1
|
Qiu L, Su Y, Xu KM, Cui H, Zheng D, Zhu Y, Li L, Li F, Zhao W. A high-precision multi-dimensional microspectroscopic technique for morphological and properties analysis of cancer cell. LIGHT, SCIENCE & APPLICATIONS 2023; 12:129. [PMID: 37248287 DOI: 10.1038/s41377-023-01153-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/19/2023] [Accepted: 04/11/2023] [Indexed: 05/31/2023]
Abstract
Raman and Brillouin scattering are sensitive approaches to detect chemical composition and mechanical elasticity pathology of cells in cancer development and their medical treatment researches. The application is, however, suffering from the lack of ability to synchronously acquire the scattering signals following three-dimensional (3D) cell morphology with reasonable spatial resolution and signal-to-noise ratio. Herein, we propose a divided-aperture laser differential confocal 3D Geometry-Raman-Brillouin microscopic detection technology, by which reflection, Raman, and Brillouin scattering signals are simultaneously in situ collected in real time with an axial focusing accuracy up to 1 nm, in the height range of 200 μm. The divided aperture improves the anti-noise capability of the system, and the noise influence depth of Raman detection reduces by 35.4%, and the Brillouin extinction ratio increases by 22 dB. A high-precision multichannel microspectroscopic system containing these functions is developed, which is utilized to study gastric cancer tissue. As a result, a 25% reduction of collagen concentration, 42% increase of DNA substances, 17% and 9% decrease in viscosity and elasticity are finely resolved from the 3D mappings. These findings indicate that our system can be a powerful tool to study cancer development new therapies at the sub-cell level.
Collapse
Affiliation(s)
- Lirong Qiu
- MIIT Key Laboratory of Complex-field Intelligent Exploration, School of Optics and Photonics, Beijing Institute of Technology, 100081, Beijing, China
| | - Yunhao Su
- MIIT Key Laboratory of Complex-field Intelligent Exploration, School of Optics and Photonics, Beijing Institute of Technology, 100081, Beijing, China
| | - Ke-Mi Xu
- MIIT Key Laboratory of Complex-field Intelligent Exploration, School of Optics and Photonics, Beijing Institute of Technology, 100081, Beijing, China
| | - Han Cui
- MIIT Key Laboratory of Complex-field Intelligent Exploration, School of Optics and Photonics, Beijing Institute of Technology, 100081, Beijing, China
| | - Dezhi Zheng
- MIIT Key Laboratory of Complex-field Intelligent Exploration, School of Optics and Photonics, Beijing Institute of Technology, 100081, Beijing, China
| | - Yuanmin Zhu
- Department of Gastroenterology, Aerospace Central Hospital, Peking University Aerospace School of Clinical Medicine, 100081, Beijing, China
| | - Lin Li
- Department of Gastroenterology, Aerospace Central Hospital, Peking University Aerospace School of Clinical Medicine, 100081, Beijing, China
| | - Fang Li
- Department of Pathology, Aerospace Central Hospital, Peking University Aerospace School of Clinical Medicine, 100081, Beijing, China
| | - Weiqian Zhao
- MIIT Key Laboratory of Complex-field Intelligent Exploration, School of Optics and Photonics, Beijing Institute of Technology, 100081, Beijing, China.
| |
Collapse
|
2
|
Rix J, Uckermann O, Kirsche K, Schackert G, Koch E, Kirsch M, Galli R. Correlation of biomechanics and cancer cell phenotype by combined Brillouin and Raman spectroscopy of U87-MG glioblastoma cells. JOURNAL OF THE ROYAL SOCIETY, INTERFACE 2022; 19:20220209. [PMID: 35857926 DOI: 10.1098/rsif.2022.0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The elucidation of biomechanics furthers our understanding of brain tumour biology. Brillouin spectroscopy is a new optical method that addresses viscoelastic properties down to subcellular resolution in a contact-free manner. Moreover, it can be combined with Raman spectroscopy to obtain co-localized biochemical information. Here, we applied co-registered Brillouin and Raman spectroscopy to U87-MG human glioblastoma cells in vitro. Using two-dimensional and three-dimensional cultures, we related biomechanical properties to local biochemical composition at the subcellular level, as well as the cell phenotype. Brillouin and Raman mapping of adherent cells showed that the nucleus and nucleoli are stiffer than the perinuclear region and the cytoplasm. The biomechanics of the cell cytoplasm is affected by culturing conditions, i.e. cells grown as spheroids are stiffer than adherent cells. Inside the spheroids, the presence of lipid droplets as assessed by Raman spectroscopy revealed higher Brillouin shifts that are not related to a local increase in stiffness, but are due to a higher refractive index combined with a lower mass density. This highlights the importance of locally defined biochemical reference data for a correct interpretation of the Brillouin shift of cells and tissues in future studies investigating the biomechanics of brain tumour models by Brillouin spectroscopy.
Collapse
Affiliation(s)
- Jan Rix
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany
| | - Ortrud Uckermann
- Neurosurgery, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany.,Division of Medical Biology, Department of Psychiatry, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany
| | - Katrin Kirsche
- Neurosurgery, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany
| | - Gabriele Schackert
- Neurosurgery, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany
| | - Edmund Koch
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany
| | - Matthias Kirsch
- Neurosurgery, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany.,Klinik für Neurochirurgie, Asklepios Kliniken Schildautal, Karl-Herold-Strasse 1, D-38723 Seesen, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany
| | - Roberta Galli
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany
| |
Collapse
|
3
|
Villalba-Orero M, Jiménez-Riobóo RJ, Gontán N, Sanderson D, López-Olañeta M, García-Pavía P, Desco M, Lara-Pezzi E, Gómez-Gaviro MV. Assessment of myocardial viscoelasticity with Brillouin spectroscopy in myocardial infarction and aortic stenosis models. Sci Rep 2021; 11:21369. [PMID: 34725389 PMCID: PMC8560820 DOI: 10.1038/s41598-021-00661-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/12/2021] [Indexed: 02/05/2023] Open
Abstract
Heart diseases are associated with changes in the biomechanical properties of the myocardial wall. However, there is no modality available to assess myocardial stiffness directly. Brillouin microspectroscopy (mBS) is a consolidated mechanical characterization technique, applied to the study of the viscoelastic and elastic behavior of biological samples and may be a valuable tool for assessing the viscoelastic properties of the cardiac tissue. In this work, viscosity and elasticity were assessed using mBS in heart samples obtained from healthy and unhealthy mice (n = 6 per group). Speckle-tracking echocardiography (STE) was performed to evaluate heart deformation. We found that mBS was able to detect changes in stiffness in the ventricles in healthy myocardium. The right ventricle showed reduced stiffness, in agreement with its increased compliance. mBS measurements correlated strongly with STE data, highlighting the association between displacement and stiffness in myocardial regions. This correlation was lost in pathological conditions studied. The scar region in the infarcted heart presented changes in stiffness when compared to the rest of the heart, and the hypertrophied left ventricle showed increased stiffness following aortic stenosis, compared to the right ventricle. We demonstrate that mBS can be applied to determine myocardial stiffness, that measurements correlate with functional parameters and that they change with disease.
Collapse
Affiliation(s)
- María Villalba-Orero
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Madrid, Spain
| | - Rafael J Jiménez-Riobóo
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Nuria Gontán
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Daniel Sanderson
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III, Madrid, Spain
| | - Marina López-Olañeta
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Pablo García-Pavía
- Hospital Puerta de Hierro Majadahonda, Madrid, Spain.,Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Madrid, Spain.,Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcon, Spain
| | - Manuel Desco
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain. .,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain. .,Centro de Investigación Biomédica en Red Salud Mental (CIBERSAM), Madrid, Spain. .,Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III, Madrid, Spain. .,Hospital General Universitario Gregorio Marañón, Doctor Esquerdo 46, 28007, Madrid, Spain.
| | - Enrique Lara-Pezzi
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain. .,Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Madrid, Spain.
| | - Maria Victoria Gómez-Gaviro
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain. .,Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III, Madrid, Spain. .,Hospital General Universitario Gregorio Marañón, Doctor Esquerdo 46, 28007, Madrid, Spain.
| |
Collapse
|
4
|
Rioboó RJJ, Gontán N, Sanderson D, Desco M, Gómez-Gaviro MV. Brillouin Spectroscopy: From Biomedical Research to New Generation Pathology Diagnosis. Int J Mol Sci 2021; 22:8055. [PMID: 34360822 PMCID: PMC8347166 DOI: 10.3390/ijms22158055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/11/2021] [Accepted: 07/23/2021] [Indexed: 01/06/2023] Open
Abstract
Brillouin spectroscopy has recently gained considerable interest within the biomedical field as an innovative tool to study mechanical properties in biology. The Brillouin effect is based on the inelastic scattering of photons caused by their interaction with thermodynamically driven acoustic modes or phonons and it is highly dependent on the material's elasticity. Therefore, Brillouin is a contactless, label-free optic approach to elastic and viscoelastic analysis that has enabled unprecedented analysis of ex vivo and in vivo mechanical behavior of several tissues with a micrometric resolution, paving the way to a promising future in clinical diagnosis. Here, we comprehensively review the different studies of this fast-moving field that have been performed up to date to provide a quick guide of the current literature. In addition, we offer a general view of Brillouin's biomedical potential to encourage its further development to reach its implementation as a feasible, cost-effective pathology diagnostic tool.
Collapse
Affiliation(s)
- Rafael J. Jiménez Rioboó
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), C/Sor Juana Inés de la Cruz, 3, 28049 Madrid, Spain;
| | - Nuria Gontán
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain; (N.G.); (D.S.)
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III, 28911 Madrid, Spain
| | - Daniel Sanderson
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain; (N.G.); (D.S.)
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III, 28911 Madrid, Spain
| | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain; (N.G.); (D.S.)
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III, 28911 Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain
| | - Maria Victoria Gómez-Gaviro
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain; (N.G.); (D.S.)
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III, 28911 Madrid, Spain
| |
Collapse
|
5
|
Correa N, Alunni Cardinali M, Bailey M, Fioretto D, Pudney PDA, Palombo F. Brillouin microscopy for the evaluation of hair micromechanics and effect of bleaching. JOURNAL OF BIOPHOTONICS 2021; 14:e202000483. [PMID: 33768666 DOI: 10.1002/jbio.202000483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/19/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Brillouin microscopy is a new form of optical elastography and an emerging technique in mechanobiology and biomedical physics. It was applied here to map the viscoelastic properties of human hair and to determine the effect of bleaching on hair properties. For hair samples, longitudinal measurements (i.e. along the fibre axis) revealed peaks at 18.7 and 20.7 GHz at the location of the cuticle and cortex, respectively. For hair treated with a bleaching agent, the frequency shifts for the cuticle and cortex were 19.7 and 21.0 GHz, respectively, suggesting that bleaching increases the cuticle modulus and-to a minor extent-the cortex modulus. These results demonstrate the capability of Brillouin spectroscopy to address questions on micromechanical properties of hair and to validate the effect of applied treatments.
Collapse
Affiliation(s)
- Noemi Correa
- School of Physics, University of Exeter, Exeter, UK
| | | | | | - Daniele Fioretto
- Department of Physics and Geology, University of Perugia, Perugia, Italy
| | | | | |
Collapse
|
6
|
Troyanova-Wood MA, Yakovlev VV. Multi-wavelength excitation Brillouin spectroscopy. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2021; 27. [PMID: 34177217 DOI: 10.1109/jstqe.2021.3071955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We propose and demonstrate, first on simulated spectra and then experimentally, a novel approach to correct the undesired background distortions in the Brillouin spectra caused by molecular filter's absorption, fluorescent emission, ambient room light or any other constant contaminant. The developed multi-wavelength excitation Brillouin spectroscopy method computationally reconstructs the pure Brillouin component of the signal from multiple Brillouin spectra acquired using different excitation wavelengths. By removing the baseline distortions, the approach improves the goodness of fit of the Brillouin peaks, enabling accurate Brillouin shift and linewidth measurements from a wide range of challenging samples. In the present report, we explain the principle behind the method on a set of simulated spectra and present experimental application on an intentionally strongly-distorted spectrum. Utilizing the multi-excitation Brillouin spectroscopy approach, we successfully reconstruct Brillouin spectra of a highly-scattering sample, initially rendered not analyzable by excessive iodine absorption and contamination by out-of-focus light.
Collapse
Affiliation(s)
- Maria A Troyanova-Wood
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843 USA. She is now in Air Force Science and Technology Fellowship Program (formerly National Research Council Research Associateship Program) at Air Force Research Laboratory, JBSA Fort Sam Houston, Texas 78234 USA
| | - Vladislav V Yakovlev
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
7
|
Bailey M, Gardner B, Alunni-Cardinali M, Caponi S, Fioretto D, Stone N, Palombo F. Predicting the Refractive Index of Tissue Models Using Light Scattering Spectroscopy. APPLIED SPECTROSCOPY 2021; 75:574-580. [PMID: 33319606 PMCID: PMC8114435 DOI: 10.1177/0003702820984482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
In this work, we report the application of Raman microspectroscopy for analysis of the refractive index of a range of tissue phantoms. Using both a custom-developed setup with visible laser source and a commercial microspectrometer with near infrared laser, we measured the Raman spectra of gelatin hydrogels at various concentrations. By building a calibration curve from measured refractometry data and Raman scattering intensity for different vibrational modes of the hydrogel, we were able to predict the refractive indices of the gels from their Raman spectra. This work highlights the importance of a correlative approach through Brillouin-Raman microspectroscopy for the mechano-chemical analysis of biologically relevant samples.
Collapse
Affiliation(s)
- Michelle Bailey
- School of Physics and Astronomy, University of Exeter, Exeter, UK
| | - Benjamin Gardner
- School of Physics and Astronomy, University of Exeter, Exeter, UK
| | | | - Silvia Caponi
- CNR-IOM – Istituto Officina dei Materiali – Research Unit in Perugia, c/o Department of Physics and Geology, University of Perugia, Perugia, Italy
| | - Daniele Fioretto
- Department of Physics and Geology, University of Perugia, Perugia, Italy
| | - Nick Stone
- School of Physics and Astronomy, University of Exeter, Exeter, UK
| | | |
Collapse
|
8
|
Ryu S, Martino N, Kwok SJJ, Bernstein L, Yun SH. Label-free histological imaging of tissues using Brillouin light scattering contrast. BIOMEDICAL OPTICS EXPRESS 2021; 12:1437-1448. [PMID: 33796364 PMCID: PMC7984781 DOI: 10.1364/boe.414474] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 05/06/2023]
Abstract
Brillouin light scattering offers a unique label-free approach to measure biomechanical properties non-invasively. While this technique is used in biomechanical analysis of cells and tissues, its potential for visualizing structural features of tissues based on the biomechanical contrast has not been much exploited. Here, we present high-resolution Brillouin microscopy images of four basic tissue types: muscular, connective, epithelial, and nervous tissues. The Brillouin contrast distinguishes between muscle fiber cells and endomysium in skeletal muscle and reveals chondrocytes along with spatially varying stiffness of the extracellular matrix in articular cartilage. The hydration-sensitive contrast can visualize the stratum corneum, epidermis, and dermis in the skin epithelium. In brain tissues, the Brillouin images show the mechanical heterogeneity across the cortex and deeper regions. This work demonstrates the versatility of using the Brillouin shift as histological contrast for examining intact tissue substructures via longitudinal modulus without the need for laborious tissue processing steps.
Collapse
Affiliation(s)
- Seungmi Ryu
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne St., Cambridge, MA 02139, USA
- National Center for Advancing Translational Sciences, National Institute of Health, Rockville, MD 20850, USA
- These authors contributed equally to this work
| | - Nicola Martino
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne St., Cambridge, MA 02139, USA
- These authors contributed equally to this work
| | - Sheldon J. J. Kwok
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne St., Cambridge, MA 02139, USA
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Liane Bernstein
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne St., Cambridge, MA 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Seok-Hyun Yun
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne St., Cambridge, MA 02139, USA
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
9
|
Abstract
This is a review of relevant Raman spectroscopy (RS) techniques and their use in structural biology, biophysics, cells, and tissues imaging towards development of various medical diagnostic tools, drug design, and other medical applications. Classical and contemporary structural studies of different water-soluble and membrane proteins, DNA, RNA, and their interactions and behavior in different systems were analyzed in terms of applicability of RS techniques and their complementarity to other corresponding methods. We show that RS is a powerful method that links the fundamental structural biology and its medical applications in cancer, cardiovascular, neurodegenerative, atherosclerotic, and other diseases. In particular, the key roles of RS in modern technologies of structure-based drug design are the detection and imaging of membrane protein microcrystals with the help of coherent anti-Stokes Raman scattering (CARS), which would help to further the development of protein structural crystallography and would result in a number of novel high-resolution structures of membrane proteins—drug targets; and, structural studies of photoactive membrane proteins (rhodopsins, photoreceptors, etc.) for the development of new optogenetic tools. Physical background and biomedical applications of spontaneous, stimulated, resonant, and surface- and tip-enhanced RS are also discussed. All of these techniques have been extensively developed during recent several decades. A number of interesting applications of CARS, resonant, and surface-enhanced Raman spectroscopy methods are also discussed.
Collapse
|
10
|
Adichtchev SV, Karpegina YA, Okotrub KA, Surovtseva MA, Zykova VA, Surovtsev NV. Brillouin spectroscopy of biorelevant fluids in relation to viscosity and solute concentration. Phys Rev E 2019; 99:062410. [PMID: 31330595 DOI: 10.1103/physreve.99.062410] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Indexed: 01/11/2023]
Abstract
The measurement of intracellular viscoelastic properties by Brillouin scattering is a rapidly developing field in biophysics and medicine. Here, the Brillouin spectroscopy is applied for a number of aqueous solutions of biorelevant molecules to reveal relations between the Brillouin line parameters (frequency and width) and viscosity or solute concentration. It is found that for the majority of the studied biorelevant molecules the solute concentration governs the Brillouin frequency in a universal manner. On the other hand, the relations between the macroscopic viscosity and Brillouin peak parameters are different for different solutes. We conclude that for biological fluids the viscosity evaluation from Brillouin data needs prior knowledge about the chemical composition. This result challenges the fidelity of the indirect experimental determinations of the cellular viscosity, when small molecule solutions are used for the calibration.
Collapse
Affiliation(s)
- S V Adichtchev
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Yu A Karpegina
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - K A Okotrub
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - M A Surovtseva
- Research Institute of Clinical and Experimental Lymphology-Branch of Institute of Cytology and Genetics, Russian Academy of Sciences, 630060 Novosibirsk, Russia
| | - V A Zykova
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - N V Surovtsev
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
11
|
Rakymzhan A, Yakupov T, Yelemessova Z, Bukasov R, Yakovlev VV, Utegulov ZN. Time-resolved Assessment of Drying Plants by Brillouin and Raman Spectroscopies. JOURNAL OF RAMAN SPECTROSCOPY : JRS 2019; 50:1881-1889. [PMID: 33041469 PMCID: PMC7546357 DOI: 10.1002/jrs.5742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 08/24/2019] [Indexed: 05/27/2023]
Abstract
Raman and Brillouin spectroscopy enable non-invasive assessment of chemical and elastic properties of biomaterials, respectively. In this report, Brillouin micro-spectroscopy was used for the time-resolved analysis of elastic properties of Populus and Geranium leaves, while Raman micro-spectroscopy was employed for the assessment of their chemical variation during drying. Spectroscopic assessment of elastic and chemical properties can improve our understanding of mechano-chemical changes of plants in response to environmental stress and pathogens at the microscopic cellular level. This report demonstrates the potential of multimodal optical sensing and imaging of plants as an emerging technique for the quantitative assessment of agricultural crops.
Collapse
Affiliation(s)
- A Rakymzhan
- Department of Bioengineering, University of Washington, Seattle, USA, WA 98105
- Department of Physics, School of Science and Technology, Nazarbayev University, Nur-Sultan, Kazakhstan, 010000
| | - T Yakupov
- Department of Physics, School of Science and Technology, Nazarbayev University, Nur-Sultan, Kazakhstan, 010000
| | - Z Yelemessova
- Department of Chemistry, School of Science and Technology, Nazarbayev University, Nur-Sultan, Kazakhstan,010000
| | - R Bukasov
- Department of Chemistry, School of Science and Technology, Nazarbayev University, Nur-Sultan, Kazakhstan,010000
| | - V V Yakovlev
- Departments of Biomedical Engineering, Electrical and Computer Engineering and Department of Physics and Astronomy, Texas A&M University, College Station, USA, TX 77843-3120
| | - Z N Utegulov
- Department of Bioengineering, University of Washington, Seattle, USA, WA 98105
| |
Collapse
|
12
|
Abstract
Brillouin spectroscopy and imaging are emerging techniques in analytical science, biophotonics, and biomedicine. They are based on Brillouin light scattering from acoustic waves or phonons in the GHz range, providing a nondestructive contactless probe of the mechanics on a microscale. Novel approaches and applications of these techniques to the field of biomedical sciences are discussed, highlighting the theoretical foundations and experimental methods that have been developed to date. Acknowledging that this is a fast moving field, a comprehensive account of the relevant literature is critically assessed here.
Collapse
Affiliation(s)
- Francesca Palombo
- School
of Physics and Astronomy, University of
Exeter, Stocker Road, EX4 4QL Exeter, U.K.
| | - Daniele Fioretto
- Department
of Physics and Geology, University of Perugia, via Alessandro Pascoli, I-06123 Perugia, Italy
| |
Collapse
|
13
|
Riobóo RJJ, Desco M, Gómez-Gaviro MV. Impact of optical tissue clearing on the Brillouin signal from biological tissue samples. BIOMEDICAL OPTICS EXPRESS 2019; 10:2674-2683. [PMID: 31259043 PMCID: PMC6583338 DOI: 10.1364/boe.10.002674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/24/2019] [Accepted: 03/03/2019] [Indexed: 06/09/2023]
Abstract
Brillouin spectroscopy is a well-established technology in condensed matter physics to characterize the mechanical properties of inert materials, and it has been extended very recently to the study of biological samples. Transparency is beneficial for samples to be properly analyzed by Brillouin spectroscopy. Here, we explored the efficacy of optical tissue clearing techniques to improve the acquisition of Brillouin spectra from biological tissues in order to analyze their biomechanical properties. We describe the first application of Brillouin scattering to optically cleared biological tissues with CUBIC protocol. We conclude that, within the range of error, tissue clearing does not modify the mechanical properties of the studied biological tissues.
Collapse
Affiliation(s)
- Rafael J. Jiménez Riobóo
- Instituto de Ciencia de Materiales de Madrid ((ICMM), Consejo Superior de Investigaciones Científicas (CSIC), C/ Sor Juana Inés de la Cruz, 3, 28049 Madrid, Spain
| | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Doctor Esquerdo 46, 28007 Madrid, Spain
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, 28911 Leganés, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029 Madrid, Spain
- Centro de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 28029 Madrid, Spain
| | - María Victoria Gómez-Gaviro
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Doctor Esquerdo 46, 28007 Madrid, Spain
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, 28911 Leganés, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029 Madrid, Spain
| |
Collapse
|
14
|
Troyanova-Wood M, Meng Z, Yakovlev VV. Differentiating melanoma and healthy tissues based on elasticity-specific Brillouin microspectroscopy. BIOMEDICAL OPTICS EXPRESS 2019; 10:1774-1781. [PMID: 31086703 PMCID: PMC6485010 DOI: 10.1364/boe.10.001774] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 05/11/2023]
Abstract
The main objective of the present study is to evaluate the use of Brillouin microspectroscopy for differentiation of melanoma and normal tissues based on elasticity measurements. Previous studies of malignant melanoma show that the lesion is stiffer than the surrounding healthy tissue. We hypothesize that elasticity-specific Brillouin spectroscopy can be used to distinguish between healthy and cancerous regions of an excised melanoma from a Sinclair miniature swine. Brillouin measurements of non-regressing and regressing melanomas and the surrounding healthy tissues were performed. Based on the Brillouin measurements, the melanomas and healthy tissues can be successfully differentiated. The stiffness of both tumors is found to be significantly greater than the healthy tissues. Notably, we found that the elasticity of regressing melanoma is closer to that of the normal tissue. The results indicate that Brillouin spectroscopy can be utilized as a tool for elasticity-based differentiation between malignant melanoma and surrounding healthy tissue, with potential use for melanoma boundary identification, monitoring tumor progression, or response to treatment.
Collapse
Affiliation(s)
- Maria Troyanova-Wood
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3120, USA
| | - Zhaokai Meng
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3120, USA
| | - Vladislav V. Yakovlev
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3120, USA
- Department of Physics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
15
|
Correa N, Harding S, Bailey M, Brasselet S, Palombo F. Image analysis applied to Brillouin images of tissue-mimicking collagen gelatins. BIOMEDICAL OPTICS EXPRESS 2019; 10:1329-1338. [PMID: 30891349 PMCID: PMC6420274 DOI: 10.1364/boe.10.001329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/13/2019] [Accepted: 01/20/2019] [Indexed: 06/09/2023]
Abstract
Brillouin spectroscopy is an emerging analytical tool in biomedical and biophysical sciences. It probes viscoelasticity through the propagation of thermally induced acoustic waves at gigahertz frequencies. Brillouin light scattering (BLS) measurements have traditionally been performed using multipass Fabry-Pérot interferometers, which have high contrast and resolution, however, as they are scanning spectrometers they often require long acquisition times in poorly scattering media. In the last decade, a new concept of Brillouin spectrometer has emerged, making use of highly angle-dispersive virtually imaged phase array (VIPA) etalons, which enable fast acquisition times for minimally turbid materials, when high contrast is not imperative. The ability to acquire Brillouin spectra rapidly, together with long term system stability, make this system a viable candidate for use in biomedical applications, especially to probe live cells and tissues. While various methods are being developed to improve system contrast and speed, little work has been published discussing the details of imaging data analysis and spectral processing. Here we present a method that we developed for the automated retrieval of Brillouin line shape parameters from imaging data sets acquired with a dual-stage VIPA Brillouin microscope. We applied this method for the first time to BLS measurements of collagen gelatin hydrogels at different hydration levels and cross-linker concentrations. This work demonstrates that it is possible to obtain the relevant information from Brillouin spectra using software for real-time high-accuracy analysis.
Collapse
Affiliation(s)
- Noemi Correa
- School of Physics and Astronomy, University of Exeter, Stocker Road, EX4 4QL Exeter, UK
| | | | - Michelle Bailey
- School of Physics and Astronomy, University of Exeter, Stocker Road, EX4 4QL Exeter, UK
| | - Sophie Brasselet
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, F-13013 Marseille, France
| | - Francesca Palombo
- School of Physics and Astronomy, University of Exeter, Stocker Road, EX4 4QL Exeter, UK
| |
Collapse
|
16
|
Palombo F, Masia F, Mattana S, Tamagnini F, Borri P, Langbein W, Fioretto D. Hyperspectral analysis applied to micro-Brillouin maps of amyloid-beta plaques in Alzheimer's disease brains. Analyst 2018; 143:6095-6102. [PMID: 30460364 PMCID: PMC6336087 DOI: 10.1039/c8an01291a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/13/2018] [Indexed: 12/21/2022]
Abstract
A recent investigation on the architecture and chemical composition of amyloid-β (Aβ) plaques in ex vivo histological sections of an Aβ-overexpressing transgenic mouse hippocampus has shed light on the infrared light signature of cell-activation related biomarkers of Alzheimer's disease. A correlation was highlighted between the biomechanical properties detected by Brillouin microscopy and the molecular make-up of Aβ plaques provided by FTIR spectroscopic imaging and Raman microscopy (with correlative immunofluorescence imaging) in this animal model of the disease. In the Brillouin spectra of heterogeneous materials such as biomedical samples, peaks are likely the result of multiple contributions, more or less overlaid on a spatial and spectral scale. The ability to disentangle these contributions is very important as it may give access to discrete components that would otherwise be buried within the Brillouin peak envelope. Here, we applied an unsupervised non-negative matrix factorization method to analyse the spontaneous Brillouin microscopy maps of Aβ plaques in transgenic mouse hippocampal sections. The method has already been proven successful in decomposing chemical images and is applied here for the first time to acoustic maps acquired with a Fabry-Perot Brillouin microscope. We extracted and visualised a decrease in tissue rigidity from the core through to the periphery of the plaque, with spatially distinct components that we assigned to specific entities. This work demonstrates that it is possible to reveal the structure and mechanical properties of Aβ plaques, with details visualized by the projection of the mechanical contrast into a few relevant channels.
Collapse
Affiliation(s)
- Francesca Palombo
- University of Exeter, School of Physics and Astronomy, Exeter EX4 4QL, UK.
| | | | | | | | | | | | | |
Collapse
|
17
|
Yeast Biofilm as a Bridge Between Medical and Environmental Microbiology Across Different Detection Techniques. Infect Dis Ther 2018; 7:27-34. [PMID: 29549654 PMCID: PMC5856731 DOI: 10.1007/s40121-018-0191-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Indexed: 10/25/2022] Open
Abstract
Medical and environmental microbiology have two distinct, although very short, histories stemming, the first from the pioneering works of Sommelweiss, Pasteur, Lister and Koch, the second mainly from the studies of Bejerink and Winogradsky. These two branches of microbiology evolved and specialized separately producing distinct communities and evolving rather different approaches and techniques. The evidence accumulated in recent decades indicate that indeed most of the medically relevant microorganisms have a short circulation within the nosocomial environment and a larger one involving the external, i.e. non-nosocomial, and the hospital environments. This evidence suggests that the differences between approaches should yield to a convergent approach aimed at solving the increasing problem represented by infectious diseases for the increasingly less resistant human communities. Microbial biofilm is one of the major systems used by these microbes to resist the harsh conditions of the natural and anthropic environment, and the even worse ones related to medical settings. This paper presents a brief outline of the converging interest of both environmental and medical microbiology toward a better understanding of microbial biofilm and of the various innovative techniques that can be employed to characterize, in a timely and quantitative manner, these complex structures. Among these, micro-Raman along with micro-Brillouin offer high hopes of describing biofilms both at the subcellular and supercellular level, with the possibility of characterizing the various landscapes of the different biofilms. The possibility of adding a taxonomic identification of the cells comprising the biofilm is a complex aspect presenting several technical issues that will require further studies in the years to come.
Collapse
|
18
|
Mattana S, Caponi S, Tamagnini F, Fioretto D, Palombo F. Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES 2017; 10:1742001. [PMID: 29151920 PMCID: PMC5687568 DOI: 10.1142/s1793545817420019] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Amyloidopathy is one of the most prominent hallmarks of Alzheimer's disease (AD), the leading cause of dementia worldwide, and is characterized by the accumulation of amyloid plaques in the brain parenchyma. The plaques consist of abnormal deposits mainly composed of an aggregation-prone protein fragment, β-amyloid 1-40/1-42, into the extracellular matrix. Brillouin microspectroscopy is an all-optical contactless technique that is based on the interaction between visible light and longitudinal acoustic waves or phonons, giving access to the viscoelasticity of a sample on a subcellular scale. Here, we describe the first application of micromechanical mapping based on Brillouin scattering spectroscopy to probe the stiffness of individual amyloid plaques in the hippocampal part of the brain of a β-amyloid overexpressing transgenic mouse. Correlative analysis based on Brillouin and Raman microspectroscopy showed that amyloid plaques have a complex structure with a rigid core of β-pleated sheet conformation (β-amyloid) protein surrounded by a softer ring-shaped region richer in lipids and other protein conformations. These preliminary results give a new insight into the plaque biophysics and biomechanics, and a valuable contrast mechanism for the study and diagnosis of amyloidopathy.
Collapse
Affiliation(s)
- Sara Mattana
- Department of Physics and Geology, University of Perugia, Perugia I-06123, Italy
| | - Silvia Caponi
- Istituto Officina dei Materiali del CNR (CNR-IOM) - Unità di Perugia Department of Physics and Geology, University of Perugia, Perugia I-06123, Italy
| | - Francesco Tamagnini
- Hatherly Laboratories, Medical School University of Exeter, Exeter EX4 4PS, UK
| | - Daniele Fioretto
- Department of Physics and Geology, University of Perugia, Perugia I-06123, Italy
| | - Francesca Palombo
- School of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, UK
| |
Collapse
|
19
|
Mattana S, Alunni Cardinali M, Caponi S, Casagrande Pierantoni D, Corte L, Roscini L, Cardinali G, Fioretto D. High-contrast Brillouin and Raman micro-spectroscopy for simultaneous mechanical and chemical investigation of microbial biofilms. Biophys Chem 2017; 229:123-129. [PMID: 28684254 DOI: 10.1016/j.bpc.2017.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/21/2017] [Accepted: 06/21/2017] [Indexed: 12/18/2022]
Abstract
Mechanical mapping with chemical specificity of biological samples is now made possible by joint micro-Brillouin and micro-Raman measurements. In this work, thanks to the unprecedented contrast of a new tandem Fabry-Perot interferometer, we demonstrate simultaneous detection of Brillouin and Raman spectra from different Candida biofilms. Our proof-of-concept study reveals the potential of this label-free joint micro-spectroscopy technique in challenging microbiological issues. In particular, heterogeneous chemo-mechanical maps of Candida biofilms are obtained, without the need for staining or touching the sample. The correlative Raman and Brillouin investigation evidences the role of both extracellular polymeric substances and of hydration water in inducing a marked local softening of the biofilm.
Collapse
Affiliation(s)
- S Mattana
- Dipartimento di Fisica e Geologia, Università di Perugia, Via Pascoli, I-06123 Perugia, Italy.
| | - M Alunni Cardinali
- Dipartimento di Fisica e Geologia, Università di Perugia, Via Pascoli, I-06123 Perugia, Italy
| | - S Caponi
- IOM-CNR c/o Dipartimento di Fisica e Geologia, Università di Perugia, Via Pascoli, I-06123 Perugia, Italy
| | - D Casagrande Pierantoni
- Department of Pharmaceutical Sciences-Microbiology, University of Perugia, Borgo 20 Giugno 74, 06121 Perugia, Italy
| | - L Corte
- Department of Pharmaceutical Sciences-Microbiology, University of Perugia, Borgo 20 Giugno 74, 06121 Perugia, Italy
| | - L Roscini
- Department of Pharmaceutical Sciences-Microbiology, University of Perugia, Borgo 20 Giugno 74, 06121 Perugia, Italy
| | - G Cardinali
- Department of Pharmaceutical Sciences-Microbiology, University of Perugia, Borgo 20 Giugno 74, 06121 Perugia, Italy; CEMIN, Centre of Excellence on Nanostructured Innovative Materials, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - D Fioretto
- Dipartimento di Fisica e Geologia, Università di Perugia, Via Pascoli, I-06123 Perugia, Italy; CEMIN, Centre of Excellence on Nanostructured Innovative Materials, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| |
Collapse
|
20
|
Shao P, Besner S, Zhang J, Scarcelli G, Yun SH. Etalon filters for Brillouin microscopy of highly scattering tissues. OPTICS EXPRESS 2016; 24:22232-8. [PMID: 27661957 PMCID: PMC5234497 DOI: 10.1364/oe.24.022232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Brillouin imaging of turbid biological tissues requires an effective rejection of the background noise due to elastic scattering of probe laser light. We have developed a narrowband spectral notch filter based on a pair of a free-space Fabry-Perot etalon and a mirror. The etalon filter in a 4-pass configuration is able to suppress elastically-scattered laser light with a high extinction ratio of > 40 dB and transmit inelastically-scattered light in a frequency shift range of 2-14 GHz with only 2 dB insertion loss. We also describe a simple etalon that enables us to use semiconductor diode laser sources for Brillouin microscopy by removing spontaneous emission noise. Using a clinically-viable Brillouin microscope employing these filters, we demonstrate the first Brillouin confocal imaging of the sclera and conjunctiva of the porcine eye.
Collapse
Affiliation(s)
- Peng Shao
- Wellman Center for Photomedcine, Massachusetts General Hospital and Havard Medical School, 50 Blossom Street, Boston, MA, 02114, USA
| | - Sebastien Besner
- Wellman Center for Photomedcine, Massachusetts General Hospital and Havard Medical School, 50 Blossom Street, Boston, MA, 02114, USA
| | - Jitao Zhang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Seok-Hyun Yun
- Wellman Center for Photomedcine, Massachusetts General Hospital and Havard Medical School, 50 Blossom Street, Boston, MA, 02114, USA
- Harvard-MIT Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|