1
|
Palladino S, Copes F, Chevallier P, Candiani G, Mantovani D. Enabling 3D bioprinting of cell-laden pure collagen scaffolds via tannic acid supporting bath. Front Bioeng Biotechnol 2024; 12:1434435. [PMID: 39295849 PMCID: PMC11408190 DOI: 10.3389/fbioe.2024.1434435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024] Open
Abstract
The fabrication of cell-laden biomimetic scaffolds represents a pillar of tissue engineering and regenerative medicine (TERM) strategies, and collagen is the gold standard matrix for cells to be. In the recent years, extrusion 3D bioprinting introduced new possibilities to increase collagen scaffold performances thanks to the precision, reproducibility, and spatial control. However, the design of pure collagen bioinks represents a challenge, due to the low storage modulus and the long gelation time, which strongly impede the extrusion of a collagen filament and the retention of the desired shape post-printing. In this study, the tannic acid-mediated crosslinking of the outer layer of collagen is proposed as strategy to enable collagen filament extrusion. For this purpose, a tannic acid solution has been used as supporting bath to act exclusively as external crosslinker during the printing process, while allowing the pH- and temperature-driven formation of collagen fibers within the core. Collagen hydrogels (concentration 2-6 mg/mL) were extruded in tannic acid solutions (concentration 5-20 mg/mL). Results proved that external interaction of collagen with tannic acid during 3D printing enables filament extrusion without affecting the bulk properties of the scaffold. The temporary collagen-tannic acid interaction resulted in the formation of a membrane-like external layer that protected the core, where collagen could freely arrange in fibers. The precision of the printed shapes was affected by both tannic acid concentration and needle diameter and can thus be tuned. Altogether, results shown in this study proved that tannic acid bath enables collagen bioprinting, preserves collagen morphology, and allows the manufacture of a cell-laden pure collagen scaffold.
Collapse
Affiliation(s)
- Sara Palladino
- Laboratory for Biomaterials and Bioengineering, CRC-Tier I, Department of Mining, Metallurgy and Materials Engineering and Regenerative Medicine CHU de Québec, Laval University, Quebec City, QC, Canada
- GenT_LΛB, Department of Chemistry, Materials and Chemical Engineering 'G. Natta', Politecnico di Milano, Milan, Italy
| | - Francesco Copes
- Laboratory for Biomaterials and Bioengineering, CRC-Tier I, Department of Mining, Metallurgy and Materials Engineering and Regenerative Medicine CHU de Québec, Laval University, Quebec City, QC, Canada
| | - Pascale Chevallier
- Laboratory for Biomaterials and Bioengineering, CRC-Tier I, Department of Mining, Metallurgy and Materials Engineering and Regenerative Medicine CHU de Québec, Laval University, Quebec City, QC, Canada
| | - Gabriele Candiani
- GenT_LΛB, Department of Chemistry, Materials and Chemical Engineering 'G. Natta', Politecnico di Milano, Milan, Italy
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, CRC-Tier I, Department of Mining, Metallurgy and Materials Engineering and Regenerative Medicine CHU de Québec, Laval University, Quebec City, QC, Canada
| |
Collapse
|
2
|
Chen M, Liu D, Liu T, Wei T, Qiao Q, Yuan Y, Wang N. Constructing 2D Polyphenols-Based Crosslinked Networks for Ultrafast and Selective Uranium Extraction from Seawater. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401528. [PMID: 38634219 DOI: 10.1002/smll.202401528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/08/2024] [Indexed: 04/19/2024]
Abstract
The role of tannins (TA), a well-known abundant and ecologically friendly chelating ligand, in metal capture has long been studied. Different kinds of TA-containing adsorbents are synthesized for uranium capture, while most adsorbents suffer from unfavorable adsorption kinetics. Herein, the design and preparation of a TA-containing 2D crosslinked network adsorbent (TANP) is reported. The ≈1.8-nanometer-thick TANP films curl up into micrometer-scale pores, which contribute to fast mass transfer and full exposure of active sites. The coordination environment of uranyl (UO2 2+) ions is explored by integrated analysis of U L3-edge XANES and EXAFS. Density functional theory calculations indicate the energetically favorable UO2 2+ binding. Consequently, TANP with excellent adsorption kinetics presents a high uranium capture capacity (14.62 mg-U g-Ads-1) and a high adsorption rate (0.97 mg g-1 day-1) together with excellent selectivity and biofouling resistance. Life cycle assessment and cost analysis demonstrate that TANP has tremendous potential for application in industrial-scale uranium extraction from seawater.
Collapse
Affiliation(s)
- Mengwei Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, P. R. China
| | - Dan Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, P. R. China
| | - Tao Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, P. R. China
| | - Tao Wei
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, P. R. China
| | - Qingtian Qiao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, P. R. China
| | - Yihui Yuan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, P. R. China
| | - Ning Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, P. R. China
| |
Collapse
|
3
|
Lu Y, Zhang G, Zhou H, Cao S, Zhang Y, Wang S, Pang H. Enhanced Active Sites and Stability in Nano-MOFs for Electrochemical Energy Storage through Dual Regulation by Tannic Acid. Angew Chem Int Ed Engl 2023; 62:e202311075. [PMID: 37602487 DOI: 10.1002/anie.202311075] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 08/22/2023]
Abstract
The limited active sites and poor acid-alkaline solution stability of metal-organic frameworks (MOFs), significantly limit their wider application. In this study, the acid property of tannic acid (TA) was used as an etchant to etch the surface-active sites. Subsequently, the further chelation of the protonated TA with the exposed metal active site can effectively protect the metal ions. Meanwhile, the TA provided a large amount of phenolic hydroxyl groups, which can greatly improve the stability of imidazolate-coordinated MOFs. The electrochemical test results indicated that the MOFs composite materials synthesized using this scheme had high specific capacitance and stability. And the mechanism of its electrochemical reaction process was explored through in situ X-ray diffraction (XRD) and theoretical calculations. In addition, the same treatment was carried out through a series of carboxyl-coordinated MOFs, which further confirmed the principle of this scheme to obtain a higher active site and stability. This paper explains the mechanism of functionalization of nano-MOFs by polyphenolic compounds, providing new ideas for the research of nano-MOFs.
Collapse
Affiliation(s)
- Yibo Lu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Guangxun Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Huijie Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Shuai Cao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Yi Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Shuli Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| |
Collapse
|
4
|
Babu N, Zhang P, Xian G. Improving epoxy adhesion with steel adherends using a tannic acid‐based additive: Impact on resin properties and interfacial bonding. J Appl Polym Sci 2023. [DOI: 10.1002/app.53803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Affiliation(s)
- Noel Babu
- Key Lab of Structures Dynamic Behavior and Control, Ministry of Education Harbin Institute of Technology Harbin China
- Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology Harbin Institute of Technology Harbin China
- School of Civil Engineering Harbin Institute of Technology Harbin China
| | - Puxuan Zhang
- Key Lab of Structures Dynamic Behavior and Control, Ministry of Education Harbin Institute of Technology Harbin China
- Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology Harbin Institute of Technology Harbin China
- School of Civil Engineering Harbin Institute of Technology Harbin China
| | - Guijun Xian
- Key Lab of Structures Dynamic Behavior and Control, Ministry of Education Harbin Institute of Technology Harbin China
- Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology Harbin Institute of Technology Harbin China
- School of Civil Engineering Harbin Institute of Technology Harbin China
| |
Collapse
|
5
|
Zeng H, Zhou S, Xie L, Liang Q, Zhang X, Yan M, Huang Y, Liu T, Chen P, Zhang L, Liang K, Jiang L, Kong B. Super-assembled mesoporous thin films with asymmetric nanofluidic channels for sensitive and reversible electrical sensing. Biosens Bioelectron 2023; 222:114985. [PMID: 36493724 DOI: 10.1016/j.bios.2022.114985] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
Bioinspired artificial nanochannels have emerged as promising candidates for developing smart nanofluidic sensors due to their highly controllable size and surface functionality. However, little attention has been paid to the role of the outer surface of the nanochannels in enhancing the detection sensitivity. Herein, an asymmetric nanochannel-based responsive detection platform with ultrathin tannic acid modified mesoporous silica (TA-MS) layer and alumina oxide (AAO) thin film is prepared through super-assembly strategy. The functional TA-MS outer surface layer provides abundant phenolic groups on the nanochannels for ions and molecules transport, which paves the way for the development of heterochannels for label-free, reversible and highly sensitive dopamine (DA) detection based off of cation displacement effect. Notably, by engineering optimal thickness of the TA-MS, the sensing performance can be further improved. After optimization, the linear response ranges for DA detection are 0.001-1 μM, 1-10 μM and 10-200 μM with the detection limit of 0.1 nM. The prepared sensor exhibits stable reversibility after several detection cycles. In addition, this method was successfully applied for DA detection in fetal bovine serum sample. Theoretical calculations further prove the detection mechanism. This work opens a new horizon of using mesoporous materials to construct nanofluidic sensors for ultrasensitive small molecule detection and recognition.
Collapse
Affiliation(s)
- Hui Zeng
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, PR China
| | - Shan Zhou
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, PR China
| | - Lei Xie
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, PR China
| | - Qirui Liang
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, PR China
| | - Xin Zhang
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, PR China
| | - Miao Yan
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, PR China
| | - Yanan Huang
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, PR China
| | - Tianyi Liu
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, PR China
| | - Pu Chen
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Lei Zhang
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Kang Liang
- School of Chemical Engineering and Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Science, Beijing, 100190, PR China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, PR China; Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, 322000, PR China.
| |
Collapse
|
6
|
Daré RG, Kolanthai E, Neal CJ, Fu Y, Seal S, Nakamura CV, Lautenschlager SOS. Cerium Oxide Nanoparticles Conjugated with Tannic Acid Prevent UVB-Induced Oxidative Stress in Fibroblasts: Evidence of a Promising Anti-Photodamage Agent. Antioxidants (Basel) 2023; 12:antiox12010190. [PMID: 36671052 PMCID: PMC9855054 DOI: 10.3390/antiox12010190] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Exposure to ultraviolet radiation induces photodamage towards cellular macromolecules that can progress to photoaging and photocarcinogenesis. The topical administration of compounds that maintain the redox balance in cells presents an alternative approach to combat skin oxidative damage. Cerium oxide nanoparticles (CNPs) can act as antioxidants due to their enzyme-like activity. In addition, a recent study from our group has demonstrated the photoprotective potential of tannic acid (TA). Therefore, this work aimed to synthesize CNPs associated with TA (CNP-TA) and investigate its photoprotective activity in L929 fibroblasts exposed to UVB radiation. CNP conjugation with TA was confirmed by UV-Vis spectra and X-ray photoelectron spectroscopy. Bare CNPs and CNP-TA exhibited particle sizes of ~5 and ~10 nm, superoxide dismutase activity of 3724 and 2021 unit/mg, and a zeta potential of 23 and -19 mV, respectively. CNP-TA showed lower cytotoxicity than free TA and the capacity to reduce the oxidative stress caused by UVB; supported by the scavenging of reactive oxygen species, the prevention of endogenous antioxidant system depletion, and the reduction in oxidative damage in lipids and DNA. Additionally, CNP-TA improved cell proliferation and decreased TGF-β, metalloproteinase-1, and cyclooxygenase-2. Based on these results, CNP-TA shows therapeutic potential for protection against photodamage, decreasing molecular markers of photoaging and UVB-induced inflammation.
Collapse
Affiliation(s)
- Regina G. Daré
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá (UEM), Maringá 87020900, Paraná, Brazil
- Correspondence:
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Craig J. Neal
- Advanced Materials Processing and Analysis Center, Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Yifei Fu
- Advanced Materials Processing and Analysis Center, Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
- Nanoscience Technology Center (NSTC), and Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Celso V. Nakamura
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá (UEM), Maringá 87020900, Paraná, Brazil
- Department of Basic Health Sciences, State University of Maringá (UEM), Maringá 87020900, Paraná, Brazil
| | - Sueli O. S. Lautenschlager
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá (UEM), Maringá 87020900, Paraná, Brazil
- Department of Basic Health Sciences, State University of Maringá (UEM), Maringá 87020900, Paraná, Brazil
| |
Collapse
|
7
|
Li S, Lang S, Chen Z, Chen J, Zhuang W, Du Y, Yao Y, Liu G, Chen M. Polyphenol based hybrid nano-aggregates modified collagen fibers of biological valve leaflets to achieve enhanced mechanical, anticoagulation and anti-calcification properties. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2022. [DOI: 10.1186/s42825-022-00105-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractGlutaraldehyde (Glut)-crosslinked porcine pericardium and bovine pericardium are mainly consisted of collagen and widely used for the preparation of heterogenous bioprosthetic heart valves (BHV), which play an important role in the replacement therapy of severe valvular heart disease, while their durability is limited by degeneration due to calcification, thrombus, endothelialization difficulty and prosthetic valve endocarditis. Herein, we develop a novel BHV, namely, TPly-BP, based on natural tannic acid and polylysine to improve the durability of Glut crosslinked bovine pericardium (Glut-BP). Impressively, tannic acid and polylysine could form nanoaggregates via multiple hydrogen bonds and covalent bonds, and the introduction of nanoaggregates not only improved the mechanical properties and collagen stability but also endowed TPly-BP with good biocompatibility and hemocompatibility. Compared to Glut-BP, TPly-BP showed significantly reduced cytotoxicity, improved endothelial cell adhesion, a low hemolysis ratio and obviously reduced platelet adhesion. Importantly, TPly-BP exhibited great antibacterial and in vivo anti-calcification ability, which was expected to improve the in vivo durability of BHVs. These results suggested that TPly-BP would be a potential candidate for BHV.
Graphical abstract
Collapse
|
8
|
Jing W, Xiaolan C, Yu C, Feng Q, Haifeng Y. Pharmacological effects and mechanisms of tannic acid. Biomed Pharmacother 2022; 154:113561. [PMID: 36029537 DOI: 10.1016/j.biopha.2022.113561] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/04/2022] [Accepted: 08/14/2022] [Indexed: 12/18/2022] Open
Abstract
In recent years, increasing attention has been paid to the pharmacological efficacy of tannins. Tannic acid (TA), the simplest hydrolysable tannin that has been approved by the FDA as a safe food additive, is one of the most important components of these traditional medicines. Studies have shown that TA displays a wide range of pharmacological activities, such as anti-inflammatory, neuroprotective, antitumor, cardioprotective, and anti-pathogenic effects. Here, we summarize the known pharmacological effects and associated mechanisms of TA. We focus on the effect and mechanism of TA in various animal models of inflammatory disease and organ, brain, and cardiovascular injury. Moreover, we discuss the possible molecular targets and signaling pathways of TA, in addition to the pharmacological effects of TA-based nanoparticles and TA in combination with chemotherapeutic drugs.
Collapse
Affiliation(s)
- Wang Jing
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, PR China.
| | - Chen Xiaolan
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, PR China
| | - Chen Yu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, PR China
| | - Qin Feng
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, PR China
| | - Yang Haifeng
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, PR China
| |
Collapse
|
9
|
Jafari H, Ghaffari-Bohlouli P, Niknezhad SV, Abedi A, Izadifar Z, Mohammadinejad R, Varma RS, Shavandi A. Tannic acid: a versatile polyphenol for design of biomedical hydrogels. J Mater Chem B 2022; 10:5873-5912. [PMID: 35880440 DOI: 10.1039/d2tb01056a] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tannic acid (TA), a natural polyphenol, is a hydrolysable amphiphilic tannin derivative of gallic acid with several galloyl groups in its structure. Tannic acid interacts with various organic, inorganic, hydrophilic, and hydrophobic materials such as proteins and polysaccharides via hydrogen bonding, electrostatic, coordinative bonding, and hydrophobic interactions. Tannic acid has been studied for various biomedical applications as a natural crosslinker with anti-inflammatory, antibacterial, and anticancer activities. In this review, we focus on TA-based hydrogels for biomaterials engineering to help biomaterials scientists and engineers better realize TA's potential in the design and fabrication of novel hydrogel biomaterials. The interactions of TA with various natural or synthetic compounds are deliberated, discussing parameters that affect TA-material interactions thus providing a fundamental set of criteria for utilizing TA in hydrogels for tissue healing and regeneration. The review also discusses the merits and demerits of using TA in developing hydrogels either through direct incorporation in the hydrogel formulation or indirectly via immersing the final product in a TA solution. In general, TA is a natural bioactive molecule with diverse potential for engineering biomedical hydrogels.
Collapse
Affiliation(s)
- Hafez Jafari
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium.
| | - Pejman Ghaffari-Bohlouli
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium.
| | - Seyyed Vahid Niknezhad
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, 71345-1978, Iran
| | - Ali Abedi
- Department of Life Science Engineering, Faculty of New Sciences and Technology, University of Tehran, Tehran, Iran
| | - Zohreh Izadifar
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Reza Mohammadinejad
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium.
| |
Collapse
|
10
|
Hydrophilic surface modification of carbon black through a mussel-inspired reaction of tannic acid and diethlyenetriamine. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-022-04974-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
11
|
Abstract
Tannins are an interesting class of polyphenols, characterized, in almost all cases, by a different degree of polymerization, which, inevitably, markedly influences their bioavailability, as well as biochemical and pharmacological activities. They have been used for the process of tanning to transform hides into leather, from which their name derives. For several time, they have not been accurately evaluated, but now researchers have started to unravel their potential, highlighting anti-inflammatory, antimicrobial, antioxidant and anticancer activities, as well as their involvement in cardiovascular, neuroprotective and in general metabolic diseases prevention. The mechanisms underlying their activity are often complex, but the main targets of their action (such as key enzymes modulation, activation of metabolic pathways and changes in the metabolic fluxes) are highlighted in this review, without losing sight of their toxicity. This aspect still needs further and better-designed study to be thoroughly understood and allow a more conscious use of tannins for human health.
Collapse
|
12
|
Kong W, Du Q, Qu Y, Shao C, Chen C, Sun J, Mao C, Tang R, Gu X. Tannic acid induces dentin biomineralization by crosslinking and surface modification. RSC Adv 2022; 12:3454-3464. [PMID: 35425384 PMCID: PMC8979257 DOI: 10.1039/d1ra07887a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/16/2022] [Indexed: 11/21/2022] Open
Abstract
It is currently known that crosslinking agents can effectively improve the mechanical properties of dentin by crosslinking type I collagen. However, few scholars have focused on the influence of crosslinking agents on the collagen-mineral interface after crosslinking. Analysis of the Fourier transform infrared spectroscopy (FTIR) results showed that hydrogen bonding occurs between the tannic acid (TA) molecule and the collagen. The crosslinking degree of TA to collagen reached a maximum 41.28 ± 1.52. This study used TA crosslinked collagen fibers to successfully induce dentin biomineralization, and the complete remineralization was achieved within 4 days. The crosslinking effect of TA can improve the mechanical properties and anti-enzyme properties of dentin. The elastic modulus (mean and standard deviation) and hardness values of the remineralized dentin pretreated with TA reached 19.1 ± 1.12 GPa and 0.68 ± 0.06 GPa, respectively, which were close to those of healthy dentin measurements, but significantly higher than those of dentin without crosslinking (8.91 ± 1.82 GPa and 0.16 ± 0.01 GPa). The interface energy between the surface of collagen fibers and minerals decreased from 10.59 mJ m-2 to 4.19 mJ m-2 with the influence of TA. The current work reveals the importance of tannic acid crosslinking for dentin remineralization while providing profound insights into the interfacial control of biomolecules in collagen mineralization.
Collapse
Affiliation(s)
- Weijing Kong
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University Hangzhou P. R. China
| | - Qiaolin Du
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou P. R. China
| | - Yinan Qu
- Real Dental Guangzhou P. R. China
| | - Changyu Shao
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University Hangzhou P. R. China
| | - Chaoqun Chen
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou P. R. China
| | - Jian Sun
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou P. R. China
| | - Caiyun Mao
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou P. R. China
| | - Ruikang Tang
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University Hangzhou P. R. China
| | - Xinhua Gu
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou P. R. China
| |
Collapse
|
13
|
Influence of Dentin Priming with Tannin-Rich Plant Extracts on the Longevity of Bonded Composite Restorations. ScientificWorldJournal 2021; 2021:1614643. [PMID: 34220363 PMCID: PMC8221859 DOI: 10.1155/2021/1614643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/06/2021] [Indexed: 02/06/2023] Open
Abstract
Objective This in vitro study evaluated the influence of bioactive plant extracts as dentin biomodifying agents to improve the longevity of bonded restorations. For that, plant extracts were applied to the dentin surface prior to the adhesive system. Materials and Methods Bovine incisors were ground flat to obtain 2 mm thick slices in which conical preparations were made (N = 10). Tannin-containing plant extracts were applied to dentin before the application of the restorative system, as follows: control group (untreated, CTL), chlorhexidine 0.12% (CHX), mastruz (Dysphania ambrosioides, MTZ), cat's claw (Uncaria tomentosa, CTC), guarana (Paullinia cupana, GUA), galla chinensis (Rhus chinensis, GCH), and tannic acid (extracted from Acacia decurrens, TNA). The push-out bond strength test was conducted (0.5 mm/min). Dentin biomodification was assessed by the modulus of elasticity and mass change in bovine tooth sections (0.5 × 1.7 × 7.0 mm). The dentin staining after extract treatments of dentin slices was compared. The dentin surface wettability was also evaluated by means of the contact angles of the adhesive system with the dentin surface and compared with the untreated control group. Data were subjected to ANOVA/Tukey's test (α = 0.05). Results The bond strength of the restoratives to dentin was not significantly improved by the plant extracts, irrespective of the evaluation time (p > 0.05). Except for TNA, the elastic modulus of demineralized dentin significantly reduced after treatment with the plant extracts (p < 0.05). The dentin staining correlated with the tannin content of the extracts. The contact angle was significantly reduced when treated with CTC, GCH, and TNA. Conclusions The tannin-containing extracts had a questionable effect on the longevity of bonded restorations. The dentin modulus was negatively affected by the extract treatments. Although some of the extracts changed the contact angle, which seems to improve the adhesive monomer permeation, the tannin-rich plant extract application prior to adhesive application was proven to be clinically unfeasible due to dentin staining.
Collapse
|
14
|
Single‐Cell Nanoencapsulation of
Saccharomyces cerevisiae
by Cytocompatible Layer‐by‐Layer Assembly of Eggshell Membrane Hydrolysate and Tannic Acid. ADVANCED NANOBIOMED RESEARCH 2020. [DOI: 10.1002/anbr.202000037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
15
|
Tham HM, Chung TS. One-step cross-linking and tannic acid modification of polyacrylonitrile hollow fibers for organic solvent nanofiltration. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118294] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Xia Y, Yang ZY, Li YH, Zhou Z. The Effects of a Toothpaste Containing the Active Ingredients of Galla chinensis and Sodium Fluoride on Dentin Hypersensitivity and Sealing of Dentinal Tubules: An In Vitro Study and an Eight-Week Clinical Study in 98 Patients. Med Sci Monit 2020; 26:e920776. [PMID: 32307404 PMCID: PMC7191947 DOI: 10.12659/msm.920776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND This study aimed to evaluate the desensitizing effect of toothpaste containing the active ingredients of an extract of Galla chinensis, both in vitro and in patients with dentin hypersensitivity. MATERIAL AND METHODS Ninety-eight patients with dentin hypersensitivity were divided into two study groups and given toothpaste containing either the active ingredients of Galla chinensis extract and sodium fluoride, or a control toothpaste containing only sodium fluoride. Assessments included the tactile stimulation test and the Schiff cold air sensitivity scale, which were conducted at the baseline examination and after 4 and 8 weeks of dental brushing. Twenty-five intact human premolars from 24 patients with dentin hypersensitivity were prepared and randomly divided into four groups, the untreated baseline group, the study group, the positive control group, and the control group. After brushing with different toothpaste for 7 days, the effects on dentinal tubule sealing in each group was determined by scanning electron microscopy (SEM), and the degree of dentinal tubule plugging and diameter of the open dentinal tubules were calculated. RESULTS Toothpaste containing the active ingredients of Galla chinensis and sodium fluoride significantly reduced the degree of dentin hypersensitivity when compared with toothpaste containing sodium fluoride alone after 4 weeks and 8 weeks of use. Toothpaste containing the active ingredients of Galla chinensis significantly reduced the number and diameter of the open dentinal tubules. CONCLUSIONS Toothpaste that contained the active ingredients of Galla chinensis and sodium fluoride reduced the symptoms of dentin hypersensitivity by sealing the dentinal tubules.
Collapse
Affiliation(s)
- Yu Xia
- The College of Stomatology, Chongqing Medical University, Chongqing, China (mainland).,Chongqing Key Laboratory for Oral Diseases and Biomedical Science, Chongqing, China (mainland).,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China (mainland)
| | - Zheng-Yan Yang
- The College of Stomatology, Chongqing Medical University, Chongqing, China (mainland).,Chongqing Key Laboratory for Oral Diseases and Biomedical Science, Chongqing, China (mainland).,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China (mainland)
| | - Yue-Heng Li
- The College of Stomatology, Chongqing Medical University, Chongqing, China (mainland).,Chongqing Key Laboratory for Oral Diseases and Biomedical Science, Chongqing, China (mainland).,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China (mainland)
| | - Zhi Zhou
- The College of Stomatology, Chongqing Medical University, Chongqing, China (mainland).,Chongqing Key Laboratory for Oral Diseases and Biomedical Science, Chongqing, China (mainland).,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China (mainland)
| |
Collapse
|
17
|
Magro M, Baratella D, Colò V, Vallese F, Nicoletto C, Santagata S, Sambo P, Molinari S, Salviulo G, Venerando A, Basso CR, Pedrosa VA, Vianello F. Electrocatalytic nanostructured ferric tannate as platform for enzyme conjugation: Electrochemical determination of phenolic compounds. Bioelectrochemistry 2020; 132:107418. [DOI: 10.1016/j.bioelechem.2019.107418] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/15/2019] [Accepted: 11/17/2019] [Indexed: 12/20/2022]
|
18
|
Grebenik EA, Gafarova ER, Istranov LP, Istranova EV, Ma X, Xu J, Guo W, Atala A, Timashev PS. Mammalian Pericardium-Based Bioprosthetic Materials in Xenotransplantation and Tissue Engineering. Biotechnol J 2020; 15:e1900334. [PMID: 32077589 DOI: 10.1002/biot.201900334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/29/2020] [Indexed: 12/13/2022]
Abstract
Bioprosthetic materials based on mammalian pericardium tissue are the gold standard in reconstructive surgery. Their application range covers repair of rectovaginal septum defects, abdominoplastics, urethroplasty, duraplastics, maxillofacial, ophthalmic, thoracic and cardiovascular reconstruction, etc. However, a number of factors contribute to the success of their integration into the host tissue including structural organization, mechanical strength, biocompatibility, immunogenicity, surface chemistry, and biodegradability. In order to improve the material's properties, various strategies are developed, such as decellularization, crosslinking, and detoxification. In this review, the existing issues and long-term achievements in the development of bioprosthetic materials based on the mammalian pericardium tissue, aimed at a wide-spectrum application in reconstructive surgery are analyzed. The basic technical approaches to preparation of biocompatible forms providing continuous functioning, optimization of biomechanical and functional properties, and clinical applicability are described.
Collapse
Affiliation(s)
- Ekaterina A Grebenik
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Elvira R Gafarova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Leonid P Istranov
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Elena V Istranova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Xiaowei Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| | - Jing Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| | - Weisheng Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | - Peter S Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia.,Institute of Photonic Technologies, Research center "Crystallography and Photonics" RAS, Moscow, 142190, Russia.,N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
19
|
Zhang X, Liu C, Yang J, Zhu CY, Zhang L, Xu ZK. Nanofiltration membranes with hydrophobic microfiltration substrates for robust structure stability and high water permeation flux. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117444] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Liu B, Wang Y, Miao Y, Zhang X, Fan Z, Singh G, Zhang X, Xu K, Li B, Hu Z, Xing M. Hydrogen bonds autonomously powered gelatin methacrylate hydrogels with super-elasticity, self-heal and underwater self-adhesion for sutureless skin and stomach surgery and E-skin. Biomaterials 2018; 171:83-96. [PMID: 29684678 DOI: 10.1016/j.biomaterials.2018.04.023] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/08/2018] [Accepted: 04/12/2018] [Indexed: 12/16/2022]
Abstract
Interface-interaction induced self-healing and self-adhesive are a gem-like attribute inspired by our Mother Nature. Biocompatible gelatin methacrylate (GelMA) hydrogels exhibit tunable mechanical properties which are favorable in biomedical applications. However, it is difficult to integrate high stiffness, super-elasticity, large deformability and self-healing property together. Here, we report a GelMA-based double-network (DN) hydrogel with above properties by utilizing tannic acid (TA) as a multi-functional H-bond provider. We first investigated the morphological and mechanical properties' changes of GelMA over different TA's concentrations and treating times. In comparison to pristine GelMA hydrogel (10% w/v), the GelMA-TA hydrogels presented significant increase in ultimate stress (4.3-fold), compressive modulus (2.5-fold), and especially in elongation (6-fold). Adhesion properties of GelMA-TA can be tuned by TA and have been proven to be water-resistant. To test gels' feasibility in vivo, we applied GelMA-TA gels to close skin wound and gastric incision without suture. The results indicated the gels had the capabilities of promoting wound healing with superior tissue restoration and minimal tissue adhesion. Furthermore, integrated with carbon nanotubes, the GelMA-TA-carbon nanotube gel was an alternative self-healing electric skin with strain-sensitive conductivity. This work demonstrated a strategy to yield mechanically strong hydrogel adhesives for innovative biomedical applications.
Collapse
Affiliation(s)
- Bingcheng Liu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, Guangdong 510515, China; Department of Mechanical Engineering, Faculty of Engineerig, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ying Wang
- Institute of Burn Research, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Yong Miao
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, Guangdong 510515, China
| | - Xinyu Zhang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, Guangdong 510515, China
| | - Zhexiang Fan
- Department of Mechanical Engineering, Faculty of Engineerig, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Gurankit Singh
- Department of Mechanical Engineering, Faculty of Engineerig, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Xingying Zhang
- Department of Mechanical Engineering, Faculty of Engineerig, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Kaige Xu
- Department of Mechanical Engineering, Faculty of Engineerig, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, Guangdong 510515, China.
| | - Malcolm Xing
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, Guangdong 510515, China; Department of Mechanical Engineering, Faculty of Engineerig, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Institute of Burn Research, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
21
|
Tomaszewska E, Dobrowolski P, Winiarska-Mieczan A, Kwiecień M, Muszyński S, Tomczyk A. The effect of tannic acid on bone mechanical and geometric properties, bone density, and trabecular histomorphometry as well as the morphology of articular and growth cartilages in rats co-exposed to cadmium and lead is dose dependent. Toxicol Ind Health 2017; 33:855-866. [DOI: 10.1177/0748233717718973] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cadmium (Cd) and lead (Pb) are toxic elements that accumulate to the largest extent in bones. Rats were used to investigate whether tannic acid (TA; 0.5%, 1.0%, 1.5%. 2.0%, or 2.5%) would have a protective effect on the structure and properties of bones in the case of exposure to Cd and Pb (diet: 7 mg Cd/kg and 50 mg Pb/kg) for 6 weeks. The effects of administration of TA in Cd- and Pb-poisoned rats on bone characteristics and the morphology of articular and growth cartilages were determined. All the rats administered Cd and Pb had an enhanced Cd and Pb concentration in blood plasma and bone and reduced bone Ca content irrespective of the TA administration. Cd and Pb alone reduced the mechanical endurance and histomorphometric parameters of trabecular bone and the thickness of the growth plate and articular cartilage. Tannic acid improved cancellous bone parameters in the rat exposed to Cd and Pb. A diet rich in TA improved articular cartilage constituents in heavy metal-poisoned rats. These results suggest that alimentary TA supplementation can counteract in a dose-dependent manner some of the destructive changes evoked by Cd and Pb possibly by reducing the exposure.
Collapse
Affiliation(s)
- Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Piotr Dobrowolski
- Department of Comparative Anatomy and Anthropology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Anna Winiarska-Mieczan
- Department of Bromatology and Food Physiology, University of Life Sciences in Lublin, Lublin, Poland
| | - Małgorzata Kwiecień
- Department of Bromatology and Food Physiology, University of Life Sciences in Lublin, Lublin, Poland
| | - Siemowit Muszyński
- Department of Physics, Faculty of Production Engineering, University of Life Sciences in Lublin, Lublin, Poland
| | - Agnieszka Tomczyk
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| |
Collapse
|
22
|
Park JH, Choi S, Moon HC, Seo H, Kim JY, Hong SP, Lee BS, Kang E, Lee J, Ryu DH, Choi IS. Antimicrobial spray nanocoating of supramolecular Fe(III)-tannic acid metal-organic coordination complex: applications to shoe insoles and fruits. Sci Rep 2017; 7:6980. [PMID: 28765556 PMCID: PMC5539098 DOI: 10.1038/s41598-017-07257-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/27/2017] [Indexed: 02/03/2023] Open
Abstract
Numerous coating strategies are available to control the surface properties and confer new properties to substrates for applications in energy, environment, biosystems, etc., but most have the intrinsic limitations in the practical setting: (1) highly specific interactions between coating materials and target surfaces are required for stable and durable coating; (2) the coating of bulk substrates, such as fruits, is time-consuming or is not achievable in the conventional solution-based coating. In this respect, material-independent and rapid coating strategies are highly demanded. We demonstrate spray-assisted nanocoating of supramolecular metal-organic complexes of tannic acid and ferric ions. The spray coating developed is material-independent and extremely rapid (<5 sec), allowing for coating of commodity goods, such as shoe insoles and fruits, in the controlled fashion. For example, the spray-coated mandarin oranges and strawberries show significantly prolonged post-harvest shelf-life, suggesting practical potential in edible coating of perishable produce.
Collapse
Affiliation(s)
- Ji Hun Park
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Sohee Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Hee Chul Moon
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Hyelin Seo
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Ji Yup Kim
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Seok-Pyo Hong
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea.,HC Lab, 235 Creation Hall, 193 Munji Road, Daejeon, 34051, Korea
| | - Bong Soo Lee
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea.,HC Lab, 235 Creation Hall, 193 Munji Road, Daejeon, 34051, Korea
| | - Eunhye Kang
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Jinho Lee
- Startup KAIST, KAIST, Daejeon, 34141, Korea
| | - Dong Hun Ryu
- HC Lab, 235 Creation Hall, 193 Munji Road, Daejeon, 34051, Korea
| | - Insung S Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea.
| |
Collapse
|
23
|
Daar E, Bradley D, Alkhorayef M, Al-Mugren K, Abdallat R, Al-Dousari H. Towards evaluating post-irradiation tissue alterations. Radiat Phys Chem Oxf Engl 1993 2017. [DOI: 10.1016/j.radphyschem.2016.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Tomaszewska E, Dobrowolski P, Winiarska-Mieczan A, Kwiecień M, Tomczyk A, Muszyński S. The effect of tannic acid on the bone tissue of adult male Wistar rats exposed to cadmium and lead. ACTA ACUST UNITED AC 2017; 69:131-141. [DOI: 10.1016/j.etp.2016.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 11/07/2016] [Accepted: 12/06/2016] [Indexed: 12/01/2022]
|
25
|
Tannic acid-based tough hyperbranched epoxy thermoset as an advanced environmentally sustainable high-performing material. IRANIAN POLYMER JOURNAL 2016. [DOI: 10.1007/s13726-016-0471-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Altun S, Çakıroğlu B, Özacar M, Özacar M. A facile and effective immobilization of glucose oxidase on tannic acid modified CoFe 2 O 4 magnetic nanoparticles. Colloids Surf B Biointerfaces 2015; 136:963-70. [DOI: 10.1016/j.colsurfb.2015.10.053] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/22/2015] [Accepted: 10/30/2015] [Indexed: 10/22/2022]
|
27
|
Ricci A, Parpinello GP, Olejar KJ, Kilmartin PA, Versari A. Attenuated Total Reflection Mid-Infrared (ATR-MIR) Spectroscopy and Chemometrics for the Identification and Classification of Commercial Tannins. APPLIED SPECTROSCOPY 2015; 69:1243-1250. [PMID: 26647047 DOI: 10.1080/05704928.2014.1000461] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Attenuated total reflection Fourier transform infrared (FT-IR) spectroscopy was used to characterize 40 commercial tannins, including condensed and hydrolyzable chemical classes, provided as powder extracts from suppliers. Spectral data were processed to detect typical molecular vibrations of tannins bearing different chemical groups and of varying botanical origin (univariate qualitative analysis). The mid-infrared region between 4000 and 520 cm(-1) was analyzed, with a particular emphasis on the vibrational modes in the fingerprint region (1800-520 cm(-1)), which provide detailed information about skeletal structures and specific substituents. The region 1800-1500 cm(-1) contained signals due to hydrolyzable structures, while bands due to condensed tannins appeared at 1300-900 cm(-1) and exhibited specific hydroxylation patterns useful to elucidate the structure of the flavonoid monomeric units. The spectra were investigated further using principal component analysis for discriminative purposes, to enhance the ability of infrared spectroscopy in the classification and quality control of commercial dried extracts and to enhance their industrial exploitation.
Collapse
Affiliation(s)
- Arianna Ricci
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Goidanich 60, Cesena (FC) 47521, Italy
| | | | | | | | | |
Collapse
|
28
|
Abstract
Tannins are considered as valuable plant secondary metabolites providing many benefits for human health. In this review information was gathered about bioactivity in vitro and in vivo, as well as about conducted clinical trials. The literature research was based on ScienceDirect, Scopus, and Cochrane databases and presents a wide range of tested activities of tannins. The described clinical trials verify laboratory tests and show the effective health benefits taken from supplementation with tannins.
Collapse
Affiliation(s)
- Elwira Sieniawska
- Department of Pharmacognosy with Medicinal Plant Unit, Medical University of Lublin, Lublin 20-093, Poland
| |
Collapse
|
29
|
Daar E, Kaabar W, Woods E, Lei C, Nisbet A, Bradley D. Atomic force microscopy and mechanical testing of bovine pericardium irradiated to radiotherapy doses. Radiat Phys Chem Oxf Engl 1993 2014. [DOI: 10.1016/j.radphyschem.2013.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Velmurugan P, Singam ERA, Jonnalagadda RR, Subramanian V. Investigation on interaction of tannic acid with type I collagen and its effect on thermal, enzymatic, and conformational stability for tissue engineering applications. Biopolymers 2014; 101:471-83. [DOI: 10.1002/bip.22405] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/17/2013] [Accepted: 08/26/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Punitha Velmurugan
- Council of Scientific and Industrial Research; Central Leather Research Institute, Chemical Laboratory; Adyar Chennai 600 020 India
| | | | - Raghava Rao Jonnalagadda
- Council of Scientific and Industrial Research; Central Leather Research Institute, Chemical Laboratory; Adyar Chennai 600 020 India
| | - Venkatesan Subramanian
- Council of Scientific and Industrial Research; Central Leather Research Institute, Chemical Laboratory; Adyar Chennai 600 020 India
| |
Collapse
|
31
|
Characterization of Dentin Matrix Biomodified by Galla Chinensis Extract. J Endod 2013; 39:542-7. [DOI: 10.1016/j.joen.2012.12.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 12/14/2012] [Accepted: 12/30/2012] [Indexed: 11/18/2022]
|
32
|
Natarajan V, Krithica N, Madhan B, Sehgal PK. Preparation and properties of tannic acid cross-linked collagen scaffold and its application in wound healing. J Biomed Mater Res B Appl Biomater 2012; 101:560-7. [DOI: 10.1002/jbm.b.32856] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 08/30/2012] [Accepted: 10/05/2012] [Indexed: 11/10/2022]
|
33
|
Cass CAP, Burg KJL. Tannic acid cross-linked collagen scaffolds and their anti-cancer potential in a tissue engineered breast implant. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2011; 23:281-98. [PMID: 21244722 DOI: 10.1163/092050610x550331] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tannic acid (TA) is a hydrolysable plant tannin, and it has been determined that TA functions as a collagen cross-linking agent through hydrogen-bonding mechanisms and hydrophobic effects. Since TA may have anti-tumor properties, it may be a viable cross-linking agent for collagen-based breast tissue scaffolds. The goal of this work was to determine if TA cross-linked scaffolds induce apoptotic processes in MCF-7 cancer cells, with minimal toxic effect on healthy D1 mesenchymal stem-like stromal cells. Cross-linked collagen scaffolds that were uniform, easily reproduced, easily characterized, and readily used in cell culture were manufactured. Thermal denaturation temperatures of the cross-linked scaffolds (68°C) were shown to be significantly higher when compared to those of uncross-linked scaffolds (55°C). Scanning electron microscopy images demonstrated the replacement of irregular collagen fibers with sheet-like structures upon cross-linking. The cross-linking solution concentration of TA that appears to be best for inducing apoptotic processes in MCF-7 cells, while minimizing toxic effect on D1 cells, is 1 mg/ml. At this concentration, the MCF-7 cell metabolic activity did not change over a 72-h period (i.e., proliferation was limited) while there was an increase in metabolic activity of D1 cells over the 72-h period. TA did appear to inhibit the production of lipid by D1 cells cultured in an adipogenic cocktail; in the future, the rate and duration of inhibition could be tailored to allow gradual bulking of the implant. The results suggest that the level of TA cross-linking can be modulated to provide optimal use in a tissue engineering composite.
Collapse
Affiliation(s)
- Cheryl A P Cass
- Department of Bioengineering, Institute for Biological Interfaces of Engineering, Clemson University, 401 Rhodes Engineering Research Center, Clemson, SC 29634, USA
| | | |
Collapse
|
34
|
Costa E, Coelho M, Ilharco LM, Aguiar-Ricardo A, Hammond PT. Tannic Acid Mediated Suppression of PNIPAAm Microgels Thermoresponsive Behavior. Macromolecules 2011. [DOI: 10.1021/ma1025016] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Eunice Costa
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Margarida Coelho
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Laura M. Ilharco
- Centro de Química-Física Molecular and IN-Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal
| | - Ana Aguiar-Ricardo
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Paula T. Hammond
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
35
|
Hydrolysable tannins depress cardiac papillary muscle contraction and propranolol-induced negative inotropism. Fitoterapia 2010; 81:820-5. [DOI: 10.1016/j.fitote.2010.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 04/28/2010] [Accepted: 05/04/2010] [Indexed: 01/20/2023]
|
36
|
Bedran-Russo AKB, Yoo KJ, Ema KC, Pashley DH. Mechanical properties of tannic-acid-treated dentin matrix. J Dent Res 2009; 88:807-11. [PMID: 19767576 PMCID: PMC3144062 DOI: 10.1177/0022034509342556] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 04/09/2009] [Accepted: 04/24/2009] [Indexed: 11/16/2022] Open
Abstract
Dentin collagen is a major component of the hybrid layer, and its stability may have a great impact on the properties of adhesive interfaces. We tested the hypothesis that the use of tannic acid (TA), a collagen cross-linking agent, may affect the mechanical properties and stability of the dentin matrix. The present study evaluated the effects of different concentrations of TA on the modulus of elasticity and enzymatic degradation of dentin matrix. Hence, the effect of TA pre-treatment on resin-dentin bond strength was assessed with the use of two bonding systems. Sound human molars were used and prepared according to each experimental design. The use of TA affected the properties of demineralized dentin by increasing its stiffness. TA treatment inhibited the effect of collagenase digestion on dentin matrix, particularly for 10%TA and 20%TA. The TA-dentin matrix complex resulted in improved bond strength for both adhesive systems.
Collapse
Affiliation(s)
- A K B Bedran-Russo
- Department of Restorative Dentistry, University of Illinois at Chicago, College of Dentistry, 801 South Paulina Street, Room 551, Chicago, IL 60612, USA.
| | | | | | | |
Collapse
|
37
|
Cowen S, Al-Abadleh HA. DRIFTS studies on the photodegradation of tannic acid as a model for HULIS in atmospheric aerosols. Phys Chem Chem Phys 2009; 11:7838-47. [PMID: 19727490 DOI: 10.1039/b905236d] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Humic like substances (HULIS) are important components of atmospheric aerosols, yet little is known about their photochemical transformation and the role of adsorbed water in this photochemistry. We report herein in situ and surface-sensitive spectroscopic studies on (1) the photodegradation of solid tannic acid, (2) structure of adsorbed water before and after photodegradation, and (3) the change in the hydrophilicity of tannic acid as a result of this photochemistry. Tannic acid (TA) was chosen as a synthetic proxy for HULIS because it has a defined molecular structure. Photochemical studies were conducted using diffuse reflectance infrared spectroscopy (DRIFTS) as a function of time (3 h), relative humidity (5-30%) and total irradiance (7, 20, 290 W m(-2) at 555 nm). Water adsorption isotherm measurements were recorded before and after photodegradation, which provided information on the structure of interfacial water and the thermodynamics of adsorption. The structure of water adsorbed on TA resembles that of water at the interface with polar organic solvents. Difference spectral data collected during irradiation shows loss features in the 1700-1000 cm(-1) range and growth in carbonyl features that are blue shifted relative to the starting material, suggesting oxidative photodegradation of TA and formation of aryl aldehydes. Under our experimental conditions, we observed no enhancement in water uptake after photodegradation relative to that on unirradiated samples. The implications of our results to the understanding of heterogeneous photochemistry of HULIS and the role of adsorbed water in these reactions are discussed.
Collapse
Affiliation(s)
- Scott Cowen
- Department of Chemistry, University of Guelph, Guelph, Ontario, Canada
| | | |
Collapse
|
38
|
Ignatieva N, Zakharkina O, Andreeva I, Sobol E, Kamensky V, Lunin V. Effects of laser irradiation on collagen organization in chemically induced degenerative annulus fibrosus of lumbar intervertebral disc. Lasers Surg Med 2008; 40:422-32. [PMID: 18649381 DOI: 10.1002/lsm.20651] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND OBJECTIVE The number of in vitro experimental studies was carried out with the use of intact tissues to establish a mechanism of laser-tissue interaction. However, in the process of degeneration, both biochemical composition and behavior of the disc were altered drastically. The objective of this study was to evaluate the role of the main matrix components in laser modification of annulus fibrosus (AF) under IR laser irradiation. STUDY DESIGNS/MATERIALS AND METHODS The samples of AF in a motion segment after hyaluronidase treatment, trypsin digestion and glycation by glyceraldehyde were heated in hydrothermal bath (95 degrees C, 2 min) or irradiated by laser at 1.56 microm. Specimens were imaged by cross-polarization optical coherence tomography (CP-OCT), and then analyzed by differential scanning calorimery (DSC). RESULTS AND DISCUSSION According to CP-OCT and DSC data non-significant alteration was revealed in AF after hyaluronidase treatment, glycation led to stabilization of annulus collagen and trypsin digestion resulted in a noticeable impairment of collagen fibrils. Laser treatment induced subsequent damages of AF matrix but these damages cannot be explained by laser heating only. The specificity of chemical modification of AF matrix has an influence on a character of collagen network alteration due to IR laser effect. Minimal and maximal alterations are observed for hyaluronidase and trypsin treated samples respectively. Glyceraldehyde fixed samples showed failure of the collagen structure after moderate laser treatment; at the same time thermal denaturation of collagen macromolecules was negligible. We assume that a mechanical effect of laser irradiation plays an important role in laser-induced annulus collagen modification and propose the scheme of physico-chemical process occurring under non-uniform IR laser treatment in AF tissue. CONCLUSION CP-OCT and DSC techniques allow us to record the alteration of collagen network organization as a result of chemical modification. There were detected significant and specific effects of the biochemical composition and material properties on the response of AF collagen network on laser irradiation. The results go in accordance with our hypothesis that the primary effect of laser influence on collagen network under tension is the mechanical damage of collagen fiber.
Collapse
Affiliation(s)
- Natalia Ignatieva
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia.
| | | | | | | | | | | |
Collapse
|
39
|
Mitigated calcification of glutaraldehyde-fixed bovine pericardium by tannic acid in rats. Chin Med J (Engl) 2008. [DOI: 10.1097/00029330-200809010-00017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|