1
|
Xuan L, Guo J, Xia D, Li L, Wang D, Chang Y. Albicanol antagonizes PFF-induced mitochondrial damage and reduces inflammatory factors by regulating innate immunity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115014. [PMID: 37196524 DOI: 10.1016/j.ecoenv.2023.115014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
As an environmental pollutant, profenofos (PFF) can seriously endanger human health through the food chain. Albicanol is a sesquiterpene compound with antioxidant, anti-inflammatory, and anti-aging properties. Previous studies have shown that Albicanol can antagonize apoptosis and genotoxicity caused by PFF exposure. However, the toxicity mechanism of PFF regulating hepatocyte immune function, apoptosis, and programmed necrosis and the role of Albicanol in this process have not been reported yet. In this study, grass carp hepatocytes (L8824) were treated with PFF (200 μM) or combined with Albicanol (5 ×10-5 μg mL-1) for 24 h to establish an experimental model. The results of JC-1 probe staining and Fluo-3 AM probe staining showed increased free calcium ions and decreased mitochondrial membrane potential in L8824 cells after PFF exposure, suggesting that PFF exposure may lead to mitochondrial damage. Real-time quantitative PCR and Western blot results showed that PFF exposure could increase the transcription of innate immunity-related factors (C3, Pardaxin 1, Hepcidin, INF-γ, IL-8, and IL-1β) in L8824 cells. PFF up-regulated the TNF/NF-κB signaling pathway and the expression of caspase-3, caspase-9, Bax, MLKL, RIPK1, and RIPK3 and down-regulated the expression of Caspase-8 and Bcl-2. Albicanol can antagonize the above-mentioned effects caused by PFF exposure. In conclusion, Albicanol antagonized the mitochondrial damage, apoptosis, and necroptosis of grass carp hepatocytes caused by PFF exposure by inhibiting the TNF/NF-κB pathway in innate immunity.
Collapse
Affiliation(s)
- Lihui Xuan
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jinming Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Dexin Xia
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Lu Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Daining Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Ying Chang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
2
|
Prathiksha J, Narasimhamurthy RK, Dsouza HS, Mumbrekar KD. Organophosphate pesticide-induced toxicity through DNA damage and DNA repair mechanisms. Mol Biol Rep 2023; 50:5465-5479. [PMID: 37155010 DOI: 10.1007/s11033-023-08424-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 04/04/2023] [Indexed: 05/10/2023]
Abstract
Organophosphate pesticides (OPs) are widely used in agriculture, healthcare, and other industries due to their ability to kill pests. However, OPs can also have genotoxic effects on humans who are exposed to them. This review summarizes the research on DNA damage caused by OPs, the mechanisms behind this damage, and the resulting cellular effects. Even at low doses, OPs have been shown to damage DNA and cause cellular dysfunction. Common phenomena seen in cells that are exposed to OPs include the formation of DNA adducts and lesions, single-strand and double-strand DNA breaks, and DNA and protein inter and intra-cross-links. The present review will aid in comprehending the extent of genetic damage and the impact on DNA repair pathways caused by acute or chronic exposure to OPs. Additionally, understanding the mechanisms of the effects of OPs will aid in correlating them with various diseases, including cancer, Alzheimer's, and Parkinson's disease. Overall, knowledge of the potential adverse effects of different OPs will help in monitoring the health complications they may cause.
Collapse
Affiliation(s)
- Joyline Prathiksha
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Rekha K Narasimhamurthy
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Herman Sunil Dsouza
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kamalesh D Mumbrekar
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
3
|
Li H, Cong X, Yu W, Jiang Z, Fu K, Cao R, Tian W, Feng Y. Baicalin inhibits oxidative injures of mouse uterine tissue induced by acute heat stress through activating the Keap1/Nrf2 signaling pathway. Res Vet Sci 2022; 152:717-725. [PMID: 36270181 DOI: 10.1016/j.rvsc.2022.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 09/16/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
Abstract
Heat stress effect the physiological functions of body, and reproductive system is one of the most sensitive. It's imperative to find out suitable measures to alleviate harmful effects of heat stress. Baicalin is well-known with its antioxidative property. To examine whether Baicalin could reduce oxidative injures of uterine tissue in heat-stressed mice. The mice were divided into four groups: control (Con), Baicalin (Bai), heat stress (H) and heat stress plus Baicalin (H + Bai). The oxidative damage of uterine tissue was detected by ELISA, H&E staining, tunnel assay and immunohistochemical staining. The protein/mRNA expressions of Keap1/Nrf2 related factors were detected by Western blot or QPCR. The results showed that mice heat-stressed at 41 °C for 2 h induced macroscopic changes, significantly increased MDA content and reduced activities of antioxidant enzymes including SOD, CAT and GSH-Px of the uterine tissue. Compared with Con group, heat stress up-regulated caspase-3 and caspase-9, enhanced the apoptosis of endometrial epithelial and glandular epithelial cells, improved the HO-1 mRNA/protein and NQO1 protein expressions, while down-regulated the mRNA/protein of Keap1. Compared with H group, antioxidant enzyme activities, Nrf2 protein and Nrf2, NQO1 and GCLC mRNA expressions were significantly increased in the H + Bai group. While the uterine epithelial cells apoptosis, MDA contents, caspase-3, caspase-9 and Keap1 protein and HO-1 mRNA expressions were decreased in the H + Bai group of mice compared with that in H group. Briefly, acute heat stress causes oxidative injures and apoptosis of mouse uterine tissue and Baicalin protects uterine tissue from the damages possibly through Keap1/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Huatao Li
- Laboratory of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, 266109 Qingdao, China
| | - Xia Cong
- Laboratory of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, 266109 Qingdao, China
| | - Wenhui Yu
- Laboratory of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, 266109 Qingdao, China
| | - Zhongling Jiang
- Laboratory of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, 266109 Qingdao, China
| | - Kaiqiang Fu
- Laboratory of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, 266109 Qingdao, China
| | - Rongfeng Cao
- Laboratory of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, 266109 Qingdao, China
| | - Wenru Tian
- Laboratory of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, 266109 Qingdao, China.
| | - Yanni Feng
- Laboratory of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, 266109 Qingdao, China.
| |
Collapse
|
4
|
Antony A, Olakkaran S, Purayil AK, Shekh S, Gowd KH, Gurushankara HP. Antitumor activity of Tigerinin-1: Necroptosis mediates toxicity in A549 cells. Biochim Biophys Acta Gen Subj 2022; 1866:130182. [DOI: 10.1016/j.bbagen.2022.130182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
|
5
|
Lihui X, Xiaojie Q, Hao Y, Jialiang C, Jinming G, Ying C. Albicanol modulates oxidative stress and the p53 axis to suppress profenofos induced genotoxicity in grass carp hepatocytes. FISH & SHELLFISH IMMUNOLOGY 2022; 122:325-333. [PMID: 35143987 DOI: 10.1016/j.fsi.2022.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/23/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
The organophosphorus pesticide profenofos (PFF) is widely used as an environmental contaminant, and it can remain in water bodies causing serious harm to aquatic organisms. Albicanol is a sesquiterpenoid with potent antioxidant and antagonistic activities against heavy metal toxicity. However, the mechanism of PFF induced genotoxicity in fish hepatocytes and the role Albicanol can play in this process are unknown. In this study, the model was established by treating grass carp hepatocytes with PFF (150 μM) and/or Albicanol (5 × 10-5 μg mL-1) for 24 h. The results showed that PFF exposure arrested L8824 cells in the G1-S phase. PFF caused the increase of MDA level in L8824 cells, while the decrease of SOD, CAT and T-AOC levels caused oxidative stress. Elevated levels of γH2AX, tail moment, tail length, % DNA and 8-OHdG indicated that PFF caused DNA damage in L8824 cells. PFF inhibited the expression levels of cell cycle related regulatory genes (cyclin A, cyclin D, cyclin E, CDK2 and CDK4) by upregulating p53/p21 genes and activating the p53 signaling pathway. Albicanol was used to significantly reduce the above effects caused by PFF exposure on hepatocytes in grass carp. Albicanol could reduce the increase in the proportion of cells in the G1-S phase caused by PFF. In summary, Albicanol could inhibit the genotoxicity of L8824 cells resulted from PFF exposure by decreasing oxidative stress and the p53 pathway.
Collapse
Affiliation(s)
- Xuan Lihui
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Qiu Xiaojie
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yu Hao
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Chu Jialiang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Guo Jinming
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Chang Ying
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
6
|
Sule RO, Condon L, Gomes AV. A Common Feature of Pesticides: Oxidative Stress-The Role of Oxidative Stress in Pesticide-Induced Toxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5563759. [PMID: 35096268 PMCID: PMC8791758 DOI: 10.1155/2022/5563759] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 12/17/2021] [Indexed: 12/16/2022]
Abstract
Pesticides are important chemicals or biological agents that deter or kill pests. The use of pesticides has continued to increase as it is still considered the most effective method to reduce pests and increase crop growth. However, pesticides have other consequences, including potential toxicity to humans and wildlife. Pesticides have been associated with increased risk of cardiovascular disease, cancer, and birth defects. Labels on pesticides also suggest limiting exposure to these hazardous chemicals. Based on experimental evidence, various types of pesticides all seem to have a common effect, the induction of oxidative stress in different cell types and animal models. Pesticide-induced oxidative stress is caused by both reactive oxygen species (ROS) and reactive nitrogen species (RNS), which are associated with several diseases including cancer, inflammation, and cardiovascular and neurodegenerative diseases. ROS and RNS can activate at least five independent signaling pathways including mitochondrial-induced apoptosis. Limited in vitro studies also suggest that exogenous antioxidants can reduce or prevent the deleterious effects of pesticides.
Collapse
Affiliation(s)
- Rasheed O. Sule
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, USA
| | - Liam Condon
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, USA
| | - Aldrin V. Gomes
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, USA
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
7
|
Lihui X, Jinming G, Yalin G, Hemeng W, Hao W, Ying C. Albicanol inhibits the toxicity of profenofos to grass carp hepatocytes cells through the ROS/PTEN/PI3K/AKT axis. FISH & SHELLFISH IMMUNOLOGY 2022; 120:325-336. [PMID: 34856373 DOI: 10.1016/j.fsi.2021.11.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Profenofos (PFF) as an environmental pollutant seriously harms the health of aquatic animals, and even endangers human safety through the food chain. Albicanol, a sesquiterpenoid extraction from the Dryopteris fragrans, has previously been shown to effectively exhibit anti-aging, anti-oxidant, and antagonize the toxicity of heavy metals. However, the mechanism of hepatocyte toxicity caused by PFF and the role that Albicanol plays in this process are still unclear. In this study, a PFF poisoning model was established by treating grass carp hepatocytes cells with PFF (150 μM) for 24 h The results of AO/EB staining, Tunel staining and flow cytometry showed that the proportion of apoptotic liver cells increased significantly after exposure. The results of ROS staining show that compared with the control group, ROS levels and PTEN/PI3K/AKT-related gene expression were up-regulated after PFF exposure. RT-qPCR and Western blotting results showed that the expression of PTEN/PI3K/AKT related genes was up-regulated. These results indicate that PFF can induce oxidative stress in hepatocytes and inhibit the phosphorylation of AKT. We further found that the expressions of Bax, CytC, Caspase-3, Caspase-9, Caspase-8 and TNFR1 after PFF exposure were significantly higher than those of the control group, and Bcl-2/Bax was significantly lower than that of the control group. These results indicate that PFF can induce oxidative stress in hepatocytes and inhibit the phosphorylation of AKT and activate mitochondrial apoptosis. Using Albicanol (5 × 10-5 μg mL-1) can significantly reduce the above-mentioned effects of PFF exposure on grass carp hepatocytes cells. In summary, Albicanol inhibits PFF-induced apoptosis by regulating the ROS/PTEN/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Xuan Lihui
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Guo Jinming
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Guan Yalin
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Wang Hemeng
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Wu Hao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Chang Ying
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
8
|
Barrón Cuenca J, de Oliveira Galvão MF, Ünlü Endirlik B, Tirado N, Dreij K. In vitro cytotoxicity and genotoxicity of single and combined pesticides used by Bolivian farmers. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:4-17. [PMID: 34881454 DOI: 10.1002/em.22468] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 05/27/2023]
Abstract
We previously showed that farmers in Bolivia are exposed to many pesticides, some at elevated levels, and that this was associated with increased risk of genetic damage. To improve the understanding of possible mixture effects, the cytotoxicity and genotoxicity of pesticides were studied in vitro using human liver HepG2 cells. The studied pesticides were 2,4-D, chlorpyrifos, cypermethrin, glyphosate, methamidophos, paraquat, profenofos, and tebuconazole. Three mixtures (U1, U2, and U3) were based on profiles of urinary pesticide metabolites and one mixture on the most frequently used pesticides (S1). The results showed that paraquat and methamidophos were the most cytotoxic pesticides (EC50 ≤0.3 mM). Paraquat, chlorpyrifos, tebuconazole, and the U1, U2, and U3 mixtures, which contained a large proportion of either chlorpyrifos or tebuconazole, significantly increased intracellular ROS levels. Most pesticides activated DNA damage signaling through proteins Chk1 and H2AX. Strongest responses were elicited by paraquat, profenofos, chlorpyrifos, cypermethrin, and the S1 mixture, which contained 25% paraquat. Comet assay revealed significant increases of DNA damage in response to paraquat, cypermethrin, and U2 and S1 mixtures, which contained high levels of cypermethrin and paraquat, respectively. In summary, we showed that the tested pesticides, alone or in mixtures, in general induced oxidative stress and that most pesticides, and especially paraquat and cypermethrin, were genotoxic in HepG2 cells. We could also show that mixtures dominated by these two pesticides displayed a marked genotoxic potency, which agreed with our previous population studies.
Collapse
Affiliation(s)
- Jessika Barrón Cuenca
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Genetic Institute, Medicine Faculty, Universidad Mayor de San Andrés, La Paz, Bolivia
| | | | - Burcu Ünlü Endirlik
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Noemi Tirado
- Genetic Institute, Medicine Faculty, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Kristian Dreij
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Ding F, Peng W, Peng YK, Liu BQ. Elucidating the potential neurotoxicity of chiral phenthoate: Molecular insight from experimental and computational studies. CHEMOSPHERE 2020; 255:127007. [PMID: 32416396 DOI: 10.1016/j.chemosphere.2020.127007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Chiral organophosphorus pollutants are existed ubiquitously in the ecological environment, but the enantioselective toxicities of these nerve agents to humans and their molecular bases have not been fully elucidated. Using experimental and computational approaches, this story was to explore the neurotoxic response process of the target acetylcholinesterase (AChE) to chiral phenthoate and further decipher the microscopic mechanism of such toxicological effect at the enantiomeric level. The results showed that the toxic reaction of AChE with chiral phenthoate exhibited significant enantioselectivity, and (R)-phenthoate (K=1.486 × 105 M-1) has a bioaffinity for the nerve enzyme nearly three times that of (S)-phenthoate (K=4.503 × 104 M-1). Dynamic research outcomes interpreted the wet experiments, and the inherent conformational flexibility of the target enzyme has a great influence on the enantioselective neurotoxicological action processes, especially reflected in the conformational changes of the three key loop regions (i.e. residues His-447, Gly-448, and Tyr-449; residues Gly-122, Phe-123, and Tyr-124; and residues Thr-75, Leu-76, and Tyr-77) around the reaction patch. This was supported by the quantitative results of conformational studies derived from circular dichroism spectroscopy (α-helix: 34.7%→30.2%/31.6%; β-sheet: 23.6%→19.5%/20.7%; turn: 19.2%→22.4%/21.9%; and random coil: 22.5%→27.9%/25.8%). Meanwhile, via analyzing the modes of toxic action and free energies, we can find that (R)-phenthoate has a strong inhibitory effect on the enzymatic activity of AChE, as compared with (S)-phenthoate, and electrostatic energy (-23.79/-17.77 kJ mol-1) played a critical role in toxicological reactions. These points were the underlying causes of chiral phenthoate displaying different degrees of enantioselective neurotoxicity.
Collapse
Affiliation(s)
- Fei Ding
- Department of Environmental Science and Engineering, School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, No. 126 Yanta Road, Yanta District, Xi'an, 710054, China
| | - Wei Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Yu-Kui Peng
- Center for Food Quality Supervision, Inspection & Testing, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, 712100, China
| | - Bing-Qi Liu
- Department of Agricultural Chemistry, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
10
|
Olakkaran S, Kizhakke Purayil A, Antony A, Mallikarjunaiah S, Hunasanahally Puttaswamygowda G. Oxidative stress-mediated genotoxicity of malathion in human lymphocytes. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 849:503138. [DOI: 10.1016/j.mrgentox.2020.503138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022]
|
11
|
Jiménez-Jiménez S, Casado N, García MÁ, Marina ML. Enantiomeric analysis of pyrethroids and organophosphorus insecticides. J Chromatogr A 2019; 1605:360345. [DOI: 10.1016/j.chroma.2019.06.066] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/27/2019] [Accepted: 06/30/2019] [Indexed: 12/30/2022]
|
12
|
Comet assay in neural cells as a tool to monitor DNA damage induced by chemical or physical factors relevant to environmental and occupational exposure. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 845:402990. [DOI: 10.1016/j.mrgentox.2018.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/23/2018] [Accepted: 11/30/2018] [Indexed: 12/29/2022]
|
13
|
Lu XT, Ma Y, Zhang HJ, Jin MQ, Tang JH. Enantioselective apoptosis and oxidative damage induced by individual isomers of profenofos in primary hippocampal neurons. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2017; 52:505-515. [PMID: 28541776 DOI: 10.1080/03601234.2017.1303324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The purpose of this study was to investigate the apoptosis-related cytotoxic effects and molecular mechanisms of individual isomers of profenofos (PFF) on primary hippocampal neurons at 1.0 to 20 mg L-1. The cell viability and lactate dehydrogenase (LDH) efflux indicated that (-)-PFF exposure was associated with more toxic effects than (+)-PFF above the concentration of 5 mg L-1 (P < 0.5). Flow cytometric results showed that the percentages of apoptotic cells incubated with 20 mg L-1 (-)-PFF, (+)-PFF and rac-PFF for 24 h reached 23.4%, 9.2% and 14.2% (P < 0.01), respectively. Hippocampal neurons incubated with (-)-PFF, (+)-PFF and rac-PFF exhibited a dose-dependent accumulation of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) and a dose-dependent inhibition of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activity, implying that the defense system of the tests induces oxidative damage. A statistically significant difference was observed between the two enantiomers at 5 mg L-1 and above. Moreover, the results showed that (-)-PFF exposure caused a significant loss in mitochondrial transmembrane potential (MMP), an upregulation of Ca2+ and Bax protein expression, a downregulation of Bcl-2 protein expression, and the activation of caspase-3 and caspase-9 in a dose-dependent manner; (+)-PFF and rac-PFF exhibited these effects to a lesser degree. All results suggest that PFF induced apoptosis in rat hippocampal neurons via the mitochondria-mediated pathway, and oxidative stress is one of the factors of PFF-induced apoptosis. In addition, (-)-PFF appears to play an important role in oxidative stress and apoptosis, indicating that enantioselectivity should be considered when assessing ecotoxicological effects and health risks of chiral pesticides.
Collapse
Affiliation(s)
- Xian T Lu
- a College of Materials and Environmental Engineering , Hangzhou Dianzi University , Hangzhou , China
| | - Yun Ma
- b College of Environment , Zhejiang University of Technology , Hangzhou , China
| | - Hang J Zhang
- c Department of Environmental Sciences , Hangzhou Normal University , Hangzhou , China
| | - Mei Q Jin
- a College of Materials and Environmental Engineering , Hangzhou Dianzi University , Hangzhou , China
| | - Jun H Tang
- a College of Materials and Environmental Engineering , Hangzhou Dianzi University , Hangzhou , China
| |
Collapse
|
14
|
Ojha A, Gupta YK. Study of commonly used organophosphate pesticides that induced oxidative stress and apoptosis in peripheral blood lymphocytes of rats. Hum Exp Toxicol 2016; 36:1158-1168. [DOI: 10.1177/0960327116680273] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In a previous study, we have found that organophosphate (OP) pesticides such as chlorpyrifos (CPF), methyl parathion (MPT), and malathion (MLT) significantly induced genotoxicity in peripheral blood lymphocytes of rats. To explore the mechanism of OP-induced genotoxicity, we measured the formation of DNA interstrand cross-links (DICs) and apoptosis in peripheral blood lymphocytes of rats. Peripheral blood lymphocytes of rats were treated with CPF, MPT, and MLT individually and in combination at concentrations of 0.1 and 0.25 LC50 for 2, 4, 8, and 12 h at 37°C. Lipid peroxidation (LPO) was measured as a biomarker of oxidative stress. Apoptosis induced by CPF, MPT, and MLT individually and in combination was determined by measuring the intracellular level of active caspase-3 and caspase-9 by spectrofluorimetry. We found significant dose- and time-dependent increases in LPO, DICs formation and increase of intracellular active caspase-3 and caspase-9 in exposed peripheral blood lymphocytes of rats. These findings suggest that the studied pesticides have potential to induce oxidative stress, cause DNA adduct formation, and cause failure of adduct repair, which leads to apoptosis that is partially mediated by activation of intracellular caspase-3 and caspase-9.
Collapse
Affiliation(s)
- A Ojha
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - YK Gupta
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
15
|
Sun D, Pang J, Fang Q, Zhou Z, Jiao B. Stereoselective toxicity of etoxazole to MCF-7 cells and its dissipation behavior in citrus and soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:24731-24738. [PMID: 27658398 DOI: 10.1007/s11356-016-7393-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/04/2016] [Indexed: 06/06/2023]
Abstract
The stereoselective cytotoxicity of new chiral acaricide etoxazole and its dissipation in citrus and soil were investigated for the first time. Enantioselective toxicity and oxidative stress of etoxazole toward MCF-7 cells was conducted. The phenomenon of dose- and form-dependent cytotoxicity was demonstrated by MTT and LDH assays, ROS generation, and SOD and CAT activity alternation. Cytotoxicity ranks were found to be consistent with oxidative damage as (R)- > Rac- > (S)-etoxazole. Moreover, the results of enantioselective degradation showed that (S)-etoxazole degraded faster than its antipode (R)-etoxazole. The gradual raise of EF values indicated the achievement of enantioselective degradation in citrus and soil, leaving the enrichment of (R)-etoxazole isomer. Significant differences of environmental behavior and cytotoxicity of etoxazole enantiomers were found in this study which provided valuable insight into the mechanism of potential toxicity and warranted more careful assessment of this pesticide before its agricultural application.
Collapse
Affiliation(s)
- Dali Sun
- Citrus Research Institute, Southwest University, Chongqing, 400712, China
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Junxiao Pang
- Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Qi Fang
- Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Zhiqin Zhou
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China.
| | - Bining Jiao
- Citrus Research Institute, Southwest University, Chongqing, 400712, China.
| |
Collapse
|
16
|
Chai T, Cui F, Mu X, Yang Y, Qi S, Zhu L, Wang C, Qiu J. Stereoselective induction by 2,2',3,4',6-pentachlorobiphenyl in adult zebrafish (Danio rerio): Implication of chirality in oxidative stress and bioaccumulation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 215:66-76. [PMID: 27179325 DOI: 10.1016/j.envpol.2016.04.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 04/18/2016] [Accepted: 04/21/2016] [Indexed: 06/05/2023]
Abstract
This study aimed to investigate the oxidative stress process and bioaccumulation the racemic/(-)-/(+)- 2,2',3,4',6-pentachlorobiphenyl were administered to adult zebrafish (Danio rerio) after prolonged exposure of 56-days uptake and 49-days depuration experiments. Stereoselective accumulation was observed in adult samples after racemic exposure as revealed by decreased enantiomer fractions. The two enantiomers of PCB91 accumulated at different rates with logBCFk values close to 3.7, suggesting that they were highly hazardous and persistent pollutants. Exposure to racemic/(-)-/(+)- PCB91 stereoselectively induced oxidative stress owing to changes in reactive oxygen species, malondialdehyde contents, antioxidant enzyme activities and gene expressions in brain and liver tissues. In addition, the stereoselective relationship between bioconcentration and oxidative stress were also presented in this study. Our findings might be helpful for elucidating the environmental risk of the two enantiomers of PCB91 that induce toxicity in aquatic organisms.
Collapse
Affiliation(s)
- Tingting Chai
- College of Science, China Agricultural University, Beijing 100193, China; Institute of Quality Standards & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Feng Cui
- College of Science, China Agricultural University, Beijing 100193, China
| | - Xiyan Mu
- College of Science, China Agricultural University, Beijing 100193, China
| | - Yang Yang
- College of Science, China Agricultural University, Beijing 100193, China
| | - Suzhen Qi
- College of Science, China Agricultural University, Beijing 100193, China
| | - Lizhen Zhu
- College of Science, China Agricultural University, Beijing 100193, China
| | - Chengju Wang
- College of Science, China Agricultural University, Beijing 100193, China.
| | - Jing Qiu
- Institute of Quality Standards & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China.
| |
Collapse
|
17
|
Wang C, Yang J, Lu D, Fan Y, Zhao M, Li Z. Oxidative stress-related DNA damage and homologous recombination repairing induced by N,N-dimethylformamide. J Appl Toxicol 2016; 36:936-45. [PMID: 26387567 DOI: 10.1002/jat.3226] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/01/2015] [Accepted: 08/02/2015] [Indexed: 01/26/2023]
Abstract
The intensified anthropogenic release of N,N-dimethylformamide (DMF) has been proven to have hepatotoxic effects. However, the potential mechanism for DMF-induced toxicity has rarely been investigated. Our research implicated that DMF induced a significantly dose-dependent increase in reactive oxygen species (ROS) in HL-7702 human liver cells. Moreover, oxidative stress-related DNA damage, marked as 8-hydroxy-2'-deoxyguanosine, was increased 1.5-fold at 100 mmol l(-1) . The most severe DNA lesion (double-strand break, DSB), measured as the formation of γH2AX foci, was increased at/above 6.4 mmol l(-1) , and approximately 50% of cells underwent DSB at the peak induction. Subsequently, the DNA repair system triggered by molecules of RAD50 and MRE11A induced the homologous recombination (HR) pathway by upregulation of both gene and protein levels of RAD50, RAD51, XRCC2 and XRCC3 at 16 mmol l(-1) and was attenuated at 40 mmol l(-1) . Consequently, cellular death observed at 40 mmol l(-1) was exaggerated compared with exposure at 16 mmol l(-1) . Although the exact mechanism relying on the DMF-induced hepatotoxicity needs further clarification, oxidative stress and DNA damage involved in DSBs partially explain the reason for DMF-induced liver injury. Oxidative stress-induced DNA damage should be first considered during risk assessment on liver-targeted chemicals. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Cui Wang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jinhuan Yang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Dezhao Lu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yongsheng Fan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Meirong Zhao
- Research Center of Environmental Science, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zhuoyu Li
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| |
Collapse
|
18
|
Effect of DTPP-mediated photodynamic therapy on cell morphology, viability, cell cycle, and cytotoxicity in a murine lung adenocarcinoma cell line. Lasers Med Sci 2014; 30:181-91. [PMID: 25118661 DOI: 10.1007/s10103-014-1637-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 07/16/2014] [Indexed: 12/24/2022]
Abstract
Photodynamic therapy (PDT) involves the administration and activation of photosensitizing reagents in cancer tissues to induce cytotoxicity. Here we examined the effects of 5-5- (4-N, N-diacetoxylphenyl)-10,15,20- tetraphenylporphyrin (DTPP) -mediated PDT on cell morphology, viability, cell cycle, and cytotoxicity in a murine lung adenocarcinoma cell line. LA795 murine lung adenocarcinoma cell line was used in the study, with cellular uptake of DTPP being quantified by a UV-visible spectrophotometer. The subcellular localization of DTPP was detected by confocal laser scanning microscopy, alteration of cell morphology after PDT was observed by an inverted light microscope, and late-stage apoptosis was examined by terminal dUTP nick end labeling (TUNEL) . The effects of influencing factors on cytotoxicity of PDT in LA795 cells was investigated with varying concentrations of DTPP, energy densities, power densities, and antioxidants by 3- (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Effects of PDT on cell cycle and plasma membrane integrity were studied by flow cytometry analysis. The uptake of DTPP by LA795 cells reached maximum after incubation for 24 h. Confocal laser scanning microscopy showed that DTPP was mainly in the mitochondrion, and slight localization was detected in the lysosomes. Cellular inhibitory effects increased with increased irradiation dose and DTPP concentration, while unactivated DTPP had low toxicity. Flow cytometry analysis revealed that DTPP-PDT-treated cells showed S phase arrest. Cell membrane damage initiation, repair, and irreversible damage were observed at 2, 4, and 5 h after DTPP-PDT , respectively. Together, our results demonstrated cell apoptosis, compromised viability, and cell cycle S phase arrest of LA795 in response to DTPP-PDT , while no effect on the lung cancer cells was observed with irradiation or photosensitizer treatment alone.
Collapse
|