1
|
Tian R, Guo S, Chen S, Wu J, Long A, Cheng R, Wang X, Huang L, Li C, Mao W, Xu P, Yu L, Pan H, Liu L. Natural products as Nrf2 modulators for ferroptosis inhibition in renal disease therapy: Recent progress and future prospects. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 136:156342. [PMID: 39742572 DOI: 10.1016/j.phymed.2024.156342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/03/2025]
Abstract
BACKGROUND The transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2, NFE2L2) is a pivotal regulator of redox balance, metabolism, protein homeostasis and inflammation. Nrf2 is critically involved in both ferroptosis and renal diseases, and may serve as a significant target for many natural products in the treatment of renal diseases. However, a comprehensive overview on this topic is still lacking. PURPOSE To review the protective or therapeutic effects of natural products regulating Nrf2-related ferroptosis against various renal diseases. METHODS We systematically searched the electronic databases involving PubMed, Web of Science, Google Scholar, China National Knowledge Internet (CNKI), Wanfang Database and VIP Database. To ensure a comprehensive exploration, keywords including Nrf2, ferroptosis, natural products, phytochemicals, renal disease, kidney disease, kidney injury and nephropathy were employed. RESULTS Ferroptosis is deeply implicated in various kinds of renal diseases, notably including cisplatin-induced acute kidney injury, sepsis-associated acute kidney injury, renal ischemia/reperfusion injury, diabetic nephropathy, kidney stones and renal fibrosis. Nrf2 plays a regulatory role on many important genes related to iron metabolism, antioxidant system and lipid metabolism, thereby modulating ferroptosis. More than twenty natural products exert renoprotective effects by inhibiting ferroptosis via the regulation of Nrf2. This review presents a comprehensive overview of recent advancements in elucidating the ferroptosis involvement in renal diseases, the role of Nrf2 in regulating ferroptosis, and summarizes the renoprotective natural products as Nrf2 modulators for ferroptosis inhibition. CONCLUSION Through the comprehensive insights, this review clarifies the protective or therapeutic effects of natural products as Nrf2 modulators for ferroptosis inhibition in renal disease therapy, in the pursuit of providing new research ideas and directions for the treatment of renal diseases. Further drug development aimed at discovering more natural products and optimizing their utilization for disease treatment is necessary.
Collapse
Affiliation(s)
- Ruimin Tian
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Shan Guo
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shudong Chen
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jiaqi Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Aoyang Long
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Ran Cheng
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiaowan Wang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Lihua Huang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Chuang Li
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Wei Mao
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China; Chinese Medicine Guangdong Laboratory (Hengqin Laboratory), Guangdong-Macao In-Depth Cooperation Zone in Hengqin, 519000, China
| | - Peng Xu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China; Chinese Medicine Guangdong Laboratory (Hengqin Laboratory), Guangdong-Macao In-Depth Cooperation Zone in Hengqin, 519000, China
| | - Lili Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Hudan Pan
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Chinese Medicine Guangdong Laboratory (Hengqin Laboratory), Guangdong-Macao In-Depth Cooperation Zone in Hengqin, 519000, China.
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Chinese Medicine Guangdong Laboratory (Hengqin Laboratory), Guangdong-Macao In-Depth Cooperation Zone in Hengqin, 519000, China.
| |
Collapse
|
2
|
Fang Y, Li W, Dong C, Gao B, Guo W, Li M, Jiao Z. Inhibition of SLC40A1 represses osteoblast formation via inducing iron accumulation and activating the PERK/ATF4/CHOP pathway mediated oxidative stress. Redox Rep 2024; 29:2428147. [PMID: 39607819 DOI: 10.1080/13510002.2024.2428147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024] Open
Abstract
OBJECTIVE This study aimed to investigate the effects of solute carrier family 40 member 1 (SLC40A1) on iron accumulation, oxidative stress and differentiation in osteoblasts and potential mechanisms. METHODS Mouse preosteoblastic MC3T3-E1 cells were transfected with the SLC40A1 overexpression vector (oeSLC40A1) and siRNA (siSLC40A1), then cell differentiation was induced via ascorbic acid and β-glycerophosphate. Besides, Ferrostatin-1 (ferroptosis inhibitor) and GSK2606414 (PERK inhibitor) were added with siSLC40A1. RESULTS Fe2+, malondialdehyde (MDA), and reactive oxygen species (ROS) were higher but reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio was lower after siSLC40A1 transfection, while reduced Fe2+ and ROS but elevated GSH/GSSG ratio was observed after oeSLC40A1 transfection. Alkaline phosphatase (ALP) staining, Alizarin Red S (ARS) staining, osteopontin (OPN) and bone morphogenetic protein 2 (BMP2) were lower after siSLC40A1 transfection but were greater after oeSLC40A1 transfection. Furthermore, SLC40A1 negatively regulated the PERK/ATF4/CHOP pathway. Further exploration revealed that Fe2+, MDA, ROS, and the PERK/ATF4/CHOP pathway were attenuated, while GSH/GSSG ratio, ALP staining, ARS staining, and OPN expression were increased after ferrostatin-1 treatment in the siSLC40A1-transfected cells. Similar trends were observed with respect to GSK2606414 treatment with siSLC40A1. CONCLUSION SLC40A1 inhibition suppresses osteoblast formation by facilitating iron accumulation and activating the PERK/ATF4/CHOP pathway-mediated oxidative stress.
Collapse
Affiliation(s)
- Yu Fang
- Department of Orthopedics, Medical Affairs Department, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, People's Republic of China
| | - Wei Li
- Department of Radiology, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, People's Republic of China
| | - Chongyang Dong
- College of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, People's Republic of China
| | - Binli Gao
- Department of Orthopedics, Medical Affairs Department, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, People's Republic of China
| | - Wen Guo
- Department of Orthopedics, Medical Affairs Department, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, People's Republic of China
| | - Mingyu Li
- Department of Orthopedics, Medical Affairs Department, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, People's Republic of China
| | - Zhichao Jiao
- Department of Orthopedics, Medical Affairs Department, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, People's Republic of China
| |
Collapse
|
3
|
Chen R, Zhang H, Zhao X, Zhu L, Zhang X, Ma Y, Xia L. Progress on the mechanism of action of emodin against breast cancer cells. Heliyon 2024; 10:e38628. [PMID: 39524792 PMCID: PMC11550755 DOI: 10.1016/j.heliyon.2024.e38628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/22/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024] Open
Abstract
At present, the role of active ingredients of traditional Chinese medicine in tumor therapy has gradually attracted people's attention, and anthraquinones, which are structurally similar to adriamycin and epirubicin, are one of the hotspots of research. Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is a natural anthraquinone compound isolated from rhubarb, Polygonum cuspidatum, and aloe vera. In recent years, emodin has received widespread attention for its remarkable anti-tumor effects, and its anti-breast cancer effects are manifested as induction of apoptosis, inhibition of tumor cell proliferation, inhibition of invasion and metastasis of tumor cells, and anti-tumor drug resistance. Moreover, emodin can act against multiple types of breast cancer cells by acting on different targets. In this paper, we reviewed the latest research progress on the anti-breast cancer effects of emodin and its anti-tumor mechanism, to provide reference and information for the treatment of breast cancer and the development of anti-tumor drugs.
Collapse
Affiliation(s)
- Ruoqing Chen
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Hairong Zhang
- Department of Obstetrics and Gynecology, Shandong Provincial Third Hospital, Shandong University, Jinan, 250031, PR China
| | - Xue Zhao
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Lin Zhu
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - XiaoYu Zhang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Yuning Ma
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Lei Xia
- Department of Pathology, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| |
Collapse
|
4
|
Han SQ, Fu XK, Ha W, Shi YP. Comprehensive spatial distribution profiling of bioactive emodin in mouse organs using mass spectrometry imaging. ANAL SCI 2024; 40:2063-2073. [PMID: 39136850 DOI: 10.1007/s44211-024-00644-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/30/2024] [Indexed: 10/29/2024]
Abstract
Emodin is an important anthraquinone compound with good anti-inflammatory activity in Chinese traditional medicine rhubarb. Detailed spatial distribution information in bio-tissues plays an important role in revealing the pharmacodynamics, toxicology and chemical mechanism of emodin. Herein, the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry imaging (MALDI-TOF-MSI) analytical method was established to obtain information on the spatial and temporal changes of emodin in multiple mouse tissue sections (heart, liver, spleen, lung, kidney, and brain) after intraperitoneal injection of emodin in mice. The measurements were accomplished in the negative ion mode in the range of m/z 250-285 Da with a spatial resolution on 40 µm. It was found that emodin was predominantly distributed in the arteriolar vascular region of the heart, the capsule region of the spleen, and the cortex of the kidney. Moreover, the MALDI-TOF-MSI result implied that emodin might be distributed in the brain. These more detailed spatial distribution information provides the significant reference for investigating the action mechanism of emodin, which cannot be obtained from conventional LC-MS analysis. The distribution trend of emodin in the results of MALDI-TOF-MSI analysis agreed with the ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) results well, demonstrating the complementarity and reliability of the established MALDI-TOF-MSI method. Our work provided a label-free molecular imaging method to investigate the precise spatial distribution of emodin in various organs, which prove great potential in studying the effective substances and mechanism of rhubarb.
Collapse
Affiliation(s)
- Si-Qi Han
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xiao-Kang Fu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Wei Ha
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, People's Republic of China.
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
5
|
Yang J, Zhuang C, Lin Y, Yu Y, Zhou C, Zhang C, Zhu Z, Qian C, Zhou Y, Zheng W, Zhao Y, Jin C, Wu Z. Orientin promotes diabetic wounds healing by suppressing ferroptosis via activation of the Nrf2/GPX4 pathway. Food Sci Nutr 2024; 12:7461-7480. [PMID: 39479645 PMCID: PMC11521705 DOI: 10.1002/fsn3.4360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 11/02/2024] Open
Abstract
Diabetic patients often experience delayed wound healing due to impaired functioning of human umbilical vein endothelial cells (HUVECs) under high glucose (HG) conditions. This is because HG conditions trigger uncontrolled lipid peroxidation, leading to iron-dependent ferroptosis, which is caused by glucolipotoxicity. However, natural flavonoid compound Orientin (Ori) possesses anti-inflammatory bioactive properties and is a promising treatment for a range of diseases. The current study aimed to investigate the function and mechanism of Ori in HG-mediated ferroptosis. A diabetic wound model was established in mice by intraperitoneal injection of streptozotocin (STZ), and HUVECs were cultured under HG to create an in vitro diabetic environment. The results demonstrated that Ori inhibited HG-mediated ferroptosis, reducing levels of malondialdehyde (MDA), lipid peroxidation, and mitochondrial reactive oxygen species (mtROS), while increasing decreased levels of malondialdehyde, lipid peroxidation, and mitochondrial reactive oxygen species, as well as increased levels of glutathione (GSH). Ori treatment also improved the wound expression of glutathione peroxidase 4 (GPX4) and angiogenesis markers, reversing the delayed wound healing caused by diabetes mellitus (DM). Additional investigations into the mechanism revealed that Ori may stimulate the nuclear factor-erythroid 2-related factor 2 (Nrf2)/GPX4 signaling pathway. Silencing Nrf2 in HG-cultured HUVECs negated the beneficial impact mediated by Ori. By stimulating the Nrf2/GPX4 signaling pathway, Ori may expedite diabetic wound healing by decreasing ferroptosis.
Collapse
Affiliation(s)
- Jia‐yi Yang
- Department of GynaecologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- The Third Peoples Hospital of Ouhai DistrictWenzhouZhejiangChina
| | - Chen Zhuang
- Alberta Institute, Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Yu‐zhe Lin
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouZhejiangChina
| | - Yi‐tian Yu
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouZhejiangChina
- The First School of MedicineWenzhou Medical UniversityWenzhouZhejiangChina
| | - Chen‐cheng Zhou
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouZhejiangChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouZhejiangChina
| | - Chao‐yang Zhang
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouZhejiangChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouZhejiangChina
| | - Zi‐teng Zhu
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouZhejiangChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouZhejiangChina
| | - Cheng‐jie Qian
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouZhejiangChina
| | - Yi‐nan Zhou
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouZhejiangChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouZhejiangChina
| | - Wen‐hao Zheng
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouZhejiangChina
| | - Yu Zhao
- Department of GynaecologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Chen Jin
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouZhejiangChina
| | - Zong‐yi Wu
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouZhejiangChina
| |
Collapse
|
6
|
Zhu H, Yang Y, Duan Y, Zheng X, Lin Z, Zhou J. Nrf2/FSP1/CoQ10 axis-mediated ferroptosis is involved in sodium aescinate-induced nephrotoxicity. Arch Biochem Biophys 2024; 759:110100. [PMID: 39033970 DOI: 10.1016/j.abb.2024.110100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Sodium aescinate (SA), an active compound found in horse chestnut seeds, is widely used in clinical practice. Recently, the incidence of SA-induced adverse events, particularly renal impairment, has increased. Our previous work demonstrated that SA causes severe nephrotoxicity via nephrocyte ferroptosis; however, the underlying mechanism remains to be fully elucidated. In the current study, we investigated additional molecular pathways involved in SA-induced nephrotoxicity. Our results showed that SA inhibited cell viability, disrupted cellular membrane integrity, and enhanced reactive oxygen species (ROS), ferrous iron (Fe2+), and malondialdehyde (MDA) levels, as well as lipid peroxidation in rat proximal renal tubular epithelial cell line (NRK-52E) cells. SA also depleted coenzyme Q10 (CoQ10, ubiquinone) and nicotinamide adenine dinucleotide (NADH) and reduced ferroptosis suppressor protein 1 (FSP1) and polyprenyltransferase (coenzyme Q2, COQ2) activity, triggering lipid peroxidation and ROS accumulation in mouse kidneys and NRK-52E cells. The overexpression of COQ2, FSP1, or CoQ10 (ubiquinone) supplementation effectively attenuated SA-induced ferroptosis, whereas iFSP1 or 4-formylbenzoic acid (4-CBA) pretreatment exacerbated SA-induced nephrotoxicity. Additionally, SA decreased nuclear factor-erythroid-2-related factor 2 (Nrf2) levels and inhibited Nrf2 binding to the -1170/-1180 bp ARE site in FSP1 promoter, resulting in FSP1 suppression. Overexpression of Nrf2 or its agonist dimethyl fumarate (DMF) promoted FSP1 expression, thereby improving cellular antioxidant capacity and alleviating SA-induced ferroptosis. These results suggest that SA-triggers renal injury through oxidative stress and ferroptosis, driven by the suppression of the Nrf2/FSP1/CoQ10 axis.
Collapse
Affiliation(s)
- Haiyan Zhu
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China
| | - Yijing Yang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China
| | - Yenan Duan
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China
| | - Xin Zheng
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China
| | - Zixiong Lin
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China
| | - Jie Zhou
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China.
| |
Collapse
|
7
|
Wang Y, Zhao M, Li B, Geng X. Advances in the mechanism of emodin-induced hepatotoxicity. Heliyon 2024; 10:e33631. [PMID: 39027614 PMCID: PMC11255441 DOI: 10.1016/j.heliyon.2024.e33631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024] Open
Abstract
Emodin is a naturally occurring anthraquinone derivative and serves as an active component in various traditional Chinese herbal medicines. It is widely known for its broad pharmacological effects, including anti-inflammatory, antioxidant, and anticancer properties. However, high doses and long-term use of emodin can also lead to liver toxicity. Nevertheless, the mechanism of emodin-induced liver toxicity remains unclear at present. This article aims to summarize the toxicological research progress on emodin, with a particular focus on elucidating the mechanisms underlying emodin-induced hepatocyte injury. By providing essential information, the study intends to facilitate further research and safe usage of emodin for researchers and clinical practitioners.
Collapse
Affiliation(s)
- Yupeng Wang
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control. Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, China
| | - Mengchao Zhao
- Department of Pharmacy, General Hospital of Ningxia Medical University, 804 Shengli Street, Xingqing District, Ningxia, 750004, China
| | - Bo Li
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control. Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, China
| | - Xingchao Geng
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control. Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, China
| |
Collapse
|
8
|
Liu Y, Ji T, Jiang H, Chen M, Liu W, Zhang Z, He X. Emodin alleviates intestinal ischemia-reperfusion injury through antioxidant stress, anti-inflammatory responses and anti-apoptosis effects via Akt-mediated HO-1 upregulation. J Inflamm (Lond) 2024; 21:25. [PMID: 38982499 PMCID: PMC11232135 DOI: 10.1186/s12950-024-00392-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/08/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Intestinal ischemia-reperfusion (I/R) injury is a severe vascular emergency. Previous research indicated the protective effects of Emodin on I/R injury. Our study aims to explore the effect of Emodin on intestinal I/R (II/R) injury and elucidate the underlying mechanisms. METHODS C57BL/6 mice and Caco-2 cells were used for in vivo and in vitro studies. We established an animal model of II/R injury by temporarily occluding superior mesenteric artery. We constructed an oxygen-glucose deprivation/reoxygenation (OGD/R) cell model using a hypoxia-reoxygenation incubator. Different doses of Emodin were explored to determine the optimal therapeutic dose. Additionally, inhibitors targeting the protein kinase B (Akt) or Heme oxygenase-1 (HO-1) were administered to investigate their potential protective mechanisms. RESULTS Our results demonstrated that in animal experiments, Emodin mitigated barrier disruption, minimized inflammation, reduced oxidative stress, and inhibited apoptosis. When Akt or HO-1 was inhibited, the protective effect of Emodin was eliminated. Inhibiting Akt also reduced the level of HO-1. In cell experiments, Emodin reduced inflammation and apoptosis in the OGD/R cell model. Additionally, when Akt or HO-1 was inhibited, the protective effect of Emodin was weakened. CONCLUSIONS Our findings suggest that Emodin may protect the intestine against II/R injury through the Akt/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Yinyin Liu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, East Lake Road, Wuhan, Hubei, 430071, China
| | - Tuo Ji
- Department of Anesthesiology, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, 430079, China
| | - Haixing Jiang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, East Lake Road, Wuhan, Hubei, 430071, China
| | - Meng Chen
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, East Lake Road, Wuhan, Hubei, 430071, China
- Department of Anesthesiology, Hubei Maternal and Child Health Hospital, Wuhan, Hubei, 430070, China
| | - Wanli Liu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, East Lake Road, Wuhan, Hubei, 430071, China
| | - Zongze Zhang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, East Lake Road, Wuhan, Hubei, 430071, China.
| | - Xianghu He
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, East Lake Road, Wuhan, Hubei, 430071, China.
- Department of Anesthesiology, Jiayu Hospital, Zhongnan Hospital of Wuhan University, Xianning, Hubei, 437200, China.
| |
Collapse
|
9
|
Qiu Q, Fu F, Wu Y, Han C, Pu W, Wen L, Xia Q, Du D. Rhei Radix et Rhizoma and its anthraquinone derivatives: Potential candidates for pancreatitis treatment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155708. [PMID: 38733906 DOI: 10.1016/j.phymed.2024.155708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Pancreatitis is a common exocrine inflammatory disease of the pancreas and lacks specific medication currently. Rhei Radix et Rhizoma (RR) and its anthraquinone derivatives (AQs) have been successively reported for their pharmacological effects and molecular mechanisms in experimental and clinical pancreatitis. However, an overview of the anti-pancreatitis potential of RR and its AQs is limited. PURPOSE To summarize and analyze the pharmacological effects of RR and its AQs on pancreatitis and the underlying mechanisms, and discuss their drug-like properties and future perspectives. METHODS The articles related to RR and its AQs were collected from the Chinese National Knowledge Infrastructure, Wanfang data, PubMed, and the Web of Science using relevant keywords from the study's inception until April first, 2024. Studies involving RR or its AQs in cell or animal pancreatitis models as well as structure-activity relationship, pharmacokinetics, toxicology, and clinical trials were included. RESULTS Most experimental studies are based on severe acute pancreatitis rat models and a few on chronic pancreatitis. Several bioactive anthraquinone derivatives of Rhei Radix et Rhizoma (RRAQs) exert local protective effects on the pancreas by maintaining pancreatic acinar cell homeostasis, inhibiting inflammatory signaling, and anti-fibrosis, and they improve systemic organ function by alleviating intestinal and lung injury. Pharmacokinetic and toxicity studies have revealed the low bioavailability and wide distribution of RRAQs, as well as hepatotoxicity and nephrotoxicity. However, there is insufficient research on the clinical application of RRAQs in pancreatitis. Furthermore, we propose effective strategies for subsequent improvement in terms of balancing effectiveness and safety. CONCLUSION RRAQs can be developed as either candidate drugs or novel lead structures for pancreatitis treatment. The comprehensive review of RR and its AQs provides references for optimizing drugs, developing therapies, and conducting future studies on pancreatitis.
Collapse
Affiliation(s)
- Qi Qiu
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fei Fu
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China
| | - Yaling Wu
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China
| | - Chenxia Han
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weiling Pu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Li Wen
- State Key Laboratory of Complex, Severe, and Rare Diseases, Center for Biomarker Discovery and Validation, National Infrastructures for Translational Medicine (PUMCH), Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100073, China
| | - Qing Xia
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Dan Du
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China.
| |
Collapse
|
10
|
Li S, Tang S, Dai L, Jian Z, Li X. Emodin relieves morphine-stimulated BV2 microglial activation and inflammation through the TLR4/NF-κB/NLRP3 pathway. Neuroreport 2024; 35:518-528. [PMID: 38597275 DOI: 10.1097/wnr.0000000000002034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The objective of this study is to disclose the role of emodin, a natural anthraquinone derivative that has been proposed to suppress microglial activation and inflammation, in morphine tolerance. Here, cell counting kit-8 method assayed the viability of BV2 microglial cells treated by ascending concentrations of emodin. In emodin-pretreated BV2 microglial cells challenged with morphine with or without transfection of toll-like receptor 4 (TLR4) overexpression plasmids, transwell assay measured cell migration. Immunofluorescence staining and western blot detected the expression of microglial markers. Inflammatory levels were subjected to ELISA and western blot. BODIPY 581/591 C11 assay estimated lipid reactive oxygen species activity. Iron assay kit examined total iron content. Western blot tested the expression of ferroptosis- and TLR4/nuclear factor-kappaB (NF-κB)/NOD-like receptor 3 (NLRP3) pathway-associated proteins. Molecular docking predicted the binding affinity of emodin to TLR4. Emodin was noted to obstruct the migration, activation, inflammatory response, and ferroptosis of BV2 microglial cells induced by morphine. In addition, emodin had a high binding affinity with TLR4 and inactivated TLR4/NF-κB/NLRP3 pathway in morphine-challenged BV2 microglial cells. Upregulation of TLR4 partially countervailed the protective role of emodin against morphine-elicited BV2 microglial cell migration, activation, inflammation, and ferroptosis. Accordingly, emodin might target TLR4 and act as an inactivator of TLR4/NF-κB/NLRP3 pathway, thus inhibiting BV2 microglial activation and inflammation to mitigate morphine tolerance.
Collapse
Affiliation(s)
- Shimei Li
- Department of Anesthesiology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | | | | | | | | |
Collapse
|
11
|
Zhu H, Duan Y, Yang Y, Chen E, Huang H, Wang X, Zhou J. Sodium aescinate induces renal toxicity by promoting Nrf2/GPX4-mediated ferroptosis. Chem Biol Interact 2024; 391:110892. [PMID: 38364601 DOI: 10.1016/j.cbi.2024.110892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 02/18/2024]
Abstract
Sodium aescinate (SA) is extracted from Aesculus wilsonii Rehd seeds and was first marketed as a medicament in German. With the wide application of SA in clinical practice, reports of adverse drug reactions and adverse events have gradually increased, including renal impairment. However, the pathogenic mechanisms of SA have not yet been fully elucidated. The toxic effects and underlying mechanisms of SA were explored in this study. Our data showed that SA significantly elevated the levels of blood urea nitrogen (BUN), serum creatinine (Scr) and Kidney injury molecule 1 (Kim-1), accompanied by pathologically significant changes in renal tissue. SA induced NRK-52E cell death and disrupted the integrity of the cell membrane. Moreover, SA caused significant reductions in FTH, Nrf2, xCT, GPX4, and FSP1 levels, but increased TFR1 and ACSL4 levels. SA decreased glutathione peroxidase (GPx), glutathione (GSH) and cysteine (Cys) levels, but improved Fe2+, malondialdehyde (MDA), reactive oxygen species (ROS) and lipid peroxidation levels, ultimately leading to the induction of ferroptosis. Importantly, inhibition of ferroptosis or activation of the Nrf2/GPX4 pathway prevented SA-induced nephrotoxicity. These findings indicated that SA induced oxidative damage and ferroptosis-mediated kidney injury by suppressing the Nrf2/GPX4 axis activity.
Collapse
Affiliation(s)
- Haiyan Zhu
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China
| | - Yenan Duan
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China
| | - Yijing Yang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China
| | - Enqing Chen
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China
| | - Hanxin Huang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China
| | - Xi Wang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China
| | - Jie Zhou
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China.
| |
Collapse
|
12
|
Yang C, Yang X, Harrington A, Potts C, Kaija A, Ryzhova L, Liaw L. Notch Signaling Regulates Mouse Perivascular Adipose Tissue Function via Mitochondrial Pathways. Genes (Basel) 2023; 14:1964. [PMID: 37895313 PMCID: PMC10606454 DOI: 10.3390/genes14101964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Perivascular adipose tissue (PVAT) regulates vascular function by secreting vasoactive substances. In mice, Notch signaling is activated in the PVAT during diet-induced obesity, and leads to the loss of the thermogenic phenotype and adipocyte whitening due to increased lipid accumulation. We used the Adiponectin-Cre (Adipoq-Cre) strain to activate a ligand-independent Notch1 intracellular domain transgene (N1ICD) to drive constitutive Notch signaling in the adipose tissues (N1ICD;Adipoq-Cre). We previously found that constitutive activation of Notch1 signaling in the PVAT phenocopied the effects of diet-induced obesity. To understand the downstream pathways activated by Notch signaling, we performed a proteomic analysis of the PVAT from control versus N1ICD;Adipoq-Cre mice. This comparison identified prominent changes in the protein signatures related to metabolism, adipocyte homeostasis, mitochondrial function, and ferroptosis. PVAT-derived stromal vascular fraction cells were derived from our mouse strains to study the cellular and molecular phenotypes during adipogenic induction. We found that cells with activated Notch signaling displayed decreased mitochondrial respiration despite similar levels of adipogenesis and mitochondrial number. We observed variable regulation of the proteins related to mitochondrial dynamics and ferroptosis, including PHB3, PINK1, pDRP1, and the phospholipid hydroperoxidase GPX4. Mitochondria regulate some forms of ferroptosis, which is a regulated process of cell death driven by lipid peroxidation. Accordingly, we found that Notch activation promoted lipid peroxidation and ferroptosis in PVAT-derived adipocytes. Because the PVAT phenotype is a regulator of vascular reactivity, we tested the effect of Notch activation in PVAT on vasoreactivity using wire myography. The aortae from the N1ICD;Adipoq-Cre mice had increased vasocontraction and decreased vasorelaxation in a PVAT-dependent and age-dependent manner. Our data provide support for the novel concept that increased Notch signaling in the adipose tissue leads to PVAT whitening, impaired mitochondrial function, increased ferroptosis, and loss of a protective vasodilatory signal. Our study advances our understanding of how Notch signaling in adipocytes affects mitochondrial dynamics, which impacts vascular physiology.
Collapse
Affiliation(s)
- Chenhao Yang
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME 04074, USA; (C.Y.); (X.Y.); (A.H.); (C.P.); (A.K.); (L.R.)
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
| | - Xuehui Yang
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME 04074, USA; (C.Y.); (X.Y.); (A.H.); (C.P.); (A.K.); (L.R.)
| | - Anne Harrington
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME 04074, USA; (C.Y.); (X.Y.); (A.H.); (C.P.); (A.K.); (L.R.)
| | - Christian Potts
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME 04074, USA; (C.Y.); (X.Y.); (A.H.); (C.P.); (A.K.); (L.R.)
| | - Abigail Kaija
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME 04074, USA; (C.Y.); (X.Y.); (A.H.); (C.P.); (A.K.); (L.R.)
| | - Larisa Ryzhova
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME 04074, USA; (C.Y.); (X.Y.); (A.H.); (C.P.); (A.K.); (L.R.)
| | - Lucy Liaw
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME 04074, USA; (C.Y.); (X.Y.); (A.H.); (C.P.); (A.K.); (L.R.)
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
| |
Collapse
|