1
|
Ai S, Li J, Wang X, Zhao S, Ge G, Liu Z. Derivation of aquatic predicted no-effect concentration and ecological risk assessment for triphenyl phosphate and tris(1,3-dichloro-2-propyl) phosphate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169756. [PMID: 38171460 DOI: 10.1016/j.scitotenv.2023.169756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/08/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024]
Abstract
Triphenyl phosphate (TPhP) and tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) are common organophosphate esters (OPEs), which are used as additives in various industries. These compounds have been widely detected in aquatic environment, raising concerns about their adverse effects on aquatic organisms. In order to protect aquatic ecosystems, a total of 7 species were selected for acute and chronic toxicity tests in this study. The results indicated that TPhP and TDCIPP exhibited varying degrees of toxicity to aquatic organisms. The 96-h LC50 values ranged from 1.088 mg/L to 1.574 mg/L for TPhP and from 2.027 mg/L to 17.855 mg/L for TDCIPP. The 28-d LC10 values ranged from 0.023 mg/L to 0.177 mg/L for TPhP and from 0.300 mg/L to 1.102 mg/L for TDCIPP. The tested toxicity data, combined with collected toxicity data, were used to investigate the predicted no-effect concentration in water (PNECwater) of TPhP and TDCIPP by species sensitivity distribution (SSD) method. The results revealed PNECwater values of 6.35 and 38.0 μg/L for TPhP and TDCIPP, respectively. Furthermore, the predicted no-effect concentrations in sediment (PNECsed) were derived as 110 μg/kg dry weight (dw) for TPhP and 424 μg/kg dw for TDCIPP using the equilibrium partitioning (EqP) approach. Based on the toxicity data and PNECs, the ecological risk of these two chemicals in surface waters and sediments worldwide over the last decade were evaluated. The results indicated that TDCIPP posed negligible risk in aquatic ecosystems. However, TPhP showed potential risk in sediments, as indicated by the hazard quotients (HQs) exceeding 0.1. The results of joint probability curves (JPC) indicated that the probabilities of exceeding hazardous concentration for 1 % of species for TPhP in water and sediment were 0.33 % and 5.2 %, respectively. Overall, these findings highlight the need for continued monitoring and assessment of the presence and potential impacts of TPhP and TDCIPP in aquatic ecosystems.
Collapse
Affiliation(s)
- Shunhao Ai
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ji Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaonan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shiqing Zhao
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Gang Ge
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Zhengtao Liu
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
2
|
Azeredo DBC, de Sousa Anselmo D, Soares P, Graceli JB, Magliano DC, Miranda-Alves L. Environmental Endocrinology: Parabens Hazardous Effects on Hypothalamic-Pituitary-Thyroid Axis. Int J Mol Sci 2023; 24:15246. [PMID: 37894927 PMCID: PMC10607526 DOI: 10.3390/ijms242015246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/28/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Parabens are classified as endocrine-disrupting chemicals (EDCs) capable of interfering with the normal functioning of the thyroid, affecting the proper regulation of the biosynthesis of thyroid hormones (THs), which is controlled by the hypothalamic-pituitary-thyroid axis (HPT). Given the crucial role of these hormones in health and the growing evidence of diseases related to thyroid dysfunction, this review looks at the effects of paraben exposure on the thyroid. In this study, we considered research carried out in vitro and in vivo and epidemiological studies published between 1951 and 2023, which demonstrated an association between exposure to parabens and dysfunctions of the HPT axis. In humans, exposure to parabens increases thyroid-stimulating hormone (TSH) levels, while exposure decreases TSH levels in rodents. The effects on THs levels are also poorly described, as well as peripheral metabolism. Regardless, recent studies have shown different actions between different subtypes of parabens on the HPT axis, which allows us to speculate that the mechanism of action of these parabens is different. Furthermore, studies of exposure to parabens are more evident in women than in men. Therefore, future studies are needed to clarify the effects of exposure to parabens and their mechanisms of action on this axis.
Collapse
Affiliation(s)
- Damáris Barcelos Cunha Azeredo
- Laboratory of Experimental Endocrinology-LEEx, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.B.C.A.); (D.d.S.A.); (D.C.M.)
- Postgraduate Program in Endocrinology, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Denilson de Sousa Anselmo
- Laboratory of Experimental Endocrinology-LEEx, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.B.C.A.); (D.d.S.A.); (D.C.M.)
- Postgraduate Program in Endocrinology, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Paula Soares
- Cellular Signaling and Metabolism Group, i3S—Institute for Research and Innovation in Health, University of Porto, 420-135 Porto, Portugal;
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-139 Porto, Portugal
| | - Jones Bernardes Graceli
- Laboratory of Cellular Toxicology and Endocrinology, Department of Morphology, Federal University of Espírito Santo, Vitória 29047-105, Brazil;
| | - D’Angelo Carlo Magliano
- Laboratory of Experimental Endocrinology-LEEx, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.B.C.A.); (D.d.S.A.); (D.C.M.)
- Postgraduate Program in Endocrinology, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Morphology and Metabolism Group, Federal University of Fluminense, Niteroi 24020-150, Brazil
| | - Leandro Miranda-Alves
- Laboratory of Experimental Endocrinology-LEEx, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.B.C.A.); (D.d.S.A.); (D.C.M.)
- Postgraduate Program in Endocrinology, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Cellular Signaling and Metabolism Group, i3S—Institute for Research and Innovation in Health, University of Porto, 420-135 Porto, Portugal;
- Postgraduate Program in Pharmacology and Medicinal Chemistry, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Postgraduate Program in Morphological Sciences, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
3
|
Bioreactivity, Guttation and Agents Influencing Surface Tension of Water Emitted by Actively Growing Indoor Mould Isolates. Microorganisms 2020; 8:microorganisms8121940. [PMID: 33297485 PMCID: PMC7762365 DOI: 10.3390/microorganisms8121940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023] Open
Abstract
The secretion of metabolites in guttation droplets by indoor moulds is not well documented. This study demonstrates the guttation of metabolites by actively growing common indoor moulds. Old and fresh biomasses of indoor isolates of Aspergillus versicolor, Chaetomium globosum, Penicillium expansum, Trichoderma atroviride, T. trixiae, Rhizopus sp. and Stachybotrys sp. were compared. Metabolic activity indicated by viability staining and guttation of liquid droplets detected in young (<3 weeks old) biomass were absent in old (>6 months old) cultures consisting of dehydrated hyphae and dormant conidia. Fresh (<3 weeks old) biomasses were toxic more than 10 times towards mammalian cell lines (PK-15 and MNA) compared to the old dormant, dry biomasses, when calculated per biomass wet weight and per conidial particle. Surfactant activity was emitted in exudates from fresh biomass of T. atroviride, Rhizopus sp. and Stachybotrys sp. Surfactant activity was also provoked by fresh conidia from T. atroviride and Stachybotrys sp. strains. Water repealing substances were emitted by cultures of P. expansum, T. atroviride and C. globosum strains. The metabolic state of the indoor fungal growth may influence emission of liquid soluble bioreactive metabolites into the indoor air.
Collapse
|
4
|
Nordberg M, Täubel M, Jalava PI, BéruBé K, Tervahauta A, Hyvärinen A, Huttunen K. Human airway construct model is suitable for studying transcriptome changes associated with indoor air particulate matter toxicity. INDOOR AIR 2020; 30:433-444. [PMID: 31883508 PMCID: PMC7217003 DOI: 10.1111/ina.12637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 05/08/2023]
Abstract
In vitro models mimicking the human respiratory system are essential when investigating the toxicological effects of inhaled indoor air particulate matter (PM). We present a pulmonary cell culture model for studying indoor air PM toxicity. We exposed normal human bronchial epithelial cells, grown on semi-permeable cell culture membranes, to four doses of indoor air PM in the air-liquid interface. We analyzed the chemokine interleukin-8 concentration from the cell culture medium, protein concentration from the apical wash, measured tissue electrical resistance, and imaged airway constructs using light and transmission electron microscopy. We sequenced RNA using a targeted RNA toxicology panel for 386 genes associated with toxicological responses. PM was collected from a non-complaint residential environment over 1 week. Sample collection was concomitant with monitoring size-segregated PM counts and determination of microbial levels and diversity. PM exposure was not acutely toxic for the cells, and we observed up-regulation of 34 genes and down-regulation of 17 genes when compared to blank sampler control exposure. The five most up-regulated genes were related to immunotoxicity. Despite indications of incomplete cell differentiation, this model enabled the comparison of a toxicological transcriptome associated with indoor air PM exposure.
Collapse
Affiliation(s)
- Maria‐Elisa Nordberg
- Department of Environmental and Biological SciencesUniversity of Eastern Finland (UEF)KuopioFinland
| | - Martin Täubel
- Environmental Health UnitNational Institute for Health and WelfareKuopioFinland
| | - Pasi I. Jalava
- Department of Environmental and Biological SciencesUniversity of Eastern Finland (UEF)KuopioFinland
| | - Kelly BéruBé
- Cardiff School of BiosciencesCardiff Institute Tissue Engineering and Repair (CITER)Cardiff UniversityWalesUK
| | - Arja Tervahauta
- Department of Environmental and Biological SciencesUniversity of Eastern Finland (UEF)KuopioFinland
| | - Anne Hyvärinen
- Environmental Health UnitNational Institute for Health and WelfareKuopioFinland
| | - Kati Huttunen
- Department of Environmental and Biological SciencesUniversity of Eastern Finland (UEF)KuopioFinland
| |
Collapse
|
5
|
Carlsson G. Effect-based environmental monitoring for thyroid disruption in Swedish amphibian tadpoles. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:454. [PMID: 31222463 PMCID: PMC6586702 DOI: 10.1007/s10661-019-7590-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
It is well-known that the metamorphosis process in amphibians is dependent on thyroid hormones. Laboratory studies have shown that several environmental contaminants can affect the function of thyroid hormones leading to alterations in the amphibian metamorphosis. The basic idea of the present study was to elucidate if the amphibian metamorphosis might be a useful tool as biomarker for effect-based environmental monitoring, examining wild tadpoles for potential thyroid hormone disruption. A laboratory test was performed to identify the responses from exposure to 6-propylthiouracil (PTU), which has a well-known mechanism on the thyroid system, on Swedish tadpoles from the Rana genus. This was followed by an environmental monitoring study where tadpoles of Rana arvalis, R. temporaria, and Bufo bufo were sampled from various sites in Sweden. Morphological data such as body weight, histopathological measurements of the thyroid glands, and environmental parameters were recorded. The results revealed that Rana tadpoles respond similar as other amphibians to PTU exposure, with interrupted development and increased size relative to the developmental stage. Data on some wild tadpoles showed similar features as the PTU exposed, such as high body weight, thus suggesting potential thyroid disrupting effects. However, histological evaluation of thyroid glands and pesticide analyses of the water revealed no clear evidence of chemical interactions. To a minor degree, the changes in body weight may be explained by natural circumstances such as pH, forest cover, and temperature. The present study cannot fully explain whether the high body weights recorded in some tadpoles have natural or chemical explanations. However, the study reveals that it is clearly achievable to catch tadpoles in suitable stages for the use in this type of biomonitoring and that the use of these biomarkers for assessment of thyroid disruption seems to be highly relevant.
Collapse
Affiliation(s)
- Gunnar Carlsson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 750 07, Uppsala, Sweden.
| |
Collapse
|