1
|
Zhang C, Li J, An H, Wu X, Wu Y, Long Y, Li R, Xing D. Enhanced elimination of dimethachlon from soils using a novel strain Brevundimonas naejangsanensis J3. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 255:109848. [PMID: 31756580 DOI: 10.1016/j.jenvman.2019.109848] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/08/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
Dimethachlon is a hazardous xenobiotic which poses a potential risk on the ecosystem and human health after foliar spray for mitigating fungal diseases of crops. A novel dimethachlon-degrading strain was isolated and identified as Brevundimonas naejangsanensis J3. Free cells and enzymes of this strain could rapidly eliminate 75 mg/L dimethachlon in liquid medium, especially the latter (>90% of degradation efficiency). Strain J3 completely metabolized dimethachlon by an ideally transformed pathway. Immobilization cells and enzymes exhibited better stability and adaptability for the repeated use, as compared with free cells and enzymes. In laboratory, 68.03 and 65.13%, or 82.67 and 95.41% of dimethachlon were eliminated from non-sterile soils by free or immobilized cells and enzymes within 7 d, respectively. Under the field condition, 95.78 and 98.01% of 20.250 kg a.i./ha dimethachlon wettable powder from soils were degraded by immobilized cells and enzymes in 9 d respectively, which were significant higher than the degradation efficiencies of free cells and enzymes (78.81 and 67.25%). This study highlights immobilized cells and enzymes from strain J3 can be applicable for bioremediating dimethachlon-contaminated soils.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Agricultural Equipment and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; Institute of Crop Protection, Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, China; Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, 550081, China
| | - Jiaohong Li
- Institute of Crop Protection, Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Huaming An
- Institute of Crop Protection, Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Xiaomao Wu
- Institute of Crop Protection, Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, China.
| | - Yanyou Wu
- Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, 550081, China.
| | - Youhua Long
- Institute of Crop Protection, Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Rongyu Li
- Institute of Crop Protection, Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Deke Xing
- College of Agricultural Equipment and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
2
|
Rankin GO. Nephrotoxicity induced by C- and N-arylsuccinimides. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2004; 7:399-416. [PMID: 15371242 DOI: 10.1080/10937400490486113] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The succinimide ring is incorporated into hundreds of compounds that are widely used as agricultural, industrial, and pharmaceutical agents. Some succinimide derivatives that contain an aryl group on the ethylene bridge of the succinimide ring (C-arylsuccinimides) or on the nitrogen atom (N-arylsuccinimides) induce nephrotoxicity in humans and/or laboratory animals. Acute toxicity induced by this general class of compounds is typically characterized as polyuric renal failure, while chronic nephrotoxicity is seen as chronic interstitial nephritis. In this review, the structure-nephrotoxicity relationships, biotransformation, and mechanisms of nephrotoxicity for the C- and N-arylsuccinimides are examined.
Collapse
Affiliation(s)
- Gary O Rankin
- Department of Pharmacology, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia 25704-9388, USA.
| |
Collapse
|
3
|
Kennedy EL, Tchao R, Harvison PJ. Nephrotoxic and hepatotoxic potential of imidazolidinedione-, oxazolidinedione- and thiazolidinedione-containing analogues of N-(3,5-dichlorophenyl)succinimide (NDPS) in Fischer 344 rats. Toxicology 2003; 186:79-91. [PMID: 12604172 DOI: 10.1016/s0300-483x(02)00692-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Nephrotoxicity of the agricultural fungicide N-(3,5-dichlorophenyl)succinimide (NDPS) in rats is believed to involve metabolism on the succinimide ring. To further investigate this hypothesis, we synthesized and tested the following NDPS analogues, which contain other cyclic imide rings and may therefore be metabolized differently than NDPS: 3-(3,5-dichlorophenyl)-2,4-oxazolidinedione (DCPO), 3-(3,5-dichlorophenyl)-2,4-imidazolidinedione (DCPI), 3-(3,5-dichlorophenyl)-1-methyl-2,4-imidazolidinedione (DCPM) and 3-(3,5-dichlorophenyl)-2,4-thiazolidinedione (DCPT). Male Fischer 344 rats were administered DCPO, DCPI, DCPM, DCPT (0.6 or 1.0 mmol/kg, i.p. in corn oil), NDPS (0.6 mmol/kg, i.p. in corn oil) or corn oil (4 ml/kg). As evidenced by diuresis, proteinuria, elevated blood urea nitrogen levels, increased kidney weights and proximal tubular damage, NDPS produced severe nephrotoxicity in the rats. In contrast, DCPO, DCPI, DCPM and DCPT were mild nephrotoxicants. None of the compounds elevated serum alanine transferase activity or liver weights in the rats, however DCPT produced centrilobular necrosis. These experiments confirm that NDPS-induced nephrotoxicity is critically dependent on the presence of the succinimide ring. Furthermore, replacement of the succinimide ring with a thiazolidinedione ring produced a more pronounced effect on the liver than on the kidney. Liver damage has been reported in type II diabetic patients taking troglitazone, rosiglitazone and pioglitazone. Since these compounds also contain a thiazolidinedione ring, DCPT may be useful for investigating the role of this structural feature in hepatotoxicity.
Collapse
Affiliation(s)
- Erica L Kennedy
- Department of Pharmaceutical Sciences, University of the Sciences in Philadelphia, 600 South Forty-Third Street, Philadelphia, PA 19104-4495, USA
| | | | | |
Collapse
|
4
|
Hubbard JL, Noe O, Egermayer M, Hong SK, Anestis DK, Valentovic MA, Ball JG, Brown PI, Rankin GO. Nephrotoxic potential of N-(3,5-dichloro-4-fluorophenyl)succinimide in Fischer 344 rats: comparison with N-(3,4,5-trichlorophenyl)succinimide. Toxicology 1999; 132:127-37. [PMID: 10433376 DOI: 10.1016/s0300-483x(98)00145-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Numerous structure-nephrotoxicity relationship studies from our laboratory have demonstrated that N-(3,5-dichlorophenyl)succinimide (NDPS) is one of the most potent nephrotoxicants among the N-arylsuccinimides. The purpose of this study was to extend our previous structure-nephrotoxicity relationship studies by examining the effect of addition of a fluoro verses a chloro group at the 4-phenyl position in NDPS. Male Fischer 344 rats (four rats/group) received a single intraperitoneal (i.p.) injection of N-(3,5-dichloro-4-fluorophenyl)succinimide (NDCFPS) or N-(3,4,5-trichlorophenyl)succinimide (NTCPS)(0.4 or 0.8 mmol/kg) or vehicle, and renal function monitored at 24 and 48 h. NDCFPS did not induce significant nephrotoxicity at either dose tested. In contrast, NTCPS (0.4 or 0.8 mmol/kg) induced marked nephrotoxicity characterized by diuresis, increased proteinuria, glucosuria, elevated kidney weight and increased blood urea nitrogen (BUN) concentration. NTCPS also induced marked proximal tubular necrosis at both doses tested. Neither NDCFPS nor NTCPS induced hepatotoxicity at either dose tested. The results of these experiments indicate that addition of a fluoro group at the 4-position on the phenyl ring of NDPS produces a nonnephrotoxicant NDPS derivative (NDCFPS), while addition of a chloro group at this site produces an NDPS derivative with similar nephrotoxic potential to NDPS. The mechanism for this differential effect between 4-halophenyl substitution is unclear, but may result from increased hydrolysis of the succinimide ring and/or increased clearance of N-arylsuccinimide metabolites when a fluoro group is added to the 4-position of the phenyl ring.
Collapse
Affiliation(s)
- J L Hubbard
- Department of Chemistry, Marshall University, Huntington, WV 25755, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Kellner-Weibel GL, Nyarko AK, Tchao R, Henesey CM, Harvison PJ. The effect of aromatic fluorine substitution on the nephrotoxicity and metabolism of N-(3,5-dichlorophenyl)succinimide in Fischer 344 rats. Toxicology 1997; 117:73-83. [PMID: 9020201 DOI: 10.1016/s0300-483x(96)03556-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
N-(3,5-Difluorophenyl)succinimide (DFPS) is a non-toxic analogue of the nephrotoxic fungicide N-(3,5-dichlorophenyl)succinimide (NDPS). Although NDPS must be metabolized to produce renal damage, the metabolic fate of DFPS is unknown. These studies were therefore designed to examine the nephrotoxic potential of putative DFPS metabolites and to determine if DFPS is metabolized differently from NDPS. Male Fischer-344 rats were administered (1.0 mmol/kg. i.p. in corn oil) DFPS, N-(3,5-difluorophenyl)succinamic acid (DFPSA), N-(3,5-difluorophenyl)-2-hydroxysuccinimide (DFHS), N-(3,5-difluorophenyl)-2- or -3-hydroxysuccinamic acids (2- and 3-DFHSA, respectively), N-(3,5-difluoro-4-hydroxyphenyl)succinimide (DFHPS). N-(3,5-difluoro-4-hydroxyphenyl) succinamic acid (DFHPSA) or corn oil only (1.2 ml/kg). Although some of the compounds produced changes in renal function and histology, these alterations were not indicative of irreversible kidney damage. DFPSA, 2-DFHSA, 3-DFHSA and DFHPSA were detected in the urine of rats 3 h after administration of 0.2 mmol/kg [14C]DFPS. The same metabolites were produced by isolated rat hepatocytes, but not by renal proximal tubule cells. Formation of the oxidative metabolites in vitro was prevented by the cytochrome P450 inhibitor 1-aminobenzotriazole. It appears that DFPS undergoes hepatic biotransformation similar to NDPS and that some of its metabolites have reversible effects on renal proximal tubules.
Collapse
Affiliation(s)
- G L Kellner-Weibel
- Department of Chemistry, Philadelphia College of Pharmacy and Science, PA 19104-4495, USA
| | | | | | | | | |
Collapse
|