1
|
Zha Z, Miao Y, Tang H, Herrera-Balandrano DD, Yin H, Wang SY. Heparosan-based self-assembled nanocarrier for zinc(II) phthalocyanine for use in photodynamic cancer therapy. Int J Biol Macromol 2022; 219:31-43. [PMID: 35926671 DOI: 10.1016/j.ijbiomac.2022.07.228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/20/2022] [Accepted: 07/29/2022] [Indexed: 11/05/2022]
Abstract
Zinc(II) phthalocyanine (ZnPc) is a promising photosensitizer in photodynamic therapy (PDT) for melanoma treatment. However, the poor solubility of ZnPc limits its application. To overcome this limitation, heparosan (HP)-based nanoparticles were prepared by anchoring the l-lysine-linked α-linolenic acid branch to the carboxylic acid group to produce amphiphilic conjugates named heparosan with an l-lysine-linked α-linolenic acid branch (HLA). HLA conjugates could self-assemble into spherical nanoparticles in aqueous media and encapsulate ZnPc to form HLA-ZnPc nanoparticles. The cellular uptake of ZnPc could be improved by HLA carriers. These nanoparticles presented excellent photodynamic-mediated toxicity against mouse melanoma cells (B16) by markedly upregulating the intracellular reactive oxygen species (ROS) levels while showing no cytotoxicity to either B16 or normal cells (L02 and HK-2 cells) in the dark. Furthermore, HLA-ZnPc displayed excellent stability in both powder and Roswell Park Memorial Institute (RPMI) 1640 medium, indicating its promise for application in drug delivery and PDT. These results revealed a strategy for HP-based enhancement of ZnPc in PDT efficacy.
Collapse
Affiliation(s)
- Zhengqi Zha
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yinghua Miao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Huiling Tang
- Department of Pharmacy, Jiangsu Food and Pharmaceutical Science College, Huaian 223003, People's Republic of China
| | | | - Hongping Yin
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| | - Su-Yan Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
2
|
Zhang P, Han T, Xia H, Dong L, Chen L, Lei L. Advances in Photodynamic Therapy Based on Nanotechnology and Its Application in Skin Cancer. Front Oncol 2022; 12:836397. [PMID: 35372087 PMCID: PMC8966402 DOI: 10.3389/fonc.2022.836397] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/03/2022] [Indexed: 12/24/2022] Open
Abstract
Comprehensive cancer treatments have been widely studied. Traditional treatment methods (e.g., radiotherapy, chemotherapy), despite ablating tumors, inevitably damage normal cells and cause serious complications. Photodynamic therapy (PDT), with its low rate of trauma, accurate targeting, synergism, repeatability, has displayed great advantages in the treatment of tumors. In recent years, nanotech-based PDT has provided a new modality for cancer treatment. Direct modification of PSs by nanotechnology or the delivery of PSs by nanocarriers can improve their targeting, specificity, and PDT efficacy for tumors. In this review, we strive to provide the reader with a comprehensive overview, on various aspects of the types, characteristics, and research progress of photosensitizers and nanomaterials used in PDT. And the application progress and relative limitations of nanotech-PDT in non-melanoma skin cancer and melanoma are also summarized.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Dermatology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Han
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Hui Xia
- Department of Hepatobiliary Surgery, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lijie Dong
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Liuqing Chen
- Department of Dermatology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Lei
- Department of Dermatology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Nano Drug Delivery Systems: Effective Therapy Strategies to Overcome Multidrug Resistance in Tumor Cells. ChemistrySelect 2022. [DOI: 10.1002/slct.202104321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Nkune NW, Abrahamse H. Nanoparticle-Based Drug Delivery Systems for Photodynamic Therapy of Metastatic Melanoma: A Review. Int J Mol Sci 2021; 22:12549. [PMID: 34830431 PMCID: PMC8620728 DOI: 10.3390/ijms222212549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/11/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Metastatic melanoma (MM) is a skin malignancy arising from melanocytes, the incidence of which has been rising in recent years. It poses therapeutic challenges due to its resistance to chemotherapeutic drugs and radiation therapy. Photodynamic therapy (PDT) is an alternative non-invasive modality that requires a photosensitizer (PS), specific wavelength of light, and molecular oxygen. Several studies using conventional PSs have highlighted the need for improved PSs for PDT applications to achieve desired therapeutic outcomes. The incorporation of nanoparticles (NPs) and targeting moieties in PDT have appeared as a promising strategy to circumvent various drawbacks associated with non-specific toxicity, poor water solubility, and low bioavailability of the PSs at targeted tissues. Currently, most studies investigating new developments rely on two-dimensional (2-D) monocultures, which fail to accurately mimic tissue complexity. Therefore, three-dimensional (3-D) cell cultures are ideal models to resemble tumor tissue in terms of architectural and functional properties. This review examines various PS drugs, as well as passive and active targeted PS nanoparticle-mediated platforms for PDT treatment of MM on 2-D and 3-D models. The overall findings of this review concluded that very few PDT studies have been conducted within 3-D models using active PS nanoparticle-mediated platforms, and so require further investigation.
Collapse
Affiliation(s)
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa;
| |
Collapse
|
5
|
Gholizadeh M, Doustvandi MA, Mohammadnejad F, Shadbad MA, Tajalli H, Brunetti O, Argentiero A, Silvestris N, Baradaran B. Photodynamic Therapy with Zinc Phthalocyanine Inhibits the Stemness and Development of Colorectal Cancer: Time to Overcome the Challenging Barriers? Molecules 2021; 26:6877. [PMID: 34833970 PMCID: PMC8621355 DOI: 10.3390/molecules26226877] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 02/07/2023] Open
Abstract
Photodynamic therapy (PDT) is a light-based cancer therapy approach that has shown promising results in treating various malignancies. Growing evidence indicates that cancer stem cells (CSCs) are implicated in tumor recurrence, metastasis, and cancer therapy resistance in colorectal cancer (CRC); thus, targeting these cells can ameliorate the prognosis of affected patients. Based on our bioinformatics results, SOX2 overexpression is significantly associated with inferior disease-specific survival and worsened the progression-free interval of CRC patients. Our results demonstrate that zinc phthalocyanine (ZnPc)-PDT with 12 J/cm2 or 24 J/cm2 irradiation can substantially decrease tumor migration via downregulating MMP9 and ROCK1 and inhibit the clonogenicity of SW480 cells via downregulating CD44 and SOX2. Despite inhibiting clonogenicity, ZnPc-PDT with 12 J/cm2 irradiation fails to downregulate CD44 expression in SW480 cells. Our results indicate that ZnPc-PDT with 12 J/cm2 or 24 J/cm2 irradiation can substantially reduce the cell viability of SW480 cells and stimulate autophagy in the tumoral cells. Moreover, our results show that ZnPc-PDT with 12 J/cm2 or 24 J/cm2 irradiation can substantially arrest the cell cycle at the sub-G1 level, stimulate the intrinsic apoptosis pathway via upregulating caspase-3 and caspase-9 and downregulating Bcl-2. Indeed, our bioinformatics results show considerable interactions between the studied CSC-related genes with the studied migration- and apoptosis-related genes. Collectively, the current study highlights the potential role of ZnPc-PDT in inhibiting stemness and CRC development, which can ameliorate the prognosis of CRC patients.
Collapse
Affiliation(s)
- Mahsa Gholizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14731, Iran; (M.G.); (M.A.D.); (F.M.); (M.A.S.)
| | - Mohammad Amin Doustvandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14731, Iran; (M.G.); (M.A.D.); (F.M.); (M.A.S.)
| | - Fateme Mohammadnejad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14731, Iran; (M.G.); (M.A.D.); (F.M.); (M.A.S.)
| | - Mahdi Abdoli Shadbad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14731, Iran; (M.G.); (M.A.D.); (F.M.); (M.A.S.)
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 51666-14731, Iran
| | - Habib Tajalli
- Biophotonic Research Center, Islamic Azad University, Tabriz Branch, Tabriz 51579-44533, Iran;
- Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz 51666-16471, Iran
| | - Oronzo Brunetti
- Istituto Tumori BariGiovanni Paolo II, Istituto Nazionale dei Tumori (IRCCS), 70124 Bari, Italy; (O.B.); (A.A.)
| | - Antonella Argentiero
- Istituto Tumori BariGiovanni Paolo II, Istituto Nazionale dei Tumori (IRCCS), 70124 Bari, Italy; (O.B.); (A.A.)
| | - Nicola Silvestris
- Istituto Tumori BariGiovanni Paolo II, Istituto Nazionale dei Tumori (IRCCS), 70124 Bari, Italy; (O.B.); (A.A.)
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14731, Iran; (M.G.); (M.A.D.); (F.M.); (M.A.S.)
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14731, Iran
| |
Collapse
|
6
|
de Oliveira BM, Teodoro JBM, Ambrósio JAR, Gonçalves EP, Beltrame M, Cortez Marcolino LM, Pinto JG, Ferreira-Strixino J, Simioni AR. Zinc pthalocyanine loaded poly (lactic acid) nanoparticles by double emulsion methodology for photodynamic therapy against 9 L/LacZ gliosarcoma cells. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 33:93-109. [PMID: 34517784 DOI: 10.1080/09205063.2021.1980359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Development delivery systems, such as nanoparticles, represent a growing area in biomedical research. Nanoparticles (NP) were prepared using a double-emulsion method to load zinc(II) phthalocyanine (ZnPc). NP were obtained using poly (lactic acid) (PLA). ZnPc is a second generation of photosensitizer used in photodynamic therapy (PDT). ZnPc loaded PLA nanoparticles (NPLA-ZnPc) were prepared by double-emulsion method, characterized and available in cellular culture. The mean nanoparticle size presented particle size was 384.7 ± 84.2 nm with polydispersity index (PDI) of 0.150 ± 0.015, and the encapsulation efficiency was of 83%. The nanoparticle formulations presented negative zeta potential values (-27.5 ± 1.0 mV), explaining their colloidal stability. ZnPc loaded nanoparticles maintain its photophysical behavior after encapsulation. Photosensitizer release from nanoparticles was sustained over 168 h with a biphasic ZnPc release profile. An in vitro phototoxic effect in range of 80% was observed in 9 L/LacZ gliosarcoma cells at laser light doses (10 J cm-2) with 3.0 µg mL-1 of NPLA-ZnPc. All the physical-chemical, photophysical and photobiological measurements performed allow us to conclude that ZnPc loaded PLGA nanoparticles is a promising drug delivery system for PDT.
Collapse
Affiliation(s)
- Benedito Marcio de Oliveira
- Organic Synthesis Laboratory, Institute of Research and Development, University of Vale do Paraíba, São José dos Campos, Brazil
| | - Jéssica Beatriz Miranda Teodoro
- Organic Synthesis Laboratory, Institute of Research and Development, University of Vale do Paraíba, São José dos Campos, Brazil
| | | | - Erika Peterson Gonçalves
- Organic Synthesis Laboratory, Institute of Research and Development, University of Vale do Paraíba, São José dos Campos, Brazil
| | - Milton Beltrame
- Organic Synthesis Laboratory, Institute of Research and Development, University of Vale do Paraíba, São José dos Campos, Brazil
| | - Luciana Maria Cortez Marcolino
- Laboratory of Photobiology Applied to Health, Institute of Research and Development, University of Vale do Paraíba, São José dos Campos, Brazil
| | - Juliana Guerra Pinto
- Laboratory of Photobiology Applied to Health, Institute of Research and Development, University of Vale do Paraíba, São José dos Campos, Brazil
| | - Juliana Ferreira-Strixino
- Laboratory of Photobiology Applied to Health, Institute of Research and Development, University of Vale do Paraíba, São José dos Campos, Brazil
| | - Andreza Ribeiro Simioni
- Organic Synthesis Laboratory, Institute of Research and Development, University of Vale do Paraíba, São José dos Campos, Brazil
| |
Collapse
|
7
|
Recent Progress in Phthalocyanine-Polymeric Nanoparticle Delivery Systems for Cancer Photodynamic Therapy. NANOMATERIALS 2021; 11:nano11092426. [PMID: 34578740 PMCID: PMC8469866 DOI: 10.3390/nano11092426] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022]
Abstract
This perspective article summarizes the last decade’s developments in the field of phthalocyanine (Pc)-polymeric nanoparticle (NP) delivery systems for cancer photodynamic therapy (PDT), including studies with at least in vitro data. Moreover, special attention will be paid to the various strategies for enhancing the behavior of Pc-polymeric NPs in PDT, underlining the great potential of this class of nanomaterials as advanced Pcs’ nanocarriers for cancer PDT. This review shows that there is still a lot of research to be done, opening the door to new and interesting nanodelivery systems.
Collapse
|
8
|
Carboxymethyl chitosan/ionic liquid imidazolium-based nanoparticles as nanocarriers for zinc phthalocyanine and its photodynamic activity. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116874] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Pierre MBR. Nanocarriers for Photodynamic Therapy Intended to Cutaneous Tumors. Curr Drug Targets 2021; 22:1090-1107. [PMID: 33397257 DOI: 10.2174/1389450122999210101230743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/30/2020] [Accepted: 10/23/2020] [Indexed: 11/22/2022]
Abstract
Photodynamic Therapy (PDT) is a therapeutic modality used for several malignant and premalignant skin disorders, including Bowen's disease skin cancers and Superficial Basal Cell Carcinoma (BCC). Several photosensitizers (PSs) have been explored for tumor destruction of skin cancers, after their activation by a light source of appropriate wavelength. Topical release of PSs avoids prolonged photosensitization reactions associated with systemic administration; however, its clinical usefulness is influenced by its poor tissue penetration and the stability of the active agent. Nanotechnology-based drug delivery systems are promising tool to enhance the efficiency for PDT of cancer. This review focuses on PSs encapsulated in nanocarriers explored for PDT of skin tumors.
Collapse
Affiliation(s)
- Maria B R Pierre
- Universidade Federal do Rio de Janeiro (UFRJ)- Faculdade de Farmacia- Av, Brigadeiro Trompowsky, s/n. CEP Rio de Janeiro - RJ, 21941-901, Brazil
| |
Collapse
|
10
|
Yang Z, Li P, Chen Y, Dong E, Feng Z, He Z, Zhou C, Wang C, Liu Y, Feng C. Preparation of zinc phthalocyanine-loaded amphiphilic phosphonium chitosan nanomicelles for enhancement of photodynamic therapy efficacy. Colloids Surf B Biointerfaces 2021; 202:111693. [PMID: 33774518 DOI: 10.1016/j.colsurfb.2021.111693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/16/2021] [Accepted: 03/10/2021] [Indexed: 12/20/2022]
Abstract
To increase the solubility and the encapsulation of zinc phthalocyanine (ZnPc) photosensitizer for photodynamic therapy (PDT), a positively charged amphiphilic phosphonium chitosan nanomicelle with multi-benzene structure was developed, and its application to PDT was explored. N-acetyl-l-phenylalanine-(4-carboxybutyl) triphenylphosphonium bromide chitosan (CTPB-CS-NAP), a chitosan derivative with tunable amphiphilicity, was synthesized first. ZnPc was encapsulated in CTPB-CS-NAP at the critical micelle concentration (CMC) of 4.898 mg/L by a hydrophobic self-assembly method to form ZnPc-loaded nanomicelles (ZnPc@CTPB-CS-NAP). The method gives the highest encapsulation efficiency and drug loading of 89.4 % and 22.3 %, respectively. ZnPc@CTPB-CS-NAP is stably dispersed in aqueous solution and shows the average particle size of 103±5 nm. PDT experiments suggest the phototoxicity of ZnPc@CTPB-CS-NAP is much higher than that of ZnPc, but no obvious dark cytotoxicity is observed. Our study has provided a new strategy for improving the photodynamic therapy efficacy of hydrophobic photosensitizer by the encapsulation with chitosan derivative carriers.
Collapse
Affiliation(s)
- Ziming Yang
- Beijing Institute of Technology, Beijing, 100081, PR China; South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524091, PR China
| | - Puwang Li
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524091, PR China
| | - Yu Chen
- Beijing Institute of Technology, Beijing, 100081, PR China.
| | - Enming Dong
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524091, PR China
| | - Zhipan Feng
- Beijing Institute of Technology, Beijing, 100081, PR China
| | - Zuyu He
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524091, PR China
| | - Chuang Zhou
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524091, PR China
| | - Chao Wang
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524091, PR China
| | - Yunhao Liu
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524091, PR China
| | - Changgen Feng
- Beijing Institute of Technology, Beijing, 100081, PR China.
| |
Collapse
|
11
|
Darwish W. Polymers for enhanced photodynamic cancer therapy: Phthalocyanines as a photosensitzer model. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Wael Darwish
- Laser Technology Group, Center of Excellence for Advanced Sciences; Department of Polymers and Pigments National Research Centre Giza Egypt
| |
Collapse
|
12
|
Shi L, Pohla H, Buchner A, Zhang L, Pongratz T, Rühm A, Zimmermann W, Gederaas OA, Wang X, Stepp H, Sroka R. MOP-dependent enhancement of methadone on the effectiveness of ALA-PDT for A172 cells by upregulating phosphorylated JNK and BCL2. Photodiagnosis Photodyn Ther 2020; 30:101657. [PMID: 31945545 DOI: 10.1016/j.pdpdt.2020.101657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/30/2019] [Accepted: 01/10/2020] [Indexed: 10/25/2022]
Abstract
BACKGROUND Methadone, as a long-acting opioid analgesic, shows an ability to sensitize the treatment of ALA-PDT for glioblastoma cells (A172) in vitro by promoting apoptosis. However, the mechanisms how methadone enhances the effectiveness of ALA-PDT for tumor cells remains to be clarified. METHODS The expression of mu opioid receptor (MOP), apoptosis, phosphorylated c-Jun N-terminal kinase (JNK) and phosphorylated apoptosis regulator B cell lymphoma 2 (BCL2) were measured by flow cytometry. Cytotoxicity was determined using Cell Counting Kit-8 (CCK-8). A MOP antagonist, naloxone, was used to evaluate the role of MOP in the above process. RESULTS It was found that A172 cells show the expression of MOP and that naloxone inhibits the enhancement of the methadone effect on apoptosis following ALA-PDT (p < 0.05). Phosphorylated JNK and BCL2 induced by ALA-PDT were promoted in the presence of methadone (p < 0.05). These methadone effects were also inhibited by naloxone (p < 0.05). CONCLUSIONS The results suggest that apoptosis induced by ALA-PDT is enhanced by methadone, mostly MOP-mediated, through the upregulation of accumulation of phosphorylated JNK and BCL2, leading to a promotion of cytotoxicity of ALA-PDT for A172 cells.
Collapse
Affiliation(s)
- Lei Shi
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, Munich, Germany; Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Baode Road 1278, Shanghai, 200443, PR China
| | - Heike Pohla
- Labor für Tumorimmunologie, LIFE Center, University Hospital, LMU Munich, Munich, Germany; Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Alexander Buchner
- Labor für Tumorimmunologie, LIFE Center, University Hospital, LMU Munich, Munich, Germany; Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Linglin Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Baode Road 1278, Shanghai, 200443, PR China
| | - Thomas Pongratz
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, Munich, Germany; Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Adrian Rühm
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, Munich, Germany; Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Wolfgang Zimmermann
- Labor für Tumorimmunologie, LIFE Center, University Hospital, LMU Munich, Munich, Germany; Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Odrun Arna Gederaas
- Department of Physics, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Baode Road 1278, Shanghai, 200443, PR China
| | - Herbert Stepp
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, Munich, Germany; Department of Urology, University Hospital, LMU Munich, Munich, Germany.
| | - Ronald Sroka
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, Munich, Germany; Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Baode Road 1278, Shanghai, 200443, PR China; Department of Urology, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
13
|
Shi L, Liu P, Wu J, Ma L, Zheng H, Antosh MP, Zhang H, Wang B, Chen W, Wang X. The effectiveness and safety of X-PDT for cutaneous squamous cell carcinoma and melanoma. Nanomedicine (Lond) 2019; 14:2027-2043. [PMID: 31165659 DOI: 10.2217/nnm-2019-0094] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aim: To clarify the effectiveness and safety of x-ray-activated photodynamic therapy (X-PDT) for cutaneous squamous cell carcinoma (SCC) and melanoma. Materials & methods: Copper-cysteamine nanoparticles were used as a photosensitizer of X-PDT. The dark toxicity and cytotoxicity were studied in vitro. Tumor volume, microvessel density and acute toxicity of mice were evaluated in vivo. Results: Without x-ray irradiation, copper-cysteamine nanoparticles were nontoxic for keratinocyte cells. XL50 cells (SCC) were more sensitive to X-PDT than B16F10 cells (melanoma). X-PDT successfully inhibited the growth of SCC in vivo (p < 0.05), while the B16F10 melanoma was resistant. Microvessel density in SCC tissue was remarkably reduced (p < 0.05). No obvious acute toxicity reaction was observed. Conclusion: X-PDT is a safe and effective treatment for SCC.
Collapse
Affiliation(s)
- Lei Shi
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, PR China
| | - Pei Liu
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, PR China
| | - Jing Wu
- Department of Computer Science & Statistics, University of Rhode Island, 9 Greenhouse Rd, Kingston, RI 02881, USA
| | - Lun Ma
- Department of Physics, the University of Texas at Arlington, Arlington, TX 76019-0059, USA
| | - Han Zheng
- Department of Physics, the University of Texas at Arlington, Arlington, TX 76019-0059, USA
| | - Michael P Antosh
- Physics Department, University of Rhode Island, 2 Lippitt Rd, Kingston, RI 02881, USA.,Institute for Brain & Neural Systems, Brown University, 184 Hope St, Providence, RI 02912, USA
| | - Haiyan Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, PR China
| | - Bo Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, PR China
| | - Wei Chen
- Department of Physics, the University of Texas at Arlington, Arlington, TX 76019-0059, USA
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, PR China
| |
Collapse
|
14
|
Nanoparticles in dermatologic surgery. J Am Acad Dermatol 2019; 83:1144-1149. [PMID: 30991121 DOI: 10.1016/j.jaad.2019.04.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/22/2019] [Accepted: 04/10/2019] [Indexed: 11/23/2022]
Abstract
Nanotechnology is an emerging branch of science that involves the engineering of functional systems on the nanoscale (1-100 nm). Nanotechnology has been used in biomedical and therapeutic agents with the aim of providing novel treatment solutions where small molecule size may be beneficial for modulation of biologic function. Recent investigation in nanomedicine has become increasingly important to cutaneous pathophysiology, such as functional designs directed towards skin cancers and wound healing. This review outlines the application of nanoparticles relevant to dermatologic surgery.
Collapse
|
15
|
Carvalho JA, da Silva Abreu A, Tedesco AC, Junior MB, Simioni AR. Functionalized photosensitive gelatin nanoparticles for drug delivery application. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:508-525. [PMID: 30776983 DOI: 10.1080/09205063.2019.1580664] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this study, zinc phthalocyanine (ZnPc) was loaded onto gelatin nanoparticles functionalized with polyelectrolytes (polystyrene sulfonate/polyallylamine hydrochloride) by layer-by-layer (LbL) assembly. The process yield and the encapsulation efficiency were 76.0% ± 2.5 and 86.0% ± 1.8, respectively. The functionalized photosensitive gelatin nanoparticles (FPGN) had a mean diameter of 396.5 ± 45.8 nm, narrow distribution size with a polydispersity index of 0.106. The obvious switching of zeta potential indicates successful alternating deposition of the polyanion PSS and polycation PAH directly on the gelatin nanoparticles. The in vitro drug release investigation found that the LbL deposited polyelectrolyte bilayer is very efficient to reduce the release rate and assuage the initial burst for drugs loaded in gelatin nanoparticles. The photobiological activity of FPGN was evaluated on mouse macrophage carcinoma line J774 A-1. The cells viability decreased with the increase of the light dose in the range of 1-10.0 J.cm-2. ZnPc-loaded in functionalized gelatin nanoparticles are the release systems that promise photodynamic therapy use.
Collapse
Affiliation(s)
- Janicy Arantes Carvalho
- a Organic Synthesis Laboratory , Research and Development Institute - IPD Vale do Paraíba University , São José dos Campos , Brazil
| | - Alexandro da Silva Abreu
- a Organic Synthesis Laboratory , Research and Development Institute - IPD Vale do Paraíba University , São José dos Campos , Brazil
| | - Antonio Claudio Tedesco
- b Chemistry Department Photobiology and Photomedicine Group , University of São Paulo , Ribeirão Preto , São Paulo , Brazil
| | - Milton Beltrame Junior
- a Organic Synthesis Laboratory , Research and Development Institute - IPD Vale do Paraíba University , São José dos Campos , Brazil
| | - Andreza Ribeiro Simioni
- a Organic Synthesis Laboratory , Research and Development Institute - IPD Vale do Paraíba University , São José dos Campos , Brazil
| |
Collapse
|
16
|
Liu P, Yang W, Shi L, Zhang H, Xu Y, Wang P, Zhang G, Chen WR, Zhang B, Wang X. Concurrent photothermal therapy and photodynamic therapy for cutaneous squamous cell carcinoma by gold nanoclusters under a single NIR laser irradiation. J Mater Chem B 2019; 7:6924-6933. [PMID: 31638633 DOI: 10.1039/c9tb01573f] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The concurrent photothermal and photodynamic therapy of cutaneous squamous cell carcinoma by a single drug of Au25(Capt)18nanoclusters is demonstrated, together with a preliminary immune response study conducted under a single NIR laser irradiation.
Collapse
Affiliation(s)
- Pei Liu
- Institute of Photomedicine, Shanghai Skin Disease Hospital
- Tongji University School of Medicine
- Shanghai
- P. R. China
| | - Weitao Yang
- Institute of Photomedicine, Shanghai Skin Disease Hospital
- Tongji University School of Medicine
- Shanghai
- P. R. China
- Tongji University Cancer Center, The Institute for Biomedical Engineering & Nano Science
| | - Lei Shi
- Institute of Photomedicine, Shanghai Skin Disease Hospital
- Tongji University School of Medicine
- Shanghai
- P. R. China
| | - Haiyan Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital
- Tongji University School of Medicine
- Shanghai
- P. R. China
| | - Yan Xu
- Institute of Photomedicine, Shanghai Skin Disease Hospital
- Tongji University School of Medicine
- Shanghai
- P. R. China
- Tongji University Cancer Center, The Institute for Biomedical Engineering & Nano Science
| | - Peiru Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital
- Tongji University School of Medicine
- Shanghai
- P. R. China
| | - Guolong Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital
- Tongji University School of Medicine
- Shanghai
- P. R. China
| | - Wei R. Chen
- Biophotonics Research Laboratory
- Center for Interdisciplinary Biomedical Education and Research
- University of Central Oklahoma
- Edmond
- USA
| | - Bingbo Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital
- Tongji University School of Medicine
- Shanghai
- P. R. China
- Tongji University Cancer Center, The Institute for Biomedical Engineering & Nano Science
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital
- Tongji University School of Medicine
- Shanghai
- P. R. China
| |
Collapse
|