1
|
Harel M, Arbiv U, Ankri R. Multiplexed near infrared fluorescence lifetime imaging in turbid media. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:026004. [PMID: 38425720 PMCID: PMC10902792 DOI: 10.1117/1.jbo.29.2.026004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/23/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
Significance Fluorescence lifetime imaging (FLI) plays a pivotal role in enhancing our understanding of biological systems, providing a valuable tool for non-invasive exploration of biomolecular and cellular dynamics, both in vitro and in vivo. Its ability to selectively target and multiplex various entities, alongside heightened sensitivity and specificity, offers rapid and cost-effective insights. Aim Our aim is to investigate the multiplexing capabilities of near-infrared (NIR) FLI within a scattering medium that mimics biological tissues. We strive to develop a comprehensive understanding of FLI's potential for multiplexing diverse targets within a complex, tissue-like environment. Approach We introduce an innovative Monte Carlo (MC) simulation approach that accurately describes the scattering behavior of fluorescent photons within turbid media. Applying phasor analyses, we enable the multiplexing of distinct targets within a single FLI image. Leveraging the state-of-the-art single-photon avalanche diode (SPAD) time-gated camera, SPAD512S, we conduct experimental wide-field FLI in the NIR regime. Results Our study demonstrates the successful multiplexing of dual targets within a single FLI image, reaching a depth of 1 cm within tissue-like phantoms. Through our novel MC simulation approach and phasor analyses, we showcase the effectiveness of our methodology in overcoming the challenges posed by scattering media. Conclusions This research underscores the potential of NIR FLI for multiplexing applications in complex biological environments. By combining advanced simulation techniques with cutting-edge experimental tools, we introduce significant results in the non-invasive exploration of biomolecular dynamics, to advance the field of FLI research.
Collapse
Affiliation(s)
- Meital Harel
- Ariel University, Department of Physics, Faculty of Natural Science, Ariel, Israel
| | - Uri Arbiv
- Ariel University, Department of Physics, Faculty of Natural Science, Ariel, Israel
| | - Rinat Ankri
- Ariel University, Department of Physics, Faculty of Natural Science, Ariel, Israel
| |
Collapse
|
2
|
Rudraiah PS, Duadi H, Fixler D. Diffused reflectance measurements to detect tattoo ink location in skin using the crossover point. JOURNAL OF BIOPHOTONICS 2022; 15:e202200003. [PMID: 35067001 DOI: 10.1002/jbio.202200003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Tattoos are highly trendy in western culture, but many people regret their tattoos for many reasons. It is essential to be aware of the ink location in advance to reduce the long and short-term side effects. In this study, diffuse reflectance (DR) experiments were conducted on two-layer (2L) tissue-mimicking phantoms, where ink was sandwiched between the layers. An appreciable difference in the DR profile was found between the 2L phantom with and without the tattoo ink using the crossover point (Cp) method. Our technique was applied to ex vivo porcine skin. A point of intersection was found, between the skin and the tattooed skin. In the shorter wavelengths (500-600 nm), a distinguishable 2L behavior was found, and in longer wavelengths (600-850 nm), a single layer behavior was found between the tattooed skin before and after the intersection. In biological tissue, this Cp indeed finds the tattoo ink without harm to the surrounding skin.
Collapse
Affiliation(s)
- Pavitra Sokke Rudraiah
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Hamootal Duadi
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Dror Fixler
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|
3
|
Simultaneous Noninvasive Detection and Therapy of Atherosclerosis Using HDL Coated Gold Nanorods. Diagnostics (Basel) 2022; 12:diagnostics12030577. [PMID: 35328130 PMCID: PMC8947645 DOI: 10.3390/diagnostics12030577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 11/20/2022] Open
Abstract
Cardiovascular disease (CVD) is a major cause of death and disability worldwide. A real need exists in the development of new, improved therapeutic methods for treating CVD, while major advances in nanotechnology have opened new avenues in this field. In this paper, we report the use of gold nanoparticles (GNPs) coated with high-density lipoprotein (HDL) (GNP-HDL) for the simultaneous detection and therapy of unstable plaques. Based on the well-known HDL cardiovascular protection, by promoting the reverse cholesterol transport (RCT), injured rat carotids, as a model for unstable plaques, were injected with the GNP-HDL. Noninvasive detection of the plaques 24 h post the GNP injection was enabled using the diffusion reflection (DR) method, indicating that the GNP-HDL particles had accumulated in the injured site. Pathology and noninvasive CT measurements proved the recovery of the injured artery treated with the GNP-HDL. The DR of the GNP-HDL presented a simple and highly sensitive method at a low cost, resulting in simultaneous specific unstable plaque diagnosis and recovery.
Collapse
|
4
|
Rudraiah PS, Duadi H, Fixler D. Bottom layer absorption coefficients extraction from two-layer phantoms based on crossover point in diffuse reflectance. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210253R. [PMID: 34850612 PMCID: PMC8630471 DOI: 10.1117/1.jbo.26.11.117001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
SIGNIFICANCE Numerous optical imaging and spectroscopy techniques are used to study the tissue-optical properties; the majority of them are limited in information regarding the penetration depth. A simple, safe, easily applicable diagnostic technique is required to get deeper tissue information in a multilayer structure. AIM A fiber-based diffuse reflectance (DR) technique is used to extract and quantify the bottom layer absorption coefficients in two-layer (2L) tissue-mimicking solid phantoms. We determine the Indian black ink concentrations in a deep-hidden layer that is sandwiched between agar and silicone-based phantom layers. APPROACH A fiber-based DR experiment was performed to study the optical properties of the tissue at higher penetration depth, with different fiber core diameters and a constant numerical aperture (0.5 NA). The optimal core diameter of the fiber was chosen by measuring solid phantoms. In 2L phantoms, the thickness of the top layer was kept 5.5 mm with a constant absorption and reduced scattering coefficients (μa = 0.045 mm - 1 and μs ' = 2.622 mm - 1), whereas the absorption coefficients of the bottom layers were varied from 0.014 to 0.037 mm - 1 keeping the μs ' the same as the top layer. A unique crossover point (Cp) was found in the DR intensity profile against distance. We examined the slope before and after the Cp. These two slopes indicate the difference between the optical properties of the top and bottom layers. Our technique got further verification, as we successfully determined the Cp with different Indian black ink concentrations, placed at the junction between the agar and silicone-based phantom layers. RESULTS The DR measurements were applied to 2L phantoms. Two different slopes were found in 2L phantoms compared to the one-layer (optical properties equal to the top layer of 2L). We extracted the slopes before and after the Cp in the 2L phantoms. The calculated absorption coefficients before the Cp were 0.014 ± 0.0004, 0.022 ± 0.0003, 0.028 ± 0.0003, and 0.036 ± 0.0014 mm - 1, and the absorption coefficients after the Cp were 0.019 ± 0.0013, 0.013 ± 0.0004, 0.014 ± 0.0006, and 0.031 ± 0.0001 mm - 1, respectively. The calculated absorption coefficients before the Cp were in good agreement with the optical properties of the bottom layer. The calculated absorption coefficients after the Cp were not the same as the top layer. Our DR system successfully determines the crossover points 12.14 ± 0.11 and 11.73 ± 0.15 mm for 70% and 100% ink concentrations placed at the junction of the agar and silicone layers. CONCLUSIONS In a 2L tissue structure, the Cp depends on the absorption coefficients of top and bottom layers and the thickness of the top layer. With the help of the Cp and the absorption coefficients, one can determine the thickness of the top layer or vice versa. The slope value before the Cp in the DR profile allowed us to determine the absorption properties of the bottom layer instead of having the average behavior of the 2L phantom in the far detection range (11.0 to 17.0 mm).
Collapse
Affiliation(s)
- Pavitra S. Rudraiah
- Bar Ilan University, Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Ramat Gan, Israel
| | - Hamootal Duadi
- Bar Ilan University, Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Ramat Gan, Israel
| | - Dror Fixler
- Bar Ilan University, Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Ramat Gan, Israel
| |
Collapse
|
5
|
Sudri S, Duadi H, Altman F, Allon I, Ashkenazy A, Chakraborty R, Novikov I, Fixler D, Hirshberg A. Diffusion Reflection Method for Early Detection of Oral Squamous Cell Carcinoma Specifically Targeted by Circulating Gold-Nanorods Bio-Conjugated to Anti-Epidermal Growth Factor Receptor. Int J Nanomedicine 2021; 16:2237-2246. [PMID: 33762823 PMCID: PMC7982793 DOI: 10.2147/ijn.s300125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 02/13/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Translation of nanomedical developments into clinical application is receiving an increasing interest. However, its use for oral squamous cell carcinoma (OSCC) diagnosis remains limited. We present an advanced nanophotonic method for oral cancer detection, based on diffusion reflection (DR) measurements of gold-nanorods bio-conjugated to anti-epidermal growth factor receptor (C-GNRs) specifically attached to OSCC cells. OBJECTIVE To investigate in a rat model of oral carcinogenesis the targeting potential of C-GNRs to OSCC by using the DR optical method. MATERIALS AND METHODS OSCC was induced by the carcinogen 4-nitroquinoline-N-oxide (4NQO). C-GNRs were introduced locally and systemically and DR measurements were recorded from the surface of the rat tongue following illumination with red laser beam. Rats were divided into experimental and control groups. The results were compared with the histologic diagnosis. RESULTS A total of 75 Wistar-derived rats were enrolled in the study. Local application did not reveal any statistical results. DR measurements following intravenous injection of C-GNRs revealed a significant increase in light absorption in rats with OSCC compare with rats without cancer (p<0.02, sensitivity 100%, specificity 89%). In addition, absorption of light increased significantly in cases of severe dysplasia and cancer (high risk) compared to rats without cancer and rats with mild dysplasia (low risk) (86% sensitivity and 89% specificity, AUC=0.79). CONCLUSION Combining nanotechnology and nanophotonics for in vivo diagnosis of OSCC serves as additional tier in the translation of advanced nanomedical developments into clinical applications. The presented method shows a promising potential of nanophotonics for oral cancer identification, and provides support for the use of C-GNRs as a selective drug delivery.
Collapse
Affiliation(s)
- Shiran Sudri
- Department of Oral Pathology and Oral Medicine, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hamootal Duadi
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Florin Altman
- Department of Oral Pathology and Oral Medicine, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Irit Allon
- Institute of Pathology, Barzilai Medical Center, Ben Gurion University of the Negev, Beer Sheba, Israel
| | - Ariel Ashkenazy
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Ruchira Chakraborty
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Ilya Novikov
- Gertner Institute for Epidemiology and Health Policy Research, Ramat Gan, Israel
| | - Dror Fixler
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Abraham Hirshberg
- Department of Oral Pathology and Oral Medicine, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
6
|
Chakraborty R, Leshem-Lev D, Kornowski R, Fixler D. The Scattering of Gold Nanorods Combined with Differential Uptake, Paving a New Detection Method for Macrophage Subtypes Using Flow Cytometery. NANO LETTERS 2020; 20:8360-8368. [PMID: 33063518 PMCID: PMC7662919 DOI: 10.1021/acs.nanolett.0c03525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The strategy of identification for M1 and M2 macrophages both in vivo and in vitro would help to predict the health condition of the individual. Here, we introduced a solution to this problem with the advantage of both the phagocytic nature of macrophages and the scattering effect of gold nanorods (GNRs). The internalized GNRs, relating to their extent of intake, caused a conspicuous scattering profile at the red channel in flow cytometry, overruling the contribution of the cellular side scatters. This internalization is solely governed by the surface chemistry of GNRs. The PAH-GNRs showed maximum intake potency followed by Cit-, PSS-, and PEG-GNRs. On a substantial note, PAH-GNRs lead to differential uptake between M1 and M2 cells, with three times higher intake in M2 cells over M1. This is the first report of employing the scattering of unlabeled GNRs to discriminate M1 and M2 cell types using a flow cytometer.
Collapse
Affiliation(s)
- Ruchira Chakraborty
- Faculty
of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Dorit Leshem-Lev
- Cardiovascular
Biology Laboratories at the Felsenstein Medical Research Center and
the Cardiology Department, Rabin Medical
Center, Petah-Tikva 4941492, Israel
| | - Ran Kornowski
- Cardiovascular
Biology Laboratories at the Felsenstein Medical Research Center and
the Cardiology Department, Rabin Medical
Center, Petah-Tikva 4941492, Israel
| | - Dror Fixler
- Faculty
of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
- . Tel: 972-3-531-7598
| |
Collapse
|
7
|
Brennan KA, Ruddy BP, Nielsen PMF, Taberner AJ. Spatially resolved diffuse imaging for high-speed depth estimation of jet injection. JOURNAL OF BIOPHOTONICS 2019; 12:e201900205. [PMID: 31596035 DOI: 10.1002/jbio.201900205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 05/06/2023]
Abstract
We investigate the use of spatially resolved diffuse imaging to track a fluid jet delivered at high speed into skin tissue. A jet injector with a short needle to deliver drugs beneath the dermis, is modified to incorporate a laser beam into the jet, which is ejected into ex vivo porcine tissue. The diffuse light emitted from the side and top of the tissue sample is recorded using high-speed videography. Similar experiments, using a depth-controlled fiber optic source, generate a reference dataset. The side light distribution is related to source depth for the controlled-source experiments and used to track the effective source depth of the injections. Postinjection X-ray images show agreement between the jet penetration and ultimate light source depth. The surface light intensity profile is parameterized with a single parameter and an exponential function is used to relate this parameter to source depth for the controlled-source data. This empirical model is then used to estimate the effective source depth from the surface profile of the injection experiments. The depth estimates for injections into fat remain close to the side depth estimates, with a root-mean-square error of 1.1 mm, up to a source depth of 8 mm.
Collapse
Affiliation(s)
- Kieran A Brennan
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Bryan P Ruddy
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| | - Poul M F Nielsen
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| | - Andrew J Taberner
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
8
|
Uma Suganya KS, Govindaraju K, Veena Vani C, Premanathan M, Ganesh Kumar VK. In vitro biological evaluation of anti-diabetic activity of organic-inorganic hybrid gold nanoparticles. IET Nanobiotechnol 2019; 13:226-229. [PMID: 31051455 DOI: 10.1049/iet-nbt.2018.5139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Diabetes mellitus has been considered as a heterogeneous metabolic disorder characterised by complete or relative impairment in the production of insulin by pancreatic β-cells or insulin resistance. In the present study, propanoic acid, an active biocomponent isolated from Cassia auriculata is employed for the synthesis of propanoic acid functionalised gold nanoparticles (Pa@AuNPs) and its anti-diabetic activity has been demonstrated in vitro. In vitro cytotoxicity of synthesised Pa@AuNPs was performed in L6 myotubes. The mode of action of Pa@AuNPs exhibiting anti-diabetic potential was validated by glucose uptake assay in the presence of Genistein (insulin receptor tyrosine kinase inhibitor) and Wortmannin (Phosphatidyl inositide kinase inhibitor). Pa@AuNPs exhibited significant glucose uptake in L6 myotubes with maximum uptake at 50 ng/ml. Assays were performed to study the potential of Pa@AuNPs in the inhibition of protein-tyrosine phosphatase 1B, α-glucosidases, and α-amylase activity.
Collapse
Affiliation(s)
| | - Kasivelu Govindaraju
- Centre for Ocean Research, Sathyabama Institute of Science and Technology, Chennai-600 119, India.
| | - Chitoor Veena Vani
- Centre for Ocean Research, Sathyabama Institute of Science and Technology, Chennai-600 119, India
| | - Mariappan Premanathan
- Central Bioscience Research Laboratories (CBRL), Department of Biology, College of Science, Al-Zulfi, Majmaah University, Kingdom of Saudi Arabia
| | | |
Collapse
|
9
|
Mireles M, Morales-Dalmau J, Johansson JD, Vidal-Rosas EE, Vilches C, Martínez-Lozano M, Sanz V, de Miguel I, Casanovas O, Quidant R, Durduran T. Non-invasive and quantitative in vivo monitoring of gold nanoparticle concentration and tissue hemodynamics by hybrid optical spectroscopies. NANOSCALE 2019; 11:5595-5606. [PMID: 30860518 DOI: 10.1039/c8nr08790c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Owing to their unique combination of chemical and physical properties, inorganic nanoparticles show a great deal of potential as suitable agents for early diagnostics and less invasive therapies. Yet, their translation to the clinic has been hindered, in part, by the lack of non-invasive methods to quantify their concentration in vivo while also assessing their effect on the tissue physiology. In this work, we demonstrate that diffuse optical techniques, employing near-infrared light, have the potential to address this need in the case of gold nanoparticles which support localized surface plasmons. An orthoxenograft mouse model of clear cell renal cell carcinoma was non-invasively assessed by diffuse reflectance and correlation spectroscopies before and over several days following a single intravenous tail vein injection of polyethylene glycol-coated gold nanorods (AuNRs-PEG). Our platform enables to resolve the kinetics of the AuNR-PEG uptake by the tumor in quantitative agreement with ex vivo inductively coupled plasma mass spectroscopy. Furthermore, it allows for the simultaneous monitoring of local tissue hemodynamics, enabling us to conclude that AuNRs-PEG do not significantly alter the animal physiology. We note that the penetration depth of this current probe was a few millimeters but can readily be extended to centimeters, hence gaining clinical relevance. This study and the methodology presented here complement the nanomedicine toolbox by providing a flexible platform, extendable to other absorbing agents that can potentially be translated to human trials.
Collapse
Affiliation(s)
- Miguel Mireles
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Chakraborty R, Ankri R, Leshem-Lev D, Hochhauser E, Kornowski R, Motiei M, Lev EI, Fixler D. Hyperlipidemic mice as a model for a real-time in vivo detection of atherosclerosis by gold nanorods-based diffusion reflection technique. JOURNAL OF BIOPHOTONICS 2019; 12:e201800218. [PMID: 30141260 DOI: 10.1002/jbio.201800218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/20/2018] [Accepted: 08/22/2018] [Indexed: 05/11/2023]
Abstract
Atherosclerosis (AS), the leading cause of morbidity and mortality in cardiovascular disease, needs an early detection for treatment and prevention of fatal events. Here, for the first time, we applied gold nanorods (GNRs)-assisted diffusion reflection (DR), a noninvasive technique for in vivo detection of AS in a high-fat-diet-induced c57bl mouse model, which resembles the manifestation of AS in humans. DR simply detects the change in light reflection profile of tissue due to the accumulation of GNRs in the AS plaques and enables clear detection of AS lesions in carotid and femoral arteries of these hyperlipidemic mice. After 24 hours post-GNRs injection, DR showed the highest efficiency of AS detection. Moreover, the sensitivity of the DR method is much higher than computed tomography (CT) and is comparable to ex vivo high-resolution CT. Our results strongly suggest that the DR method can detect early atherosclerotic lesions in a sensitive and specific manner.
Collapse
Affiliation(s)
- Ruchira Chakraborty
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Rinat Ankri
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Dorit Leshem-Lev
- Cardiac Research Laboratories at the Felsenstein Medical Research Center and the Cardiology Department, Rabin Medical Center, Petah Tikva, Israel
| | - Edith Hochhauser
- Cardiac Research Laboratories at the Felsenstein Medical Research Center and the Cardiology Department, Rabin Medical Center, Petah Tikva, Israel
| | - Ran Kornowski
- Cardiac Research Laboratories at the Felsenstein Medical Research Center and the Cardiology Department, Rabin Medical Center, Petah Tikva, Israel
| | - Menachem Motiei
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Eli I Lev
- Cardiac Research Laboratories at the Felsenstein Medical Research Center and the Cardiology Department, Rabin Medical Center, Petah Tikva, Israel
| | - Dror Fixler
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
11
|
Yariv I, Duadi H, Fixler D. Optical method to extract the reduced scattering coefficient from tissue: theory and experiments. OPTICS LETTERS 2018; 43:5299-5302. [PMID: 30382992 DOI: 10.1364/ol.43.005299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
Tissues are considered challenging in terms of structure and composition analysis due to their tendency to multiple scatter the incident light. One of the most common theories for extracting optical properties of tissue is diffusion reflection (DR). In this Letter, we propose a new paradigm for estimating the reduced scattering coefficient of a medium from the reflected light phase. The technique is a modified DR theory wherein the phase is calculated by the product of the wavenumber and the average pathlength. This theory is supported by the reconstructed phase of tissue-like phantom experiments from an iterative algorithm.
Collapse
|
12
|
Bashkatov AN, Berezin KV, Dvoretskiy KN, Chernavina ML, Genina EA, Genin VD, Kochubey VI, Lazareva EN, Pravdin AB, Shvachkina ME, Timoshina PA, Tuchina DK, Yakovlev DD, Yakovlev DA, Yanina IY, Zhernovaya OS, Tuchin VV. Measurement of tissue optical properties in the context of tissue optical clearing. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-31. [PMID: 30141286 DOI: 10.1117/1.jbo.23.9.091416] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/30/2018] [Indexed: 05/05/2023]
Abstract
Nowadays, dynamically developing optical (photonic) technologies play an ever-increasing role in medicine. Their adequate and effective implementation in diagnostics, surgery, and therapy needs reliable data on optical properties of human tissues, including skin. This paper presents an overview of recent results on the measurements and control of tissue optical properties. The issues reported comprise a brief review of optical properties of biological tissues and efficacy of optical clearing (OC) method in application to monitoring of diabetic complications and visualization of blood vessels and microcirculation using a number of optical imaging technologies, including spectroscopic, optical coherence tomography, and polarization- and speckle-based ones. Molecular modeling of immersion OC of skin and specific technique of OC of adipose tissue by its heating and photodynamic treatment are also discussed.
Collapse
Affiliation(s)
- Alexey N Bashkatov
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
- Tomsk State University, Interdisciplinary Laboratory of Biophotonics, Tomsk, Russia
| | - Kirill V Berezin
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
| | - Konstantin N Dvoretskiy
- Saratov State Medical University, Subdivision of Medical and Biological Physics, Saratov, Russia
| | - Maria L Chernavina
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
| | - Elina A Genina
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
- Tomsk State University, Interdisciplinary Laboratory of Biophotonics, Tomsk, Russia
| | - Vadim D Genin
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
| | - Vyacheslav I Kochubey
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
- Tomsk State University, Interdisciplinary Laboratory of Biophotonics, Tomsk, Russia
| | - Ekaterina N Lazareva
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
- Tomsk State University, Interdisciplinary Laboratory of Biophotonics, Tomsk, Russia
- Immanuel Kant Baltic Federal University, Center for Functionalized Magnetic Materials, Kaliningrad, Russia
| | - Alexander B Pravdin
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
| | - Marina E Shvachkina
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
| | - Polina A Timoshina
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
- Tomsk State University, Interdisciplinary Laboratory of Biophotonics, Tomsk, Russia
| | - Daria K Tuchina
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
- Tomsk State University, Interdisciplinary Laboratory of Biophotonics, Tomsk, Russia
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Dmitry D Yakovlev
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
| | - Dmitry A Yakovlev
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
| | - Irina Yu Yanina
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
- Tomsk State University, Interdisciplinary Laboratory of Biophotonics, Tomsk, Russia
| | - Olga S Zhernovaya
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
| | - Valery V Tuchin
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
- Tomsk State University, Interdisciplinary Laboratory of Biophotonics, Tomsk, Russia
- Institute of Precision Mechanics and Control of the Russian Academy of Sciences, Saratov, Russia
| |
Collapse
|
13
|
Ankri R, Chakraborty R, Motiei M, Fixler D. Three-Dimensional Highly Sensitive Diffusion Reflection-Based Imaging Method for the in Vivo Localization of Atherosclerosis Plaques Following Gold Nanorods Accumulation. ACS OMEGA 2018; 3:6134-6142. [PMID: 30023941 PMCID: PMC6045478 DOI: 10.1021/acsomega.8b00750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/23/2018] [Indexed: 05/11/2023]
Abstract
In this work, we present a novel, simple, and highly accurate three-dimensional (3D) diffusion reflection (DR) imaging system and method for the detection of accumulation sites of gold nanorods (GNRs) within the tissue. GNRs are intensively used for diagnosis purposes of varied diseases, mainly because of their ability to well absorb visible light, which introduces them as terrific contrast agents in various imaging and theranostics methods. Lately, these GNRs unique absorption properties have served in DR intensity-based measurements, suggesting a novel diagnostic tool, DR-GNRs. In this paper, we show a new measurement system and method for DR, based on its radial collection from the tissue. These radial measurements enabled a unique 3D presentation of the DR-GNR, introducing the dimensions ρ for the radius, θ for the angle, and Γ for the reflected intensity. On the basis of the diffusion model, which enables to correlate between the sample's optical properties and its reflectance, a unique, radial map is presented. This map introduces the slopes of the DR curves in each measured angle, which are linearly correlated with the tissue's optical properties and with the GNRs concentrations within the tissue, thus enables the exact radial localization of the GNRs in the sample. We show the detection of macrophage accumulation in tissue-like phantoms, as well as the localization of unstable plaques in hyperlipidemic mice, in vivo. This highly accurate, powerful technology paves the way toward a real-time detection method that can be successfully integrated in the rapid increasing field of personalized medicine.
Collapse
Affiliation(s)
| | | | | | - Dror Fixler
- E-mail: . Phone: +972-3-5317598. Fax: +972-3-7384050 (D.F.)
| |
Collapse
|
14
|
Duadi H, Feder I, Fixler D. Near-infrared human finger measurements based on self-calibration point: Simulation and in vivo experiments. JOURNAL OF BIOPHOTONICS 2018; 11:e201700208. [PMID: 29131520 DOI: 10.1002/jbio.201700208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/09/2017] [Indexed: 05/26/2023]
Abstract
Near-infrared light allows measuring tissue oxygenation. These measurements relay on oxygenation-dependent absorption spectral changes. However, the tissue scattering, which is also spectral dependent, introduces an intrinsic error. Most methods focus on the volume reflectance from a semi-infinite sample. We have proposed examining the full scattering profile (FSP), which is the angular intensity distribution. A point was found, that is, the iso-path length (IPL) point, which is not dependent on the tissue scattering, and can serve for self-calibration. This point is geometric dependent, hence in cylindrical tissues depends solely on the diameter. In this work, we examine an elliptic tissue cross section via Monte Carlo simulation. We have found that the IPL point of an elliptic tissue cross section is indifferent to the input illumination orientation. Furthermore, the IPL point is the same as in a circular cross section with a radius equal to the effective ellipse radius. This is despite the fact that the FSPs of the circular and elliptical cross sections are different. Hence, changing the orientation of the input illumination reveals the IPL point. In order to demonstrate this experimentally, the FSPs of a few female fingers were measured at 2 perpendicular orientations. The crossing point between these FSPs was found equivalent to the IPL point of a cylindrical phantom with a radius similar to the effective radius. The findings of this work will allow accurate pulse oximetry assessment of blood saturation.
Collapse
Affiliation(s)
- Hamootal Duadi
- Faculty of Engineering, Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Idit Feder
- Faculty of Engineering, Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Dror Fixler
- Faculty of Engineering, Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|
15
|
Haladjova E, Mountrichas G, Pispas S, Rangelov S. Determination of Intimate Composition of Theranostic Polyplexes Based on (Co)Polymers of Poly(vinyl benzyl trimethylammonium chloride). MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700428] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Emi Haladjova
- Institute of Polymers; Bulgarian Academy of Sciences; Akad. G. Bonchev St. 103A Sofia 1113 Bulgaria
| | - Grigoris Mountrichas
- Theoretical and Physical Chemistry Institute; National Hellenic Research Foundation; 48 Vassileos Constantinou Ave 116 35 Athens Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute; National Hellenic Research Foundation; 48 Vassileos Constantinou Ave 116 35 Athens Greece
| | - Stanislav Rangelov
- Institute of Polymers; Bulgarian Academy of Sciences; Akad. G. Bonchev St. 103A Sofia 1113 Bulgaria
| |
Collapse
|
16
|
Gershanov S, Michowiz S, Toledano H, Yahav G, Barinfeld O, Hirshberg A, Ben-Zvi H, Mircus G, Salmon-Divon M, Fixler D, Goldenberg-Cohen N. Fluorescence Lifetime Imaging Microscopy, a Novel Diagnostic Tool for Metastatic Cell Detection in the Cerebrospinal Fluid of Children with Medulloblastoma. Sci Rep 2017. [PMID: 28623325 PMCID: PMC5473849 DOI: 10.1038/s41598-017-03892-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In pediatric brain tumours, dissemination of malignant cells within the central nervous system confers poor prognosis and determines treatment intensity, but is often undetectable by imaging or cytology. This study describes the use of fluorescence lifetime (FLT) imaging microscopy (FLIM), a novel diagnostic tool, for detection of metastatic spread. The study group included 15 children with medulloblastoma and 2 with atypical teratoid/rhabdoid tumour. Cells extracted from the tumour and the cerebrospinal fluid (CSF) 2 weeks postoperatively and repeatedly during chemo/radiotherapy were subjected to nuclear staining followed by FLT measurement and cytological study. Control CSF samples were collected from patients with infectious/inflammatory disease attending the same hospital. Median FLT was prolonged in tumour cells (4.27 ± 0.28 ns; P < 2.2*10−16) and CSF metastatic cells obtained before chemo/radiotherapy (6.28 ± 0.22 ns; P < 2.2*10−16); normal in inflammatory control cells (2.6 ± 0.04 ns) and cells from children without metastasis before chemo/radiotherapy (2.62 ± 0.23 ns; P = 0.858) and following treatment (2.62 ± 0.21 ns; P = 0.053); and short in CSF metastatic cells obtained after chemo/radiotherapy (2.40 ± 0.2 ns; P < 2.2*10−16). FLIM is a simple test that can potentially identify CSF spread of brain tumours. FLT changes in accordance with treatment, with significant prolonged median values in tumours and metastases. More accurate detection of metastatic cells may guide personalised treatment and improve the therapeutic outcome.
Collapse
Affiliation(s)
- Sivan Gershanov
- Genomic Bioinformatics Laboratory, Department of Molecular Biology, Ariel University, Ariel, 40700, Israel.,The Krieger Eye Research Laboratory, Felsenstein Medical Research Center, Beilinson Hospital, Petach Tikva 4941492, affiliated to Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Shalom Michowiz
- Department of Pediatric Neurosurgery, Schneider Children's Medical Center of Israel, Petach Tikva, 4920235, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Helen Toledano
- Department of Pediatric Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, 4920235, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Gilad Yahav
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Orit Barinfeld
- The Krieger Eye Research Laboratory, Felsenstein Medical Research Center, Beilinson Hospital, Petach Tikva 4941492, affiliated to Tel Aviv University, Tel Aviv, 6997801, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Avraham Hirshberg
- Department of Oral Pathology and Oral Medicine, Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Haim Ben-Zvi
- Laboratory of Microbiology, Rabin Medical Center - Beilinson Hospital, Petach Tikva, 4941492, Israel
| | - Gabriel Mircus
- Laboratory of Microbiology, Rabin Medical Center - Beilinson Hospital, Petach Tikva, 4941492, Israel
| | - Mali Salmon-Divon
- Genomic Bioinformatics Laboratory, Department of Molecular Biology, Ariel University, Ariel, 40700, Israel
| | - Dror Fixler
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Nitza Goldenberg-Cohen
- The Krieger Eye Research Laboratory, Felsenstein Medical Research Center, Beilinson Hospital, Petach Tikva 4941492, affiliated to Tel Aviv University, Tel Aviv, 6997801, Israel. .,Department of Ophthalmology, Bnai Zion Medical Center, Haifa, 3339419, Israel.
| |
Collapse
|
17
|
Danan Y, Yariv I, Zalevsky Z, Sinvani M. Improved Margins Detection of Regions Enriched with Gold Nanoparticles inside Biological Phantom. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E203. [PMID: 28772563 PMCID: PMC5459194 DOI: 10.3390/ma10020203] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/12/2017] [Accepted: 02/14/2017] [Indexed: 02/06/2023]
Abstract
Utilizing the surface plasmon resonance (SPR) effect of gold nanoparticles (GNPs) enables their use as contrast agents in a variety of biomedical applications for diagnostics and treatment. These applications use both the very strong scattering and absorption properties of the GNPs due to their SPR effects. Most imaging methods use the light-scattering properties of the GNPs. However, the illumination source is in the same wavelength of the GNPs' scattering wavelength, leading to background noise caused by light scattering from the tissue. In this paper we present a method to improve border detection of regions enriched with GNPs aiming for the real-time application of complete tumor resection by utilizing the absorption of specially targeted GNPs using photothermal imaging. Phantoms containing different concentrations of GNPs were irradiated with a continuous-wave laser and measured with a thermal imaging camera which detected the temperature field of the irradiated phantoms. By modulating the laser illumination, and use of a simple post processing, the border location was identified at an accuracy of better than 0.5 mm even when the surrounding area got heated. This work is a continuation of our previous research.
Collapse
Affiliation(s)
- Yossef Danan
- Faculty of Engineering, Bar-Ilan University, Ramat-Gan 5290002, Israel.
- The Bar-Ilan Institute of Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Inbar Yariv
- Faculty of Engineering, Bar-Ilan University, Ramat-Gan 5290002, Israel.
- The Bar-Ilan Institute of Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Zeev Zalevsky
- Faculty of Engineering, Bar-Ilan University, Ramat-Gan 5290002, Israel.
- The Bar-Ilan Institute of Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Moshe Sinvani
- Faculty of Engineering, Bar-Ilan University, Ramat-Gan 5290002, Israel.
- The Bar-Ilan Institute of Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
18
|
Hirshberg A, Allon I, Novikov I, Ankri R, Ashkenazy A, Fixler D. Gold nanorods reflectance discriminate benign from malignant oral lesions. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1333-1339. [PMID: 28115253 DOI: 10.1016/j.nano.2017.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/13/2016] [Accepted: 01/01/2017] [Indexed: 12/26/2022]
Abstract
Nanoparticle-based contrast agents have been used as an imaging tool for selectively detecting cancerous processes. We aimed to evaluate the detection sensitivity of reflection measurements of gold nanorods (GNRs) bio-conjugated to anti-epidermal growth factor receptor (GNRs-EGFR) monoclonal antibodies in discriminating benign from premalignant and malignant human oral lesions. Tissue sections incubated with GNRs-EGFR and the reflectance spectrum was measured using hyperspectral microscopy. Reflectance intensity increased with the progression of the disease, lowest in the control group and increasing as the dysplastic changes increase (P<0.001 for linear trend of grade). Intensity was significantly higher in the moderate and severe dysplasias and cancer patients than in the controls and mild dysplasia (t test P=0.0003, Mann-Whitney P<0.0001). The GNRs reflection measurements can discriminate benign and mild dysplastic lesions from the more severe dysplasia and invasive cancer, suggesting an objective, not dependent on the qualification of a technician and with less interpretation errors.
Collapse
Affiliation(s)
- Abraham Hirshberg
- Department of Oral Pathology and Oral Medicine, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Irit Allon
- Department of Oral Pathology and Oral Medicine, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ilya Novikov
- Biostatistical Unit, Gertner institute for Epidemiology and Health Policy Research, Ramat Gan, Israel
| | - Rinat Ankri
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Ariel Ashkenazy
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Dror Fixler
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
19
|
Tissue-Like Phantoms as a Platform for Inserted Fluorescence Nano-Probes. MATERIALS 2016; 9:ma9110926. [PMID: 28774048 PMCID: PMC5457271 DOI: 10.3390/ma9110926] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/26/2016] [Accepted: 11/09/2016] [Indexed: 11/16/2022]
Abstract
Tissue-like phantoms are widely used as a model for mimicking the optical properties of live tissue. This paper presents the results of a diffusion reflection method and fluorescence lifetime imaging microscopy measurements of fluorescein-conjugated gold nanorods in solution, as well as inserted in solid tissue-imitating phantoms. A lack of consistency between the fluorescence lifetime results of the solutions and the phantoms raises a question about the ability of tissue-like phantoms to maintain the optical properties of inserted contrast agents.
Collapse
|
20
|
Yariv I, Haddad M, Duadi H, Motiei M, Fixler D. New optical sensing technique of tissue viability and blood flow based on nanophotonic iterative multi-plane reflectance measurements. Int J Nanomedicine 2016; 11:5237-5244. [PMID: 27785024 PMCID: PMC5066867 DOI: 10.2147/ijn.s119130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Physiological substances pose a challenge for researchers since their optical properties change constantly according to their physiological state. Examination of those substances noninvasively can be achieved by different optical methods with high sensitivity. Our research suggests the application of a novel noninvasive nanophotonics technique, ie, iterative multi-plane optical property extraction (IMOPE) based on reflectance measurements, for tissue viability examination and gold nanorods (GNRs) and blood flow detection. The IMOPE model combines an experimental setup designed for recording light intensity images with the multi-plane iterative Gerchberg-Saxton algorithm for reconstructing the reemitted light phase and calculating its standard deviation (STD). Changes in tissue composition affect its optical properties which results in changes in the light phase that can be measured by its STD. We have demonstrated this new concept of correlating the light phase STD and the optical properties of a substance, using transmission measurements only. This paper presents, for the first time, reflectance based IMOPE tissue viability examination, producing a decrease in the computed STD for older tissues, as well as investigating their organic material absorption capability. Finally, differentiation of the femoral vein from adjacent tissues using GNRs and the detection of their presence within blood circulation and tissues are also presented with high sensitivity (better than computed tomography) to low quantities of GNRs (<3 mg).
Collapse
Affiliation(s)
- Inbar Yariv
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Menashe Haddad
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Mayanei Hayeshua Medical Center, Benei Brak, Israel
| | - Hamootal Duadi
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Menachem Motiei
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Dror Fixler
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|
21
|
Feder I, Duadi H, Dreifuss T, Fixler D. The influence of the blood vessel diameter on the full scattering profile from cylindrical tissues: experimental evidence for the shielding effect. JOURNAL OF BIOPHOTONICS 2016; 9:1001-1008. [PMID: 26663658 DOI: 10.1002/jbio.201500218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/20/2015] [Accepted: 11/10/2015] [Indexed: 06/05/2023]
Abstract
Optical methods for detecting physiological state based on light-tissue interaction are noninvasive, inexpensive, simplistic, and thus very useful. The blood vessels in human tissue are the main cause of light absorbing and scattering. Therefore, the effect of blood vessels on light-tissue interactions is essential for optically detecting physiological tissue state, such as oxygen saturation, blood perfusion and blood pressure. We have previously suggested a new theoretical and experimental method for measuring the full scattering profile, which is the angular distribution of light intensity, of cylindrical tissues. In this work we will present experimental measurements of the full scattering profile of heterogenic cylindrical phantoms that include blood vessels. We show, for the first time that the vessel diameter influences the full scattering profile, and found higher reflection intensity for larger vessel diameters accordance to the shielding effect. For an increase of 60% in the vessel diameter the light intensity in the full scattering profile above 90° is between 9% to 40% higher, depending on the angle. By these results we claim that during respiration, when the blood-vessel diameter changes, it is essential to consider the blood-vessel diameter distribution in order to determine the optical path in tissues. A CT scan of the measured silicon-based phantoms. The phantoms contain the same blood volume in different blood-vessel diameters.
Collapse
Affiliation(s)
- Idit Feder
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Hamootal Duadi
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Tamar Dreifuss
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Dror Fixler
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002, Israel.
| |
Collapse
|
22
|
Duadi H, Nitzan M, Fixler D. Simulation of oxygen saturation measurement in a single blood vein. OPTICS LETTERS 2016; 41:4312-5. [PMID: 27628385 DOI: 10.1364/ol.41.004312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The value of oxygen saturation in venous blood, SvO2, has important clinical significance since it is related to the tissue oxygen utilization, which is related to the blood flow to the tissue and to its metabolism rate. However, existing pulse oximetry techniques are not suitable for blood in veins. In the current study we examine the feasibility of difference oximetry to assess SvO2 by using two near-infrared wavelengths and collecting the backscattered light from two photodetectors located at different distances from the light source.
Collapse
|
23
|
Yashchenok AM, Jose J, Trochet P, Sukhorukov GB, Gorin DA. Multifunctional polyelectrolyte microcapsules as a contrast agent for photoacoustic imaging in blood. JOURNAL OF BIOPHOTONICS 2016; 9:792-9. [PMID: 26913984 DOI: 10.1002/jbio.201500293] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/28/2016] [Accepted: 01/28/2016] [Indexed: 05/20/2023]
Abstract
The polyelectrolyte microcapsules that can be accurate either visualized in biological media or in tissue would enhance their further in vivo application both as a carrier of active payloads and as a specific sensor. The immobilization of active species, for instance fluorescent dyes, quantum dots, metal nanoparticles, in polymeric shell enables visualization of capsules by optical imaging techniques in aqueous solution. However, for visualization of capsules in complex media an instrument with high contrast modality requires. Herein, we show for the first time photoacoustic imaging (PAI) of multifunctional microcapsules in water and in blood. The microcapsules exhibit greater photoacoustic intensity compare to microparticles with the same composition of polymeric shell presumably their higher thermal expansion. Photoacoustic intensity form microcapsules dispersed in blood displays an enhancement (2-fold) of signal compare to blood. Photoacoustic imaging of microcapsules might contribute to non-invasive carrier visualization and further their in vivo distribution.
Collapse
Affiliation(s)
- Alexey M Yashchenok
- Remote Controlled Theranostic Systems Lab, Institute of Nanostructures and Biosystem, Saratov State University, Saratov, Russia.
| | - Jithin Jose
- FUJIFILM VisualSonics, Amsterdam, The Netherlands
| | | | - Gleb B Sukhorukov
- School of Engineering and Materials Science, Queen Mary University of London, London, UK.
- RASA Center in St. Petersburg, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia.
| | - Dmitry A Gorin
- Remote Controlled Theranostic Systems Lab, Institute of Nanostructures and Biosystem, Saratov State University, Saratov, Russia
- RASA Center in Tomsk, Tomsk Polytechnic University, Tomsk, Russia
| |
Collapse
|
24
|
Ilovitsh T, Zalevsky Z. Temporal flickering of contrast agents for enhanced optical imaging. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 8:439-448. [PMID: 26371615 DOI: 10.1002/wnan.1375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 07/27/2015] [Accepted: 08/12/2015] [Indexed: 06/05/2023]
Abstract
The temporal flickering of contrast agents that labels a biological sample is a unique modality for cellular imaging with single molecule sensitivity. It improves the signal-to-noise ratio statistics associated with the noisy in vivo environment and has promising applications in single particle tracking and super-resolution microscopy techniques. The flickering can be triggered either statistically through the mechanism of temporal fluctuations of the emitter or through external modulation. The enriching toolbox of contrast agents that are feasible for biomedical imaging for the flickering methods will be discussed, with emphasis on the emerging field of flickering gold nanoparticles and the lock-in detection mechanism. WIREs Nanomed Nanobiotechnol 2016, 8:439-448. doi: 10.1002/wnan.1375 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Tali Ilovitsh
- Faculty of Engineering, Bar Ilan University, Ramat-Gan, Israel
| | - Zeev Zalevsky
- Faculty of Engineering, Bar Ilan University, Ramat-Gan, Israel
| |
Collapse
|
25
|
Ankri R, Ashkenazy A, Milstein Y, Brami Y, Olshinka A, Goldenberg-Cohen N, Popovtzer A, Fixler D, Hirshberg A. Gold Nanorods Based Air Scanning Electron Microscopy and Diffusion Reflection Imaging for Mapping Tumor Margins in Squamous Cell Carcinoma. ACS NANO 2016; 10:2349-56. [PMID: 26759920 DOI: 10.1021/acsnano.5b07114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A critical challenge arising during a surgical procedure for tumor removal is the determination of tumor margins. Gold nanorods (GNRs) conjugated to epidermal growth factor receptors (EGFR) (GNRs-EGFR) have long been used in the detection of cancerous cells as the expression of EGFR dramatically increases once the tissue becomes cancerous. Optical techniques for the identification of these GNRs-EGFR in tumor are intensively developed based on the unique scattering and absorption properties of the GNRs. In this study, we investigate the distribution of the GNRs in tissue sections presenting squamous cell carcinoma (SCC) to evaluate the SCC margins. Air scanning electron microscopy (airSEM), a novel, high resolution microscopy is used, enabling to localize and actually visualize nanoparticles on the tissue. The airSEM pictures presented a gradient of GNRs from the tumor to normal epithelium, spread in an area of 1 mm, suggesting tumor margins of 1 mm. Diffusion reflection (DR) measurements, performed in a resolution of 1 mm, of human oral SCC have shown a clear difference between the DR profiles of the healthy epithelium and the tumor itself.
Collapse
Affiliation(s)
- Rinat Ankri
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University , Ramat-Gan 5290002, Israel
| | - Ariel Ashkenazy
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University , Ramat-Gan 5290002, Israel
| | | | | | - Asaf Olshinka
- Department of Plastic Surgery, Rabin Medical Center , Petach Tikva 4941492, Israel
| | - Nitza Goldenberg-Cohen
- Pediatric Unit, Ophthalmology Department, Schneider Children's Medical Center of Israel, Petach Tikva, Israel and the Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv 6997801, Israel
| | - Aron Popovtzer
- Davidoff Cancer Center, Rabin Medical Center , Beilinson Campus, Petah Tiqwa 4941492, Israel
| | - Dror Fixler
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University , Ramat-Gan 5290002, Israel
| | - Abraham Hirshberg
- Department of Oral Pathology and Oral Medicine, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University , Tel Aviv 6423906, Israel
| |
Collapse
|
26
|
Barnoy EA, Fixler D, Popovtzer R, Nayhoz T, Ray K. Extremely sensitive dual imaging system in solid phantoms. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2016; 9721:972106. [PMID: 27239085 PMCID: PMC4882115 DOI: 10.1117/12.2207908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Herein we describe promising results from the combination of fluorescent lifetime imaging microscopy (FLIM) and diffusion reflection (DR) medical imaging techniques. Three different geometries of gold nanoparticles (GNPs) were prepared: spheres of 20nm diameter, rods (GNRs) of aspect ratio (AR) 2.5, and GNRs of AR 3.3. Each GNP geometry was then conjugated using PEG linkers estimated to be 10nm in length to each of 3 different fluorescent dyes: Fluorescein, Rhodamine B, and Sulforhodamine B. DR provided deep-volume measurements (up to 1cm) from within solid, tissue-imitating phantoms, indicating GNR presence corresponding to the light used by recording light scattered from the GNPs with increasing distance to a photodetector. FLIM imaged solutions as well as phantom surfaces, recording both the fluorescence lifetimes as well as the fluorescence intensities. Fluorescence quenching was observed for Fluorescein, while metal-enhanced fluorescence (MEF) was observed in Rhodamine B and Sulforhodamine B - the dyes with an absorption peak at a slightly longer wavelength than the GNP plasmon resonance peak. Our system is highly sensitive due to the increased intensity provided by MEF, and also because of the inherent sensitivity of both FLIM and DR. Together, these two modalities and MEF can provide a lot of meaningful information for molecular and functional imaging of biological samples.
Collapse
Affiliation(s)
- Eran A Barnoy
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Dror Fixler
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Rachela Popovtzer
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Tsviya Nayhoz
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Krishanu Ray
- Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
27
|
Shilo M, Berenstein P, Dreifuss T, Nash Y, Goldsmith G, Kazimirsky G, Motiei M, Frenkel D, Brodie C, Popovtzer R. Insulin-coated gold nanoparticles as a new concept for personalized and adjustable glucose regulation. NANOSCALE 2015; 7:20489-96. [PMID: 26583784 DOI: 10.1039/c5nr04881h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Diabetes mellitus is a chronic metabolic disease, characterized by high blood glucose levels, affecting millions of people around the world. Currently, the main treatment for diabetes requires multiple daily injections of insulin and self-monitoring of blood glucose levels, which markedly affect patients' quality of life. In this study we present a novel strategy for controlled and prolonged glucose regulation, based on the administration of insulin-coated gold nanoparticles (INS-GNPs). We show that both intravenous and subcutaneous injection of INS-GNPs into a mouse model of type 1 diabetes decreases blood glucose levels for periods over 3 times longer than free insulin. We further showed that conjugation of insulin to GNPs prevented its rapid degradation by the insulin-degrading-enzyme, and thus allows controlled and adjustable bio-activity. Moreover, we assessed different sizes and concentrations of INS-GNPs, and found that both parameters have a critical effect in vivo, enabling specific adjustment of blood glucose levels. These findings have the potential to improve patient compliance in diabetes mellitus.
Collapse
Affiliation(s)
- Malka Shilo
- Faculty of Engineering & Institutes of Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
| | - Peter Berenstein
- Everard and Mina Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Tamar Dreifuss
- Faculty of Engineering & Institutes of Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
| | - Yuval Nash
- Department of Neurobiology & Sagol School for Neuroscience, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801 Israel and Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801 Israel
| | - Guy Goldsmith
- Department of Neurobiology & Sagol School for Neuroscience, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801 Israel
| | - Gila Kazimirsky
- Everard and Mina Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Menachem Motiei
- Faculty of Engineering & Institutes of Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
| | - Dan Frenkel
- Department of Neurobiology & Sagol School for Neuroscience, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801 Israel and Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801 Israel
| | - Chaya Brodie
- Everard and Mina Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Rachela Popovtzer
- Faculty of Engineering & Institutes of Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
| |
Collapse
|
28
|
Barnoy EA, Fixler D, Popovtzer R, Nayhoz T, Ray K. An ultra-sensitive dual-mode imaging system using metal-enhanced fluorescence in solid phantoms. NANO RESEARCH 2015; 8:3912-3921. [PMID: 26870306 PMCID: PMC4745124 DOI: 10.1007/s12274-015-0891-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In this study we developed a highly sensitive dual modal imaging system designed for gold nanoparticles (GNPs) conjugated to various fluorophores in solid phantoms. The system consists of fluorescence lifetime imaging microscopy (FLIM) for surface imaging, diffusion reflection (DR) for deep tissue imaging (up to 1cm), and metal enhanced fluorescence (MEF). We detected quenching in fluorescent intensity (FI) for the conjugation of gold nanospheres (GNS) as well as gold nanorods (GNRs) to Fluorescein, which has an excitation peak at a wavelength shorter than the surface plasmon resonance (SPR) of both types of GNPs, and enhanced FI in conjugation to Rhodamine B and Sulforhodamine B, both with excitation peaks in the GNPs' SPR. The enhanced FI was detected in solution as well as in solid phantoms from FLIM measurements. DR measurements detected GNR presence within the solid phantoms by recording dropped rates of light scattering using wavelengths corresponding to the GNRs' absorption. With the inclusion of MEF, this promising dual modal imaging technique enables efficient and sensitive molecular and functional imaging.
Collapse
Affiliation(s)
- Eran A. Barnoy
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Dror Fixler
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Rachela Popovtzer
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Tsviya Nayhoz
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Krishanu Ray
- Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
29
|
Melzer S, Ankri R, Fixler D, Tarnok A. Nanoparticle uptake by macrophages in vulnerable plaques for atherosclerosis diagnosis. JOURNAL OF BIOPHOTONICS 2015; 8:871-83. [PMID: 26110589 DOI: 10.1002/jbio.201500114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/11/2015] [Accepted: 06/03/2015] [Indexed: 05/11/2023]
Abstract
The composition of atherosclerotic (AS) plaques is crucial concerning rupture, thrombosis and clinical events. Two plaque types are distinguished: stable and vulnerable plaques. Vulnerable plaques are rich in inflammatory cells, mostly only M1 macrophages, and are highly susceptible to rupture. These plaques represent a high risk particularly with the standard invasive diagnosis by coronary angiography. So far there are no non-invasive low-risk clinical approaches available to detect and distinguish AS plaque types in vivo. The perspective review introduces a whole work-flow for a novel approach for non-invasive detection and classification of AS plaques using the diffusion reflection method with gold nanoparticle loaded macrophages in combination with flow and image cytometric analysis for quality assurance. Classical biophotonic methods for AS diagnosis are summarized. Phenotyping of monocytes and macrophages are discussed for specific subset labelling by nanomaterials, as well as existing studies and first experimental proofs of concept for the novel approach are shown. In vitro and in vivo detection of NP loaded macrophages (MΦ). Different ways of MΦ labelling include (1) in vitro labelling in suspension (whole blood or buffy coat) or (2) labelling of short-term MΦ cultures with re-injection of MΦ-NP into the animal to detect migration of the cells in the plaques and (3) in vivo injection of NP into the organism.
Collapse
Affiliation(s)
- Susanne Melzer
- LIFE Leipziger Forschungszentrum für Zivilisationserkrankungen, Universität Leipzig, Leipzig, Germany
- Department of Pediatric Cardiology, Cardiac Center GmbH, University of Leipzig, Leipzig, Germany
| | - Rinat Ankri
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Dror Fixler
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Attila Tarnok
- Department of Pediatric Cardiology, Cardiac Center GmbH, University of Leipzig, Leipzig, Germany.
- Translational Centre for Regenerative Medicine (TRM) Leipzig, Leipzig, Germany.
| |
Collapse
|
30
|
Schwartz S, Fixler D, Popovtzer R, Shefi O. Fluorescence life-time imaging and steady state polarization for examining binding of fluorophores to gold nanoparticles. JOURNAL OF BIOPHOTONICS 2015; 8:944-951. [PMID: 25755202 DOI: 10.1002/jbio.201400136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/01/2015] [Accepted: 02/16/2015] [Indexed: 06/04/2023]
Abstract
Nanocomposites as multifunctional agents are capable of combing imaging and cell biology technologies. The conventional methods used for validation of the conjugation process of nanoparticles (NPs) to fluorescent molecules such as spectroscopy analysis and surface potential measurements, are not sufficient. In this paper we present a new and highly sensitive procedure that uses the combination of (1) fluorescence spectrum, (2) fluorescence lifetime, and (3) steady state fluorescence polarization measurements. We characterize and analyze gold NPs with Lucifer yellow (LY) surface coating as a model. We demonstrate the ability to differentiate between LY-GNP (the conjugated complex) and a mixture of coated NP and free dyes. We suggest the approach for neuroscience applications where LY is used for detecting and labeling cells, studying morphology and intracellular communications. Histograms of Fluorescence lifetime imaging (FLIM) of free LY dye (Left) in comparison to the conjugated dye to gold nanoparticles, LY-GNP (Middle) enable the differentiation between LY-GNP (the conjugated complex) and a mixture of coated NP and free dyes (Right).
Collapse
Affiliation(s)
- Shmulik Schwartz
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, 5290002, Ramat Gan, Israel
- Faculty of Engineering, Bar Ilan University, 5290002, Ramat Gan, Israel
- Institute of Nanotechnology and Advanced Materials, Bar Ilan University, 5290002, Ramat Gan, Israel
| | - Dror Fixler
- Faculty of Engineering, Bar Ilan University, 5290002, Ramat Gan, Israel
- Institute of Nanotechnology and Advanced Materials, Bar Ilan University, 5290002, Ramat Gan, Israel
| | - Rachela Popovtzer
- Faculty of Engineering, Bar Ilan University, 5290002, Ramat Gan, Israel
- Institute of Nanotechnology and Advanced Materials, Bar Ilan University, 5290002, Ramat Gan, Israel
| | - Orit Shefi
- Faculty of Engineering, Bar Ilan University, 5290002, Ramat Gan, Israel.
- Institute of Nanotechnology and Advanced Materials, Bar Ilan University, 5290002, Ramat Gan, Israel.
| |
Collapse
|
31
|
Turko NA, Barnea I, Blum O, Korenstein R, Shaked NT. Detection and controlled depletion of cancer cells using photothermal phase microscopy. JOURNAL OF BIOPHOTONICS 2015; 8:755-763. [PMID: 25400214 DOI: 10.1002/jbio.201400095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 09/17/2014] [Accepted: 09/28/2014] [Indexed: 06/04/2023]
Abstract
We present a dual-modality technique based on wide-field photothermal (PT) interferometric phase imaging and simultaneous PT ablation to selectively deplete specific cell populations labelled by plasmonic nanoparticles. This combined technique utilizes the plasmonic reaction of gold nanoparticles under optical excitation to produce PT imaging contrast by inducing local phase changes when the excitation power is weak, or ablation of selected cells when increasing the excitation power. Controlling the entire process is carried out by dynamic quantitative phase imaging of all cells (labelled and unlabelled). We demonstrate our ability to detect and specifically ablate in vitro cancer cells over-expressing epidermal growth factor receptors (EGFRs), labelled with plasmonic nanoparticles, in the presence of either EGFR under-expressing cancer cells or white blood cells. The latter demonstration establishes an initial model for depletion of circulating tumour cells in blood. The proposed system is able to image in wide field the label-free quantitative phase profile together with the PT phase profile of the sample, and provides the ability of both detection and selective cell ablation in a controlled environment. Quantitative phase imaging with molecular specificity and specific cell depletion. (a) Label-free quantitative phase profiles of mixed population of EGFR(+) /EGFR(-) cancer cells. (b) When weak modulated PT excitation is applied, selective phase contrast is generated in the modulation frequency only for the EGFR(+) cancer cells labelled with plasmonic nanoparticles. (c) When stronger modulated PT excitation is applied, selective ablation of the EGFR(+) cancer cells labelled with plasmonic nanoparticles occurs. White scalebars represent 10 µm upon sample.
Collapse
Affiliation(s)
- Nir Abraham Turko
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Itay Barnea
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Omry Blum
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Rafi Korenstein
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Natan Tzvi Shaked
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
32
|
Feder I, Duadi H, Fixler D. Experimental system for measuring the full scattering profile of circular phantoms. BIOMEDICAL OPTICS EXPRESS 2015; 6:2877-86. [PMID: 26309752 PMCID: PMC4541516 DOI: 10.1364/boe.6.002877] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 06/29/2015] [Accepted: 07/06/2015] [Indexed: 05/04/2023]
Abstract
Optical methods for monitoring physiological tissue state are important and useful because they are non-invasive and sensitive. Experimental measurements of the full scattering profile of circular phantoms are presented. We report, for the first time, an experimental observation of a typical reflected light intensity behavior for a circular structure characterized by the isobaric point. We previously suggested a new theoretically method for measuring the full scattering profile, which is the angular distribution of light intensity, of cylindrical tissues. In this work we present that the experimental result match the simulation results. We show the isobaric point at 105° for a cylindrical phantom with a 7mm diameter, while for a 16mm diameter phantom the isobaric point is at 125°. Furthermore, the experimental work present a new crossover point of the full scattering profiles of subjects with different diameters of the cylindrical tissues.
Collapse
Affiliation(s)
- Idit Feder
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Hamootal Duadi
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Dror Fixler
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
33
|
Ankri R, Melzer S, Tarnok A, Fixler D. Detection of gold nanorods uptake by macrophages using scattering analyses combined with diffusion reflection measurements as a potential tool for in vivo atherosclerosis tracking. Int J Nanomedicine 2015; 10:4437-46. [PMID: 26185445 PMCID: PMC4501352 DOI: 10.2147/ijn.s86615] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In this study, we report a potential noninvasive technique for the detection of vulnerable plaques using scatter analyses with flow cytometry (FCM) method combined with the diffusion reflection (DR) method. The atherosclerotic plaques are commonly divided into two major categories: stable and vulnerable. The vulnerable plaques are rich with inflammatory cells, mostly macrophages (MΦ), which release enzymes that break down collagen in the cap. The detection method is based on uptake of gold nanorods (GNR) by MΦ. The GNR have unique optical properties that enable their detection using the FCM method, based on their scattering properties, and using the DR method, based on their unique absorption properties. This work demonstrates that after GNR labeling of MΦ, 1) the FCM scatter values increased up to 3.7-fold with arbitrary intensity values increasing from 1,110 to 4,100 and 2) the DR slope changed from an average slope of 0.196 (MΦ only) to an average slope of 0.827 (MΦ labeled with GNR) (P<0.001 for both cases). The combination of FCM and DR measurements provides a potential novel, highly sensitive, and noninvasive method for the identification of atherosclerotic vulnerable plaques, aimed to develop a potential tool for in vivo tracking.
Collapse
Affiliation(s)
- Rinat Ankri
- Faculty of Engineering, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Susanne Melzer
- Research Department of Pediatric Cardiology, Heart Centre Leipzig GmbH, Germany ; Translational Centre for Regenerative Medicine (TRM) Leipzig, University of Leipzig, Leipzig, Germany
| | - Attila Tarnok
- Research Department of Pediatric Cardiology, Heart Centre Leipzig GmbH, Germany ; Translational Centre for Regenerative Medicine (TRM) Leipzig, University of Leipzig, Leipzig, Germany
| | - Dror Fixler
- Faculty of Engineering, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
34
|
Ilovitsh T, Danan Y, Meir R, Meiri A, Zalevsky Z. Cellular superresolved imaging of multiple markers using temporally flickering nanoparticles. Sci Rep 2015; 5:10965. [PMID: 26020693 PMCID: PMC4447069 DOI: 10.1038/srep10965] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 05/11/2015] [Indexed: 11/09/2022] Open
Abstract
In this paper we present a technique aimed for simultaneous detection of multiple types of gold nanoparticles (GNPs) within a biological sample, using lock-in detection. We image the sample using a number of modulated laser beams that correspond to the number of GNP species that label a given sample. The final image where the GNPs are spatially separated is obtained computationally. The proposed method enables the simultaneous superresolved imaging of different areas of interest within biological sample and also the spatial separation of GNPs at sub-diffraction distances, making it a useful tool in the study of intracellular trafficking pathways in living cells.
Collapse
Affiliation(s)
- Tali Ilovitsh
- Faculty of Engineering, Bar Ilan University, Ramat-Gan 5290002, Israel
- The Bar-Ilan Institute of Nanotechnology & Advanced Materials, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Yossef Danan
- Faculty of Engineering, Bar Ilan University, Ramat-Gan 5290002, Israel
- The Bar-Ilan Institute of Nanotechnology & Advanced Materials, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Rinat Meir
- Faculty of Engineering, Bar Ilan University, Ramat-Gan 5290002, Israel
- The Bar-Ilan Institute of Nanotechnology & Advanced Materials, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Amihai Meiri
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Zeev Zalevsky
- Faculty of Engineering, Bar Ilan University, Ramat-Gan 5290002, Israel
- The Bar-Ilan Institute of Nanotechnology & Advanced Materials, Bar Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
35
|
Duadi H, Fixler D. Influence of multiple scattering and absorption on the full scattering profile and the isobaric point in tissue. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:56010. [PMID: 26016448 DOI: 10.1117/1.jbo.20.5.056010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/27/2015] [Indexed: 05/20/2023]
Abstract
Light reflectance and transmission from soft tissue has been utilized in noninvasive clinical measurement devices such as the photoplethysmograph (PPG) and reflectance pulse oximeter. Incident light on the skin travels into the underlying layers and is in part reflected back to the surface, in part transferred and in part absorbed. Most methods of near infrared (NIR) spectroscopy focus on the volume reflectance from a semi-infinite sample, while very few measure transmission. We have previously shown that examining the full scattering profile (angular distribution of exiting photons) provides more comprehensive information when measuring from a cylindrical tissue. Furthermore, an isobaric point was found which is not dependent on changes in the reduced scattering coefficient. The angle corresponding to this isobaric point depends on the tissue diameter. We investigated the role of multiple scattering and absorption on the full scattering profile of a cylindrical tissue. First, we define the range in which multiple scattering occurs for different tissue diameters. Next, we examine the role of the absorption coefficient in the attenuation of the full scattering profile. We demonstrate that the absorption linearly influences the intensity at each angle of the full scattering profile and, more importantly, the absorption does not change the position of the isobaric point. The findings of this work demonstrate a realistic model for optical tissue measurements such as NIR spectroscopy, PPG, and pulse oximetery.
Collapse
|
36
|
Ilovitsh T, Danan Y, Ilovitsh A, Meiri A, Meir R, Zalevsky Z. Superresolved labeling nanoscopy based on temporally flickering nanoparticles and the K-factor image deshadowing. BIOMEDICAL OPTICS EXPRESS 2015; 6:1262-1272. [PMID: 25909010 PMCID: PMC4399665 DOI: 10.1364/boe.6.001262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 06/04/2023]
Abstract
Localization microscopy provides valuable insights into cellular structures and is a rapidly developing field. The precision is mainly limited by additive noise and the requirement for single molecule imaging that dictates a low density of activated emitters in the field of view. In this paper we present a technique aimed for noise reduction and improved localization accuracy. The method has two steps; the first is the imaging of gold nanoparticles that labels targets of interest inside biological cells using a lock-in technique that enables the separation of the signal from the wide spread spectral noise. The second step is the application of the K-factor nonlinear image decomposition algorithm on the obtained image, which improves the localization accuracy that can reach 5nm and enables the localization of overlapping particles at minimal distances that are closer by 65% than conventional methods.
Collapse
Affiliation(s)
- Tali Ilovitsh
- Faculty of Engineering, Bar Ilan University, Ramat-Gan 5290002,
Israel
| | - Yossef Danan
- Faculty of Engineering, Bar Ilan University, Ramat-Gan 5290002,
Israel
| | - Asaf Ilovitsh
- Faculty of Engineering, Bar Ilan University, Ramat-Gan 5290002,
Israel
| | - Amihai Meiri
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah,
USA
| | - Rinat Meir
- Faculty of Engineering, Bar Ilan University, Ramat-Gan 5290002,
Israel
| | - Zeev Zalevsky
- Faculty of Engineering, Bar Ilan University, Ramat-Gan 5290002,
Israel
| |
Collapse
|
37
|
Ilovitsh T, Danan Y, Meir R, Meiri A, Zalevsky Z. Cellular imaging using temporally flickering nanoparticles. Sci Rep 2015; 5:8244. [PMID: 25650019 PMCID: PMC4316156 DOI: 10.1038/srep08244] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 12/18/2014] [Indexed: 11/11/2022] Open
Abstract
Utilizing the surface plasmon resonance effect in gold nanoparticles enables their use as contrast agents in a variety of applications for compound cellular imaging. However, most techniques suffer from poor signal to noise ratio (SNR) statistics due to high shot noise that is associated with low photon count in addition to high background noise. We demonstrate an effective way to improve the SNR, in particular when the inspected signal is indistinguishable in the given noisy environment. We excite the temporal flickering of the scattered light from gold nanoparticle that labels a biological sample. By preforming temporal spectral analysis of the received spatial image and by inspecting the proper spectral component corresponding to the modulation frequency, we separate the signal from the wide spread spectral noise (lock-in amplification).
Collapse
Affiliation(s)
- Tali Ilovitsh
- Faculty of Engineering, Bar Ilan University, Ramat-Gan 5290002, Israel
- The Bar-Ilan Institute of Nanotechnology & Advanced Materials, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Yossef Danan
- Faculty of Engineering, Bar Ilan University, Ramat-Gan 5290002, Israel
- The Bar-Ilan Institute of Nanotechnology & Advanced Materials, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Rinat Meir
- Faculty of Engineering, Bar Ilan University, Ramat-Gan 5290002, Israel
- The Bar-Ilan Institute of Nanotechnology & Advanced Materials, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Amihai Meiri
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Zeev Zalevsky
- Faculty of Engineering, Bar Ilan University, Ramat-Gan 5290002, Israel
- The Bar-Ilan Institute of Nanotechnology & Advanced Materials, Bar Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
38
|
Yariv I, Rahamim G, Shliselberg E, Duadi H, Lipovsky A, Lubart R, Fixler D. Detecting nanoparticles in tissue using an optical iterative technique. BIOMEDICAL OPTICS EXPRESS 2014; 5:3871-3881. [PMID: 25426317 PMCID: PMC4242024 DOI: 10.1364/boe.5.003871] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/16/2014] [Accepted: 09/24/2014] [Indexed: 05/30/2023]
Abstract
Determining the physical penetration depth of nanoparticles (NPs) into tissues is a challenge that many researchers have been facing in recent years. This paper presents a new noninvasive method for detecting NPs in tissue using an optical iterative technique based on the Gerchberg-Saxton (G-S) algorithm. At the end of this algorithm the reduced scattering coefficient (µs'), of a given substance, can be estimated from the standard deviation (STD) of the retrieved phase of the remitted light. Presented in this paper are the results of a tissue simulation which indicate a linear ratio between the STD and the scattering components. A linear ratio was also observed in the tissue-like phantoms and in ex vivo experiments with and without NPs (Gold nanorods and nano Methylene Blue). The proposed technique is the first step towards determining the physical penetration depth of NPs.
Collapse
Affiliation(s)
- Inbar Yariv
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002,
Israel
| | - Gilad Rahamim
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002,
Israel
| | - Elad Shliselberg
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002,
Israel
| | - Hamootal Duadi
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002,
Israel
| | - Anat Lipovsky
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002,
Israel
| | - Rachel Lubart
- Physics and Chemistry Department, Bar-Ilan University, Ramat-Gan 5290002,
Israel
| | - Dror Fixler
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002,
Israel
| |
Collapse
|
39
|
Curry T, Kopelman R, Shilo M, Popovtzer R. Multifunctional theranostic gold nanoparticles for targeted CT imaging and photothermal therapy. CONTRAST MEDIA & MOLECULAR IMAGING 2014; 9:53-61. [PMID: 24470294 DOI: 10.1002/cmmi.1563] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/16/2013] [Accepted: 07/20/2013] [Indexed: 12/19/2022]
Abstract
Gold nanoparticles have emerged as some of the most extensively utilized nanoplatforms for the diagnosis, imaging, monitoring and treatment of malignant diseases. In particular, in computed tomography (CT) imaging and in therapy (PTT), the exploitation of the various, advantageous properties of gold nanoparticles have resulted in numerous advances in each of these fields. The purpose of this review is to assess the status of gold-nanoparticle mediated CT and PTT, highlight several promising outcomes and motivate the combination of these two functionalities in the same nanoparticle platform. The given examples of research based advances and the encouraging results of in vitro and in vivo studies provide much excitement and promise for future theranostic (therapy + diagnostic) clinical applications, as well as for image-guided therapy and/or surgery, and their monitoring.
Collapse
Affiliation(s)
- Taeyjuana Curry
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA, 48109
| | | | | | | |
Collapse
|
40
|
Fixler D, Nayhoz T, Ray K. Diffusion Reflection and Fluorescence Lifetime Imaging Microscopy Study of Fluorophore-Conjugated Gold Nanoparticles or Nanorods in Solid Phantoms. ACS PHOTONICS 2014; 1:900-905. [PMID: 25541621 PMCID: PMC4270410 DOI: 10.1021/ph500214m] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Indexed: 05/20/2023]
Abstract
In this paper we report the optical properties of fluorescein-conjugated gold nanoparticles (GNPs) in solid phantoms using diffusion reflection (DR) and fluorescence lifetime imaging microscopy (FLIM). The GNPs attached with fluorescein in solution were studied by fluorescence correlation spectroscopy. The intensity decays were recorded to reveal the fluorescence lifetime of fluorescein while in the near-field vicinity of the GNPs. The DR method was used to explore the solid phantoms containing GNPs, indicating the light propagation from the surface of solid phantoms. The resulting DR slopes of the reflected intensity showed the higher the GNP concentration, the bigger the slope. Fluorescence intensity, lifetime, and anisotropy images of solid phantoms were investigated by FLIM. The exploration of optical properties and molecular imaging combined with DR and FLIM methods is a new approach that has not been established until now. The combined DR-FLIM technique is expected to provide discrimination based on unique spectroscopic fingerprints of GNPs that could be utilized for cell imaging. This paper includes a combined study with a variety of methods, which may lead to multimodal imaging for surfaces (by FLIM) and deep penetration (up to cm by the DR) together.
Collapse
Affiliation(s)
- Dror Fixler
- Faculty
of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Tsviya Nayhoz
- Faculty
of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Krishanu Ray
- Center
for Fluorescence Spectroscopy, Department of Biochemistry and Molecular
Biology, University of Maryland School of
Medicine, Baltimore, Maryland 21201, United
States
- E-mail:
| |
Collapse
|
41
|
Ankri R, Leshem-Lev D, Fixler D, Popovtzer R, Motiei M, Kornowski R, Hochhauser E, Lev EI. Gold Nanorods as Absorption Contrast Agents for the Noninvasive Detection of Arterial Vascular Disorders Based on Diffusion Reflection Measurements. NANO LETTERS 2014; 14:2681-7. [PMID: 24697682 DOI: 10.1021/nl500573d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Affiliation(s)
- Rinat Ankri
- Faculty
of Engineering and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Dorit Leshem-Lev
- Cardiac
Research
Laboratories at the Felsenstein Medical Research Center and the Cardiology
Department, Rabin Medical Center, Petah-Tikva, Israel
| | - Dror Fixler
- Faculty
of Engineering and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Rachela Popovtzer
- Faculty
of Engineering and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Menachem Motiei
- Faculty
of Engineering and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Ran Kornowski
- Cardiac
Research
Laboratories at the Felsenstein Medical Research Center and the Cardiology
Department, Rabin Medical Center, Petah-Tikva, Israel
| | - Edith Hochhauser
- Cardiac
Research
Laboratories at the Felsenstein Medical Research Center and the Cardiology
Department, Rabin Medical Center, Petah-Tikva, Israel
| | - Eli I. Lev
- Cardiac
Research
Laboratories at the Felsenstein Medical Research Center and the Cardiology
Department, Rabin Medical Center, Petah-Tikva, Israel
| |
Collapse
|
42
|
Fixler D, Ankri R, Kaplan I, Novikov I, Hirshberg A. Diffusion Reflection: A Novel Method for Detection of Oral Cancer. J Dent Res 2014; 93:602-6. [PMID: 24695671 DOI: 10.1177/0022034514529973] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 03/08/2014] [Indexed: 12/28/2022] Open
Abstract
Intraoperative detection of residual disease in oral cancer may reduce the high rate of recurrences. The aim of the present study was to evaluate the detection sensitivity of diffusion reflection (DR) measurements of bioconjugated gold nanorods (GNRs) to cancerous sites in a rat model of oral squamous cell carcinoma. We used hyperspectral spectroscopy and DR measurements of GNRs bioconjugated to slide specimens of rat tongues where squamous carcinoma was induced by 4NQO (4-nitroquinoline-N-oxide). Wistar-derived male rats were used: 6 were sacrificed at wk 32 to 37 following 4NQO administration (experimental rats), as were 2 control rats at wk 32 and 36. The detection results were compared with histopathology: 19 sites of cancerous changes were identified microscopically (11 invasive cancer and 8 carcinoma in situ [CIS]). The GNRs attached selectively to areas of carcinomatous changes with an intensity exceeding 17 intensity units at 780 nm (overall specificity, 97%; overall sensitivity, 87%) when the hyperspectral spectroscopy system was used. The resulting DR slopes of the reflected intensity showed an increase of >80% in areas of invasive cancer and an increase of >30% in the CIS sites. The resulting intensity units of the hyperspectral spectroscopy system in the invasive cancer significantly exceed those of the CIS (t test, p = .0002; Mann-Whitney, p = .0024). The results demonstrate a great potential of the direct DR scanning as a new and simple tool for detecting residual disease intraoperatively.
Collapse
Affiliation(s)
- D Fixler
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - R Ankri
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - I Kaplan
- Department of Oral Pathology and Oral Medicine, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - I Novikov
- Biostatistical Unit, Gertner Institute for Epidemiology and Health Policy Research, Ramat Gan, Israel
| | - A Hirshberg
- Department of Oral Pathology and Oral Medicine, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
43
|
Shilo M, Motiei M, Hana P, Popovtzer R. Transport of nanoparticles through the blood-brain barrier for imaging and therapeutic applications. NANOSCALE 2014; 6:2146-52. [PMID: 24362586 DOI: 10.1039/c3nr04878k] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A critical problem in the treatment of neurodegenerative disorders and diseases, such as Alzheimer's and Parkinson's, is the incapability to overcome the restrictive mechanism of the blood-brain barrier (BBB) and to deliver important therapeutic agents to the brain. During the last decade, nanoparticles have gained attention as promising drug delivery agents that can transport across the BBB and increase the uptake of appropriate drugs in the brain. In this study we have developed insulin-targeted gold nanoparticles (INS-GNPs) and investigated quantitatively the amount of INS-GNPs that cross the BBB by the receptor-mediated endocytosis process. For this purpose, INS-GNPs and control GNPs were injected into the tail vein of male BALB/c mice. Major organs were then extracted and a blood sample was taken from the mice, and thereafter analyzed for gold content by flame atomic absorption spectroscopy. Results show that two hours post-intravenous injection, the amount of INS-GNPs found in mouse brains is over 5 times greater than that of the control, untargeted GNPs. Results of further experimentation on a rat model show that INS-GNPs can also serve as CT contrast agents to highlight specific brain regions in which they accumulate. Due to the fact that they can overcome the restrictive mechanism of the BBB, this approach could be a potentially valuable tool, helping to confront the great challenge of delivering important imaging and therapeutic agents to the brain for detection and treatment of neurodegenerative disorders and diseases.
Collapse
Affiliation(s)
- Malka Shilo
- Bar-Ilan University, Faculty of Engineering & Institute of Nanotechnology & Advanced Materials, Ramat Gan 52900, Israel.
| | | | | | | |
Collapse
|
44
|
Duadi H, Feder I, Fixler D. Linear dependency of full scattering profile isobaric point on tissue diameter. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:026007. [PMID: 24522807 DOI: 10.1117/1.jbo.19.2.026007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/22/2014] [Indexed: 05/20/2023]
Abstract
Most methods for measuring light-tissue interaction focus on volume reflectance, while very few measure light transmission. In a previous work, we suggested investigating the influence of blood vessel diameter on photons exiting the tissue at all exit angles to receive the full scattering profile. By this method, we have shown that there is a central angle, i.e., the isobaric point, independent of blood vessel diameter. The vessel diameter changes the effective reduced scattering coefficient. However, both the scattering profile and the value of the isobaric point strongly depend on optical properties and the exact geometry of the tissue. In this study, we investigate the dependency of the isobaric point on tissue diameter and scattering coefficient in both two-dimensional and three-dimensional simulations. We show that the value of this point linearly depends on tissue diameter. The findings of this work solve the dilemma of whether to measure transmission or reflection since the isobaric point reduces by half the total amount of exiting photons. Furthermore, the full scattering profile is sensitive to changes in the scattering properties, but a single isobaric point to these changes is expected. If this point is not found, it is a diagnostic indication of an unexpected change in the tissue.
Collapse
|
45
|
Fixler D, Zalevsky Z. In vivo tumor detection using polarization and wavelength reflection characteristics of gold nanorods. NANO LETTERS 2013; 13:6292-6296. [PMID: 24261467 DOI: 10.1021/nl403927c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This paper presents a novel concept involving sensing the back-reflected and absorbed light at two polarization states and at several wavelengths from gold nanorods (GNRs). While the GNRs are flowing in the bloodstream the reflected light has a high degree of polarization and only one resonance wavelength. When the GNRs are located in a tumor the reflected light has a low degree of polarization and two resonance wavelengths are detected. Such characteristics can assist in detecting a tumor in passive targeting and without labeling it.
Collapse
Affiliation(s)
- Dror Fixler
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University , Ramat-Gan 52900, Israel
| | | |
Collapse
|
46
|
Ankri R, Meiri A, Lau SI, Motiei M, Popovtzer R, Fixler D. Intercoupling surface plasmon resonance and diffusion reflection measurements for real-time cancer detection. JOURNAL OF BIOPHOTONICS 2013; 6:188-96. [PMID: 22461296 DOI: 10.1002/jbio.201200016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Revised: 03/12/2012] [Accepted: 03/12/2012] [Indexed: 05/11/2023]
Abstract
Spatial diffusion reflection (DR) measurements of gold nanorods (GNR) were recently suggested as a simple and highly sensitive non-invasive and non-ionizing method for real-time cancer detection. In this paper we demonstrate that wavelength dependent DR measurements enable the spectral red-shift observation of highly concentrated GNR. By conjugating targeting moieties to the GNR, large density of GNR can specifically home onto cancer cells. The inter-particle plasmon resonance pattern of the highly concentrated GNR leads to an extension and a red-shift (Δλ) in the absorption spectrum of the concentrated GNR. Dark-field microscopy was used in order to measure the expected Δλ in different GNR concentrations in vitro. Double-wavelength DR measurements of tissue-like phantoms and tumor bearing mice containing different GNR concentrations are presented. We show that the DR profile of the highly concentrated GNR directly correlate with the spectral extension and red-shift. This presented work suggests that wavelength dependent DR method can serve as a promising tool for real-time superficial tumor detection.
Collapse
Affiliation(s)
- Rinat Ankri
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 52900, Israel
| | | | | | | | | | | |
Collapse
|
47
|
Jakobsohn K, Motiei M, Sinvani M, Popovtzer R. Towards real-time detection of tumor margins using photothermal imaging of immune-targeted gold nanoparticles. Int J Nanomedicine 2012; 7:4707-13. [PMID: 22956871 PMCID: PMC3431967 DOI: 10.2147/ijn.s34157] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND One of the critical problems in cancer management is local recurrence of disease. Between 20% and 30% of patients who undergo tumor resection surgery require reoperation due to incomplete excision. Currently, there are no validated methods for intraoperative tumor margin detection. In the present work, we demonstrate the potential use of gold nanoparticles (GNPs) as a novel contrast agent for photothermal molecular imaging of cancer. METHODS Phantoms containing different concentrations of GNPs were irradiated with continuous-wave laser and measured with a thermal imaging camera which detected the temperature field of the irradiated phantoms. RESULTS The results clearly demonstrate the ability to distinguish between cancerous cells specifically targeted with GNPs and normal cells. This technique, which allows highly sensitive discrimination between adjacent low GNP concentrations, will allow tumor margin detection while the temperature increases by only a few degrees Celsius (for GNPs in relevant biological concentrations). CONCLUSION We expect this real-time intraoperative imaging technique to assist surgeons in determining clear tumor margins and to maximize the extent of tumor resection while sparing normal background tissue.
Collapse
Affiliation(s)
- Kobi Jakobsohn
- Faculty of Engineering, Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | | | | | | |
Collapse
|