2
|
Miranda AL, Racca AC, Kourdova LT, Rojas ML, Cruz Del Puerto M, Rodriguez-Lombardi G, Salas AV, Travella C, da Silva ECO, de Souza ST, Fonseca EJS, Marques ALX, Borbely AU, Genti-Raimondi S, Panzetta-Dutari GM. Krüppel-like factor 6 (KLF6) requires its amino terminal domain to promote villous trophoblast cell fusion. Placenta 2021; 117:139-149. [PMID: 34894601 DOI: 10.1016/j.placenta.2021.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/11/2021] [Accepted: 12/01/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Villous cytotrophoblast (vCTB) cells fuse to generate and maintain the syncytiotrophoblast layer required for placental development and function. Krüppel-like factor 6 (KLF6) is a ubiquitous transcription factor with an N-terminal acidic transactivation domain and a C-terminal zinc finger DNA-binding domain. KLF6 is highly expressed in placenta, and it is required for proper placental development. We have demonstrated that KLF6 is necessary for cell fusion in human primary vCTBs, and in the BeWo cell line. MATERIALS AND METHODS Full length KLF6 or a mutant lacking its N-terminal domain were expressed in BeWo cells or in primary vCTB cells isolated from human term placentas. Cell fusion, gene and protein expression, and cell proliferation were analyzed. Moreover, Raman spectroscopy and atomic force microscopy (AFM) were used to identify biochemical, topography, and elasticity cellular modifications. RESULTS The increase in KLF6, but not the expression of its deleted mutant, is sufficient to trigger cell fusion and to raise the expression of β-hCG, syncytin-1, the chaperone protein 78 regulated by glucose (GRP78), the ATP Binding Cassette Subfamily G Member 2 (ABCG2), and Galectin-1 (Gal-1), all molecules involved in vCTB differentiation. Raman and AFM analysis revealed that KLF6 reduces NADH level and increases cell Young's modulus. KLF6-induced differentiation correlates with p21 upregulation and decreased cell proliferation. Remarkable, p21 silencing reduces cell fusion triggered by KLF6 and the KLF6 mutant impairs syncytialization and decreases syncytin-1 and β-hCG expression. DISCUSSION KLF6 induces syncytialization through a mechanism that involves its regulatory transcriptional domain in a p21-dependent manner.
Collapse
Affiliation(s)
- Andrea L Miranda
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Ana C Racca
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Lucille T Kourdova
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Maria Laura Rojas
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Mariano Cruz Del Puerto
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Gonzalo Rodriguez-Lombardi
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Andrea V Salas
- Servicio de Ginecología y Obstetricia, Hospital Privado Universitario de Córdoba, X5000HUA, Córdoba, Argentina
| | - Claudia Travella
- Servicio de Ginecología y Obstetricia, Hospital Privado Universitario de Córdoba, X5000HUA, Córdoba, Argentina
| | - Elaine C O da Silva
- Optics and Nanoscopy Group, Physics Institute, Federal University of Alagoas, Maceio, Brazil
| | - Samuel T de Souza
- Optics and Nanoscopy Group, Physics Institute, Federal University of Alagoas, Maceio, Brazil
| | - Eduardo J S Fonseca
- Optics and Nanoscopy Group, Physics Institute, Federal University of Alagoas, Maceio, Brazil
| | - Aldilane L X Marques
- Cell Biology Laboratory, Institute of Health and Biological Sciences, Federal University of Alagoas, Maceio, Brazil
| | - Alexandre U Borbely
- Cell Biology Laboratory, Institute of Health and Biological Sciences, Federal University of Alagoas, Maceio, Brazil
| | - Susana Genti-Raimondi
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Graciela M Panzetta-Dutari
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina.
| |
Collapse
|
3
|
Schie IW, Kiselev R, Krafft C, Popp J. Rapid acquisition of mean Raman spectra of eukaryotic cells for a robust single cell classification. Analyst 2018; 141:6387-6395. [PMID: 27704071 DOI: 10.1039/c6an01018k] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Raman spectroscopy has previously been used to identify eukaryotic and prokaryotic cells. While prokaryotic cells are small in size and can be assessed by a single Raman spectrum, the larger size of eukaryotic cells and their complex organization requires the acquisition of multiple Raman spectra to properly characterize them. A Raman spectrum from a diffraction-limited spot at an arbitrary location within a cell results in spectral variations that affect classification approaches. To probe whole cells with Raman imaging at high spatial resolution is time consuming, because a large number of Raman spectra need to be collected, resulting in low cell throughput and impairing statistical analysis due to low cell numbers. Here we propose a method to overcome the effects of cellular heterogeneity by acquiring integrated Raman spectra covering a large portion of a cell. The acquired spectrum represents the mean macromolecular composition of a cell with an exposure time that is comparable to acquisition of a single Raman spectrum. Data sets were collected from T lymphocyte Jurkat cells, and pancreatic cell lines Capan1 and MiaPaca2. Cell classification by support vector machines was compared for single spectra, spectra of images and integrated Raman spectra of cells. The integrated approach provides better and more stable prediction for individual cells, and in the current implementation, the mean macromolecular information of a cell can be acquired faster than with the acquisition of individual spectra from a comparable region. It is expected that this approach will have a major impact on the implementation of Raman based cell classification.
Collapse
Affiliation(s)
- Iwan W Schie
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany.
| | - Roman Kiselev
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany.
| | - Christoph Krafft
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany.
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany. and Institute of Physical Chemistry & Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| |
Collapse
|
4
|
Xiao L, Parchur AK, Gilbertson TA, Zhou A. SERS-fluorescence bimodal nanoprobes for in vitro imaging of fatty acid responsive receptor GPR120. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2017; 10:22-29. [PMID: 29449902 PMCID: PMC5808993 DOI: 10.1039/c7ay02039b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
G-protein-coupled receptor 120 (GPR120), as a member of the rhodopsin family of G-protein-coupled receptors, has been shown to function as a sensor for dietary fat in the gustatory and digestive systems. Its specific role in the chemoreception of fatty acids, which is thought to be crucial in understanding the mechanism surrounding the control of fat intake and, accordingly, in the treatment of obesity, remains unclear. Here we report a novel surface-enhanced Raman spectroscopy (SERS)-fluorescence bimodal microscopic technique for detection and imaging of GPR120 in single living cells. CaMoO4:Eu3+@AuNR hybrid nanoparticles are synthesized and characterized as imaging probes. Biocompatibility and imaging capability of the probes are investigated using a model HEK293 cell line with an inducible GPR120 gene transfection. Cellular distribution of GPR120 is visualized by single-cell SERS and fluorescence imaging. A dose-dependent GPR120 response to linoleic acid treatment is revealed by SERS.
Collapse
Affiliation(s)
- Lifu Xiao
- Department of Biological Engineering, Utah State University, Logan, Utah 84322-4105, U.S.A
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, 46556, USA
| | - Abdul K. Parchur
- Department of Biological Engineering, Utah State University, Logan, Utah 84322-4105, U.S.A
| | | | - Anhong Zhou
- Department of Biological Engineering, Utah State University, Logan, Utah 84322-4105, U.S.A
| |
Collapse
|
5
|
Singh SP, Alam H, Dmello C, Mamgain H, Vaidya MM, Dasari RR, Krishna CM. Identification of morphological and biochemical changes in keratin-8/18 knock-down cells using Raman spectroscopy. JOURNAL OF BIOPHOTONICS 2017; 10:1377-1384. [PMID: 28067994 DOI: 10.1002/jbio.201600249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/01/2016] [Accepted: 12/02/2016] [Indexed: 06/06/2023]
Abstract
Accurate understanding of cellular processes and responses to stimuli is of paramount importance in biomedical research and diagnosis. Raman spectroscopy (RS), a label-free and nondestructive spectroscopic method has the potential to serve as a novel 'theranostics' tool. Both fiber-optic and micro-Raman studies have demonstrated efficacy in diagnostics and therapeutic response monitoring. In the present study, we have evaluated the potential of micro-Raman spectroscopic maps in identifying changes induced by loss of K8/18 proteins in a tongue cancer cell line. Furthermore, we also evaluated the efficacy of less expensive and commercially available fiber probes to identify K8/18 wild and knock-down cell pellets, in view of the utility of cell pellet-based studies. The findings suggest that major differences in the cellular morphology and biochemical composition can be objectively identified and can be utilized for classification using both micro-Raman and fiber-probe-based RS. These findings highlight the potential of fiber-optic probe-based RS in noninvasive cellular phenotyping for diagnosis and therapeutic response monitoring, especially in low-resource settings.
Collapse
Affiliation(s)
- S P Singh
- Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India
- Laser Biomedical Research Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hunain Alam
- Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India
| | - Crismita Dmello
- Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India
| | | | - Milind M Vaidya
- Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India
| | - Ramachandra Rao Dasari
- Laser Biomedical Research Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - C Murali Krishna
- Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India
| |
Collapse
|