1
|
Zhang X, Wu CC, Jiang H, Zhao JF, Pan ZJ, Zheng Y. The Role of Thickening Agent Proportions in Optimizing Nanoemulsion Gel for Dermatophytosis Treatment. Int J Nanomedicine 2025; 20:807-826. [PMID: 39867308 PMCID: PMC11760762 DOI: 10.2147/ijn.s479514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 01/02/2025] [Indexed: 01/28/2025] Open
Abstract
Background Adjusting thickening agent proportions in nanoemulsion gel (NG) balances its transdermal and topical delivery properties, making it more effective for dermatophytosis treatment. Methods Carbomer 940 and α-pinene were used as model thickening agent and antifungal, respectively. A series of α-pinene NGs (αNG1, αNG2, αNG3) containing 0.5%, 0.75% and 1% (w/w) Carbomer 940 were developed and evaluated for stability, rheological properties, and skin irritation; assessed for ex vivo skin permeation, deposition, and fluorescent imaging of drug distribution within skin layers; and tested in vivo for efficacy against Trichophyton rubrum infection in guinea pigs, with PAS (Periodic Acid-Schiff) staining confirming fungal clearance. Results The steady-state skin flux rates of α-pinene over 24 hours were αNG1 (46.93±2.52 μg/cm²/h) > αNG2 (26.01±2.65 μg/cm²/h) > αNG3 (11.36±1.69 μg/cm²/h). The α-pinene deposition in the epidermis/dermis for αNG1 decreased substantially from 2 h (62.74 ± 3.36 μg/cm²) to 12 h (11.7 ± 2.24 μg/cm²). In contrast, αNG2 showed relatively sustained deposition with 2 h (25.54 ± 2.67 μg/cm²), 6 h (57.32 ± 4.62 μg/cm²) and 12 h (23.69 ± 3.29 μg/cm²). αNG3 exhibited a slow increase from 2 h (18.32 ± 2.11 μg/cm²) to 12 h (36.78 ± 3.22 μg/cm²). The αNG2 exhibited the highest efficacy and fungal clearance rates (71.42%, 79.17%), followed by αNG1 (55.34% and 60.42%), and αNG3(43.21%, 52.08%). Fluorescent imaging confirmed αNG2's higher drug deposition within the epidermis/dermis, while PAS staining showed a potent fungal clearance with αNG2. Conclusion This study demonstrates that Carbomer 940 proportions significantly impact the transdermal performance of αNG. αNG2, with a moderate proportion, optimally enhances skin drug delivery and deposition, achieving superior therapeutic outcomes. These findings highlight the importance of optimizing thickening agent proportions to improve the efficacy of topical nanoemulsion gels.
Collapse
Affiliation(s)
- Xiao Zhang
- College of Animal Science, Guizhou University, Guiyang, Guizhou, People’s Republic of China
| | - Chen-Chen Wu
- College of Animal Science, Guizhou University, Guiyang, Guizhou, People’s Republic of China
| | - Hua Jiang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, Gansu, People’s Republic of China
| | - Jia-Fu Zhao
- College of Animal Science, Guizhou University, Guiyang, Guizhou, People’s Republic of China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, People’s Republic of China
| | - Zhong-Jian Pan
- College of Animal Science, Guizhou University, Guiyang, Guizhou, People’s Republic of China
| | - Yin Zheng
- College of Animal Science, Guizhou University, Guiyang, Guizhou, People’s Republic of China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, People’s Republic of China
| |
Collapse
|
2
|
Carotenoids in Human SkinIn Vivo: Antioxidant and Photo-Protectant Role against External and Internal Stressors. Antioxidants (Basel) 2022; 11:antiox11081451. [PMID: 35892651 PMCID: PMC9394334 DOI: 10.3390/antiox11081451] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
The antioxidant system of the human body plays a crucial role in maintaining redox homeostasis and has an important protective function. Carotenoids have pronounced antioxidant properties in the neutralization of free radicals. In human skin, carotenoids have a high concentration in the stratum corneum (SC)-the horny outermost layer of the epidermis, where they accumulate within lipid lamellae. Resonance Raman spectroscopy and diffuse reflectance spectroscopy are optical methods that are used to non-invasively determine the carotenoid concentration in the human SC in vivo. It was shown by electron paramagnetic resonance spectroscopy that carotenoids support the entire antioxidant status of the human SC in vivo by neutralizing free radicals and thus, counteracting the development of oxidative stress. This review is devoted to assembling the kinetics of the carotenoids in the human SC in vivo using non-invasive optical and spectroscopic methods. Factors contributing to the changes of the carotenoid concentration in the human SC and their influence on the antioxidant status of the SC in vivo are summarized. The effect of chemotherapy on the carotenoid concentration of the SC in cancer patients is presented. A potential antioxidant-based pathomechanism of chemotherapy-induced hand-foot syndrome and a method to reduce its frequency and severity are discussed.
Collapse
|
3
|
Rapalli VK, Mahmood A, Waghule T, Gorantla S, Kumar Dubey S, Alexander A, Singhvi G. Revisiting techniques to evaluate drug permeation through skin. Expert Opin Drug Deliv 2021; 18:1829-1842. [PMID: 34826250 DOI: 10.1080/17425247.2021.2010702] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Investigating the transportation of a drug molecule through various layers of skin and determining the amount of drug retention in skin layers is of prime importance in transdermal and topical drug delivery. The information regarding drug permeation and retention in skin layers aids in optimizing a formulation and provides insight into the therapeutic efficacy of a formulation. AREAS COVERED This perspective covers various methods that have been explored to estimate drug/therapeutics in skin layers using in vitro, ex vivo, and in vivo conditions. In vitro methods such as diffusion techniques, ex vivo methods such as isolated perfused skin models and in vivo techniques including dermato-pharmacokinetics employing tape stripping, and microdialysis are discussed. Application of all techniques at various stages of formulation development where various local and systemic effects need to be considered. EXPERT OPINION The void in the existing methodologies necessitates improvement in the field of dermatologic research. Standardization of protocols, experimental setups, regulatory guidelines, and further research provides information to select an alternative for human skin to perform skin permeation experiments to increase the reliability of data generated through the available techniques. There is a need to utilize multiple techniques for appropriate dermato-pharmacokinetics evaluation and formulation's efficacy.
Collapse
Affiliation(s)
- Vamshi Krishna Rapalli
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India
| | - Arisha Mahmood
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India
| | - Tejashree Waghule
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India
| | - Srividya Gorantla
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India
| | - Sunil Kumar Dubey
- Medical Research, R&D Healthcare Division, Emami Ltd, Kolkata, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India
| |
Collapse
|
4
|
Sarango-Granda P, Silva-Abreu M, Calpena AC, Halbaut L, Fábrega MJ, Rodríguez-Lagunas MJ, Díaz-Garrido N, Badia J, Espinoza LC. Apremilast Microemulsion as Topical Therapy for Local Inflammation: Design, Characterization and Efficacy Evaluation. Pharmaceuticals (Basel) 2020; 13:484. [PMID: 33371334 PMCID: PMC7767333 DOI: 10.3390/ph13120484] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022] Open
Abstract
Apremilast (APR) is a selective phosphodiesterase 4 inhibitor administered orally in the treatment of moderate-to-severe plaque psoriasis and active psoriatic arthritis. The low solubility and permeability of this drug hinder its dermal administration. The purpose of this study was to design and characterize an apremilast-loaded microemulsion (APR-ME) as topical therapy for local skin inflammation. Its composition was determined using pseudo-ternary diagrams. Physical, chemical and biopharmaceutical characterization were performed. Stability of this formulation was studied for 90 days. Tolerability of APR-ME was evaluated in healthy volunteers while its anti-inflammatory potential was studied using in vitro and in vivo models. A homogeneous formulation with Newtonian behavior and droplets of nanometric size and spherical shape was obtained. APR-ME released the incorporated drug following a first-order kinetic and facilitated drug retention into the skin, ensuring a local effect. Anti-inflammatory potential was observed for its ability to decrease the production of IL-6 and IL-8 in the in vitro model. This effect was confirmed in the in vivo model histologically by reduction in infiltration of inflammatory cells and immunologically by decrease of inflammatory cytokines IL-8, IL-17A and TNFα. Consequently, these results suggest that this formulation could be used as an attractive topical treatment for skin inflammation.
Collapse
Affiliation(s)
- Paulo Sarango-Granda
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (P.S.-G.); (M.S.-A.); (L.H.); (L.C.E.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Marcelle Silva-Abreu
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (P.S.-G.); (M.S.-A.); (L.H.); (L.C.E.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Ana Cristina Calpena
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (P.S.-G.); (M.S.-A.); (L.H.); (L.C.E.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Lyda Halbaut
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (P.S.-G.); (M.S.-A.); (L.H.); (L.C.E.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - María-José Fábrega
- Department of Experimental and Health Sciences, Parc de Recerca Biomèdica de Barcelona, University Pompeu Fabra (UPF), 08005 Barcelona, Spain;
| | - María J. Rodríguez-Lagunas
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (M.J.R.-L.); (N.D.-G.); (J.B.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Natalia Díaz-Garrido
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (M.J.R.-L.); (N.D.-G.); (J.B.)
- Institute of Biomedicine of the University of Barcelona (IBUB), Sant Joan de Déu Research Institute, 08028 Barcelona, Spain
| | - Josefa Badia
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (M.J.R.-L.); (N.D.-G.); (J.B.)
| | - Lupe Carolina Espinoza
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (P.S.-G.); (M.S.-A.); (L.H.); (L.C.E.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador
| |
Collapse
|
5
|
Dong P, Nikolaev V, Kröger M, Zoschke C, Darvin ME, Witzel C, Lademann J, Patzelt A, Schäfer-Korting M, Meinke MC. Barrier-disrupted skin: Quantitative analysis of tape and cyanoacrylate stripping efficiency by multiphoton tomography. Int J Pharm 2019; 574:118843. [PMID: 31759105 DOI: 10.1016/j.ijpharm.2019.118843] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 01/02/2023]
Abstract
Numerous studies have employed tape stripping (TS) or cyanoacrylate stripping (CS) to induce skin barrier disruption of the stratum corneum (SC) in human and porcine skin. However, the thickness of the remaining SC and the respective changes of the skin permeability have been rarely quantified. By using high-resolution multiphoton tomography, about 5 µm thick SC was found remaining on human skin after the performance of 30 times TS or 2 times CS. 50 tape strips or 4 times CS removed the entire human SC, but on porcine skin 2-3 µm thick SC was still left. TS can only reach the transition zone between the SC and the stratum granulosum because of the limited adhesion, whereas CS was able to remove viable skin layers. Permeation investigations on porcine skin revealed that the apparent permeability coefficient of the hydrophilic nitroxide spin 2,5,5-Tetramethyl-1-pyrrolidinyloxy-3-carboxylic acid increased 15-, 18-, and 21-fold when the SC amount remaining in the skin was 30%, 16%, and 8%, respectively. It is recommended to use at most 30 times TS or 3 times CS to obtain ex vivo barrier-disrupted skin that mimics diseased skin. The study provides quantitative information for the utility of TS and CS in skin penetration research.
Collapse
Affiliation(s)
- Pin Dong
- Freie Universität Berlin, Institute of Pharmacy (Pharmacology & Toxicology), Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology, Venereology and Allergology, Berlin, Germany
| | - Viktor Nikolaev
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology, Venereology and Allergology, Berlin, Germany; Institute of Strength Physics and Materials Science, Siberian Branch of Russian Academy of Sciences (ISPMS SB RAS), Tomsk, Russia; Tomsk State University, Faculty of Physics, Tomsk, Russia
| | - Marius Kröger
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology, Venereology and Allergology, Berlin, Germany
| | - Christian Zoschke
- Freie Universität Berlin, Institute of Pharmacy (Pharmacology & Toxicology), Berlin, Germany
| | - Maxim E Darvin
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology, Venereology and Allergology, Berlin, Germany
| | - Christian Witzel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Division of Plastic and Reconstructive Surgery, Department of Surgery, CVK CCM, Berlin, Germany
| | - Jürgen Lademann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology, Venereology and Allergology, Berlin, Germany
| | - Alexa Patzelt
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology, Venereology and Allergology, Berlin, Germany
| | - Monika Schäfer-Korting
- Freie Universität Berlin, Institute of Pharmacy (Pharmacology & Toxicology), Berlin, Germany
| | - Martina C Meinke
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology, Venereology and Allergology, Berlin, Germany.
| |
Collapse
|
6
|
Barba C, Alonso C, Martí M, Carrer V, Yousef I, Coderch L. Selective modification of skin barrier lipids. J Pharm Biomed Anal 2019; 172:94-102. [DOI: 10.1016/j.jpba.2019.04.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/22/2019] [Accepted: 04/18/2019] [Indexed: 11/30/2022]
|
7
|
Eleftheriadou D, Luette S, Kneuer C. In silico prediction of dermal absorption of pesticides - an evaluation of selected models against results from in vitro testing. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2019; 30:561-585. [PMID: 31535949 DOI: 10.1080/1062936x.2019.1644533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/13/2019] [Indexed: 06/10/2023]
Abstract
Current guidance for the estimation of dermal absorption (DA) of pesticides recommends the use of default values, read-across of information between formulations and in vitro testing. While QSARs exist to estimate percutaneous absorption, their use is currently not encouraged. Therefore, the potential of publicly available models for DA estimation was investigated based on data from 564 human in vitro DA experiments on pesticides. The classic Potts Guy model, the correction of Cleek Bunge for highly lipophilic chemicals, the mechanistic model of Mitragotri, and the COSMOS model were used to estimate the permeability coefficient kp. Different approaches were explored to calculate the percentage of external dose absorbed. IH SkinPerm was examined as stand-alone model. The models generally failed to accurately predict experimental values. For 30-40% of the predictions, there was overestimation by one order of magnitude. Three models underpredicted >10% of the cases, the remaining models <5%. DA of hydrophilic substances was typically underpredicted. Overprediction was more prominent for solid preparations and suspensions. The molecular weight, irritation potential and skin thickness did not correlate with the models' predictivity. Of the models investigated, IH SkinPerm performed best with 38% of the predictions within one order of magnitude and 2% underpredicted cases.
Collapse
Affiliation(s)
- D Eleftheriadou
- Department for Pesticide Safety, German Federal Institute for Risk Assessment , Berlin , Germany
| | - S Luette
- Department for Pesticide Safety, German Federal Institute for Risk Assessment , Berlin , Germany
| | - C Kneuer
- Department for Pesticide Safety, German Federal Institute for Risk Assessment , Berlin , Germany
| |
Collapse
|
8
|
Tazrart A, Bolzinger MA, Lamart S, Coudert S, Angulo JF, Jandard V, Briançon S, Griffiths NM. Actinide-contaminated Skin: Comparing Decontamination Efficacy of Water, Cleansing Gels, and DTPA Gels. HEALTH PHYSICS 2018; 115:12-20. [PMID: 29787426 DOI: 10.1097/hp.0000000000000814] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Skin contamination by alpha-emitting actinides is a risk to workers during nuclear fuel production and reactor decommissioning. Also, the list of items for potential use in radiological dispersal devices includes plutonium and americium. The actinide chemical form is important and solvents such as tributyl phosphate, used to extract plutonium, can influence plutonium behavior. This study investigated skin fixation and efficacy of decontamination products for these actinide forms using viable pig skin in the Franz cell diffusion system. Commonly used or recommended decontamination products such as water, cleansing gel, diethylenetriamine pentaacetic acid, or octadentate hydroxypyridinone compound 3,4,3-LI(1,2-HOPO), as well as diethylenetriamine pentaacetic acid hydrogel formulations, were tested after a 2-h contact time with the contaminant. Analysis of skin samples demonstrated that more plutonium nitrate is bound to skin as compared to plutonium-tributyl phosphate, and fixation of americium to skin was also significant. The data show that for plutonium-tributyl phosphate all the products are effective ranging from 80 to 90% removal of this contaminant. This may be associated with damage to the skin by this complex and suggests a mechanical/wash-out action rather than chelation. For removal of americium and plutonium, both Trait Rouge cleansing gel and diethylenetriamine pentaacetic acid are better than water, and diethylenetriamine pentaacetic acid hydrogel is better than Osmogel. The different treatments, however, did not significantly affect the activity in deeper skin layers, which suggests a need for further improvement of decontamination procedures. The new diethylenetriamine pentaacetic acid hydrogel preparation was effective in removing americium, plutonium, and plutonium-tributyl phosphate from skin; such a formulation offers advantages and thus merits further assessment.
Collapse
Affiliation(s)
- A Tazrart
- Laboratoire de Radio Toxicologie, CEA, Université Paris-Saclay, 91297 Arpajon, France
- Université de Lyon, F-69008, Lyon, France and Laboratoire de Dermopharmacie et Cosmétologie, Laboratoire d'Automatique et de Génie des Procédés (LAGEP), UMR CNRS 5007, 8, Avenue Rockefeller, 69373 Lyon Cedex 08, France
| | - M A Bolzinger
- Université de Lyon, F-69008, Lyon, France and Laboratoire de Dermopharmacie et Cosmétologie, Laboratoire d'Automatique et de Génie des Procédés (LAGEP), UMR CNRS 5007, 8, Avenue Rockefeller, 69373 Lyon Cedex 08, France
- Pharmacie Centrale des Armées, 45404 Fleury les Aubrais Cedex, France
| | - S Lamart
- Laboratoire de Radio Toxicologie, CEA, Université Paris-Saclay, 91297 Arpajon, France
| | - S Coudert
- Laboratoire de Radio Toxicologie, CEA, Université Paris-Saclay, 91297 Arpajon, France
| | - J F Angulo
- Laboratoire de Radio Toxicologie, CEA, Université Paris-Saclay, 91297 Arpajon, France
| | - V Jandard
- Pharmacie Centrale des Armées, 45404 Fleury les Aubrais Cedex, France
| | - S Briançon
- Université de Lyon, F-69008, Lyon, France and Laboratoire de Dermopharmacie et Cosmétologie, Laboratoire d'Automatique et de Génie des Procédés (LAGEP), UMR CNRS 5007, 8, Avenue Rockefeller, 69373 Lyon Cedex 08, France
| | - N M Griffiths
- Laboratoire de Radio Toxicologie, CEA, Université Paris-Saclay, 91297 Arpajon, France
| |
Collapse
|
9
|
Carrer V, Guzmán B, Martí M, Alonso C, Coderch L. Lanolin-Based Synthetic Membranes as Percutaneous Absorption Models for Transdermal Drug Delivery. Pharmaceutics 2018; 10:pharmaceutics10030073. [PMID: 29933575 PMCID: PMC6161196 DOI: 10.3390/pharmaceutics10030073] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/04/2018] [Accepted: 06/13/2018] [Indexed: 11/27/2022] Open
Abstract
Background: The major in vitro permeation studies are currently performed in Franz-type diffusion cells because of their simplicity, cost effectiveness and because the experimental conditions can be easily controlled. Apart from the skin, Franz-type diffusion cells can be used with synthetic membranes. Nevertheless, they do not emulate the nature of the lipidic matrix, which is responsible for the topical barrier function. Objective: This paper offers two new approaches combining different synthetic membranes (Strat-M® and Nucleopore®) with lanolin, which provides lipidic components similar to the lipidic matrix. Methods: The molecular structure of lanolin was studied in membranes by attenuated total reflectance infrared spectroscopy (ATR-IR). The water permeability and absorption of lidocaine, diclofenac sodium and betamethasone dipropionate were also studied and compared against free-lanolin membranes and skin. Results: The results showed an increasing barrier function after lanolin application in both membranes, resulting in a decrease in water permeability. Observing the IR spectra, the lateral packaging of the lipid in the synthetic membranes seems to emulate the orthorhombic disposition from the stratum corneum. Moreover, the three substances applied to the lanolin-containing membranes have a similar absorption to that of the skin. Conclusions: In conclusion, combining synthetic membranes with lanolin may be a useful approach to mimic topical actives’ absorption.
Collapse
Affiliation(s)
- Victor Carrer
- Department of Chemical and Surfactants Technology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), 08304 Barcelona, Spain.
| | - Beatriz Guzmán
- Department of Chemical and Surfactants Technology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), 08304 Barcelona, Spain.
| | - Meritxell Martí
- Department of Chemical and Surfactants Technology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), 08304 Barcelona, Spain.
| | - Cristina Alonso
- Department of Chemical and Surfactants Technology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), 08304 Barcelona, Spain.
| | - Luisa Coderch
- Department of Chemical and Surfactants Technology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), 08304 Barcelona, Spain.
| |
Collapse
|
10
|
Zhang A, Jung EC, Zhu H, Zou Y, Hui X, Maibach H. Vehicle effects on human stratum corneum absorption and skin penetration. Toxicol Ind Health 2016; 33:416-425. [PMID: 27436841 DOI: 10.1177/0748233716656119] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study evaluated the effects of three vehicles-ethanol (EtOH), isopropyl alcohol (IPA), and isopropyl myristate (IPM)-on stratum corneum (SC) absorption and diffusion of the [14C]-model compounds benzoic acid and butenafine hydrochloride to better understand the transport pathways of chemicals passing through and resident in SC. Following application of topical formulations to human dermatomed skin for 30 min, penetration flux was observed for 24 h post dosing, using an in vitro flow-through skin diffusion system. Skin absorption and penetration was compared to the chemical-SC (intact, delipidized, or SC lipid film) binding levels. A significant vehicle effect was observed for chemical skin penetration and SC absorption. IPA resulted in the greatest levels of intact SC/SC lipid absorption, skin penetration, and total skin absorption/penetration of benzoic acid, followed by IPM and EtOH, respectively. For intact SC absorption and total skin absorption/penetration of butenafine, the vehicle that demonstrated the highest level of sorption/penetration was EtOH, followed by IPA and IPM, respectively. The percent doses of butenafine that were absorbed in SC lipid film and penetrated through skin in 24 h were greatest for IPA, followed by EtOH and IPM, respectively. The vehicle effect was consistent between intact SC absorption and total chemical skin absorption and penetration, as well as SC lipid absorption and chemical penetration through skin, suggesting intercellular transport as a main pathway of skin penetration for model chemicals. These results suggest the potential to predict vehicle effects on skin permeability with simple SC absorption assays. As decontamination was applied 30 min after chemical exposure, significant vehicle effects on chemical SC partitioning and percutaneous penetration also suggest that skin decontamination efficiency is vehicle dependent, and an effective decontamination method should act on chemical solutes in the lipid domain.
Collapse
Affiliation(s)
- Alissa Zhang
- 1 Department of Chemical and Physical Biology, Harvard University, Cambridge, MA, USA
| | - Eui-Chang Jung
- 2 Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Hanjiang Zhu
- 2 Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Ying Zou
- 3 Skin & Cosmetic Research Department, Shanghai Skin Disease Hospital, Shanghai, China
| | - Xiaoying Hui
- 2 Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Howard Maibach
- 2 Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|