1
|
Karki B, Pal A, Dhiman G, Ahmed MZ. Ultra-sensitive early detection of colorectal cancer using surface plasmon resonance sensor: theoretical analysis. Mikrochim Acta 2025; 192:126. [PMID: 39891793 DOI: 10.1007/s00604-025-06983-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/14/2025] [Indexed: 02/03/2025]
Abstract
One of the primary causes of cancer-related mortality on a global scale is colorectal cancer. Early colorectal cancer detection can stop the disease from progressing and save lives. Detection of colorectal cancer at an early stage yields significant financial savings, lowers mortality rates, and allows for a broader range of less invasive, more effective treatment options, thereby improving patient outcomes. The copper (Cu), carbon nanotube (CNT), and Hafnium Diselenide (HfSe2) with CaF2 prism-based structure have been proposed for colorectal and other cancer detection. The proposed sensor can detect the refractive index (RI) of the sensing medium (SM) between 1.33 and 1.35. The optimal thickness of Cu, CNT, and HfSe2 has been taken at 41nm, 1nm, and 2nm, respectively. At optimal structure have been determined the sensitivity, detection accuracy (DA), and figure of merit (FoM). The maximum sensitivity 356.66deg/RIU is attained at RI of SM 1.33-1.35. For the detection of colorectal cancer, the sensitivity, DA, and FoM of 387.60deg/RIU, 0.253/deg, and 98.6/RIU, respectively, are obtained. By comparison with the reported work in the literature, the results provide a significant improvement. At optimal structure have been determined the sensitivity, DA, and FoM.
Collapse
Affiliation(s)
- Bhishma Karki
- Department of Physics, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu, 44600, Nepal.
- National Research Council Nepal, New Baneshwor-10, Kathmandu, 44600, Nepal.
- Department of Physics and Research Centre, Tuljaram Chaturchand College Baramati, Pune, 413102, India.
| | - Amrindra Pal
- Department of ECE, University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Gaurav Dhiman
- School of Computing, DIT University, Dehradun, 248009, Uttarakhand, India
| | - Mohammad Z Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Pinheiro MR, Carvalho MI, Oliveira LM. Tutorial on the Use of the Photon Diffusion Approximation for Fast Calculation of Tissue Optical Properties. JOURNAL OF BIOPHOTONICS 2024:e202400257. [PMID: 39462148 DOI: 10.1002/jbio.202400257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/15/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
Computer simulations, which are performed at a single wavelength at a time, have been traditionally used to estimate the optical properties of tissues. The results of these simulations need to be interpolated. For a broadband estimation of tissue optical properties, the use of computer simulations becomes time consuming and computer demanding. When spectral measurements are available for a tissue, the use of the photon diffusion approximation can be done to perform simple and direct calculations to obtain the broadband spectra of some optical properties. The additional estimation of the reduced scattering coefficient at a small number of discrete wavelengths allows to perform further calculations to obtain the spectra of other optical properties. This study used spectral measurements from the heart muscle to explain the calculation pipeline to obtain a complete set of the spectral optical properties and to show its versatility for use with other tissues for various biophotonics applications.
Collapse
Affiliation(s)
- Maria R Pinheiro
- Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Porto, Portugal
- Department of Electrical and Computer Engineering, Faculty of Engineering, Porto University, Porto, Portugal
| | - Maria I Carvalho
- Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Porto, Portugal
- Department of Electrical and Computer Engineering, Faculty of Engineering, Porto University, Porto, Portugal
| | - Luís M Oliveira
- Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Porto, Portugal
- Physics Department, Polytechnic Institute of Porto - School of Engineering, Porto, Portugal
| |
Collapse
|
3
|
Valagiannopoulos C, Tosi D. Scattering integral equation formulation for intravascular inclusion biosensing. Sci Rep 2024; 14:14978. [PMID: 38951563 PMCID: PMC11217448 DOI: 10.1038/s41598-024-64633-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/11/2024] [Indexed: 07/03/2024] Open
Abstract
A dielectric waveguide, inserted into blood vessels, supports its basic mode that is being scattered by a near-field intravascular inclusion. A rigorous integral equation formulation is performed and the electromagnetic response from that inhomogeneity is semi-analytically evaluated. The detectability of the formation, based on spatial distribution of the recorded signal, is estimated by considering various inclusion sizes, locations and textural contrasts. The proposed technique, with its variants and generalizations, provides a generic versatile toolbox to efficiently model biosensor layouts involved in healthcare monitoring and disease screening.
Collapse
Affiliation(s)
| | - Daniele Tosi
- School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000, Kazakhstan.
| |
Collapse
|
4
|
Polyanskiy MN. Refractiveindex.info database of optical constants. Sci Data 2024; 11:94. [PMID: 38238330 PMCID: PMC10796781 DOI: 10.1038/s41597-023-02898-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/27/2023] [Indexed: 01/22/2024] Open
Abstract
We introduce the refractiveindex.info database, a comprehensive open-source repository containing optical constants for a wide array of materials, and describe in detail the underlying dataset. This collection, derived from a meticulous compilation of data sourced from peer-reviewed publications, manufacturers' datasheets, and authoritative texts, aims to advance research in optics and photonics. The data is stored using a YAML-based format, ensuring integrity, consistency, and ease of access. Each record is accompanied by detailed metadata, facilitating a comprehensive understanding and efficient utilization of the data. In this descriptor, we outline the data curation protocols and the file format used for data records, and briefly demonstrate how the data can be organized in a user-friendly fashion akin to the books in a traditional library.
Collapse
Affiliation(s)
- Mikhail N Polyanskiy
- Brookhaven National Laboratory, Accelerator Test Facility, Upton, NY, 11973, USA.
| |
Collapse
|
5
|
Zhou X, Gather MC, Scarcelli G. High-Sensitivity Detection of Changes in Local Refractive Index and Absorption by Analyzing WGM Microlaser Emission via a 2D Dispersion Spectrometer. ACS PHOTONICS 2024; 11:267-275. [PMID: 38249682 PMCID: PMC10798258 DOI: 10.1021/acsphotonics.3c01448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/23/2024]
Abstract
Microlasers have been widely used in biosensing applications because of their high sensitivity to changes in local conditions. However, in most applications, the sensitivity limit is not dictated by the microlaser line width but rather by the much worse spectral resolution of the detection system, typically a grating spectrometer. To address this issue, we built and characterized a two-dimensional (2D) dispersion spectrometer with a virtually imaged phase array etalon and a diffraction grating. The spectrometer can analyze microlaser emission with a spectral resolution of better than 0.300 pm, which enables high-precision measurements of spectral shifts in laser peak emission wavelength and sufficient resolution to detect changes in peak line width. Using commercial fluorescent microspheres as the microlasers, the 2D dispersion spectrometer demonstrated a detection limit for the refractive index change of a liquid medium of 1.37 × 10-5 RIU and a detection limit for absorption changes of less than 0.02 cm-1.
Collapse
Affiliation(s)
- Xuewen Zhou
- Fischell
Department of Bioengineering, University
of Maryland, College
Park, Maryland 20742, United States
| | - Malte C. Gather
- Humboldt
Centre for Nano- and Biophotonics, Department of Chemistry, University of Cologne, Greinstrasse 4–6, 50939 Köln, Germany
| | - Giuliano Scarcelli
- Fischell
Department of Bioengineering, University
of Maryland, College
Park, Maryland 20742, United States
| |
Collapse
|
6
|
Gayathri R, Suchand Sandeep CS, Vijayan C, Murukeshan VM. Random Lasing for Bimodal Imaging and Detection of Tumor. BIOSENSORS 2023; 13:1003. [PMID: 38131763 PMCID: PMC10742073 DOI: 10.3390/bios13121003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
The interaction of light with biological tissues is an intriguing area of research that has led to the development of numerous techniques and technologies. The randomness inherent in biological tissues can trap light through multiple scattering events and provide optical feedback to generate random lasing emission. The emerging random lasing signals carry sensitive information about the scattering dynamics of the medium, which can help in identifying abnormalities in tissues, while simultaneously functioning as an illumination source for imaging. The early detection and imaging of tumor regions are crucial for the successful treatment of cancer, which is one of the major causes of mortality worldwide. In this paper, a bimodal spectroscopic and imaging system, capable of identifying and imaging tumor polyps as small as 1 mm2, is proposed and illustrated using a phantom sample for the early diagnosis of tumor growth. The far-field imaging capabilities of the developed system can enable non-contact in vivo inspections. The integration of random lasing principles with sensing and imaging modalities has the potential to provide an efficient, minimally invasive, and cost-effective means of early detection and treatment of various diseases, including cancer.
Collapse
Affiliation(s)
- R. Gayathri
- Centre for Optical and Laser Engineering (COLE), School of Mechanical and Aerospace Engineering, Nanyang Technological University (NTU), Singapore 639798, Singapore; (R.G.); (C.S.S.S.)
| | - C. S. Suchand Sandeep
- Centre for Optical and Laser Engineering (COLE), School of Mechanical and Aerospace Engineering, Nanyang Technological University (NTU), Singapore 639798, Singapore; (R.G.); (C.S.S.S.)
| | - C. Vijayan
- Department of Physics, Indian Institute of Technology Madras (IITM), Chennai 600036, India;
| | - V. M. Murukeshan
- Centre for Optical and Laser Engineering (COLE), School of Mechanical and Aerospace Engineering, Nanyang Technological University (NTU), Singapore 639798, Singapore; (R.G.); (C.S.S.S.)
| |
Collapse
|
7
|
Papadoliopoulou M, Matiatou M, Koutsoumpos S, Mulita F, Giannios P, Margaris I, Moutzouris K, Arkadopoulos N, Michalopoulos NV. Optical Imaging in Human Lymph Node Specimens for Detecting Breast Cancer Metastases: A Review. Cancers (Basel) 2023; 15:5438. [PMID: 38001697 PMCID: PMC10670418 DOI: 10.3390/cancers15225438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Assessment of regional lymph node status in breast cancer is of important staging and prognostic value. Even though formal histological examination is the currently accepted standard of care, optical imaging techniques have shown promising results in disease diagnosis. In the present article, we review six spectroscopic techniques and focus on their use as alternative tools for breast cancer lymph node assessment. Elastic scattering spectroscopy (ESS) seems to offer a simple, cost-effective, and reproducible method for intraoperative diagnosis of breast cancer lymph node metastasis. Optical coherence tomography (OCT) provides high-resolution tissue scanning, along with a short data acquisition time. However, it is relatively costly and experimentally complex. Raman spectroscopy proves to be a highly accurate method for the identification of malignant axillary lymph nodes, and it has been further validated in the setting of head and neck cancers. Still, it remains time-consuming. Near-infrared fluorescence imaging (NIRF) and diffuse reflectance spectroscopy (DFS) are related to significant advantages, such as deep tissue penetration and efficiency. Fourier-transform infrared spectroscopy (FTIR) is a promising method but has significant drawbacks. Nonetheless, only anecdotal reports exist on their clinical use for cancerous lymph node detection. Our results indicate that optical imaging methods can create informative and rapid tools to effectively guide surgical decision-making.
Collapse
Affiliation(s)
- Maria Papadoliopoulou
- 4th Department of Surgery, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 1 Rimini Street, 12462 Athens, Greece (N.V.M.)
| | - Maria Matiatou
- Laboratory of Electronic Devices and Materials, Department of Electrical & Electronic Engineering, University of West Attica, 12244 Egaleo, Greece
| | - Spyridon Koutsoumpos
- Laboratory of Electronic Devices and Materials, Department of Electrical & Electronic Engineering, University of West Attica, 12244 Egaleo, Greece
| | - Francesk Mulita
- Department of Surgery, General University Hospital of Patras, 26504 Rio, Greece
| | - Panagiotis Giannios
- Barcelona Institute of Science and Technology, Institute for Research in Biomedicine, IRB Barcelona, 08028 Barcelona, Spain
| | - Ioannis Margaris
- 4th Department of Surgery, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 1 Rimini Street, 12462 Athens, Greece (N.V.M.)
| | - Konstantinos Moutzouris
- Laboratory of Electronic Devices and Materials, Department of Electrical & Electronic Engineering, University of West Attica, 12244 Egaleo, Greece
| | - Nikolaos Arkadopoulos
- 4th Department of Surgery, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 1 Rimini Street, 12462 Athens, Greece (N.V.M.)
| | - Nikolaos V. Michalopoulos
- 4th Department of Surgery, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 1 Rimini Street, 12462 Athens, Greece (N.V.M.)
- 1st Propaedeutic Department of Surgery, Hippocration General Hospital, Medical School, National and Kapodistrian University of Athens, 114 Vasilissis Sofias Avenue, 11527 Athens, Greece
| |
Collapse
|
8
|
Martins IS, Silva HF, Lazareva EN, Chernomyrdin NV, Zaytsev KI, Oliveira LM, Tuchin VV. Measurement of tissue optical properties in a wide spectral range: a review [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:249-298. [PMID: 36698664 PMCID: PMC9841994 DOI: 10.1364/boe.479320] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
A distinctive feature of this review is a critical analysis of methods and results of measurements of the optical properties of tissues in a wide spectral range from deep UV to terahertz waves. Much attention is paid to measurements of the refractive index of biological tissues and liquids, the knowledge of which is necessary for the effective application of many methods of optical imaging and diagnostics. The optical parameters of healthy and pathological tissues are presented, and the reasons for their differences are discussed, which is important for the discrimination of pathologies and the demarcation of their boundaries. When considering the interaction of terahertz radiation with tissues, the concept of an effective medium is discussed, and relaxation models of the effective optical properties of tissues are presented. Attention is drawn to the manifestation of the scattering properties of tissues in the THz range and the problems of measuring the optical properties of tissues in this range are discussed. In conclusion, a method for the dynamic analysis of the optical properties of tissues under optical clearing using an application of immersion agents is presented. The main mechanisms and technologies of optical clearing, as well as examples of the successful application for differentiation of healthy and pathological tissues, are analyzed.
Collapse
Affiliation(s)
- Inês S. Martins
- Center for Innovation in Engineering and Industrial Technology, ISEP, Porto, Portugal
| | - Hugo F. Silva
- Porto University, School of Engineering, Porto, Portugal
| | - Ekaterina N. Lazareva
- Science Medical Center, Saratov State University, Saratov, Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
| | | | - Kirill I. Zaytsev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Luís M. Oliveira
- Physics Department, Polytechnic of Porto – School of Engineering (ISEP), Porto, Portugal
- Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Porto, Portugal
| | - Valery V. Tuchin
- Science Medical Center, Saratov State University, Saratov, Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
| |
Collapse
|
9
|
Tariq SM, Fakhri MA, Salim ET, Hashim U, Alsultany FH. Design of an unclad single-mode fiber-optic biosensor based on localized surface plasmon resonance by using COMSOL Multiphysics 5.1 finite element method. APPLIED OPTICS 2022; 61:6257-6267. [PMID: 36256240 DOI: 10.1364/ao.458175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/20/2022] [Indexed: 06/16/2023]
Abstract
This study proposed an unclad optical fiber biosensor based on the localized surface plasmon resonance phenomenon and operating at 650 nm using COMSOL Multiphysics 5.1 finite element method (FEM). Gold nanoparticles (50 nm thickness) were coated on the middle portion of the unclad fiber. Air, water, blood plasma, liver tissue, colon tissue, and pentanol (C5H11OH) were used as analytical layers with 3 µm. The sensor serves as a theoretical foundation for experimental research. The blood plasma had the highest sensitivity with a sensitivity of 10,638.297 nm/RIU and a resolution of 9.410-6RIU. The proposed sensor is a promising candidate for a low-cost, simple-geometry biochemical sensing solution.
Collapse
|
10
|
Complex refractive index of freshly excised human breast tissue as a marker of disease. Lasers Med Sci 2022; 37:2597-2604. [PMID: 35301608 DOI: 10.1007/s10103-022-03524-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/05/2022] [Indexed: 10/18/2022]
Abstract
We report differences in the refractive index of healthy and tumorous freshly excised human breast tissue as determined from reflectance profile measurements at five wavelengths (432 nm, 532 nm, 633 nm, 964 nm, 1551 nm) in the visible and near-infrared using a standard prism-coupling refractometer. These refractive index differences, particularly in the near-infrared, can be used to distinguish fibroadenomas and cancerous growths not only from normal breast tissue but also from each other.
Collapse
|
11
|
Predictions of cervical cancer identification by photonic method combined with machine learning. Sci Rep 2022; 12:3762. [PMID: 35260666 PMCID: PMC8904553 DOI: 10.1038/s41598-022-07723-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/15/2022] [Indexed: 12/26/2022] Open
Abstract
Cervical cancer is one of the most commonly appearing cancers, which early diagnosis is of greatest importance. Unfortunately, many diagnoses are based on subjective opinions of doctors-to date, there is no general measurement method with a calibrated standard. The problem can be solved with the measurement system being a fusion of an optoelectronic sensor and machine learning algorithm to provide reliable assistance for doctors in the early diagnosis stage of cervical cancer. We demonstrate the preliminary research on cervical cancer assessment utilizing an optical sensor and a prediction algorithm. Since each matter is characterized by refractive index, measuring its value and detecting changes give information about the state of the tissue. The optical measurements provided datasets for training and validating the analyzing software. We present data preprocessing, machine learning results utilizing four algorithms (Random Forest, eXtreme Gradient Boosting, Naïve Bayes, Convolutional Neural Networks) and assessment of their performance for classification of tissue as healthy or sick. Our solution allows for rapid sample measurement and automatic classification of the results constituting a potential support tool for doctors.
Collapse
|
12
|
Raghunathareddy MV, Indumathi G, Niranjan KR. Highly sensitive optical MEMS based photonic biosensor for colon tissue detection. AIMS ELECTRONICS AND ELECTRICAL ENGINEERING 2022. [DOI: 10.3934/electreng.2022017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
<abstract>
<p>Biological component of cells, protein has been effectively studied and investigated using biological sensors. Photonic crystal-based sensor is highly sensitive optical nanostructure it can be manipulated to affect the motion of photon for users' application. In the proposed work microcavity based photonic crystal biosensor has been designed and investigated for its different optical sensing evaluation parameters such as transmission efficiency, sensitivity, Q factor and peak resonant wavelengths. Sensor is designed and analyzed for early detection of colon cancer tissues in blood. Radius of defect micropillar has been increased from 0.16 µm to 0.19 µm. High Quality factor 10232 has been achieved with the micro pillar radius of 0.17 µm and sensitivity 700nm/RIU. Similarly, radius of 0.16 µm, 0.18 µm and 0.19 µm has attained quality factor and sensitivity such as 5324, 7232, 8343 and 111 nm/RIU, 320 nm/RIU and 340 nm/RIU respectively. Compared other work in literature, proposed work has shown better sensing capability. Designed sensor has shown remarkable output and feasibility for future fabrication.</p>
</abstract>
Collapse
|
13
|
Vikas, Kumar R, Soni S. Quantitative study of concentration-dependent optical characteristics of nanoparticle-embedded tumor. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02089-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Duboué-Dijon E, Javanainen M, Delcroix P, Jungwirth P, Martinez-Seara H. A practical guide to biologically relevant molecular simulations with charge scaling for electronic polarization. J Chem Phys 2021; 153:050901. [PMID: 32770904 DOI: 10.1063/5.0017775] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Molecular simulations can elucidate atomistic-level mechanisms of key biological processes, which are often hardly accessible to experiment. However, the results of the simulations can only be as trustworthy as the underlying simulation model. In many of these processes, interactions between charged moieties play a critical role. Current empirical force fields tend to overestimate such interactions, often in a dramatic way, when polyvalent ions are involved. The source of this shortcoming is the missing electronic polarization in these models. Given the importance of such biomolecular systems, there is great interest in fixing this deficiency in a computationally inexpensive way without employing explicitly polarizable force fields. Here, we review the electronic continuum correction approach, which accounts for electronic polarization in a mean-field way, focusing on its charge scaling variant. We show that by pragmatically scaling only the charged molecular groups, we qualitatively improve the charge-charge interactions without extra computational costs and benefit from decades of force field development on biomolecular force fields.
Collapse
Affiliation(s)
- E Duboué-Dijon
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - M Javanainen
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, Prague 6 166 10, Czech Republic
| | - P Delcroix
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, Prague 6 166 10, Czech Republic
| | - P Jungwirth
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, Prague 6 166 10, Czech Republic
| | - H Martinez-Seara
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, Prague 6 166 10, Czech Republic
| |
Collapse
|
15
|
Refractive index of biological tissues: Review, measurement techniques, and applications. Photodiagnosis Photodyn Ther 2021; 33:102192. [PMID: 33508501 DOI: 10.1016/j.pdpdt.2021.102192] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 11/24/2022]
Abstract
Refractive index (RI) is a characteristic optical variable that controls the propagation of light in the medium (e.g., biological tissues). Basic research with the aim to investigate the RI of biological tissues is of paramount importance for biomedical optics and associated applications. Herein, we reviewed and summarized the RI data of biological tissues and the associated insights. Different techniques for the measurement of RI of biological tissues are also discussed. Moreover, several examples of the RI applications from basic research, clinics and optics industry are outlined. This study may provide a comprehensive reference for RI data of biological tissues for the biomedical research and beyond.
Collapse
|
16
|
Chen X, Kandel ME, Hu C, Lee YJ, Popescu G. Wolf phase tomography (WPT) of transparent structures using partially coherent illumination. LIGHT, SCIENCE & APPLICATIONS 2020; 9:142. [PMID: 32864117 PMCID: PMC7438521 DOI: 10.1038/s41377-020-00379-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 05/03/2023]
Abstract
In 1969, Emil Wolf proposed diffraction tomography using coherent holographic imaging to extract 3D information from transparent, inhomogeneous objects. In the same era, the Wolf equations were first used to describe the propagation correlations associated with partially coherent fields. Combining these two concepts, we present Wolf phase tomography (WPT), which is a method for performing diffraction tomography using partially coherent fields. WPT reconstruction works directly in the space-time domain, without the need for Fourier transformation, and decouples the refractive index (RI) distribution from the thickness of the sample. We demonstrate the WPT principle using the data acquired by a quantitative-phase-imaging method that upgrades an existing phase-contrast microscope by introducing controlled phase shifts between the incident and scattered fields. The illumination field in WPT is partially spatially coherent (emerging from a ring-shaped pupil function) and of low temporal coherence (white light), and as such, it is well suited for the Wolf equations. From three intensity measurements corresponding to different phase-contrast frames, the 3D RI distribution is obtained immediately by computing the Laplacian and second time derivative of the measured complex correlation function. We validate WPT with measurements of standard samples (microbeads), spermatozoa, and live neural cultures. The high throughput and simplicity of this method enables the study of 3D, dynamic events in living cells across the entire multiwell plate, with an RI sensitivity on the order of 10-5.
Collapse
Affiliation(s)
- Xi Chen
- Quantitative Light Imaging Laboratory, Beckman Institute for Advanced Science and Technology, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Mikhail E. Kandel
- Quantitative Light Imaging Laboratory, Beckman Institute for Advanced Science and Technology, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Chenfei Hu
- Quantitative Light Imaging Laboratory, Beckman Institute for Advanced Science and Technology, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Young Jae Lee
- Quantitative Light Imaging Laboratory, Beckman Institute for Advanced Science and Technology, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Gabriel Popescu
- Quantitative Light Imaging Laboratory, Beckman Institute for Advanced Science and Technology, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| |
Collapse
|
17
|
Muhammad N, Ouyang Z. Plasmon-induced anti-transparency modes in metasurface. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-019-01043-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Isler H, Schenk D, Bernhard J, Kleiser S, Scholkmann F, Ostojic D, Kalyanov A, Ahnen L, Wolf M, Karen T. Absorption spectra of early stool from preterm infants need to be considered in abdominal NIRS oximetry. BIOMEDICAL OPTICS EXPRESS 2019; 10:2784-2794. [PMID: 31259051 PMCID: PMC6583346 DOI: 10.1364/boe.10.002784] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/23/2019] [Accepted: 03/23/2019] [Indexed: 06/09/2023]
Abstract
Necrotizing enterocolitis (NEC) is the most common gastrointestinal emergency of the preterm infant. Low abdominal tissue oxygen saturation (StO2) measured by near-infrared spectroscopy (NIRS) oximetry may be an early sign of NEC relevant for treating or even preventing NEC. However, current commercial NIRS oximeters provide inaccurate StO2 readings because they neglect stool as an abdominal absorber. To tackle this problem, we determined the optical properties of faeces of preterm infants to enable a correct abdominal StO2 measurement. In 25 preterm born infants (median age 31 0/7 ± 2 1/7 weeks, weight 1478 ± 511 g), we measured their first five stool probes with a VIS/NIR spectrometer and calculated the optical properties using the Inverse Adding Doubling (IAD) method. We obtained two absorption spectra representing meconium and transitional stool. Probabilistic cluster analysis correctly classified 96 out of 107 stool probes. The faeces spectra need to be considered to enable correct abdominal StO2 measurements with NIRS oximetry.
Collapse
Affiliation(s)
- Helene Isler
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zürich, 8091 Zürich, Switzerland
| | | | | | - Stefan Kleiser
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zürich, 8091 Zürich, Switzerland
| | - Felix Scholkmann
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zürich, 8091 Zürich, Switzerland
| | - Daniel Ostojic
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zürich, 8091 Zürich, Switzerland
| | - Alexander Kalyanov
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zürich, 8091 Zürich, Switzerland
| | - Linda Ahnen
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zürich, 8091 Zürich, Switzerland
| | - Martin Wolf
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zürich, 8091 Zürich, Switzerland
| | - Tanja Karen
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zürich, 8091 Zürich, Switzerland
| |
Collapse
|
19
|
Shirkavand A, Farivar S, Mohajerani E, Ataie-Fashtami L, Ghazimoradi MH. Non-invasive Reflectance Spectroscopy for Normal and Cancerous Skin Cells Refractive Index Determination: An In Vitro Study. Lasers Surg Med 2019; 51:742-750. [PMID: 31094015 DOI: 10.1002/lsm.23095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVE Optical reflectance spectroscopy is a non-invasive technique for optical characterization of biological samples. Any alteration in a cell from normal or carcinogenic causes will change its refractive index. The aim of this study is to develop a computerized program for extraction of a refractive index of normal and cancerous skin cell lines, including melanoma, fibroblast, and adipose cells, using visible near-infrared reflectance spectra and the Kramers-Kronig (K-K) relations. MATERIALS AND METHOD A fiber optic reflectance spectrometer in visible near-infrared wavelength was used for spectrum acquisition in an in vitro study. Human skin cell lines for melanoma (A375), fibroblast, and adipose sample were cultured for optical spectroscopy. Following data acquisition, an analytical MATLAB code was developed to run the K-K relations. The program was validated for three biological samples using an Abbe refractometer. RESULTS The validation error (below 5%) and determination of changes in the refractive index of melanoma, normal fibroblasts, and adipose skin cells was carried out at wavelengths of 450-950 nm. The refractive index of melanoma was 1.59270 ± 0.0550 at 450 nm, the minimum amount of 1.27790 ± 0.0550 to 1.321 ± 0.0550 at 620 nm, and rose sharply to 1.44321 ± 0.0550 at 935 nm. The respective results for fibroblast and adipose tissue cells were 1.33282 ± 0.0134 and 1.28345 ± 0.0163 at 450 nm with an increasing trend to 1.30494 ± 0.0135 and 1.26716 ± 0.0163 at 935 nm. CONCLUSION Refractive index characteristics show potential for cancer screening and diagnosis. The results show that optical spectroscopy is a promising, non-invasive tool for assessment of the refractive index of living biological cells in in vitro settings. Tracking changes in the refractive index allows screening of normal and abnormal cells for probable alterations in a non-invasive label-free method. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Afshan Shirkavand
- POMP Lab, Photonics Department, Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Shirin Farivar
- Genetics, Stem Cells, Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983963113, Iran
| | - Ezeddin Mohajerani
- POMP Lab, Photonics Department, Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Leila Ataie-Fashtami
- Department of Regenerative Medicine, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
| | - Mohammad H Ghazimoradi
- Genetics, Stem Cells, Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983963113, Iran
| |
Collapse
|
20
|
Wang J, Li H, Tian G, Deng Y, Liu Q, Fu L. Near-infrared probe-based confocal microendoscope for deep-tissue imaging. BIOMEDICAL OPTICS EXPRESS 2018; 9:5011-5025. [PMID: 30319918 PMCID: PMC6179400 DOI: 10.1364/boe.9.005011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 05/18/2023]
Abstract
In this work, a near-infrared probe-based confocal microendoscope (pCM) with a 785 nm laser source, a long working distance, and a probe with diameter of 2.6 mm that can be compatible with a conventional endoscope is demonstrated to produce deep-tissue images at cellular resolutions with enhanced contrast and signal-to-noise ratio. Theoretical simulations and experiments confirm that near-infrared light can optimize the image quality. Abundant details of mouse esophagus obtained at different depths demonstrate the system's ability to image deep tissues at cellular resolutions, which makes it possible to diagnose diseases in the digestive tract in real time, laying a solid foundation for clinical applications.
Collapse
Affiliation(s)
- Jiafu Wang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hua Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Geng Tian
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yong Deng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Qian Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Ling Fu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
21
|
Chen C, Wang F, Wen S, Su QP, Wu MCL, Liu Y, Wang B, Li D, Shan X, Kianinia M, Aharonovich I, Toth M, Jackson SP, Xi P, Jin D. Multi-photon near-infrared emission saturation nanoscopy using upconversion nanoparticles. Nat Commun 2018; 9:3290. [PMID: 30120242 PMCID: PMC6098146 DOI: 10.1038/s41467-018-05842-w] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 07/26/2018] [Indexed: 01/03/2023] Open
Abstract
Multiphoton fluorescence microscopy (MPM), using near infrared excitation light, provides increased penetration depth, decreased detection background, and reduced phototoxicity. Using stimulated emission depletion (STED) approach, MPM can bypass the diffraction limitation, but it requires both spatial alignment and temporal synchronization of high power (femtosecond) lasers, which is limited by the inefficiency of the probes. Here, we report that upconversion nanoparticles (UCNPs) can unlock a new mode of near-infrared emission saturation (NIRES) nanoscopy for deep tissue super-resolution imaging with excitation intensity several orders of magnitude lower than that required by conventional MPM dyes. Using a doughnut beam excitation from a 980 nm diode laser and detecting at 800 nm, we achieve a resolution of sub 50 nm, 1/20th of the excitation wavelength, in imaging of single UCNP through 93 μm thick liver tissue. This method offers a simple solution for deep tissue super resolution imaging and single molecule tracking.
Collapse
Affiliation(s)
- Chaohao Chen
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Fan Wang
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| | - Shihui Wen
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Qian Peter Su
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Mike C L Wu
- Heart Research Institute, and Charles Perkins Centre, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Yongtao Liu
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Baoming Wang
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Du Li
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Xuchen Shan
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Mehran Kianinia
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Igor Aharonovich
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Milos Toth
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Shaun P Jackson
- Heart Research Institute, and Charles Perkins Centre, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Peng Xi
- Department of Biomedical Engineering, College of Engineering, Peking University, 100871, Beijing, China
| | - Dayong Jin
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia.
- ARC Research Hub for Integrated Device for End-user Analysis at Low-levels (IDEAL), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| |
Collapse
|
22
|
Bashkatov AN, Berezin KV, Dvoretskiy KN, Chernavina ML, Genina EA, Genin VD, Kochubey VI, Lazareva EN, Pravdin AB, Shvachkina ME, Timoshina PA, Tuchina DK, Yakovlev DD, Yakovlev DA, Yanina IY, Zhernovaya OS, Tuchin VV. Measurement of tissue optical properties in the context of tissue optical clearing. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-31. [PMID: 30141286 DOI: 10.1117/1.jbo.23.9.091416] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/30/2018] [Indexed: 05/05/2023]
Abstract
Nowadays, dynamically developing optical (photonic) technologies play an ever-increasing role in medicine. Their adequate and effective implementation in diagnostics, surgery, and therapy needs reliable data on optical properties of human tissues, including skin. This paper presents an overview of recent results on the measurements and control of tissue optical properties. The issues reported comprise a brief review of optical properties of biological tissues and efficacy of optical clearing (OC) method in application to monitoring of diabetic complications and visualization of blood vessels and microcirculation using a number of optical imaging technologies, including spectroscopic, optical coherence tomography, and polarization- and speckle-based ones. Molecular modeling of immersion OC of skin and specific technique of OC of adipose tissue by its heating and photodynamic treatment are also discussed.
Collapse
Affiliation(s)
- Alexey N Bashkatov
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
- Tomsk State University, Interdisciplinary Laboratory of Biophotonics, Tomsk, Russia
| | - Kirill V Berezin
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
| | - Konstantin N Dvoretskiy
- Saratov State Medical University, Subdivision of Medical and Biological Physics, Saratov, Russia
| | - Maria L Chernavina
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
| | - Elina A Genina
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
- Tomsk State University, Interdisciplinary Laboratory of Biophotonics, Tomsk, Russia
| | - Vadim D Genin
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
| | - Vyacheslav I Kochubey
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
- Tomsk State University, Interdisciplinary Laboratory of Biophotonics, Tomsk, Russia
| | - Ekaterina N Lazareva
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
- Tomsk State University, Interdisciplinary Laboratory of Biophotonics, Tomsk, Russia
- Immanuel Kant Baltic Federal University, Center for Functionalized Magnetic Materials, Kaliningrad, Russia
| | - Alexander B Pravdin
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
| | - Marina E Shvachkina
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
| | - Polina A Timoshina
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
- Tomsk State University, Interdisciplinary Laboratory of Biophotonics, Tomsk, Russia
| | - Daria K Tuchina
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
- Tomsk State University, Interdisciplinary Laboratory of Biophotonics, Tomsk, Russia
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Dmitry D Yakovlev
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
| | - Dmitry A Yakovlev
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
| | - Irina Yu Yanina
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
- Tomsk State University, Interdisciplinary Laboratory of Biophotonics, Tomsk, Russia
| | - Olga S Zhernovaya
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
| | - Valery V Tuchin
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
- Tomsk State University, Interdisciplinary Laboratory of Biophotonics, Tomsk, Russia
- Institute of Precision Mechanics and Control of the Russian Academy of Sciences, Saratov, Russia
| |
Collapse
|
23
|
Yanina IY, Lazareva EN, Tuchin VV. Refractive index of adipose tissue and lipid droplet measured in wide spectral and temperature ranges. APPLIED OPTICS 2018; 57:4839-4848. [PMID: 30118111 DOI: 10.1364/ao.57.004839] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/06/2018] [Indexed: 06/08/2023]
Abstract
This study presents refractive index measurements of human and porcine adipose tissues and lipid droplet content in the visible and near-infrared. The coefficients of the Sellmeier formula were calculated for approximation of tissue dispersion. For the first time, to the best of our knowledge, the phase transition temperatures and temperature increments dn/dT of adipose tissue were quantified for a wide wavelength range from 480 to 1550 nm and from room temperature up to 50°C. For human abdominal adipose tissue, the refractive index increment averaged across all wavelengths is dn/dT=-(3.54±0.15)×10-4°C-1, for porcine tissue dn/dT=-7.92(0.74)×10-4°C-1, and for porcine lipid droplet dn/dT=-6.01(0.29)×10-4°C-1. Data available in literature for refractive indices of adipose tissues measured by different techniques are summarized and compared with the received data.
Collapse
|
24
|
Meitav O, Shaul O, Abookasis D. Spectral refractive index assessment of turbid samples by combining spatial frequency near-infrared spectroscopy with Kramers-Kronig analysis. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-9. [PMID: 29595017 DOI: 10.1117/1.jbo.23.3.035007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
A practical algorithm for estimating the wavelength-dependent refractive index (RI) of a turbid sample in the spatial frequency domain with the aid of Kramers-Kronig (KK) relations is presented. In it, phase-shifted sinusoidal patterns (structured illumination) are serially projected at a high spatial frequency onto the sample surface (mouse scalp) at different near-infrared wavelengths while a camera mounted normally to the sample surface captures the reflected diffuse light. In the offline analysis pipeline, recorded images at each wavelength are converted to spatial absorption maps by logarithmic function, and once the absorption coefficient information is obtained, the imaginary part (k) of the complex RI (CRI), based on Maxell's equations, can be calculated. Using the data represented by k, the real part of the CRI (n) is then resolved by KK analysis. The wavelength dependence of n ( λ ) is then fitted separately using four standard dispersion models: Cornu, Cauchy, Conrady, and Sellmeier. In addition, three-dimensional surface-profile distribution of n is provided based on phase profilometry principles and a phase-unwrapping-based phase-derivative-variance algorithm. Experimental results demonstrate the capability of the proposed idea for sample's determination of a biological sample's RI value.
Collapse
Affiliation(s)
- Omri Meitav
- Ariel University, Department of Electrical and Electronics Engineering, Ariel, Israel
| | - Oren Shaul
- Ariel University, Department of Electrical and Electronics Engineering, Ariel, Israel
| | - David Abookasis
- Ariel University, Department of Electrical and Electronics Engineering, Ariel, Israel
| |
Collapse
|
25
|
Lazareva EN, Tuchin VV. Measurement of refractive index of hemoglobin in the visible/NIR spectral range. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-9. [PMID: 29546733 DOI: 10.1117/1.jbo.23.3.035004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/20/2018] [Indexed: 06/08/2023]
Abstract
This study is focused on the measurements of the refractive index of hemoglobin solutions in the visible/near-infrared (NIR) spectral range at room temperature for characteristic laser wavelengths: 480, 486, 546, 589, 644, 656, 680, 930, 1100, 1300, and 1550 nm. Measurements were performed using the multiwavelength Abbe refractometer. Aqua hemoglobin solutions of different concentrations obtained from human whole blood were investigated. The specific increment of refractive index on hemoglobin concentration and the Sellmeier coefficients were calculated.
Collapse
Affiliation(s)
- Ekaterina N Lazareva
- Saratov State University (National Research University), Research Educational Institute of Optics an, Russia
- Immanuel Kant Baltic Federal University, Center for Functionalized Magnetic Materials (FunMagMa), Ka, Russia
| | - Valery V Tuchin
- Saratov State University (National Research University), Research Educational Institute of Optics an, Russia
- Tomsk State University (National Research University), Interdisciplinary Laboratory of Biophotonics,, Russia
- Institute of Precision Mechanics and Control RAS, Laboratory of Laser Diagnostics of Technical and L, Russia
| |
Collapse
|
26
|
Isler H, Germanier C, Ahnen L, Jiang J, Lindner S, Di Costanzo Mata A, Karen T, Sánchez Majos S, Wolf M, Kalyanov A. Optical properties of mice's stool in 550 to 1000 nm wavelength range. JOURNAL OF BIOPHOTONICS 2018; 11:e201700076. [PMID: 28816398 DOI: 10.1002/jbio.201700076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/14/2017] [Accepted: 08/14/2017] [Indexed: 06/07/2023]
Abstract
The aim of this work was to measure optical properties of stool of mice to provide this relevant wavelength-dependent behavior for optical imaging modalities such as fluorescent molecular tomography and near-infrared optical tomography. BALB/c nude female mice were studied and optical properties of the stool were determined by employing the inverse adding-doubling approach. The animals were kept on chlorophyll-free diet. Nine stool samples were measured. The wavelength-dependent behavior of absorption and scattering in 550 to 1000 nm range is presented. The reduced scattering spectrum is fitted to the Mie scattering approximation in the near-infrared (NIR) wavelength range and to the Mie + Rayleigh approximation in visible/NIR range with the fitting coefficients presented. The study revealed that the absorption spectrum of stool can lead to crosstalk with the spectrum of hemoglobin in the NIR range.
Collapse
Affiliation(s)
- Helene Isler
- Biomedical Optics Research Laboratory (BORL), Department of Neonatology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Catherine Germanier
- Animal Imaging Center (AIC), Institute of Biomedical Engineering, ETH Zurich, Zurich, Switzerland
| | - Linda Ahnen
- Biomedical Optics Research Laboratory (BORL), Department of Neonatology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Jingjing Jiang
- Biomedical Optics Research Laboratory (BORL), Department of Neonatology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Scott Lindner
- Biomedical Optics Research Laboratory (BORL), Department of Neonatology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Advanced Quantum Architecture (AQUA) Laboratory, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Aldo Di Costanzo Mata
- Biomedical Optics Research Laboratory (BORL), Department of Neonatology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Tanja Karen
- Biomedical Optics Research Laboratory (BORL), Department of Neonatology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Salvador Sánchez Majos
- Biomedical Optics Research Laboratory (BORL), Department of Neonatology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Martin Wolf
- Biomedical Optics Research Laboratory (BORL), Department of Neonatology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Alexander Kalyanov
- Biomedical Optics Research Laboratory (BORL), Department of Neonatology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
Calin VL, Mihailescu M, Scarlat EI, Baluta AV, Calin D, Kovacs E, Savopol T, Moisescu MG. Evaluation of the metastatic potential of malignant cells by image processing of digital holographic microscopy data. FEBS Open Bio 2017; 7:1527-1538. [PMID: 28979841 PMCID: PMC5623698 DOI: 10.1002/2211-5463.12282] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/13/2017] [Accepted: 08/02/2017] [Indexed: 12/20/2022] Open
Abstract
The cell refractive index has been proposed as a putative cancer biomarker of great potential, being correlated with cell content and morphology, cell division rate and membrane permeability. We used digital holographic microscopy to compare the refractive index and dry mass density of two B16 murine melanoma sublines of different metastatic potential. Using statistical methods, the distribution of phase shifts within the reconstructed quantitative phase images was analyzed by the method of bimodality coefficients. The observed correlation of refractive index, dry mass density and bimodality profile with the metastatic potential of the cells was validated by real time impedance-based assay and clonogenic tests. We suggest that the refractive index and bimodality analysis of quantitative phase image histograms could be developed as optical biomarkers useful in label-free detection and quantitative evaluation of cell metastatic potential.
Collapse
Affiliation(s)
- Violeta L. Calin
- Biophysics and Cellular Biotechnology DepartmentFaculty of MedicineCarol Davila University of Medicine and PharmacyBucharestRomania
| | - Mona Mihailescu
- Physics DepartmentFaculty of Applied SciencesPolitehnica University of BucharestRomania
| | - Eugen I. Scarlat
- Physics DepartmentFaculty of Applied SciencesPolitehnica University of BucharestRomania
| | - Alexandra V. Baluta
- Applied Electronics and Informatics Engineering DepartmentFaculty of ElectronicsTelecommunications and Information TechnologyPolitehnica University of BucharestRomania
| | - Daniel Calin
- Biophysics and Cellular Biotechnology DepartmentFaculty of MedicineCarol Davila University of Medicine and PharmacyBucharestRomania
| | - Eugenia Kovacs
- Biophysics and Cellular Biotechnology DepartmentFaculty of MedicineCarol Davila University of Medicine and PharmacyBucharestRomania
| | - Tudor Savopol
- Biophysics and Cellular Biotechnology DepartmentFaculty of MedicineCarol Davila University of Medicine and PharmacyBucharestRomania
| | - Mihaela G. Moisescu
- Biophysics and Cellular Biotechnology DepartmentFaculty of MedicineCarol Davila University of Medicine and PharmacyBucharestRomania
| |
Collapse
|
28
|
Carvalho S, Gueiral N, Nogueira E, Henrique R, Oliveira L, Tuchin VV. Glucose diffusion in colorectal mucosa-a comparative study between normal and cancer tissues. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:91506. [PMID: 28241323 DOI: 10.1117/1.jbo.22.9.091506] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/31/2017] [Indexed: 05/21/2023]
Abstract
Colorectal carcinoma is a major health concern worldwide and its high incidence and mortality require accurate screening methods. Following endoscopic examination, polyps must be removed for histopathological characterization. Aiming to contribute to the improvement of current endoscopy methods of colorectal carcinoma screening or even for future development of laser treatment procedures, we studied the diffusion properties of glucose and water in colorectal healthy and pathological mucosa. These parameters characterize the tissue dehydration and the refractive index matching mechanisms of optical clearing (OC). We used ex vivo tissues to measure the collimated transmittance spectra and thickness during treatments with OC solutions containing glucose in different concentrations. These time dependencies allowed for estimating the diffusion time and diffusion coefficient values of glucose and water in both types of tissues. The measured diffusion times for glucose in healthy and pathological mucosa samples were 299.2 ± 4.7 ?? s and 320.6 ± 10.6 ?? s for 40% and 35% glucose concentrations, respectively. Such a difference indicates a slower glucose diffusion in cancer tissues, which originate from their ability to trap far more glucose than healthy tissues. We have also found a higher free water content in cancerous tissue that is estimated as 64.4% instead of 59.4% for healthy mucosa.
Collapse
Affiliation(s)
- Sónia Carvalho
- Portuguese Oncology Institute of Porto, Department of Pathology and Cancer Biology and Epigenetics Group-Research Centre, Porto, Portugal
| | - Nuno Gueiral
- Polytechnic of Porto, School of Engineering, Physics Department, Porto, PortugalcCentre of Innovation in Engineering and Industrial Technology, ISEP, Porto, Portugal
| | - Elisabete Nogueira
- Polytechnic of Porto, School of Engineering, Physics Department, Porto, PortugalcCentre of Innovation in Engineering and Industrial Technology, ISEP, Porto, Portugal
| | - Rui Henrique
- Portuguese Oncology Institute of Porto, Department of Pathology and Cancer Biology and Epigenetics Group-Research Centre, Porto, PortugaldUniversity of Porto (ICBAS-UP), Institute of Biomedical Sciences Abel Salazar, Department of Pathology and Molecular Immunology, Porto, Portugal
| | - Luís Oliveira
- Polytechnic of Porto, School of Engineering, Physics Department, Porto, PortugalcCentre of Innovation in Engineering and Industrial Technology, ISEP, Porto, Portugal
| | - Valery V Tuchin
- Saratov National Research State University, Research-Educational Institute of Optics and Biophotonics, Saratov, RussiafPrecision Mechanics and Control Institute of the Russian Academy of Sciences, Laboratory of Laser Diagnostics of Technical and Living Systems, Saratov, RussiagNational Research Tomsk State University, Interdisciplinary Laboratory of Biophotonics, Tomsk, Russia
| |
Collapse
|
29
|
Meitav O, Shaul O, Abookasis D. Determination of the complex refractive index segments of turbid sample with multispectral spatially modulated structured light and models approximation. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-10. [PMID: 28959825 DOI: 10.1117/1.jbo.22.9.097004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/12/2017] [Indexed: 06/07/2023]
Abstract
Spectral data enabling the derivation of a biological tissue sample's complex refractive index (CRI) can provide a range of valuable information in the clinical and research contexts. Specifically, changes in the CRI reflect alterations in tissue morphology and chemical composition, enabling its use as an optical marker during diagnosis and treatment. In the present work, we report a method for estimating the real and imaginary parts of the CRI of a biological sample using Kramers-Kronig (KK) relations in the spatial frequency domain. In this method, phase-shifted sinusoidal patterns at single high spatial frequency are serially projected onto the sample surface at different near-infrared wavelengths while a camera mounted normal to the sample surface acquires the reflected diffuse light. In the offline analysis pipeline, recorded images at each wavelength are converted to spatial phase maps using KK analysis and are then calibrated against phase-models derived from diffusion approximation. The amplitude of the reflected light, together with phase data, is then introduced into Fresnel equations to resolve both real and imaginary segments of the CRI at each wavelength. The technique was validated in tissue-mimicking phantoms with known optical parameters and in mouse models of ischemic injury and heat stress. Experimental data obtained indicate variations in the CRI among brain tissue suffering from injury. CRI fluctuations correlated with alterations in the scattering and absorption coefficients of the injured tissue are demonstrated. This technique for deriving dynamic changes in the CRI of tissue may be further developed as a clinical diagnostic tool and for biomedical research applications. To the best of our knowledge, this is the first report of the estimation of the spectral CRI of a mouse head following injury obtained in the spatial frequency domain.
Collapse
Affiliation(s)
- Omri Meitav
- Ariel University, Department of Electrical and Electronics Engineering, Ariel 40700, Israel
| | - Oren Shaul
- Ariel University, Department of Electrical and Electronics Engineering, Ariel 40700, Israel
| | - David Abookasis
- Ariel University, Department of Electrical and Electronics Engineering, Ariel 40700, Israel
| |
Collapse
|
30
|
Phase and Index of Refraction Imaging by Hyperspectral Reflectance Confocal Microscopy. Molecules 2016; 21:molecules21121727. [PMID: 27999294 PMCID: PMC6274177 DOI: 10.3390/molecules21121727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 01/26/2023] Open
Abstract
A hyperspectral reflectance confocal microscope (HSCM) was realized by CNR-ISC (Consiglio Nazionale delle Ricerche-Istituto dei Sistemi Complessi) a few years ago. The instrument and data have been already presented and discussed. The main activity of this HSCM has been within biology, and reflectance data have shown good matching between spectral signatures and the nature or evolution on many types of cells. Such a relationship has been demonstrated mainly with statistical tools like Principal Component Analysis (PCA), or similar concepts, which represent a very common approach for hyperspectral imaging. However, the point is that reflectance data contains much more useful information and, moreover, there is an obvious interest to go from reflectance, bound to the single experiment, to reflectivity, or other physical quantities, related to the sample alone. To accomplish this aim, we can follow well-established analyses and methods used in reflectance spectroscopy. Therefore, we show methods of calculations for index of refraction n, extinction coefficient k and local thicknesses of frequency starting from phase images by fast Kramers-Kronig (KK) algorithms and the Abeles matrix formalism. Details, limitations and problems of the presented calculations as well as alternative procedures are given for an example of HSCM images of red blood cells (RBC).
Collapse
|
31
|
Sun TQ, Ye Q, Hu F, Liu SK, Wang XW, Wang J, Deng ZC, Mei JC, Zhou WY, Zhang CP, Wang XY, Pan LT, Tian JG. Quantitative index imaging of coculture cells by scanning focused refractive index microscopy. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:86016. [PMID: 27564318 DOI: 10.1117/1.jbo.21.8.086016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/15/2016] [Indexed: 06/06/2023]
Abstract
We report the quantitative refractive index (RI) imaging of cocultured cells in their living environment by scanning focused refractive index microscopy (SFRIM). Mouse microglial cells and synovial cells are cocultured on the top surface of a trapezoid prism. The RI imaging of living cells is obtained in a reflection-type method. The RI information is deduced with the simple derivative total internal reflection method, where a complex retrieval algorithm or reconstruction process is unnecessary. The outline of each cell is determined according to the RI value compared with that of the immersion liquid. The cocultured cells can be discriminated in the RI image. The measurement is nondestructive and label-free. The experimental results prove that SFRIM is a promising tool in the field of biological optics.
Collapse
Affiliation(s)
- Teng-Qian Sun
- Nankai University, School of Physics and TEDA Applied Physics School, Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, 94th Weijin Road, Tianjin 300071, China
| | - Qing Ye
- Nankai University, School of Physics and TEDA Applied Physics School, Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, 94th Weijin Road, Tianjin 300071, ChinabNankai University, The 2011 Project Collaborative Innovation Center for Biological Therapy, 94th Weijin Road, Tianjin 300071, China
| | - Fen Hu
- Nankai University, School of Physics and TEDA Applied Physics School, Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, 94th Weijin Road, Tianjin 300071, China
| | - Shi-Ke Liu
- Nankai University, School of Physics and TEDA Applied Physics School, Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, 94th Weijin Road, Tianjin 300071, China
| | - Xiao-Wan Wang
- Nankai University, School of Physics and TEDA Applied Physics School, Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, 94th Weijin Road, Tianjin 300071, China
| | - Jin Wang
- Nankai University, School of Physics and TEDA Applied Physics School, Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, 94th Weijin Road, Tianjin 300071, China
| | - Zhi-Chao Deng
- Nankai University, School of Physics and TEDA Applied Physics School, Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, 94th Weijin Road, Tianjin 300071, China
| | - Jian-Chun Mei
- Nankai University, The 2011 Project Collaborative Innovation Center for Biological Therapy, 94th Weijin Road, Tianjin 300071, ChinacNankai University, Advanced Technology Institute, 94th Weijin Road, Tianjin 300071, China
| | - Wen-Yuan Zhou
- Nankai University, School of Physics and TEDA Applied Physics School, Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, 94th Weijin Road, Tianjin 300071, ChinabNankai University, The 2011 Project Collaborative Innovation Center for Biological Therapy, 94th Weijin Road, Tianjin 300071, China
| | - Chun-Ping Zhang
- Nankai University, School of Physics and TEDA Applied Physics School, Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, 94th Weijin Road, Tianjin 300071, China
| | - Xin-Yu Wang
- Nankai University, School of Physics and TEDA Applied Physics School, Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, 94th Weijin Road, Tianjin 300071, China
| | - Lei-Ting Pan
- Nankai University, School of Physics and TEDA Applied Physics School, Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, 94th Weijin Road, Tianjin 300071, ChinadNankai University, State Key Laboratory of Medicinal Chemical Biology, 94th Weijin Road, Tianjin, China
| | - Jian-Guo Tian
- Nankai University, School of Physics and TEDA Applied Physics School, Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, 94th Weijin Road, Tianjin 300071, ChinabNankai University, The 2011 Project Collaborative Innovation Center for Biological Therapy, 94th Weijin Road, Tianjin 300071, China
| |
Collapse
|