoid- and myeloid-restricted progenitors, our studies show that abundant SCL expression is normally tightly linked with erythroid differentiation potential.
Collapse
Affiliation(s)
- Yanjia Zhang
- Childrens Hospital Los Angeles, M.S.#62, 4650 Sunset Boulevard, Los Angeles, CA 90027, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Ravet E, Reynaud D, Titeux M, Izac B, Fichelson S, Roméo PH, Dubart-Kupperschmitt A, Pflumio F. Characterization of DNA-binding-dependent and -independent functions of SCL/TAL1 during human erythropoiesis. Blood 2004; 103:3326-35. [PMID: 14715640 DOI: 10.1182/blood-2003-05-1689] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe transcription factor TAL1 has major functions during embryonic hematopoiesis and in adult erythropoiesis and megakaryocytopoiesis. These functions rely on different TAL1 structural domains that are responsible for dimerization, transactivation, and DNA binding. Previous work, most often done in mice, has shown that some TAL1 functions do not require DNA binding. To study the role of TAL1 and the relevance of the TAL1 DNA-binding domain in human erythropoiesis, we developed an approach that allows an efficient enforced wild-type or mutant TAL1 protein expression in human hematopoietic CD34+ cells using a lentiviral vector. Differentiation capacities of the transduced cells were studied in a culture system that distinguishes early and late erythroid development. Results indicate that enforced TAL1 expression enhances long-term culture initiating cell (LTC-IC) potential and erythroid differentiation of human CD34+ cells as shown by increased βglobin and porphobilinogen deaminase (PBGD) gene expressions and erythroid colony-forming units (CFU-Es), erythroid burst-forming units (BFU-Es), and glycophorin A-positive (GPA+) cell productions. Enforced expression of a TAL1 protein deleted of its DNA-binding domain (named ΔbTAL1) mimicked most TAL1 effects except for the LTC-IC enhancement, the down-regulation of the CD34 surface marker, and the GPA+ cell production. These results provide the first functional indications of DNA-binding-dependent and -independent roles of TAL1 in human erythropoiesis. (Blood. 2004;103:3326-3335)
Collapse
Affiliation(s)
- Emmanuel Ravet
- Department of Hematology, Institut Cochin, U567 INSERM, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Asnafi V, Beldjord K, Libura M, Villarese P, Millien C, Ballerini P, Kuhlein E, Lafage-Pochitaloff M, Delabesse E, Bernard O, Macintyre E. Age-related phenotypic and oncogenic differences in T-cell acute lymphoblastic leukemias may reflect thymic atrophy. Blood 2004; 104:4173-80. [PMID: 15054041 DOI: 10.1182/blood-2003-11-3944] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Postnatal thymic involution occurs progressively throughout the first 3 decades of life. It predominantly affects T-cell receptor (TCR) alphabeta-lineage precursors, with a consequent proportional increase in multipotent thymic precursors. We show that T-acute lymphoblastic leukemias (T-ALLs) demonstrate a similar shift with age from predominantly TCR expressing to an immature (IM0/delta/gamma) stage of maturation arrest. Half demonstrate HOX11, HOX11L2, SIL-TAL1, or CALM-AF10 deregulation, with each being associated with a specific, age-independent stage of maturation arrest. HOX11 and SIL-TAL represent alphabeta-lineage oncogenes, whereas HOX11L2 expression identifies an intermediate alphabeta/gammadelta-lineage stage of maturation arrest. In keeping with preferential alphabeta-lineage involution, the incidence of SIL-TAL1 and HOX11L2 deregulation decreased with age. In contrast, HOX11 deregulation became more frequent, suggesting longer latency. TAL1/LMO1 deregulation is more frequent in alphabeta-lineage T-ALL, when it is predominantly due to SIL-TAL1 rearrangements in children but to currently unknown mechanisms in adolescents and adults. LMO2 was more frequently coexpressed with LYL1, predominantly in IM0/delta/gamma adult cases, than with TAL1. These age-related changes in phenotype and oncogenic pathways probably reflect progressive changes in the thymic population at risk of malignant transformation.
Collapse
Affiliation(s)
- Vahid Asnafi
- Necker-Enfants-Malades and Trousseau, Assistance Publique-Hopitaux de Paris, INSERM EMIU210 and Université Paris V, Hôpital Purpan, Toulouse, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lazrak M, Deleuze V, Noel D, Haouzi D, Chalhoub E, Dohet C, Robbins I, Mathieu D. The bHLH TAL-1/SCL regulates endothelial cell migration and morphogenesis. J Cell Sci 2004; 117:1161-71. [PMID: 14970264 DOI: 10.1242/jcs.00969] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The basic helix-loop-helix tal-1 gene (or scl), known for its fundamental role in embryonic and adult hematopoiesis in vertebrates, is also required for embryonic vascular remodeling. In adults, TAL-1 protein is undetectable in quiescent endothelium but it is present in newly formed vessels including tumoral vasculature, indicating its involvement in angiogenesis. Here, we demonstrate that TAL-1 expression is tightly regulated during in vitro angiogenesis: it is low during the initial step of migration and is upregulated during formation of capillary-like structures. We investigated whether ectopic expression of either wild-type TAL-1 or a dominant-negative mutant lacking the DNA-binding domain (Delta-bas) modulates the activity of human primary endothelial cells in the angiogenic processes of migration, proliferation and cell morphogenesis. Overexpression of either wild-type or Delta-bas TAL-1 affected chemotactic migration of primary endothelial cells without modifying their proliferative properties. Ectopic expression of wild-type TAL-1 accelerated the formation of capillary-like structures in vitro and, in vivo, enhanced vascularisation in mice (Matrigel implants) associated with a general enlargement of capillary lumens. Importantly, transduction of the mutant Delta-bas completely impaired in vitro angiogenesis and strongly inhibited vascularisation in mice. Taken together, our data show that TAL-1 modulates the angiogenic response of endothelial cells by stimulating cell morphogenesis and by influencing their behavior in migration. This study highlights the importance of TAL-1 regulation in postnatal vascular remodeling and provides the first physiological evidence that links TAL-1 activity to endothelial cell morphogenic processes.
Collapse
Affiliation(s)
- Monia Lazrak
- UMR 5535, Institut de Génétique Moléculaire, IFR122, 1919 Route de Mende, Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Ikeda H, Nagashima K, Yanase M, Tomiya T, Arai M, Inoue Y, Tejima K, Nishikawa T, Omata M, Kimura S, Fujiwara K. Involvement of Rho/Rho kinase pathway in regulation of apoptosis in rat hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 2003; 285:G880-6. [PMID: 12829436 DOI: 10.1152/ajpgi.00039.2003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatic stellate cells (HSCs) play a central role in the development of hepatic fibrosis. Recent evidence has revealed that HSCs also play a role in its resolution, where HSC apoptosis was determined. Moreover, induction of HSC apoptosis caused a reduction of experimental hepatic fibrosis in rats. Thus knowing the mechanism of HSC apoptosis might be important to clarify the pathophysiology and establish the therapeutic strategy for hepatic fibrosis. In HSCs, Rho and Rho kinase are known to regulate contraction, migration, and proliferation with modulation of cell morphology. Controversy exists as to the participation of Rho and Rho kinase on cell survival, and little is known regarding this matter in HSCs. In this study, we directed our focus on the role of the Rho pathway in the regulation of HSC survival. C3, an inhibitor of Rho, increased histone-associated DNA fragmentation and caspase 3 activity with enhanced condensation of nuclear chromatin in rat cultured HSCs. Moreover, Y-27632, an inhibitor of Rho kinase, had the same effects, suggesting that inhibition of the Rho/Rho kinase pathway causes HSC apoptosis. On the other hand, lysophosphatidic acid, which stimulates the Rho/Rho kinase pathway, decreased histone-associated DNA fragmentation in HSCs. Inhibition of the Rho/Rho kinase pathway did not affect p53, Bcl-2, or Bax levels in HSCs. Thus we concluded that the Rho/Rho kinase pathway may play a role in the regulation of HSC survival.
Collapse
Affiliation(s)
- Hitoshi Ikeda
- Dept. of Gastroenterology, Univ. of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zeuner A, Eramo A, Testa U, Felli N, Pelosi E, Mariani G, Srinivasula SM, Alnemri ES, Condorelli G, Peschle C, De Maria R. Control of erythroid cell production via caspase-mediated cleavage of transcription factor SCL/Tal-1. Cell Death Differ 2003; 10:905-13. [PMID: 12867998 DOI: 10.1038/sj.cdd.4401255] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
SCL/Tal-1 is a helix-loop-helix (HLH) transcription factor required for blood cell development, whose abnormal expression is responsible for induction of T-cell acute lymphoblastic leukemia. We show here that SCL/Tal-1 is a key target of caspases in developing erythroblasts. SCL/Tal-1 degradation occurred rapidly after caspase activation and preceded the cleavage of the major erythroid transcription factor GATA-1. Expression of a caspase-resistant SCL/Tal-1 in erythroid progenitors was able to prevent amplification of caspase activation, GATA-1 degradation and impaired erythropoiesis induced by growth factor deprivation or death receptor triggering. The potent proerythropoietic activity of uncleavable SCL/Tal-1 was clearly evident in the absence of erythropoietin, a condition that did not allow survival of normal erythroid cells or expansion of erythroblasts expressing caspase-resistant GATA-1. In the absence of erythropoietin, cells expressing caspase-resistant SCL/Tal-1 maintain high levels of Bcl-X(L), which inhibits amplification of the caspase cascade and mediates protection from apoptosis. Thus, SCL/TAL-1 is a survival factor for erythroid cells, whereas caspase-mediated cleavage of SCL/Tal-1 results in amplification of caspase activation, GATA-1 degradation and impaired erythropoiesis.
Collapse
Affiliation(s)
- A Zeuner
- Department of Hematology and Oncology, Istituto Superiore di Sanità, Rome 00161, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Preaux AM, D'ortho MP, Bralet MP, Laperche Y, Mavier P. Apoptosis of human hepatic myofibroblasts promotes activation of matrix metalloproteinase-2. Hepatology 2002; 36:615-22. [PMID: 12198653 DOI: 10.1053/jhep.2002.35279] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Liver fibrosis is potentially reversible after removal of the injurious agent. Fibrosis resolution is characterized by apoptosis of hepatic myofibroblasts and degradation of extracellular matrix components. Matrix metalloproteinase-2 (MMP-2) is involved in matrix remodeling. In the liver, it is synthesized by myofibroblasts, secreted as a proenzyme, and activated by membrane type-MMPs (MT-MMP) such as MT1-MMP. The goal of this work was to determine whether apoptosis induction in human hepatic myofibroblasts modulates the gene expression of MMP-2 and/or its activation by MT1-MMP. Induction of apoptosis by cytochalasin D or C(2)-ceramide did not modulate MMP-2 mRNA expression. In contrast, apoptosis was associated with marked activation of pro-MMP-2, as shown by gelatin zymography, which revealed the presence of the 59-kd active form, whereas untreated cells only expressed the 66-kd proform. SB-203580, a specific inhibitor of p38 (MAPK), selectively abrogated both C(2)-ceramide-induced apoptosis and pro-MMP-2 activation. Apoptosis-induced pro-MMP-2 activation was inhibited by the tissue inhibitors of metalloproteinases (TIMP)-2 but not by TIMP-1, implying involvement of an MT-MMP-mediated process. Induction of apoptosis by cytochalasin D and C(2)-ceramide upregulated MT1-MMP protein expression and MT1-MMP mRNA expression. In conclusion, apoptosis of hepatic myofibroblasts induces pro-MMP-2 activation through increased MT1-MMP expression. HEPATOLOGY 2002;36:615-622.)
Collapse
Affiliation(s)
- Anne-Marie Preaux
- Institut National de la Santé et de la Recherche Médicale U99, Hôpital Henri Mondor, Créteil, France
| | | | | | | | | |
Collapse
|
15
|
Goardon N, Schuh A, Hajar I, Ma X, Jouault H, Dzierzak E, Roméo PH, Maouche-Chrétien L. Ectopic expression of TAL-1 protein in Ly-6E.1-htal-1 transgenic mice induces defects in B- and T-lymphoid differentiation. Blood 2002; 100:491-500. [PMID: 12091340 DOI: 10.1182/blood.v100.2.491] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tal-1 gene encodes a basic helix-loop-helix (bHLH) transcription factor required for primitive and definitive hematopoiesis. Additionally, ectopic activation of the tal-1 gene during T lymphopoiesis occurs in numerous cases of human T-cell acute lymphoblastic leukemia. With the use of transgenic mice, we show that, in adult hematopoiesis, constitutive expression of TAL-1 protein causes disorders in the hematopoietic lineages that normally switch off tal-1 gene expression during their differentiation process. Myelopoiesis was characterized by a moderate increase of myeloid precursors and by Sca-1 antigen persistence. Although no lymphoid leukemia was observed, T lymphopoiesis and B lymphopoiesis were severely impaired. Transgenic mice showed reduced thymic cellularity together with a decrease in double-positive cells and a concurrent increase in the single-positive population. B cells exhibited a differentiation defect characterized by a reduction of the B-cell compartment most likely because of a differentiation block upstream of the intermediate pro-B progenitor. B cells escaping this defect developed normally, but transgenic splenocytes presented a defect in immunoglobulin class switch recombination. Altogether, these results enlighten the fine-tuning of TAL-1 expression during adult hematopoiesis and indicate why TAL-1 expression has to be switched off in the lymphoid lineages.
Collapse
Affiliation(s)
- Nicolas Goardon
- Institut Cochin, Département d'Hématologie, INSERM, CNRS, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Lavenu-Bombled C, Trainor CD, Makeh I, Romeo PH, Max-Audit I. Interleukin-13 gene expression is regulated by GATA-3 in T cells: role of a critical association of a GATA and two GATG motifs. J Biol Chem 2002; 277:18313-21. [PMID: 11893731 DOI: 10.1074/jbc.m110013200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Using a transgenic approach, we studied the role of GATA-3 in T cells. As previously shown, enforced GATA-3 expression in transgenic mice inhibits Th1 differentiation of CD4 T cells, but unexpectedly, both type 1 (interferon gamma) and type 2 (interleukin (IL)-4 and IL-13) cytokine genes were activated in the transgenic CD8 T cells. Because IL-13 gene expression was highly enhanced in vivo by GATA-3 expression, we studied the human and the mouse IL-13 gene promoters and found an evolutionary-conserved association of a consensus GATA binding site and two GATG motifs. We showed that efficient GATA-3 binding to this regulatory sequence required these three motifs and that the affinity of the GATA zinc fingers for this association was five times higher than for the consensus GATA binding site alone. Transfections in a T cell line or transactivation by GATA-3 showed that the combination of the three sites was required for full transcriptional activity of the IL-13 gene promoter. Finally we showed that this association of binding sites causes a very high sensitivity of the IL-13 gene promoter to small variations in the level of GATA-3 protein. Altogether, these results indicate an important role of GATA-3 in CD8 cytokine gene expression and demonstrate that a critical network of GATA binding sites highly modulates GATA-3 activity.
Collapse
Affiliation(s)
- Cecile Lavenu-Bombled
- Institut Cochen (INSERM, CNRS, Université Paris V), Département d'Hematologie, Maternite Port-Royal, 123 Bd de Port-Royal, 75014 Paris, France
| | | | | | | | | |
Collapse
|
17
|
Cambot M, Aresta S, Kahn-Perlès B, de Gunzburg J, Roméo PH. Human immune associated nucleotide 1: a member of a new guanosine triphosphatase family expressed in resting T and B cells. Blood 2002; 99:3293-301. [PMID: 11964296 DOI: 10.1182/blood.v99.9.3293] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TAL-1 is a basic helix-loop-helix oncoprotein that is expressed in up to 30% of T-cell acute lymphoblastic leukemias but not in the T lineage. We have cloned a complementary DNA, called Human Immune Associated Nucleotide 1 (hIAN1), whose messenger RNA (mRNA) level expression is inversely correlated to the TAL-1 mRNA level in human leukemic T-cell lines. The hIAN1 encodes a 38-kd protein that belongs to a novel family of proteins conserved from plants to humans and characterized by motifs related to, but highly divergent from, the consensus motifs found in guanosine triphosphate (GTP)-binding proteins. Despite these divergent amino acids at positions involved in GTP/guanosine diphosphate (GDP) binding and guanosine triphosphatase (GTPase) activities, we found that hIAN1 specifically binds GDP (K(d) = 0.47 microM) and GTP (K(d) = 6 microM) and exhibits intrinsic GTPase activity. Among mature hematopoietic cells, hIAN1 is specifically expressed in resting T and B lymphocytes, and its expression level tremendously decreased at the protein but not the mRNA level during B- or T-lymphocyte activation, suggesting a specific role for this new type of GTPase during the immune response.
Collapse
Affiliation(s)
- Marie Cambot
- Institut National de la Santé et de la Recherche Médicale U474, ICGM, Maternité Port-Royal, Paris, France
| | | | | | | | | |
Collapse
|
18
|
Beadling C, Cereseto A, Fan W, Naramura M, Smith KA. Cytokine response gene 8 (CR8) regulates the cell cycle G1-S phase transition and promotes cellular survival. Oncogene 2001; 20:1771-83. [PMID: 11313924 DOI: 10.1038/sj.onc.1204212] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2000] [Revised: 12/21/2000] [Accepted: 01/04/2001] [Indexed: 11/08/2022]
Abstract
Cellular proliferation and survival are modulated by the expression of specific genes. Cytokine response gene 8 (CR8), which was originally cloned as an IL-2-induced gene in human T lymphocytes, encodes a basic helix--loop--helix (bHLH) transcription factor. The CR8 gene product is highly conserved among human, mouse and rat, and contains sequence motifs that distinguish it from other bHLH families. The CR8 gene is ubiquitously expressed, and CR8 gene expression is induced by both growth-promoting as well as growth-inhibitory stimuli. As bHLH proteins have been found to regulate both the G1-S phase cell cycle transition, as well as cellular survival, the effects of CR8 on these processes were investigated. Ectopic CR8 expression in asynchronous U2OS cell cultures reduces the percentage of cells in the cell cycle S phase, and also slows the entry of G1-synchronized cells into S phase. The prolonged G1 interval correlates with impaired elevation of cyclin E protein and prolonged p21 protein expression in G1. CR8 expression also protects U2OS cells from serum-withdrawal induced apoptosis. These results indicate that CR8 is an important modulator of both the G1-S phase cell cycle transition, and cellular survival.
Collapse
Affiliation(s)
- C Beadling
- The Division of Immunology, Department of Medicine, The New York Presbyterian-Cornell Medical Center, 1300 York Avenue, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
19
|
Abstract
Chromosomal translocations involving transcription factors and aberrant expression of transcription factors are frequently associated with leukemogenesis. Transcription factors are essential in maintaining the regulation of cell growth, development, and differentiation in the hematopoietic system. Alterations in the mechanisms that normally control these functions can lead to hematological malignancies. Further characterization of the molecular biology of leukemia will enhance our ability to develop disease-specific treatment strategies, and to develop effective methods of diagnosis and prognosis.
Collapse
Affiliation(s)
- H N Crans
- Department of Pediatrics, UCLA School of Medicine and Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | | |
Collapse
|
20
|
Courtes C, Lecointe N, Le Cam L, Baudoin F, Sardet C, Mathieu-Mahul D. Erythroid-specific inhibition of the tal-1 intragenic promoter is due to binding of a repressor to a novel silencer. J Biol Chem 2000; 275:949-58. [PMID: 10625632 DOI: 10.1074/jbc.275.2.949] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The basic helix-loop-helix tal-1 gene plays a key role in hematopoiesis, and its expression is tightly controlled through alternative promoters and complex interactions of cis-acting regulatory elements. tal-1 is not expressed in normal T cells, but its transcription is constitutive in a large proportion of human T cell leukemias. We have previously described a downstream initiation of tal-1 transcription specifically associated with a subset of T cell leukemias that leads to the production of NH(2)-truncated TAL-1 proteins. In this study, we characterize the human promoter (promoter IV), embedded within a GC-rich region in exon IV, responsible for this transcriptional activity. The restriction of promoter IV usage is assured by a novel silencer element in the 3'-untranslated region of the human gene that represses its activity in erythroid but not in T cells. The silencer activity is mediated through binding of a tissue-specific nuclear factor to a novel protein recognition motif (designated tal-RE) in the silencer. Mutation of a single residue within the tal-RE abolishes both specific protein binding and silencing activity. Altogether, our results demonstrate that the tal-1 promoter IV is actively repressed in cells of the erythro-megakaryocytic lineage and that this repression is released in leukemic T cells, resulting in the expression of the tal-1 truncated transcript.
Collapse
Affiliation(s)
- C Courtes
- Institut de Génétique Moléculaire, UMR 5535, IFR 24, 1919 Route de Mende, F 34293, Montpellier, France
| | | | | | | | | | | |
Collapse
|
21
|
Barton LM, Göttgens B, Green AR. The stem cell leukaemia (SCL) gene: a critical regulator of haemopoietic and vascular development. Int J Biochem Cell Biol 1999; 31:1193-207. [PMID: 10582347 DOI: 10.1016/s1357-2725(99)00082-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- L M Barton
- Department of Haematology, University of Cambridge, MRC Centre, UK
| | | | | |
Collapse
|
22
|
Lassus P, Bertrand C, Zugasti O, Chambon JP, Soussi T, Mathieu-Mahul D, Hibner U. Anti-apoptotic activity of p53 maps to the COOH-terminal domain and is retained in a highly oncogenic natural mutant. Oncogene 1999; 18:4699-709. [PMID: 10467417 DOI: 10.1038/sj.onc.1202841] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The tumour suppressor p53 plays a complex role in the regulation of apoptosis. High levels of wild type p53 potentiate the apoptotic response, while physiological range, low levels of the protein have an anti-apoptotic activity in serum starved immortalized fibroblasts. Here we report that primary fibroblast-like cells that show normal growth control are also efficiently protected from apoptosis by the endogenous p53 activity. The capacity to inhibit apoptosis is not restricted to the wild type protein: the R-->H175 p53 mutant fully retains the anti-apoptotic activity of the wild type p53, providing a possible explanation for its high oncogenicity. Using a series of point and deletion mutants of p53 under the control of tetracycline-regulated promoter we show that certain mutants, like the wild type, protect cells at low levels but lead to apoptosis when overexpressed. This latter effect is lost upon deletion of a proline-rich domain in the NH2 part of the protein. The anti-apoptotic activity can be mapped to the extreme carboxy-terminal part of the protein and is therefore independent of other well characterized p53 activities. Our results add a new level of complexity to the network of interactions mediated by p53 in normal physiology and pathology.
Collapse
Affiliation(s)
- P Lassus
- Institut de Génétique Moléculaire, CNRS UMR 5535, 1919 route de Mende, 34293 Montpellier Cedex 5, France
| | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
|
25
|
Ferrier R, Nougarede R, Doucet S, Kahn-Perles B, Imbert J, Mathieu-Mahul D. Physical interaction of the bHLH LYL1 protein and NF-kappaB1 p105. Oncogene 1999; 18:995-1005. [PMID: 10023675 DOI: 10.1038/sj.onc.1202374] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The LYL1 gene was first identified upon the molecular characterization of the t(7;9)(q35;p13) translocation associated with some human T-cell acute leukemias (T-ALLs). In adult tissues, LYL1 expression is restricted to hematopoietic cells with the notable exclusion of the T cell lineage. LYL1 encodes a basic helix-loop-helix (bHLH) protein highly related to TAL-1, whose activation is also associated with a high proportion of human T-ALLs. A yeast two-hybrid system was used to identify proteins that specifically interact with LYL1 and might mediate its activities. We found that p105, the precursor of NF-kappaB1 p50, was the major LYL1-interacting protein in this system. The association between LYL1 and p105 was confirmed both in vitro and in vivo in mammalian cells. Biochemical studies indicated that the interaction was mediated by the bHLH motif of LYL1 and the ankyrin-like motifs of p105. Ectopic expression of LYL1 in a human T cell line caused a significant decrease in NF-kappaB-dependent transcription, associated with a reduced level of NF-kappaB1 proteins.
Collapse
Affiliation(s)
- R Ferrier
- Institut de Génétique Moléculaire, UMR 5535, Montpellier, France
| | | | | | | | | | | |
Collapse
|
26
|
Bockamp EO, Fordham JL, Göttgens B, Murrell AM, Sanchez MJ, Green AR. Transcriptional regulation of the stem cell leukemia gene by PU.1 and Elf-1. J Biol Chem 1998; 273:29032-42. [PMID: 9786909 DOI: 10.1074/jbc.273.44.29032] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The SCL gene, also known as tal-1, encodes a basic helix-loop-helix transcription factor that is pivotal for the normal development of all hematopoietic lineages. SCL is expressed in committed erythroid, mast, and megakaryocytic cells as well as in hematopoietic stem cells. Nothing is known about the regulation of SCL transcription in mast cells, and in other lineages GATA-1 is the only tissue-specific transcription factor recognized to regulate the SCL gene. We have therefore analyzed the molecular mechanisms underlying SCL expression in mast cells. In this paper, we demonstrate that SCL promoter 1a was regulated by GATA-1 together with Sp1 and Sp3 in a manner similar to the situation in erythroid cells. However, SCL promoter 1b was strongly active in mast cells, in marked contrast to the situation in erythroid cells. Full activity of promoter 1b was dependent on ETS and Sp1/3 motifs. Transcription factors PU.1, Elf-1, Sp1, and Sp3 were all present in mast cell extracts, bound to promoter 1b and transactivated promoter 1b reporter constructs. These data provide the first evidence that the SCL gene is a direct target for PU.1, Elf-1, and Sp3.
Collapse
Affiliation(s)
- E O Bockamp
- University of Cambridge, Department of Haematology, Medical Research Council Centre, Hills Road, Cambridge CB2 2QH, United Kingdom
| | | | | | | | | | | |
Collapse
|
27
|
Krosl G, He G, Lefrancois M, Charron F, Roméo PH, Jolicoeur P, Kirsch IR, Nemer M, Hoang T. Transcription factor SCL is required for c-kit expression and c-Kit function in hemopoietic cells. J Exp Med 1998; 188:439-50. [PMID: 9687522 PMCID: PMC2212476 DOI: 10.1084/jem.188.3.439] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In normal hemopoietic cells that are dependent on specific growth factors for cell survival, the expression of the basic helix-loop-helix transcription factor SCL/Tal1 correlates with that of c-Kit, the receptor for Steel factor (SF) or stem cell factor. To address the possibility that SCL may function upstream of c-kit, we sought to modulate endogenous SCL function in the CD34(+) hemopoietic cell line TF-1, which requires SF, granulocyte/macrophage colony-stimulating factor, or interleukin 3 for survival. Ectopic expression of an antisense SCL cDNA (as-SCL) or a dominant negative SCL (dn-SCL) in these cells impaired SCL DNA binding activity, and prevented the suppression of apoptosis by SF only, indicating that SCL is required for c-Kit-dependent cell survival. Consistent with the lack of response to SF, the level of c-kit mRNA and c-Kit protein was significantly and specifically reduced in as-SCL- or dn-SCL- expressing cells. c-kit mRNA, c-kit promoter activity, and the response to SF were rescued by SCL overexpression in the antisense or dn-SCL transfectants. Furthermore, ectopic c-kit expression in as-SCL transfectants is sufficient to restore cell survival in response to SF. Finally, enforced SCL in the pro-B cell line Ba/F3, which is both SCL and c-kit negative is sufficient to induce c-Kit and SF responsiveness. Together, these results indicate that c-kit, a gene that is essential for the survival of primitive hemopoietic cells, is a downstream target of the transcription factor SCL.
Collapse
Affiliation(s)
- G Krosl
- Clinical Research Institute of Montreal, Montréal, Quebec H2W 1R7, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Delabesse E, Bernard M, Meyer V, Smit L, Pulford K, Cayuela JM, Ritz J, Bourquelot P, Strominger JL, Valensi F, Macintyre EA. TAL1 expression does not occur in the majority of T-ALL blasts. Br J Haematol 1998; 102:449-57. [PMID: 9695959 DOI: 10.1046/j.1365-2141.1998.00807.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The TAL1 gene is disrupted by translocation or deletion (tal(d)) in up to 30% of T-cell acute lymphoblastic leukaemia (T-ALL), leading to aberrant transcriptional activation, as a SIL-TAL1 fused transcript in tal(d). It has been suggested that TAL1 transcription occurs in approximately 50% of a T-ALLs without apparent rearrangement. SIL-TAL1 was positive in 15/60 (25%) of T-ALL, whereas wild-type TAL1 transcripts were detected in all 13 SIL-TAL1 and in 19/43 (44%) T-ALL without SIL-TAL1. To investigate the cellular origin of TAL1 we exploited the fact that GATA1 and TAL1 are co-ordinately expressed in non-lymphoid haemopoietic cells, whereas only the latter is found in T-ALL. GATA1 was detected in 10/23 (43%) TAL1-negative T-ALLs but in 17/19 (89%) 'unexplained' TAL1-positive cases, suggesting a common non-lymphoid cellular origin. Immunocytochemical analysis with a TAL1-specific monoclonal antibody showed nuclear expression in the blasts of 10/34 (29%) cases, including 8/10 SIL-TAL1+ and two RT-PCR TAL1+, SIL-TAL1- cases. In the remaining cases TAL1 expression was restricted to a minor population (< 5%) of larger, strongly TAL1-positive cells which comprised erythroid cells, CD34+ CD3- precursors and an unidentified TAL1+ CD45- population which morphologically resembled monocytes/macrophages. We therefore suggest that appropriate diagnostic evaluation of T-ALL should include molecular detection of SIL-TAL1 transcripts and in situ immunocytochemical detection of TAL1 protein expression by leukaemic blasts. This approach will enable accurate analysis of the prognostic significance of TAL1 deregulation in T-ALL.
Collapse
Affiliation(s)
- E Delabesse
- CNRS URA 1461 and Department of Haematology, CHU Necker-Enfants Malades and Université Paris V, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Enhanced Megakaryocyte and Erythroid Development From Normal Human CD34+ Cells: Consequence of Enforced Expression of SCL. Blood 1998. [DOI: 10.1182/blood.v91.10.3756.3756_3756_3765] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The product of the SCL gene is a basic helix-loop-helix (bHLH) transcription factor that is essential for the development of hematopoietic stem cells in both the embryo and the adult. However, once the stem cell compartment is established, the function of SCL in subsequent differentiation and commitment events within normal hematopoietic cells remains undefined. The aim of the current study was to investigate this role using purified normal human hematopoietic CD34+ cells. An SCL retrovirus was used to transduce CD34+ cells isolated from human bone marrow, peripheral blood, and umbilical cord blood. Enforced expression of SCL increased by a median of twofold the number of erythroid colonies, with an increase in both colony size and the rate of hemoglobinization. Unexpectedly, enforced expression in CD34+ cells also significantly increased the number of megakaryocyte colonies, but with no impact on the size of colonies. There was no consistent effect on the number nor size of granulocyte-macrophage (GM) colonies. The proliferative effect of enforced SCL expression on erythroid cells was attributed to a shortened cell cycle time; the self-renewal capacity of erythroid or GM progenitors was unchanged, as was survival of cells within colonies. These results demonstrate a role for SCL in determining erythroid and megakaryocyte differentiation from normal human hematopoietic CD34+ cells.
Collapse
|
30
|
Enhanced Megakaryocyte and Erythroid Development From Normal Human CD34+ Cells: Consequence of Enforced Expression of SCL. Blood 1998. [DOI: 10.1182/blood.v91.10.3756] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe product of the SCL gene is a basic helix-loop-helix (bHLH) transcription factor that is essential for the development of hematopoietic stem cells in both the embryo and the adult. However, once the stem cell compartment is established, the function of SCL in subsequent differentiation and commitment events within normal hematopoietic cells remains undefined. The aim of the current study was to investigate this role using purified normal human hematopoietic CD34+ cells. An SCL retrovirus was used to transduce CD34+ cells isolated from human bone marrow, peripheral blood, and umbilical cord blood. Enforced expression of SCL increased by a median of twofold the number of erythroid colonies, with an increase in both colony size and the rate of hemoglobinization. Unexpectedly, enforced expression in CD34+ cells also significantly increased the number of megakaryocyte colonies, but with no impact on the size of colonies. There was no consistent effect on the number nor size of granulocyte-macrophage (GM) colonies. The proliferative effect of enforced SCL expression on erythroid cells was attributed to a shortened cell cycle time; the self-renewal capacity of erythroid or GM progenitors was unchanged, as was survival of cells within colonies. These results demonstrate a role for SCL in determining erythroid and megakaryocyte differentiation from normal human hematopoietic CD34+ cells.
Collapse
|
31
|
Park ST, Sun XH. The Tal1 oncoprotein inhibits E47-mediated transcription. Mechanism of inhibition. J Biol Chem 1998; 273:7030-7. [PMID: 9507011 DOI: 10.1074/jbc.273.12.7030] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Tal1 oncogene is a class II basic helix-loop-helix (bHLH) transcription factor, overexpressed in as much as 60% of T cell acute lymphoblastic leukemia cases. Like other class II bHLH proteins, Tal1 can heterodimerize with the class I bHLH proteins, such as E47, and bind to a DNA recognition sequence termed E box. Therefore, it is believed that the oncogenic capacity of Tal1 lies in its ability, as a heterodimer with E47, to activate aberrantly a set of "leukemogenic" genes in T cells. However, compared with E47 homodimers, Tal1/E47 heterodimers are very poor transactivators. Thus the effect of Tal1 is actually to inhibit E47 homodimer activity. Here we propose that the transforming properties of Tal1 are the result of its ability to inhibit E47 activity. We address the mechanism of Tal1 inhibition and demonstrate that Tal1/E47 heterodimers cannot activate transcription because their respective activation domains are incompatible. Furthermore, we present data showing that Tal1 can inhibit E47-mediated activation of the CIP1 gene. Finally, we demonstrate that Tal1 inhibits E47 activity in leukemic T cells.
Collapse
Affiliation(s)
- S T Park
- Department of Cell Biology, New York University Medical Center, New York, New York 10016, USA
| | | |
Collapse
|
32
|
Göttgens B, Gilbert JG, Barton LM, Aparicio S, Hawker K, Mistry S, Vaudin M, King A, Bentley D, Elgar G, Green AR. The pufferfish SLP-1 gene, a new member of the SCL/TAL-1 family of transcription factors. Genomics 1998; 48:52-62. [PMID: 9503016 DOI: 10.1006/geno.1997.5162] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The SCL/TAL-1 gene encodes a basic helix-loop-helix (bHLH) transcription factor essential for the development of all hemopoietic lineages and also acts as a T-cell oncogene. Four related genes have been described in mammals (LYL-1, TAL-2, NSCL1, and NSCL2), all of which exhibit a high degree of sequence similarity to SCL/TAL-1 in the bHLH domain and two of which (LYL-1 and TAL-2) have also been implicated in the pathogenesis of T-cell acute lymphoblastic leukemia. In this study we describe the identification and characterization of a pufferfish gene termed SLP-1, which represents a new member of this gene family. The genomic structure and sequence of SLP-1 suggests that it forms a subfamily with SCL/TAL-1 and LYL-1 and is most closely related to SCL/TAL-1. However, unlike SCL/TAL-1, SLP-1 is widely expressed. Sequence analysis of a whole cosmid containing SLP-1 shows that SLP-1 is flanked upstream by a zinc finger gene and a fork-head-domain gene and downstream by a heme-oxygenase and a RING finger gene.
Collapse
Affiliation(s)
- B Göttgens
- Department of Haematology, MRC Centre, University of Cambridge, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
This article highlights recent advances in the molecular structure and function of proteins that are activated or created by chromosomal abnormalities and discusses their possible role in tumor development. The molecular characterization of these proteins has revealed that tumor-specific fusion proteins are the consequence of most chromosome translocations associated with leukemias and solid tumors. An emerging common theme is that creation of these proteins disrupts the normal development of tumor-specific target cells by blocking apoptosis. These insights identify these chromosomal translocation-associated genes as potential targets for improved cancer therapies.
Collapse
Affiliation(s)
- I Sánchez-García
- Departamento de Diferenciación y Proliferación Celular, CSIC/Universidad de Salamanca, Spain.
| |
Collapse
|
34
|
Grépin C, Nemer G, Nemer M. Enhanced cardiogenesis in embryonic stem cells overexpressing the GATA-4 transcription factor. Development 1997; 124:2387-95. [PMID: 9199365 DOI: 10.1242/dev.124.12.2387] [Citation(s) in RCA: 192] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
GATA-4 is a cardiac-specific member of the GATA family of zinc finger transcription factors. During embryogenesis, GATA-4 expression is detected very early in the cardiogenic area and persists later in the developing heart. Studies have shown that GATA-4 is a potent transcriptional activator of several cardiac muscle-specific genes and a key regulator of the cardiomyocyte gene program. Consistent with a role for GATA-4 in cardiomyocyte formation, inhibition of GATA-4 expression by antisense transcripts interferes with expression of cardiac muscle genes and blocks development of beating cardiomyocytes in P19 embryonic stem cells. In order to better define the function of GATA-4 in cardiogenesis, we have carried out molecular analysis of early stages of cardiomyocyte differentiation in GATA-4-deficient P19 cell lines and in P19 cells stably overexpressing GATA-4. The results indicate that GATA-4 is not required for either endodermal or mesodermal commitment or for initiation of the cardiac pathway. However, in the absence of GATA-4, differentiation is blocked at the precardiac (cardioblasts) stage and cells are lost through extensive apoptosis. In contrast, ectopic expression of GATA-4 in P19 cells accelerates cardiogenesis and markedly increases (over 10-fold) the number of terminally differentiated beating cardiomyocytes following cell aggregation. Together, these findings suggest that, in addition to its role in activation of the cardiac genetic program, GATA-4 may be the nuclear target of inductive and/or survival factors for precardiac cells.
Collapse
Affiliation(s)
- C Grépin
- Laboratoire de développement et différenciation cardiaques, Institut de recherches cliniques de Montréal, Université de Montréal, Quebec, Canada
| | | | | |
Collapse
|
35
|
Bockamp EO, McLaughlin F, Göttgens B, Murrell AM, Elefanty AG, Green AR. Distinct mechanisms direct SCL/tal-1 expression in erythroid cells and CD34 positive primitive myeloid cells. J Biol Chem 1997; 272:8781-90. [PMID: 9079714 DOI: 10.1074/jbc.272.13.8781] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The SCL/tal-1 gene (hereafter designated SCL) encodes a basic helix-loop-helix transcription factor which is pivotal for the normal development of all hematopoietic lineages and which is expressed in committed erythroid, mast, and megakaryocytic cells as well as in hematopoietic stem cells. The molecular basis for expression of SCL in stem cells and its subsequent modulation during lineage commitment is of fundamental importance for understanding how early "decisions" are made during hematopoiesis. We now compare the activity of SCL promoters 1a and 1b in erythroid cells and in CD34 positive primitive myeloid cells. SCL mRNA expression in CD34 positive myeloid cells did not require GATA-1. Promoter 1a activity was weak or absent in CD34 positive myeloid cells and appeared to correlate with the presence or absence of low levels of GATA-1. However, promoter 1b, which was silent in committed erythroid cells, was strongly active in transient assays using CD34 positive myeloid cells, and functioned in a GATA-independent manner. Interestingly, RNase protection assays demonstrated that endogenous promoter 1b was active in both erythroid and CD34 positive myeloid cells. These results demonstrate that fundamentally different mechanisms regulate the SCL promoter region in committed erythroid cells and in CD34 positive myeloid cells. Moreover these observations suggest that in erythroid, but not in CD34 positive myeloid cells, promoter 1b required integration in chromatin and/or additional sequences for its activity. Stable transfection experiments showed that both core promoters were silent following integration in erythroid or CD34 positive myeloid cells. Our data therefore indicate that additional regulatory elements were necessary for both SCL promoters to overcome chromatin-mediated repression.
Collapse
Affiliation(s)
- E O Bockamp
- University of Cambridge, Department of Haematology, Medical Research Council Centre, Hills Road, Cambridge CB2 2QH, United Kingdom
| | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Abstract
Significant advances have been made in the past year in understanding hematopoietic development. Recent studies have clarified the origin and migration of stem cells in early embryos, established potential roles for homeodomain proteins in controlling the proliferation of progenitor cells and in patterning ventral mesoderm, and demonstrated the effects of nuclear proteins on lineage programming and apoptosis.
Collapse
Affiliation(s)
- S H Orkin
- Howard Hughes Medical Institute, Division of Hematology, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
38
|
Lassus P, Ferlin M, Piette J, Hibner U. Anti-apoptotic activity of low levels of wild-type p53. EMBO J 1996; 15:4566-73. [PMID: 8887548 PMCID: PMC452186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Induction of apoptosis is a function of both an external stimulus and the physiology of the cell, which includes the expression of multiple oncogenes and tumor suppressors. Here we have studied the apoptotic response of immortalized mouse fibroblasts to serum withdrawal. We show that, in addition to the p53-independent apoptosis observed in p53- cells, overexpression of wild-type p53 tumor suppressor results in a high rate of programmed cell death. However, physiological range, low levels of the p53 protein protect fibroblasts from induction of apoptosis. Our results indicate that, as a function of its dose, the wild-type p53 can either protect from death or promote apoptosis. This new, anti-apoptotic, activity of p53 may have implications for the understanding of the role played by p53 in embryonic development as well as in initial stages of oncogenesis.
Collapse
Affiliation(s)
- P Lassus
- Institut de Génétique Moléculaire, CNRS UMR 5535, Montpellier, France
| | | | | | | |
Collapse
|