1
|
Pak SW, Lee SJ, Kim WI, Yang YG, Cho YK, Kim JS, Kim TW, Ko JW, Kim JC, Kim SH, Shin IS. The effects of Pycnogenol, a pine bark extract on pulmonary inflammation by Asian sand dust in mice. VET MED-CZECH 2024; 69:8-17. [PMID: 38465002 PMCID: PMC10919100 DOI: 10.17221/77/2023-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/05/2023] [Indexed: 03/12/2024] Open
Abstract
Asian sand dust (ASD), also called China dust or yellow dust, mainly occurs in East Asia during spring and autumn. Because ASD enters the body mainly through the respiratory system, it can cause respiratory disorders or worsen underlying diseases. Because of this, it has become an important health concern that threatens the well-being of humans and animals. In this study, we investigated the effects of 15 and 30 mg/kg of Pycnogenol (PYC15 and 30 groups), a pine bark extract, on ASD-induced pulmonary inflammation in mice. We evaluated the inflammatory cell counts, inflammatory cytokines, and matrix-metalloproteinase (MMP)-9 expression in animal models. PYC administration significantly decreased inflammatory cell infiltration into lung tissue; this was accompanied by a reduction in the levels of proinflammatory mediators including interleukin (IL)-1β (P < 0.01), IL-6 (P < 0.01) and tumour necrosis factor-α (P < 0.01) in bronchoalveolar lavage fluids of ASD-exposed mice (ASD group). Histological analysis revealed that PYC suppressed ASD-induced pulmonary inflammation. Moreover, PYC suppressed the levels of matrix-metalloproteinase (MMP)-9 in the lung tissue of ASD-exposed mice, indicating that PYC reduced ASD-induced pulmonary inflammation by suppressing MMP-9. Together, these results indicate that PYC as the potential to treat ASD-driven pulmonary inflammation.
Collapse
Affiliation(s)
- So-Won Pak
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Buk-gu, Gwangju, Republic of Korea
| | - Se-Jin Lee
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Buk-gu, Gwangju, Republic of Korea
| | - Woong-Il Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Buk-gu, Gwangju, Republic of Korea
| | - Yea-Gin Yang
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Buk-gu, Gwangju, Republic of Korea
| | - Young-Kwon Cho
- College of Health Sciences, Cheongju University, Cheongju-si, Chungbuk, Republic of Korea
| | - Joong-Sun Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Buk-gu, Gwangju, Republic of Korea
| | - Tae-Won Kim
- BK21 FOUR Program, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Je-Won Ko
- BK21 FOUR Program, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jong-Choon Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Buk-gu, Gwangju, Republic of Korea
| | - Sung-Hwan Kim
- Jeonbuk Branch, Korea Institute of Toxicology (KIT), Jeongeup-si, Jeonbuk, Republic of Korea
| | - In-Sik Shin
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Buk-gu, Gwangju, Republic of Korea
| |
Collapse
|
2
|
Biddle TA, Yisrael K, Drover R, Li Q, Maltz MR, Topacio TM, Yu J, Del Castillo D, Gonzales D, Freund HL, Swenson MP, Shapiro ML, Botthoff JK, Aronson E, Cocker DR, Lo DD. Aerosolized aqueous dust extracts collected near a drying lake trigger acute neutrophilic pulmonary inflammation reminiscent of microbial innate immune ligands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159882. [PMID: 36334668 DOI: 10.1016/j.scitotenv.2022.159882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND A high incidence of asthma is prevalent among residents near the Salton Sea, a large inland terminal lake in southern California. This arid region has high levels of ambient particulate matter (PM); yet while high PM levels are often associated with asthma in many environments, it is possible that the rapidly retreating lake, and exposed playa or lakebed, may contribute components with a specific role in promoting asthma symptoms. OBJECTIVES Our hypothesis is that asthma may be higher in residents closest to the Salton Sea due to chronic exposures to playa dust. Playa emissions may be concentrating dissolved material from the lake, with microbial components capable of inducing pulmonary innate immune responses. To test this hypothesis, we used a mouse model of aerosol exposures to assess the effects of playa dust. METHODS From dust collected around the Salton Sea region, aqueous extracts were used to generate aerosols, which were injected into an environmental chamber for mouse exposure studies. We compared the effects of exposure to Salton Sea aerosols, as well as to known immunostimulatory reference materials. Acute 48-h and chronic 7-day exposures were compared, with lungs analyzed for inflammatory cell recruitment and gene expression. RESULTS Dust from sites nearest to the Salton Sea triggered lung neutrophil inflammation that was stronger at 48-h but reduced at 7-days. This acute inflammatory profile and kinetics resembled the response to innate immune ligands LTA and LPS while distinct from the classic allergic response to Alternaria. CONCLUSION Lung inflammatory responses to Salton Sea dusts are similar to acute innate immune responses, raising the possibility that microbial components are entrained in the dust, promoting inflammation. This effect highlights the health risks at drying terminal lakes from inflammatory components in dust emissions from exposed lakebed.
Collapse
Affiliation(s)
- Trevor A Biddle
- Division of Biomedical Sciences, University of California, Riverside School of Medicine, Riverside, CA, USA; BREATHE Center, University of California, Riverside, Riverside, CA, USA; Center for Health Disparities Research, University of California, Riverside, Riverside, CA, USA
| | - Keziyah Yisrael
- Division of Biomedical Sciences, University of California, Riverside School of Medicine, Riverside, CA, USA; BREATHE Center, University of California, Riverside, Riverside, CA, USA; Center for Health Disparities Research, University of California, Riverside, Riverside, CA, USA
| | - Ryan Drover
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, USA; College of Engineering-Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, Riverside, CA, USA
| | - Qi Li
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, USA; College of Engineering-Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, Riverside, CA, USA
| | - Mia R Maltz
- Division of Biomedical Sciences, University of California, Riverside School of Medicine, Riverside, CA, USA; BREATHE Center, University of California, Riverside, Riverside, CA, USA; Center for Conservation Biology, University of California, Riverside, Riverside, CA, USA
| | - Talyssa M Topacio
- Department of Microbiology, University of California, Riverside, Riverside, CA, USA
| | - Jasmine Yu
- School of Medicine, University of California, Riverside, Riverside, CA, USA
| | - Diana Del Castillo
- Division of Biomedical Sciences, University of California, Riverside School of Medicine, Riverside, CA, USA; BREATHE Center, University of California, Riverside, Riverside, CA, USA; Center for Health Disparities Research, University of California, Riverside, Riverside, CA, USA
| | - Daniel Gonzales
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, USA; College of Engineering-Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, Riverside, CA, USA
| | - Hannah L Freund
- Department of Microbiology, University of California, Riverside, Riverside, CA, USA
| | - Mark P Swenson
- Department of Microbiology, University of California, Riverside, Riverside, CA, USA
| | - Malia L Shapiro
- Division of Biomedical Sciences, University of California, Riverside School of Medicine, Riverside, CA, USA; Center for Health Disparities Research, University of California, Riverside, Riverside, CA, USA
| | - Jon K Botthoff
- Center for Conservation Biology, University of California, Riverside, Riverside, CA, USA
| | - Emma Aronson
- Center for Health Disparities Research, University of California, Riverside, Riverside, CA, USA; Department of Microbiology, University of California, Riverside, Riverside, CA, USA
| | - David R Cocker
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, USA; College of Engineering-Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, Riverside, CA, USA
| | - David D Lo
- Division of Biomedical Sciences, University of California, Riverside School of Medicine, Riverside, CA, USA; BREATHE Center, University of California, Riverside, Riverside, CA, USA; Center for Health Disparities Research, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
3
|
Sadakane K, Ichinose T, Maki T, Nishikawa M. Co-exposure of peptidoglycan and heat-inactivated Asian sand dust exacerbates ovalbumin-induced allergic airway inflammation in mice. Inhal Toxicol 2022; 34:231-243. [PMID: 35698289 DOI: 10.1080/08958378.2022.2086650] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AIMS Asian sand dust (ASD) comprises soil particles, microorganisms, and various chemical components. We examined whether peptidoglycan (PGN), a structural cell wall component of Gram-positive bacteria, exacerbates ASD-induced allergic airway inflammation in mice. METHODS The ASD (median diameter ∼4 µm) used was a certified reference material from the National Institute for Environmental Studies in Japan, derived from Gobi Desert surface soil collected in 2011. BALB/c mice were intratracheally exposed to PGN, heat-inactivated ASD (H-ASD), and ovalbumin (OVA), individually and in combination. Twenty-four hours after the final intratracheal administration, bronchoalveolar lavage fluid (BALF) and serum samples were collected. Inflammatory cell count, cytokine levels in the BALF, OVA-specific immunoglobulin levels in the serum, and pathological changes in the lungs were analyzed. RESULTS AND DISCUSSION After OVA + PGN + H-ASD treatment, the number of eosinophils, neutrophils, and macrophages in the BALF and of eosinophils in the lung tissue was significantly higher than that after OVA + PGN or OVA + H-ASD treatment. Moreover, levels of chemokines and cytokines associated with eosinophil recruitment and activation were significantly higher in the BALF of this group than in that of the OVA + PGN group, and tended to be higher than those in the OVA + H-ASD group. Pathological changes in the lungs were most severe in mice treated with OVA + PGN + H-ASD. CONCLUSIONS Our results indicate that PGN is involved in the exacerbation of ASD-induced allergic airway inflammation in mice. Thus, inhalation of ASD containing Gram-positive bacteria may trigger allergic bronchial asthma.
Collapse
Affiliation(s)
- Kaori Sadakane
- Department of Health Sciences, Oita University of Nursing and Health Sciences, Oita, Japan
| | - Takamichi Ichinose
- Department of Health Sciences, Oita University of Nursing and Health Sciences, Oita, Japan.,Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Teruya Maki
- Department of Life Science, Kindai University, Osaka, Japan
| | - Masataka Nishikawa
- Environmental Standards Section, National Institute for Environmental Studies, Ibaraki, Japan
| |
Collapse
|
4
|
Fussell JC, Kelly FJ. Mechanisms underlying the health effects of desert sand dust. ENVIRONMENT INTERNATIONAL 2021; 157:106790. [PMID: 34333291 PMCID: PMC8484861 DOI: 10.1016/j.envint.2021.106790] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/21/2021] [Accepted: 07/19/2021] [Indexed: 05/28/2023]
Abstract
Desertification and climate change indicate a future expansion of the global area of dry land and an increase in the risk of drought. Humans may therefore be at an ever-increasing risk of frequent exposure to, and resultant adverse health effects of desert sand dust. This review appraises a total of 52 experimental studies that have sought to identify mechanisms and intermediate endpoints underlying epidemiological evidence of an impact of desert dust on cardiovascular and respiratory health. Toxicological studies, in main using doses that reflect or at least approach real world exposures during a dust event, have demonstrated that virgin sand dust particles and dust storm particles sampled at remote locations away from the source induce inflammatory lung injury and aggravate allergen-induced nasal and pulmonary eosinophilia. Effects are orchestrated by cytokines, chemokines and antigen-specific immunoglobulin potentially via toll-like receptor/myeloid differentiation factor signaling pathways. Findings suggest that in addition to involvement of adhered chemical and biological pollutants, mineralogical components may also be implicated in the pathogenesis of human respiratory disorders during a dust event. Whilst comparisons with urban particulate matter less than 2.5 μm in diameter (PM2.5) suggest that allergic inflammatory responses are greater for microbial element-rich dust- PM2.5, aerosols generated during dust events appear to have a lower oxidative potential compared to combustion-generated PM2.5 sampled during non-dust periods. In vitro findings suggest that the significant amounts of suspended desert dust during storm periods may provide a platform to intermix with chemicals on its surfaces, thereby increasing the bioreactivity of PM2.5 during dust storm episodes, and that mineral dust surface reactions are an unrecognized source of toxic organic chemicals in the atmosphere, enhancing toxicity of aerosols in urban environments. In summary, the experimental research on desert dust on respiratory endpoints go some way in clarifying the mechanistic effects of atmospheric desert dust on the upper and lower human respiratory system. In doing so, they provide support for biological plausibility of epidemiological associations between this particulate air pollutant and events including exacerbation of asthma, hospitalization for respiratory infections and seasonal allergic rhinitis.
Collapse
Affiliation(s)
- Julia C Fussell
- National Institute for Health Research Health Protection Research Unit in Environmental Exposures and Health, School of Public Health, Sir Michael Uren Building, Imperial College London, White City Campus, 80-92 Wood Lane, London W12 0BZ, United Kingdom.
| | - Frank J Kelly
- National Institute for Health Research Health Protection Research Unit in Environmental Exposures and Health, School of Public Health, Sir Michael Uren Building, Imperial College London, White City Campus, 80-92 Wood Lane, London W12 0BZ, United Kingdom
| |
Collapse
|
5
|
Kelly FJ, Fussell JC. Global nature of airborne particle toxicity and health effects: a focus on megacities, wildfires, dust storms and residential biomass burning. Toxicol Res (Camb) 2020; 9:331-345. [PMID: 32905302 PMCID: PMC7467248 DOI: 10.1093/toxres/tfaa044] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/26/2020] [Accepted: 06/08/2020] [Indexed: 01/01/2023] Open
Abstract
Since air pollutants are difficult and expensive to control, a strong scientific underpinning to policies is needed to guide mitigation aimed at reducing the current burden on public health. Much of the evidence concerning hazard identification and risk quantification related to air pollution comes from epidemiological studies. This must be reinforced with mechanistic confirmation to infer causality. In this review we focus on data generated from four contrasting sources of particulate air pollution that result in high population exposures and thus where there remains an unmet need to protect health: urban air pollution in developing megacities, household biomass combustion, wildfires and desert dust storms. Taking each in turn, appropriate measures to protect populations will involve advocating smart cities and addressing economic and behavioural barriers to sustained adoption of clean stoves and fuels. Like all natural hazards, wildfires and dust storms are a feature of the landscape that cannot be removed. However, many efforts from emission containment (land/fire management practices), exposure avoidance and identifying susceptible populations can be taken to prepare for air pollution episodes and ensure people are out of harm's way when conditions are life-threatening. Communities residing in areas affected by unhealthy concentrations of any airborne particles will benefit from optimum communication via public awareness campaigns, designed to empower people to modify behaviour in a way that improves their health as well as the quality of the air they breathe.
Collapse
Affiliation(s)
- Frank J Kelly
- NIHR Health Protection Research Unit in Environmental Exposures and Health, School of Public Health, Sir Michael Uren Building, Imperial College London, White City Campus, 80-92 Wood Lane, London W12 0BZ, UK
| | - Julia C Fussell
- NIHR Health Protection Research Unit in Environmental Exposures and Health, School of Public Health, Sir Michael Uren Building, Imperial College London, White City Campus, 80-92 Wood Lane, London W12 0BZ, UK
| |
Collapse
|
6
|
Dai MY, Chen FF, Wang Y, Wang MZ, Lv YX, Liu RY. Particulate matters induce acute exacerbation of allergic airway inflammation via the TLR2/NF-κB/NLRP3 signaling pathway. Toxicol Lett 2019; 321:146-154. [PMID: 31836503 DOI: 10.1016/j.toxlet.2019.12.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/07/2019] [Accepted: 12/10/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Exposure to particulate matters (PMs) can lead to an acute exacerbation of allergic airway diseases, increasing the severity of symptoms and mortality. However, little is known about the underlying molecular mechanism. This study aimed to investigate the effects of PMs on acute exacerbation of allergic airway inflammation and seek potential therapeutic targets. METHODS Non-allergic control and ovalbumin (OVA)-allergic wide-type (WT) and Toll-like receptor 2 knockout (Tlr2-/-) mice were exposed to 100 μg of PM (diameter 5.85 μm) or saline by the oropharyngeal instillation. The responses were examined three days after exposure. In the RAW264.7 macrophage cell line, Tlr2 was knocked down by small-interfering RNA or the NF-κB inhibitor JSH-23 was used, and then the cells were stimulated with PMs for 12 h before comparison of the inflammatory responses. RESULTS PM exposure led to increased inflammatory cell recruitment and airway intensity of PAS + staining in OVA-allergic WT mice, accompanied with an accumulation of inflammatory cells and elevated inflammatory cytokines, such as IL-6 and IL-18, in the bronchoalveolar lavage fluid (BALF). Furthermore, the protein levels of TLR2 and the NLRP3 inflammasome were elevated concomitantly with the airway inflammation post-OVA/PMs challenge. Tlr2 deficiency effectively inhibited the airway inflammation, including pulmonary inflammatory cell recruitment, mucus secretion, serum OVA-specific immunoglobulin E (IgE), and BALF inflammatory cytokine production. Additionally, the P-induced NLRP3 activation in the RAW 264.7 cell line was diminished by the knockdown of Tlr2 or JSH-23 treatment in vitro. CONCLUSION Our results indicated that PMs exacerbate the allergic airway inflammation mediated by the TLR2/ NF-κB/NLRP3 signaling pathway. Inhibition of NF-κB seems to be a possible treatment.
Collapse
Affiliation(s)
- Meng-Yuan Dai
- Department of Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Department of Geriatric Respiratory and Critical Care, Provincial Key Laboratory of Molecular Medicine for Geriatric Disease, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Fang-Fang Chen
- Department of Geriatric Respiratory and Critical Care, Provincial Key Laboratory of Molecular Medicine for Geriatric Disease, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yong Wang
- Department of Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mu-Zi Wang
- Department of Geriatric Respiratory and Critical Care, Provincial Key Laboratory of Molecular Medicine for Geriatric Disease, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yun-Xiang Lv
- Department of Geriatric Respiratory and Critical Care, Provincial Key Laboratory of Molecular Medicine for Geriatric Disease, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Rong-Yu Liu
- Department of Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Department of Geriatric Respiratory and Critical Care, Provincial Key Laboratory of Molecular Medicine for Geriatric Disease, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|