1
|
Song W, Zhao L, Gao Y, Han C, Gao S, Guo M, Bai J, Wang L, Yin W, Wu F, Zhang P. Dual growth factor-modified microspheres nesting human-derived umbilical cord mesenchymal stem cells for bone regeneration. J Biol Eng 2023; 17:43. [PMID: 37430290 DOI: 10.1186/s13036-023-00360-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/01/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Modular tissue engineering (MTE) is a novel "bottom-up" approach that aims to mimic complex tissue microstructural features. The constructed micromodules are assembled into engineered biological tissues with repetitive functional microunits and form cellular networks. This is emerging as a promising strategy for reconstruction of biological tissue. RESULTS Herein, we constructed a micromodule for MTE and developed engineered osteon-like microunits by inoculating human-derived umbilical cord mesenchymal stem cells (HUMSCs) onto nHA/PLGA microspheres with surface modification of dual growth factors (BMP2/bFGF). By evaluating the results of proliferation and osteogenic differentiation ability of HUMSCs in vitro, the optimal ratio of the dual growth factor (BMP2/bFGF) combination was derived as 5:5. In vivo assessments showed the great importance of HUMSCs for osteogneic differentiation. Ultimately, direct promotion of early osteo-differentiation manifested as upregulation of Runx-2 gene expression. The vascularization capability was evaluated by tube formation assays, demonstrating the importance of HUMSCs in the microunits for angiogenesis. CONCLUSIONS The modification of growth factors and HUMSCs showed ideal biocompatibility and osteogenesis combined with nHA/PLGA scaffolds. The micromodules constructed in the current study provide an efficient stem cell therapy strategy for bone defect repair.
Collapse
Affiliation(s)
- Wenzhi Song
- Department of Stomatology, China-Japan Union Hospital, Jilin University, Changchun, 130031, PR China
| | - Lanlan Zhao
- Department of Stomatology, China-Japan Union Hospital, Jilin University, Changchun, 130031, PR China
| | - Yuqi Gao
- Department of Stomatology, China-Japan Union Hospital, Jilin University, Changchun, 130031, PR China
| | - Chunyu Han
- Department of Stomatology, China-Japan Union Hospital, Jilin University, Changchun, 130031, PR China
| | - Shengrui Gao
- Department of Otorhinolaryngology, First Clinical Hospital of Jilin University, Changchun, 130021, PR China
| | - Min Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, PR China
| | - Jianfei Bai
- Department of Stomatology, China-Japan Union Hospital, Jilin University, Changchun, 130031, PR China
| | - Liqiang Wang
- Department of Ophthalmology, Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Wanzhong Yin
- Department of Otorhinolaryngology, First Clinical Hospital of Jilin University, Changchun, 130021, PR China.
| | - Feng Wu
- Foshan Hospital of Traditional Chinese Medicine/Foshan Hospital of TCM, Foshan, China.
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, PR China
| |
Collapse
|
2
|
Niu Y, Du T, Liu Y. Biomechanical Characteristics and Analysis Approaches of Bone and Bone Substitute Materials. J Funct Biomater 2023; 14:jfb14040212. [PMID: 37103302 PMCID: PMC10146666 DOI: 10.3390/jfb14040212] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
Bone has a special structure that is both stiff and elastic, and the composition of bone confers it with an exceptional mechanical property. However, bone substitute materials that are made of the same hydroxyapatite (HA) and collagen do not offer the same mechanical properties. It is important for bionic bone preparation to understand the structure of bone and the mineralization process and factors. In this paper, the research on the mineralization of collagen is reviewed in terms of the mechanical properties in recent years. Firstly, the structure and mechanical properties of bone are analyzed, and the differences of bone in different parts are described. Then, different scaffolds for bone repair are suggested considering bone repair sites. Mineralized collagen seems to be a better option for new composite scaffolds. Last, the paper introduces the most common method to prepare mineralized collagen and summarizes the factors influencing collagen mineralization and methods to analyze its mechanical properties. In conclusion, mineralized collagen is thought to be an ideal bone substitute material because it promotes faster development. Among the factors that promote collagen mineralization, more attention should be given to the mechanical loading factors of bone.
Collapse
Affiliation(s)
- Yumiao Niu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Tianming Du
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Youjun Liu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
3
|
Barik A, Kirtania MD. In-Vitro and In-Vivo Tracking of Cell-Biomaterial Interaction to Monitor the Process of Bone Regeneration. Regen Med 2023. [DOI: 10.1007/978-981-19-6008-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
4
|
Toosi S, Naderi-Meshkin H, Esmailzadeh Z, Behravan G, Ramakrishna S, Behravan J. Bioactive glass-collagen/poly (glycolic acid) scaffold nanoparticles exhibit improved biological properties and enhance osteogenic lineage differentiation of mesenchymal stem cells. Front Bioeng Biotechnol 2022; 10:963996. [PMID: 36159698 PMCID: PMC9490118 DOI: 10.3389/fbioe.2022.963996] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Today’s using tissue engineering and suitable scaffolds have got attention to increase healing of non-union bone fractures. In this study, we aimed to prepare and characterize scaffolds with functional and mechanical properties suitable for bone regeneration. Porous scaffolds containing collagen-poly glycolic acid (PGA) blends and various quantities of bioactive glass (BG) 45S5 were fabricated. Scaffolds with different compositions (BG/collagen-PGA ratios (w/w): 0/100; 40/60; 70/30) were characterized for their morphological properties, bioactivity, and mechanical behavior. Then, biocompatibility and osteogenic differentiation potential of the scaffolds were analyzed by seeding mesenchymal stem cells (MSCs). Scaffolds made with collagen-PGA combined with the BG (45S5) were found to have interconnected pores (average pore diameter size 75–115 µm) depending on the percentage of the BG added. Simulated body fluid (SBF) soaking experiments indicated the stability of scaffolds in SBF regardless of their compositions, while the scaffolds retained their highly interconnected structure. The elastic moduli, cell viability, osteogenic differentiation of the BG/collagen-PGA 40/60 and 70/30 scaffolds were superior to the original BG/collagen-PGA (0/100). These results suggest that BG incorporation enhanced the physical stability of our collagen-PGA scaffold previously reported. This new scaffold composition provides a promising platform to be used as a non-toxic scaffold for bone regeneration and tissue engineering.
Collapse
Affiliation(s)
- Shirin Toosi
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- *Correspondence: Shirin Toosi, ; Javad Behravan,
| | - Hojjat Naderi-Meshkin
- Stem Cells and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Mashhad, Iran
| | - Zohreh Esmailzadeh
- Stem Cells and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Mashhad, Iran
| | - Ghazal Behravan
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Javad Behravan
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
- *Correspondence: Shirin Toosi, ; Javad Behravan,
| |
Collapse
|
5
|
Zhou J, Nie Y, Jin C, Zhang JXJ. Engineering Biomimetic Extracellular Matrix with Silica Nanofibers: From 1D Material to 3D Network. ACS Biomater Sci Eng 2022; 8:2258-2280. [PMID: 35377596 DOI: 10.1021/acsbiomaterials.1c01525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biomaterials at nanoscale is a fast-expanding research field with which extensive studies have been conducted on understanding the interactions between cells and their surrounding microenvironments as well as intracellular communications. Among many kinds of nanoscale biomaterials, mesoporous fibrous structures are especially attractive as a promising approach to mimic the natural extracellular matrix (ECM) for cell and tissue research. Silica is a well-studied biocompatible, natural inorganic material that can be synthesized as morpho-genetically active scaffolds by various methods. This review compares silica nanofibers (SNFs) to other ECM materials such as hydrogel, polymers, and decellularized natural ECM, summarizes fabrication techniques for SNFs, and discusses different strategies of constructing ECM using SNFs. In addition, the latest progress on SNFs synthesis and biomimetic ECM substrates fabrication is summarized and highlighted. Lastly, we look at the wide use of SNF-based ECM scaffolds in biological applications, including stem cell regulation, tissue engineering, drug release, and environmental applications.
Collapse
Affiliation(s)
- Junhu Zhou
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Yuan Nie
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Congran Jin
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - John X J Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
6
|
Effect of Cu- and Zn-Doped Bioactive Glasses on the In Vitro Bioactivity, Mechanical and Degradation Behavior of Biodegradable PDLLA Scaffolds. MATERIALS 2020; 13:ma13132908. [PMID: 32610464 PMCID: PMC7372424 DOI: 10.3390/ma13132908] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 11/16/2022]
Abstract
Biodegradable polymer scaffolds filled with bioactive glass particles doped with therapeutic metal ions are a novel and promising strategy to repair critical-sized bone defects. In this study, scaffolds based on a poly (D, L-lactide acid) (PDLLA) matrix filled with un-doped and Cu-, Zn- and CuZn-doped bioactive glass particles were produced by freeze-drying and a salt-leaching method. The effects of the doping and content of the glass particles (10 and 30 wt.%) on the morphology, compression properties, apatite formation, and degradation behavior of the scaffolds were evaluated. The scaffolds presented high porosity (~93%) with pores ranged from 100 to 400 μm interconnected by smaller pores and this porosity was kept after the glass particles incorporation. The glass particles reinforced the polymer scaffolds with improvements as high as 130% in elastic moduli, and further promoted the apatite formation on the scaffold surface, both properties depending on the amount and type of filler. The bioactive glass particles boosted the scaffold degradation with the PDLLA/un-doped glass scaffold showing the highest rate, but still retaining structural and dimensional integrity. Our findings show that the incorporation of un-doped and metal-doped bioactive glasses increases the mechanical strength, promotes the bioactivity and modifies the degradation profile of the resulting polymer/glass scaffolds, making them better candidates for bone repair.
Collapse
|
7
|
Salama AH, Abdelkhalek AA, Elkasabgy NA. Etoricoxib-loaded bio-adhesive hybridized polylactic acid-based nanoparticles as an intra-articular injection for the treatment of osteoarthritis. Int J Pharm 2020; 578:119081. [PMID: 32006623 DOI: 10.1016/j.ijpharm.2020.119081] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/24/2019] [Accepted: 01/22/2020] [Indexed: 12/12/2022]
Abstract
Osteoarthritis is a major problem in elder people. Etoricoxib-loaded bio-adhesive hybridized nanoparticles were prepared using polylactic acid (PLA) and chitosan hydrochloride (CS-HCl) in presence of Captex®200 as a liquid oil, polyvinyl alcohol (PVA) and Tween®80 as surfactants. The study aimed to present a new intra-articular treatment of osteoarthritis with anti-inflammatory as well as bone rebuilding effects. Hybridized nanoparticles were fabricated applying the emulsion solvent evaporation technique then assessed for particle size, zeta potential, entrapment efficiency and in-vitro drug release. Furthermore, FT-IR and DSC in addition to morphological examination were done. Results revealed that the formulation composed of PLA:Captex®200 in ratio 1:2 (w/w), 1%w/v Tween®80, 0.3% w/v CS-HCl and 3%w/v PVA possessed the smallest particle size and the most sustained drug release, thus was sorted for further analyses. The selected formulation ability to interact with the negatively charged sodium fluroscein was evaluated to predict its binding with the naturally occurring hyaluronic acid in the knee joint where promising results were obtained. Results showed the cytocompatibility of the formulation when tested using MC3T3-E1 normal bone cell line, enhanced ALP activity and increased calcium ion deposition and binding. Results suggested that the presented formulation can be considered as an innovative approach for osteoarthritis.
Collapse
Affiliation(s)
- Alaa H Salama
- Department of Pharmaceutical Technology, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Cairo, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Cairo, Egypt
| | - Abdelfattah A Abdelkhalek
- Department of Microbiology of Supplementry General Science, Faculty of Oral & Dental Medicine, Future University in Egypt, Cairo, Egypt
| | - Nermeen A Elkasabgy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, Egypt.
| |
Collapse
|
8
|
Conoscenti G, Carfì Pavia F, Ongaro A, Brucato V, Goegele C, Schwarz S, Boccaccini AR, Stoelzel K, La Carrubba V, Schulze-Tanzil G. Human nasoseptal chondrocytes maintain their differentiated phenotype on PLLA scaffolds produced by thermally induced phase separation and supplemented with bioactive glass 1393. Connect Tissue Res 2019; 60:344-357. [PMID: 30348015 DOI: 10.1080/03008207.2018.1539083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Damage of hyaline cartilage such as nasoseptal cartilage requires proper reconstruction, which remains challenging due to its low intrinsic repair capacity. Implantation of autologous chondrocytes in combination with a biomimetic biomaterial represents a promising strategy to support cartilage repair. Despite so far mostly tested for bone tissue engineering, bioactive glass (BG) could exert stimulatory effects on chondrogenesis. The aim of this work was to produce and characterize composite porous poly(L-lactide) (PLLA)/1393BG scaffolds via thermally induced phase separation (TIPS) technique and assess their effects on chondrogenesis of nasoseptal chondrocytes. The PLLA scaffolds without or with 1, 2.5, 5% BG1393 were prepared via TIPS technique starting from a ternary solution (polymer/solvent/non-solvent) in a single step. Scaffolds were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and differential scanning calorimetric analysis (DSC). Human nasoseptal chondrocytes were seeded on the scaffolds with 1 and 2.5% BG for 7 and 14 days and cell survival, attachment, morphology and expression of SOX9 and cartilage-specific extracellular cartilage matrix (ECM) components were monitored. The majority of chondrocytes survived on all PLLA scaffolds functionalized with BG for the whole culture period. Also inner parts of the scaffold were colonized by chondrocytes synthesizing an ECM which contained glycosaminoglycans. Type II collagen and aggrecan gene expression increased significantly in 1% BG scaffolds during the culture. Chondrocyte protein expression for cartilage ECM proteins indicated that the chondrocytes maintained their differentiated phenotype in the scaffolds. BG could serve as a cytocompatible basis for future scaffold composites for osteochondral cartilage defect repair. Abbreviations: AB: alcian blue ACAN: gene coding for aggrecan; BG: Bioactive glass; 2D: two-dimensional; 3D: three-dimensional; COL2A1: gene coding for type II collagen; DAPI: 4',6-diamidino-2-phenylindole; DMEM: Dulbecco's Modified Eagle's Medium; DMMB: dimethylmethylene blue; DSC: Differential scanning calorimetric analysis; ECM: extracellular matrix; EDTA: ethylenediaminetetraacetic acid; EtBr: ethidium bromide; FCS: fetal calf serum; FDA: fluorescein diacetate; GAG: glycosaminoglycans; HDPE: high density polyethylene; HE: hematoxylin and eosin staining; HCA: hydoxylapatite; PBE: phosphate buffered EDTA100 mM Na2HPO4 and 5 mM EDTA, pH8; PBS: phosphate buffered saline; PFA: paraformaldehyde; PG: proteoglycans; PI: propidium iodide; PLLA: Poly-L-Lactic Acid Scaffold; RT: room temperature; SD: standard deviation; SEM: scanning electron microscopy; sGAG: sulfated glycosaminoglycans; SOX9/Sox9: SRY (sex-determining region Y)-box 9 protein; TBS: TRIS buffered saline; TIPS: Thermally Induced Phase Separation; XRD: X-ray diffraction analysis.
Collapse
Affiliation(s)
- Gioacchino Conoscenti
- a Department of Civil, Environmental, Aerospace, Materials Engineering , Universita' di Palermo , Palermo , Italy
| | - Francesco Carfì Pavia
- a Department of Civil, Environmental, Aerospace, Materials Engineering , Universita' di Palermo , Palermo , Italy
| | - Alfred Ongaro
- a Department of Civil, Environmental, Aerospace, Materials Engineering , Universita' di Palermo , Palermo , Italy
| | - Valerio Brucato
- a Department of Civil, Environmental, Aerospace, Materials Engineering , Universita' di Palermo , Palermo , Italy
| | - Clemens Goegele
- b Institute of Anatomy , Paracelsus Medical University , Nuremberg , Germany
| | - Silke Schwarz
- b Institute of Anatomy , Paracelsus Medical University , Nuremberg , Germany
| | - Aldo R Boccaccini
- c Institute of Biomaterials, Department of Materials Science and Engineering , University of Erlangen-Nuremberg , Erlangen , Germany
| | - Katharina Stoelzel
- d Department of Otorhinolaryngology, Head and Neck Surgery , Charité-Universitätsmedizin Berlin , Berlin , Germany
| | - Vincenzo La Carrubba
- a Department of Civil, Environmental, Aerospace, Materials Engineering , Universita' di Palermo , Palermo , Italy
| | | |
Collapse
|
9
|
Goonoo N, Fahmi A, Jonas U, Gimié F, Arsa IA, Bénard S, Schönherr H, Bhaw-Luximon A. Improved Multicellular Response, Biomimetic Mineralization, Angiogenesis, and Reduced Foreign Body Response of Modified Polydioxanone Scaffolds for Skeletal Tissue Regeneration. ACS APPLIED MATERIALS & INTERFACES 2019; 11:5834-5850. [PMID: 30640432 DOI: 10.1021/acsami.8b19929] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The potential of electrospun polydioxanone (PDX) mats as scaffolds for skeletal tissue regeneration was significantly enhanced through improvement of the cell-mediated biomimetic mineralization and multicellular response. This was achieved by blending PDX ( i) with poly(hydroxybutyrate- co-valerate) (PHBV) in the presence of hydroxyapatite (HA) and ( ii) with aloe vera (AV) extract containing a mixture of acemannan/glucomannan. In an exhaustive study, the behavior of the most relevant cell lines involved in the skeletal tissue healing cascade, i.e. fibroblasts, macrophages, endothelial cells and preosteoblasts, on the scaffolds was investigated. The scaffolds were shown to be nontoxic, to exhibit insignificant inflammatory responses in macrophages, and to be degradable by macrophage-secreted enzymes. As a result of different phase separation in PDX/PHBV/HA and PDX/AV blend mats, cells interacted differentially. Presumably due to varying tension states of cell-matrix interactions, thinner microtubules and significantly more cell adhesion sites and filopodia were formed on PDX/AV compared to PDX/PHBV/HA. While PDX/PHBV/HA supported micrometer-sized spherical particles, nanosized rod-like HA was observed to nucleate and grow on PDX/AV fibers, allowing the mineralized PDX/AV scaffold to retain its porosity over a longer time for cellular infiltration. Finally, PDX/AV exhibited better in vivo biocompatibility compared to PDX/PHBV/HA, as indicated by the reduced fibrous capsule thickness and enhanced blood vessel formation. Overall, PDX/AV blend mats showed a significantly enhanced potential for skeletal tissue regeneration compared to the already promising PDX/PHBV/HA blends.
Collapse
Affiliation(s)
- Nowsheen Goonoo
- Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ) , University of Siegen , 57076 Siegen , Germany
- Biomaterials, Drug Delivery and Nanotechnology Unit, Centre for Biomedical and Biomaterials Research (CBBR) , MSIRI Building, University of Mauritius , 80837 Réduit , Mauritius
| | - Amir Fahmi
- Faculty of Technology and Bionics , Rhine-Waal University of Applied Sciences , Hochschule Rhein-Waal, Marie-Curie-Straße 1 , 47533 Kleve , Germany
| | - Ulrich Jonas
- Macromolecular Chemistry, Department of Chemistry and Biology , University of Siegen , 57076 Siegen , Germany
| | - Fanny Gimié
- Animalerie , Plateforme de recherche CYROI , 2 rue Maxime Rivière , 97490 Sainte Clotilde , Ile de La Réunion , France
| | - Imade Ait Arsa
- Animalerie , Plateforme de recherche CYROI , 2 rue Maxime Rivière , 97490 Sainte Clotilde , Ile de La Réunion , France
| | - Sébastien Bénard
- RIPA , Plateforme de recherche CYROI , 2 rue Maxime Rivière , 97490 Sainte Clotilde , Ile de La Réunion , France
| | - Holger Schönherr
- Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ) , University of Siegen , 57076 Siegen , Germany
| | - Archana Bhaw-Luximon
- Biomaterials, Drug Delivery and Nanotechnology Unit, Centre for Biomedical and Biomaterials Research (CBBR) , MSIRI Building, University of Mauritius , 80837 Réduit , Mauritius
| |
Collapse
|
10
|
Gritsch L, Conoscenti G, La Carrubba V, Nooeaid P, Boccaccini AR. Polylactide-based materials science strategies to improve tissue-material interface without the use of growth factors or other biological molecules. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 94:1083-1101. [DOI: 10.1016/j.msec.2018.09.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 08/14/2018] [Accepted: 09/11/2018] [Indexed: 01/11/2023]
|
11
|
Rizwan M, Hamdi M, Basirun WJ. Bioglass® 45S5-based composites for bone tissue engineering and functional applications. J Biomed Mater Res A 2017; 105:3197-3223. [DOI: 10.1002/jbm.a.36156] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/02/2017] [Accepted: 07/03/2017] [Indexed: 12/13/2022]
Affiliation(s)
- M. Rizwan
- Department of Mechanical Engineering; Faculty of Engineering, University of Malaya; Kuala Lumpur 50603 Malaysia
- Department of Metallurgical Engineering; Faculty of Chemical and Process Engineering, NED University of Engineering and Technology; Karachi 75270 Pakistan
| | - M. Hamdi
- Center of Advanced Manufacturing and Material Processing, University of Malaya; Kuala Lumpur 50603 Malaysia
| | - W. J. Basirun
- Department of Chemistry; Faculty of Science, University of Malaya; Kuala Lumpur 50603 Malaysia
| |
Collapse
|
12
|
Macha IJ, Ben-Nissan B, Santos J, Cazalbou S, Stamboulis A, Grossin D, Giordano G. Biocompatibility of a new biodegradable polymer-hydroxyapatite composite for biomedical applications. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.01.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Fiocco L, Li S, Stevens M, Bernardo E, Jones J. Biocompatibility and bioactivity of porous polymer-derived Ca-Mg silicate ceramics. Acta Biomater 2017; 50:56-67. [PMID: 28017870 DOI: 10.1016/j.actbio.2016.12.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/06/2016] [Accepted: 12/21/2016] [Indexed: 10/20/2022]
Abstract
Magnesium is a trace element in the human body, known to have important effects on cell differentiation and the mineralisation of calcified tissues. This study aimed to synthesise highly porous Ca-Mg silicate foamed scaffolds from preceramic polymers, with analysis of their biological response. Akermanite (Ak) and wollastonite-diopside (WD) ceramic foams were obtained from the pyrolysis of a liquid silicone mixed with reactive fillers. The porous structure was obtained by controlled water release from selected fillers (magnesium hydroxide and borax) at 350°C. The homogeneous distribution of open pores, with interconnects of modal diameters of 160-180μm was obtained and maintained after firing at 1100°C. Foams, with porosity exceeding 80%, exhibited compressive strength values of 1-2MPa. In vitro studies were conducted by immersion in SBF for 21days, showing suitable dissolution rates, pH and ionic concentrations. Cytotoxicity analysis performed in accordance with ISO10993-5 and ISO10993-12 standards confirmed excellent biocompatibility of both Ak and WD foams. In addition, MC3T3-E1 cells cultured on the Mg-containing scaffolds demonstrated enhanced osteogenic differentiation and the expression of osteogenic markers including Collagen Type I, Osteopontin and Osteocalcin, in comparison to Mg-free counterparts. The results suggest that the addition of magnesium can further enhance the bioactivity and the potential for bone regeneration applications of Ca-silicate materials. STATEMENTS OF SIGNIFICANCE Here, we show that the incorporation of Mg in Ca-silicates plays a significant role in the enhancement of the osteogenic differentiation and matrix formation of MC3T3-E1 cells, cultured on polymer-derived highly porous scaffolds. Reduced degradation rates and improved mechanical properties are also observed, compared to Mg-free counterparts, suggesting the great potential of Ca-Mg silicates as bone tissue engineering materials. Excellent biocompatibility of the new materials, in accordance to the ISO10993-5 and ISO10993-12 standard guidelines, confirms the preceramic polymer route as an efficient synthesis methodology for bone scaffolds. The use of hydrated fillers as porogens is an additional novelty feature presented in the manuscript.
Collapse
|
14
|
Tajbakhsh S, Hajiali F. A comprehensive study on the fabrication and properties of biocomposites of poly(lactic acid)/ceramics for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:897-912. [DOI: 10.1016/j.msec.2016.09.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 08/27/2016] [Accepted: 09/06/2016] [Indexed: 12/22/2022]
|
15
|
Bejarano J, Detsch R, Boccaccini AR, Palza H. PDLLA scaffolds with Cu- and Zn-doped bioactive glasses having multifunctional properties for bone regeneration. J Biomed Mater Res A 2016; 105:746-756. [PMID: 27784135 DOI: 10.1002/jbm.a.35952] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/24/2016] [Accepted: 10/25/2016] [Indexed: 02/02/2023]
Abstract
Novel multifunctional scaffolds for bone regeneration can be developed by incorporation of bioactive glasses (BG) doped with therapeutic and antibacterial metal ions, such as copper (Cu) and zinc (Zn), into a biodegradable polymer. In this context, porous composite materials of biodegradable poly(d, l-lactide) (PDLLA) mixed with sol-gel BG of chemical composition 60SiO2 ; 25CaO; 11Na2 O; and 4P2 O5 (mol %) doped with either 1 mol % of CuO or ZnO, and with both metals, were prepared. The cytocompatibility of the scaffolds on bone marrow stromal cells (ST-2) depended on both, the amount of glass filler and the concentration of metal ion, as evaluated by lactate dehydrogenase (LDH) activity, cell viability (water-soluble tetrazolium salt [WST-8]), and by cell morphology (scanning electron microscopy [SEM]) tests. In particular, scaffolds having a filler content of 10 wt % showed the highest cytocompatibility. In addition, compared to the neat polymer, the scaffolds containing Cu promoted the angiogenesis marker (Vascular endothelial growth factor concentration) to a larger extent while scaffolds containing Zn increased the osteogenesis marker (specific alkaline phosphatase-activity). Noteworthy, the scaffolds with both metal ions showed a combined effect on both properties. Cu- and Zn-doped glasses also provided higher antibacterial capacity to PDLLA-based scaffolds against methicillin-resistant S. aureus bacteria than undoped glass. In combination, our results showed that by a proper addition of Cu- and Zn-doped BG to a PDLLA matrix, multifunctional composite scaffolds with enhanced biological activity can be designed for bone tissue regeneration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 746-756, 2017.
Collapse
Affiliation(s)
- Julian Bejarano
- Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Beauchef 850, Santiago, Chile
| | - Rainer Detsch
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen, 91058, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen, 91058, Germany
| | - Humberto Palza
- Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Beauchef 850, Santiago, Chile
| |
Collapse
|
16
|
Clarke SA, Choi SY, McKechnie M, Burke G, Dunne N, Walker G, Cunningham E, Buchanan F. Osteogenic cell response to 3-D hydroxyapatite scaffolds developed via replication of natural marine sponges. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:22. [PMID: 26704539 PMCID: PMC4690835 DOI: 10.1007/s10856-015-5630-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/13/2015] [Indexed: 06/05/2023]
Abstract
Bone tissue engineering may provide an alternative to autograft, however scaffold optimisation is required to maximize bone ingrowth. In designing scaffolds, pore architecture is important and there is evidence that cells prefer a degree of non-uniformity. The aim of this study was to compare scaffolds derived from a natural porous marine sponge (Spongia agaricina) with unique architecture to those derived from a synthetic polyurethane foam. Hydroxyapatite scaffolds of 1 cm(3) were prepared via ceramic infiltration of a marine sponge and a polyurethane (PU) foam. Human foetal osteoblasts (hFOB) were seeded at 1 × 10(5) cells/scaffold for up to 14 days. Cytotoxicity, cell number, morphology and differentiation were investigated. PU-derived scaffolds had 84-91% porosity and 99.99% pore interconnectivity. In comparison marine sponge-derived scaffolds had 56-61% porosity and 99.9% pore interconnectivity. hFOB studies showed that a greater number of cells were found on marine sponge-derived scaffolds at than on the PU scaffold but there was no significant difference in cell differentiation. X-ray diffraction and inductively coupled plasma mass spectrometry showed that Si ions were released from the marine-derived scaffold. In summary, three dimensional porous constructs have been manufactured that support cell attachment, proliferation and differentiation but significantly more cells were seen on marine-derived scaffolds. This could be due both to the chemistry and pore architecture of the scaffolds with an additional biological stimulus from presence of Si ions. Further in vivo tests in orthotopic models are required but this marine-derived scaffold shows promise for applications in bone tissue engineering.
Collapse
Affiliation(s)
- S A Clarke
- School of Nursing and Midwifery, Queen's University of Belfast, Medical Biology Centre, 97, Lisburn Road, Belfast, BT9 7BL, UK.
| | - S Y Choi
- School of Mechanical and Aerospace Engineering, Queen's University of Belfast, Ashby Building, 121 Stranmillis Road, Belfast, BT9 5AH, UK
| | - Melanie McKechnie
- School of Biological Sciences, Queen's University of Belfast, Medical Biology Centre, 97, Lisburn Road, Belfast, BT9 7BL, UK
| | - G Burke
- Engineering Research Institute, School of Engineering, Ulster University, Jordanstown Campus, Shore Rd, Newtownabbey, BT37 0QB, UK
| | - N Dunne
- School of Mechanical and Aerospace Engineering, Queen's University of Belfast, Ashby Building, 121 Stranmillis Road, Belfast, BT9 5AH, UK
- School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, Dublin, 9, Ireland
| | - G Walker
- School of Mechanical and Aerospace Engineering, Queen's University of Belfast, Ashby Building, 121 Stranmillis Road, Belfast, BT9 5AH, UK
| | - E Cunningham
- School of Mechanical and Aerospace Engineering, Queen's University of Belfast, Ashby Building, 121 Stranmillis Road, Belfast, BT9 5AH, UK
| | - F Buchanan
- School of Mechanical and Aerospace Engineering, Queen's University of Belfast, Ashby Building, 121 Stranmillis Road, Belfast, BT9 5AH, UK
| |
Collapse
|
17
|
Zahid S, Shah AT, Jamal A, Chaudhry AA, Khan AS, Khan AF, Muhammad N, Rehman IU. Biological behavior of bioactive glasses and their composites. RSC Adv 2016. [DOI: 10.1039/c6ra07819b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
This review summarizes current developments in improving the biological behavior of bioactive glasse and their composites.
Collapse
Affiliation(s)
- Saba Zahid
- Interdisciplinary Research Centre in Biomedical Materials
- COMSATS Institute of Information Technology
- Lahore
- Pakistan
| | - Asma Tufail Shah
- Interdisciplinary Research Centre in Biomedical Materials
- COMSATS Institute of Information Technology
- Lahore
- Pakistan
| | - Arshad Jamal
- Interdisciplinary Research Centre in Biomedical Materials
- COMSATS Institute of Information Technology
- Lahore
- Pakistan
| | - Aqif Anwar Chaudhry
- Interdisciplinary Research Centre in Biomedical Materials
- COMSATS Institute of Information Technology
- Lahore
- Pakistan
| | - Abdul Samad Khan
- Interdisciplinary Research Centre in Biomedical Materials
- COMSATS Institute of Information Technology
- Lahore
- Pakistan
| | - Ather Farooq Khan
- Interdisciplinary Research Centre in Biomedical Materials
- COMSATS Institute of Information Technology
- Lahore
- Pakistan
| | - Nawshad Muhammad
- Interdisciplinary Research Centre in Biomedical Materials
- COMSATS Institute of Information Technology
- Lahore
- Pakistan
| | - Ihtesham ur Rehman
- Department of Material Science and Engineering
- The Kroto Research Institute
- University of Sheffield
- Sheffield S3 7HQ
- UK
| |
Collapse
|
18
|
Vergnol G, Ginsac N, Rivory P, Meille S, Chenal JM, Balvay S, Chevalier J, Hartmann DJ. In vitro and in vivo evaluation of a polylactic acid-bioactive glass composite for bone fixation devices. J Biomed Mater Res B Appl Biomater 2015; 104:180-91. [PMID: 25677798 DOI: 10.1002/jbm.b.33364] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 10/31/2014] [Accepted: 12/09/2014] [Indexed: 11/07/2022]
Abstract
Poly(lactic acid) is nowadays among the most used bioabsorbable materials for medical devices. To promote bone growth on the material surface and increase the degradation rate of the polymer, research is currently focused on organic-inorganic composites by adding a bioactive mineral to the polymer matrix. The purpose of this study was to investigate the ability of a poly(L,DL-lactide)-Bioglass® (P(L,DL)LA-Bioglass(®) 45S5) composite to be used as a bone fixation device. In vitro cell viability testing of P(l,dl)LA based composites containing different amounts of Bioglass(®) 45S5 particles was investigated. According to the degradation rate of the P(L,DL)LA matrix and the cytocompatibility experiments, the composite with 30 wt % of Bioglass® particles seemed to be the best candidate for further investigation. To study its behavior after immersion in simulated physiological conditions, the degradation of the composite was analyzed by measuring its weight loss and mechanical properties and by proceeding with X-ray tomography. We demonstrated that the presence of the bioactive glass significantly accelerated the in vitro degradation of the polymer. A preliminary in vivo investigation on rabbits shows that the addition of 30 wt % of Bioglass(®) in the P(L,DL)LA matrix seems to trigger bone osseointegration especially during the first month of implantation. This composite has thus strong potential interest for health applications.
Collapse
Affiliation(s)
- Gwenaelle Vergnol
- Université de Lyon, CNRS, Villeurbanne, France.,Université Claude Bernard Lyon1, MATEIS UMR5510, F-69373, Lyon 8, France
| | - Nathalie Ginsac
- Université de Lyon, CNRS, Villeurbanne, France.,INSA-Lyon, MATEIS UMR5510, F-69621, Villeurbanne, France
| | - Pascaline Rivory
- Université de Lyon, CNRS, Villeurbanne, France.,Université Claude Bernard Lyon1, MATEIS UMR5510, F-69373, Lyon 8, France
| | - Sylvain Meille
- Université de Lyon, CNRS, Villeurbanne, France.,INSA-Lyon, MATEIS UMR5510, F-69621, Villeurbanne, France
| | - Jean-Marc Chenal
- Université de Lyon, CNRS, Villeurbanne, France.,INSA-Lyon, MATEIS UMR5510, F-69621, Villeurbanne, France
| | - Sandra Balvay
- Université de Lyon, CNRS, Villeurbanne, France.,Université Claude Bernard Lyon1, MATEIS UMR5510, F-69373, Lyon 8, France
| | - Jérôme Chevalier
- Université de Lyon, CNRS, Villeurbanne, France.,INSA-Lyon, MATEIS UMR5510, F-69621, Villeurbanne, France.,Institut Universitaire de France, 103 bd Saint Michel, F-75005, Paris, France
| | - Daniel J Hartmann
- Université de Lyon, CNRS, Villeurbanne, France.,Université Claude Bernard Lyon1, MATEIS UMR5510, F-69373, Lyon 8, France
| |
Collapse
|
19
|
Sarker B, Hum J, Nazhat SN, Boccaccini AR. Combining collagen and bioactive glasses for bone tissue engineering: a review. Adv Healthc Mater 2015; 4:176-94. [PMID: 25116596 DOI: 10.1002/adhm.201400302] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/07/2014] [Indexed: 01/07/2023]
Abstract
Collagen (COL), the most abundant protein in mammals, offers a wide range of attractive properties for biomedical applications which are the result of its biocompatibility and high affinity to water. However, due to the relative low mechanical properties of COL its applications are still limited. To tackle this disadvantage of COL, especially in the field of bone tissue engineering, COL can be combined with bioactive inorganic materials in a variety of composite systems. One of such systems is the collagen-bioactive glass (COL-BG) composite family, which is the theme of this Review. BG fillers can increase compressive strength and stiffness of COL-based structures. This article reviews the relevant literature published in the last 15 years discussing the fabrication of a variety of COL-BG composites. In vitro cell studies have demonstrated the osteogenic, odontogenic, and angiogenic potential of these composite systems, which has been confirmed by stimulating specific biochemical indicators of relevant cells. Bony integration and connective tissue vessel formation have also been studied by implantation of the composites in vivo. Areas of future research in the field of COL-BG systems, based on current challenges, and gaps in knowledge are highlighted.
Collapse
Affiliation(s)
- Bapi Sarker
- Institute of Biomaterials; Department of Materials Science and Engineering; University of Erlangen-Nuremberg; Cauerstrasse 6 91058 Erlangen Germany
| | - Jasmin Hum
- Institute of Biomaterials; Department of Materials Science and Engineering; University of Erlangen-Nuremberg; Cauerstrasse 6 91058 Erlangen Germany
| | - Showan N. Nazhat
- Department of Mining and Materials Engineering; McGill University; Montreal QC H3A 0C5 Canada
| | - Aldo R. Boccaccini
- Institute of Biomaterials; Department of Materials Science and Engineering; University of Erlangen-Nuremberg; Cauerstrasse 6 91058 Erlangen Germany
| |
Collapse
|
20
|
Chen X, Zhao Y, Geng S, Miron RJ, Zhang Q, Wu C, Zhang Y. In vivo experimental study on bone regeneration in critical bone defects using PIB nanogels/boron-containing mesoporous bioactive glass composite scaffold. Int J Nanomedicine 2015; 10:839-46. [PMID: 25653525 PMCID: PMC4309792 DOI: 10.2147/ijn.s69001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
PURPOSE In the present study, the fabrication of novel p(N-isopropylacrylamide-co-butyl methylacrylate) (PIB) nanogels was combined with boron-containing mesoporous bioactive glass (B-MBG) scaffolds in order to improve the mechanical properties of PIB nanogels alone. Scaffolds were tested for mechanical strength and the ability to promote new bone formation in vivo. PATIENTS AND METHODS To evaluate the potential of each scaffold in bone regeneration, ovariectomized rats were chosen as a study model to determine the ability of PIB nanogels to stimulate bone formation in a complicated anatomical bone defect. PIB nanogels and PIB nanogels/B-MBG composites were respectively implanted into ovariectomized rats with critical-sized femur defects following treatment periods of 2, 4, and 8 weeks post-implantation. RESULTS Results from the present study demonstrate that PIB nanogels/B-MBG composites showed greater improvement in mechanical strength when compared to PIB nanogels alone. In vivo, hematoxylin and eosin staining revealed significantly more newly formed bone in defects containing PIB nanogels/B-MBG composite scaffolds when compared to PIB nanogels alone. Tartrate-resistant acid phosphatase-positive staining demonstrated that both scaffolds were degraded over time and bone remodeling occurred in the surrounding bone defect as early as 4 weeks post-implantation. CONCLUSION The results from the present study indicate that PIB nanogels are a potential bone tissue engineering biomaterial able to treat defects of irregular shapes and deformities as an injectable, thermoresponsive, biocompatible hydrogel which undergoes rapid thermal gelation once body temperature is reached. Furthermore, its combination with B-MBG scaffolds improves the mechanical properties and ability to promote new bone formation when compared to PIB nanogels alone.
Collapse
Affiliation(s)
- Xiaohui Chen
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, People's Republic of China ; Department of Dental Implantology, School and Hospital of Stomatology, Wuhan University, People's Republic of China
| | - Yanbing Zhao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Shinan Geng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Richard J Miron
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, People's Republic of China
| | - Qiao Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, People's Republic of China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Yufeng Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, People's Republic of China ; Department of Dental Implantology, School and Hospital of Stomatology, Wuhan University, People's Republic of China
| |
Collapse
|
21
|
Li K, Sun H, Sui H, Zhang Y, Liang H, Wu X, Zhao Q. Composite mesoporous silica nanoparticle/chitosan nanofibers for bone tissue engineering. RSC Adv 2015. [DOI: 10.1039/c4ra15232h] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel MSN/CTS composite nanofibrous scaffold shows improved mechanical properties and enhances the attachment, proliferation and biomineralization of osteoblasts.
Collapse
Affiliation(s)
- Kai Li
- Department of orthopaedics
- Shanghai First People's Hospital
- School of Medicine
- Shanghai Jiao Tong University
- Shanghai 200080
| | - Hailang Sun
- Department of Orthopaedics
- Huai'an First people's hospital
- Nanjing Medical University
- Huai'an 223300
- P. R. China
| | - Haitao Sui
- Department of Orthopaedics
- Dongying people's hospital
- Dongying
- P. R. China
| | - Yongxing Zhang
- Department of orthopaedics
- Shanghai First People's Hospital
- School of Medicine
- Shanghai Jiao Tong University
- Shanghai 200080
| | - He Liang
- Department of orthopaedics
- Shanghai First People's Hospital
- School of Medicine
- Shanghai Jiao Tong University
- Shanghai 200080
| | - Xiaofeng Wu
- Department of orthopaedics
- Shanghai First People's Hospital
- School of Medicine
- Shanghai Jiao Tong University
- Shanghai 200080
| | - Qinghua Zhao
- Department of orthopaedics
- Shanghai First People's Hospital
- School of Medicine
- Shanghai Jiao Tong University
- Shanghai 200080
| |
Collapse
|
22
|
Pathak R, . A, Tamilmahan P, Dhama K, Sharma N. Evaluation of in vitro Efficacy of Vitamin D3 on the Osteogenic Differentiation and Mineralization Capabilities of Fetal and Adult Osteoblasts of Rabbit Reflects Therapeutic Potential. INT J PHARMACOL 2014. [DOI: 10.3923/ijp.2014.440.450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Electrospun gelatin/poly(ε-caprolactone) fibrous scaffold modified with calcium phosphate for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 44:183-90. [DOI: 10.1016/j.msec.2014.08.017] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 06/17/2014] [Accepted: 08/03/2014] [Indexed: 01/08/2023]
|
24
|
Lu W, Ji K, Kirkham J, Yan Y, Boccaccini AR, Kellett M, Jin Y, Yang XB. Bone tissue engineering by using a combination of polymer/Bioglass composites with human adipose-derived stem cells. Cell Tissue Res 2014; 356:97-107. [PMID: 24408074 DOI: 10.1007/s00441-013-1770-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 11/11/2013] [Indexed: 12/27/2022]
Abstract
Translational research in bone tissue engineering is essential for "bench to bedside" patient benefit. However, the ideal combination of stem cells and biomaterial scaffolds for bone repair/regeneration is still unclear. The aim of this study is to investigate the osteogenic capacity of a combination of poly(DL-lactic acid) (PDLLA) porous foams containing 5 wt% and 40 wt% of Bioglass particles with human adipose-derived stem cells (ADSCs) in vitro and in vivo. Live/dead fluorescent markers, confocal microscopy and scanning electron microscopy showed that PDLLA/Bioglass porous scaffolds supported ADSC attachment, growth and osteogenic differentiation, as confirmed by enhanced alkaline phosphatase (ALP) activity. Higher Bioglass content of the PDLLA foams increased ALP activity compared with the PDLLA only group. Extracellular matrix deposition after 8 weeks in the in vitro cultures was evident by Alcian blue/Sirius red staining. In vivo bone formation was assessed by using scaffold/ADSC constructs in diffusion chambers transplanted intraperitoneally into nude mice and recovered after 8 weeks. Histological and immunohistochemical assays indicated significant new bone formation in the 40 wt% and 5 wt% Bioglass constructs compared with the PDLLA only group. Thus, the combination of a well-developed biodegradable bioactive porous PDLLA/Bioglass composite scaffold with a high-potential stem cell source (human ADSCs) could be a promising approach for bone regeneration in a clinical setting.
Collapse
Affiliation(s)
- Wei Lu
- Research and Development Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, Shaanxi, 710032, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Hatakeyama W, Taira M, Chosa N, Kihara H, Ishisaki A, Kondo H. Effects of apatite particle size in two apatite/collagen composites on the osteogenic differentiation profile of osteoblastic cells. Int J Mol Med 2013; 32:1255-61. [PMID: 24100550 PMCID: PMC3829770 DOI: 10.3892/ijmm.2013.1516] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 09/25/2013] [Indexed: 01/15/2023] Open
Abstract
The development of new osteoconductive bone substitute materials is expected in medicine. In this study, we attempted to produce new hydroxylapatite (HAP)/collagen (Col) composites using two HAP particles of different sizes and porcine type I collagen. The two HAP particles were either nano-sized (40 nm in average diameter; n-HAP) or had macro-pore sizes of 0.5–1.0 mm in length with fully interconnected pores (m-HAP). The aim of this study was to investigate the effects of apatite particle size in two HAP/Col composites on the osteogenic differentiation profile in osteoblast-like cells (SaOS-2). We created a collagen control sponge (Col) and two HAP/Col composite sponges (n-HAP/Col and m-HAP/Col) using freeze-drying and dehydrothermal cross-linking techniques, and then punched out samples of 6 mm in diameter and 1 mm in height. The SaOS-2 cells were cultured on three test materials for 1, 2, 3 and 4 weeks. Total RNA was extracted from the cultured cells and the expression of osteogenic differentiation-related genes was evaluated by reverse transcription PCR (RT-PCR) using primer sets of alkaline phosphatase (ALP), type 1 collagen (COL1), bone sialoprotein (BSP) and osteocalcin precursor [bone gamma-carboxyglutamate (gla) protein (BGLAP)] genes, as well as the β-actin gene. The cells were also cultured on Col, n-HAP/Col and m-HAP/Col specimens for 1 and 4 weeks, and were then observed under a scanning electron microscope (SEM). The experimental results were as follows: RT-PCR indicated that osteogenic differentiation, particularly the gene expression of BSP, was most accelerated when the cells were cultured on n-HAP/Col specimens, followed by m-HAP/Col, whilst the weakest accelaeration was observed when the cells were cultured on Col specimens. As shown by the SEM images, the SaOS-2 cells were fibroblastic when cultured on Col specimens for up to 4 weeks; they were fibroblastic when cultured on n-HAP/Col specimens for 1 week, but appeared as spheroids, while actively phagocytizing n-HAP particles at 4 weeks; however, they appeared as deformed fibroblasts when cultured on m-HAP/Col specimens, detached from the particles. Despite limited experimental results, our study suggests that n-HAP/Col may be employed as a new osteoconductive bone substitute material.
Collapse
Affiliation(s)
- Wataru Hatakeyama
- Department of Prosthodontics and Oral Implantology, Iwate Medical University School of Dentistry, Morioka, Iwate 020-8505, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Ravichandran R, Gandhi S, Sundaramurthi D, Sethuraman S, Krishnan UM. Hierarchical mesoporous silica nanofibers as multifunctional scaffolds for bone tissue regeneration. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2013; 24:1988-2005. [DOI: 10.1080/09205063.2013.816930] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ranjithkumar Ravichandran
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Chemical & Biotechnology, SASTRA University, Thanjavur, 613 401, Tamilnadu, India
| | - Sakthivel Gandhi
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Chemical & Biotechnology, SASTRA University, Thanjavur, 613 401, Tamilnadu, India
| | - Dhakshinamoorthy Sundaramurthi
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Chemical & Biotechnology, SASTRA University, Thanjavur, 613 401, Tamilnadu, India
| | - Swaminathan Sethuraman
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Chemical & Biotechnology, SASTRA University, Thanjavur, 613 401, Tamilnadu, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Chemical & Biotechnology, SASTRA University, Thanjavur, 613 401, Tamilnadu, India
| |
Collapse
|
27
|
Saiz E, Zimmermann EA, Lee JS, Wegst UG, Tomsia AP. Perspectives on the role of nanotechnology in bone tissue engineering. Dent Mater 2013; 29:103-15. [PMID: 22901861 PMCID: PMC3638810 DOI: 10.1016/j.dental.2012.08.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 07/28/2012] [Accepted: 08/01/2012] [Indexed: 12/13/2022]
Abstract
OBJECTIVE This review surveys new developments in bone tissue engineering, specifically focusing on the promising role of nanotechnology and describes future avenues of research. METHODS The review first reinforces the need to fabricate scaffolds with multi-dimensional hierarchies for improved mechanical integrity. Next, new advances to promote bioactivity by manipulating the nanolevel internal surfaces of scaffolds are examined followed by an evaluation of techniques using scaffolds as a vehicle for local drug delivery to promote bone regeneration/integration and methods of seeding cells into the scaffold. RESULTS Through a review of the state of the field, critical questions are posed to guide future research toward producing materials and therapies to bring state-of-the-art technology to clinical settings. SIGNIFICANCE The development of scaffolds for bone regeneration requires a material able to promote rapid bone formation while possessing sufficient strength to prevent fracture under physiological loads. Success in simultaneously achieving mechanical integrity and sufficient bioactivity with a single material has been limited. However, the use of new tools to manipulate and characterize matter down to the nano-scale may enable a new generation of bone scaffolds that will surpass the performance of autologous bone implants.
Collapse
Affiliation(s)
- Eduardo Saiz
- Center for Advanced Structural Ceramics, Department of Materials, Imperial College London, Exhibition Road, London, SW7 2AZ UK
| | - Elizabeth A. Zimmermann
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
| | - Janice S. Lee
- Department of Oral & Maxillofacial Surgery, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143 USA
| | - Ulrike G.K. Wegst
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
| | - Antoni P. Tomsia
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
| |
Collapse
|
28
|
Luz GM, Mano JF. Chitosan/bioactive glass nanoparticles composites for biomedical applications. Biomed Mater 2012; 7:054104. [DOI: 10.1088/1748-6041/7/5/054104] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Gerhardt LC, Widdows KL, Erol MM, Nandakumar A, Roqan IS, Ansari T, Boccaccini AR. Neocellularization and neovascularization of nanosized bioactive glass-coated decellularized trabecular bone scaffolds. J Biomed Mater Res A 2012; 101:827-41. [PMID: 22968899 DOI: 10.1002/jbm.a.34373] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 06/02/2012] [Accepted: 07/02/2012] [Indexed: 11/07/2022]
Abstract
In this study, the in vivo recellularization and neovascularization of nanosized bioactive glass (n-BG)-coated decellularized trabecular bone scaffolds were studied in a rat model and quantified using stereological analyses. Based on the highest amount of vascular endothelial growth factor (VEGF) secreted by human fibroblasts grown on n-BG coatings (0-1.245 mg/cm(2)), decellularized trabecular bone samples (porosity: 43-81%) were coated with n-BG particles. Grown on n-BG particles at a coating density of 0.263 mg/cm(2), human fibroblasts produced 4.3 times more VEGF than on uncoated controls. After 8 weeks of implantation in Sprague-Dawley rats, both uncoated and n-BG-coated samples were well infiltrated with newly formed tissue (47-48%) and blood vessels (3-4%). No significant differences were found in cellularization and vascularization between uncoated bone scaffolds and n-BG-coated scaffolds. This finding indicates that the decellularized bone itself may exhibit growth-promoting properties induced by the highly interconnected pore microarchitecture and/or proteins left behind on decellularized scaffolds. Even if we did not find proangiogenic effects in n-BG-coated bone scaffolds, a bioactive coating is considered to be beneficial to impart osteoinductive and osteoconductive properties to decellularized bone. n-BG-coated bone grafts have thus high clinical potential for the regeneration of complex tissue defects given their ability for recellularization and neovascularization.
Collapse
Affiliation(s)
- L-C Gerhardt
- Department of Materials, Imperial College London, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
30
|
Zhou Y, Li H, Lin K, Zhai W, Gu W, Chang J. Effect of heat treatment on the properties of SiO2-CaO-MgO-P 2O 5 bioactive glasses. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:2101-2108. [PMID: 22699712 DOI: 10.1007/s10856-012-4699-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 05/29/2012] [Indexed: 06/01/2023]
Abstract
Since the invention of 45S5 Bioglass, researchers never stopped exploring new generation bioactive glass (BG) materials for wider applications in regenerative medicine, among which a novel SiO(2)-CaO-MgO-P(2)O(5) bioactive glass (BG20) is an excellent candidate. However, apart from their biocompatibility and bioactivity, a porous structure is also a must for a tissue engineering scaffold in successfully fixing bone defect. The porosity is the outcome of the high temperature (500-1,000 °C) treatment in the fabricating process of the bioglass scaffold. Under the high temperature, the amorphous glass material will become crystallized at certain percentage in the glass matrix, and possibly leading to consequent changes in the mechanical strength, biodegradability and bioactivity. To elucidate the effect of phase transition on the change of the properties of BG20, the experiments in this report were designed to fine-tuning the heat treating temperatures to fabricate a series of BG20 powders with different crystallization structures. X-ray diffraction revealed a positive correlation between the heating temperature and the crystallization, as well as the compressive strength of the materials. In vitro degradation and ion analysis by ICP-AES demonstrated a similar releasing behavior of different ions including Mg(2+), Ca(2+) and Si(4+), which in common is the tendency of decreasing of the ion concentration along with the increasing of the treating temperature. Cell proliferation assay using both mouse fibroblasts (NIH3T3) and bone marrow stromal cells (BMSCs) showed little toxicity of the ionic extract of the BG20 powders at all the treating temperatures, while fibroblasts demonstrated a significant promoting in the percentage of proliferation. Furthermore, reverse-transcription and polymerase chain reaction analysis on two representative marker genes for early osteogenesis and endochondral ossification, respectively, type I collagen alpha 1 and Indian Hedge-hog, showed an interesting induction of both genes over their basal levels by the treatment of the ionic extract of BG20, implying its important capability in regulating the fate of differentiation of the BMSCs as a novel biomaterial in bone tissue engineering.
Collapse
Affiliation(s)
- Yue Zhou
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, People's Republic of China
| | | | | | | | | | | |
Collapse
|
31
|
Chang SJ, Kuo SM, Lan CW, Manousakas I, Tsai PH. EVALUATION OF CHITOSAN/CaSO4/PLATELET-RICH PLASMA MICROSPHERE COMPOSITES AS ALVEOLUS OSTEOGENESIS MATERIAL. BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS 2012. [DOI: 10.4015/s101623720900112x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Periodontal disease is the manifestation of serious bacteria infection that may extend to the gingival, periodontal ligaments, and alveolus bone. One commonly administrated treatment is the debridement therapy with the removal of infected area including the soft and hard lesion tissues. In some critical case, osteogenetic materials are being filled into the defective voids to improve the regeneration of slow-growing bony tissues. In attempt to improve bone regeneration, chitosan microsphere composites embedded with two osteogenesis beneficial ingredients, CaSO 4 and platelet-rich plasma (PRP), were fabricated by using a high voltage electrostatic field system. Three groups, chitosan/ CaSO 4 microspheres (Group A), chitosan/ CaSO 4 microspheres mixed with thrombin (Group B), and chitosan/ CaSO 4/PRP microspheres mixed with thrombin (Group C) were prepared. And, these chitosan-based composites were evaluated together with a control group in pig oral model for the bone regeneration study. The chitosan/ CaSO 4/PRP microsphere composites, exhibiting good sphericity, were in the range of 457.5 ± 59.3 μ m in diameter. Defects filled with Group B and Group C showed increases in new bone formation along with fibrous tissue regeneration as compared to that filled with Group A. The Masson's Trichrome stain observations suggested more abundant presence of fibrous collagen matrices around the defects after implanted with Group B over that of Group C microsphere composites. The preparation of chitosan/ CaSO 4-based microspheres was straight forward by using high voltage electrostatic field system. Furthermore, Chitosan/ CaSO 4-based microspheres with thrombin could be used successfully in regenerating new bone around the alveolus bone area.
Collapse
Affiliation(s)
- Shwu Jen Chang
- Department of Biomedical Engineering, I-SHOU University, Kaohsiung County, Taiwan
| | - Shyh Ming Kuo
- Department of Biomedical Engineering, I-SHOU University, Kaohsiung County, Taiwan
| | - Cheng-Wen Lan
- Department of Biomedical Engineering, I-SHOU University, Kaohsiung County, Taiwan
| | - Ioannis Manousakas
- Department of Biomedical Engineering, I-SHOU University, Kaohsiung County, Taiwan
| | - Pei Hua Tsai
- Department of Biomedical Engineering, I-SHOU University, Kaohsiung County, Taiwan
| |
Collapse
|
32
|
Differentiation of embryonic stem cells into neural cells on 3D poly (D, L-lactic acid) scaffolds versus 2D cultures. Int J Artif Organs 2012; 34:1012-23. [PMID: 22161284 DOI: 10.5301/ijao.5000002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2011] [Indexed: 01/01/2023]
Abstract
In this study, a highly porous poly (D, L-lactic acid) (PDLLA) scaffold was designed and fabricated using dioxane and thermal-induced phase separation (TIPS) methods (liquid-liquid and solid-liquid). Additionally, we characterized the ability of mouse embryonic stem cells (ESCs) to differentiate into neural cells in PDLLA scaffold with uniform porosity, interconnectivity, and high porosity, and then compared them with cells seeded under conventional two-dimensional (2D) culture conditions. Histochemistry staining showed the migration of differentiated cells through the scaffold. Immunofluorescence analysis of the differentiated cells by counting positive cells revealed that the PDLLA scaffold resulted in a significantly greater number of neural markers, microtubule associated protein-2, ß-tubulin III, neurofilament protein, and glial fibrillary acidic protein (the astrocyte marker) when compared to those in 2D culture condition. Moreover, the expression of Nestin, Mash1, Pax6, and HB9 increased significantly in 3D scaffolds when compared with 2D cultures as detected by semi-quantitative RT-PCR. Scanning electron microscopy of differentiated neurons on scaffolds also demonstrated favorable results for neurite outgrowth. The results of this study demonstrated a promising effect of 3D scaffold culture for neural cell differentiation from ESCs in prospective tissue engineering applications.
Collapse
|
33
|
Lee JTY, Chow KL. SEM sample preparation for cells on 3D scaffolds by freeze-drying and HMDS. SCANNING 2012; 34:12-25. [PMID: 22532079 DOI: 10.1002/sca.20271] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 07/06/2011] [Indexed: 05/06/2023]
Abstract
Common dehydration methods of cells on biomaterials for scanning electron microscopy (SEM) include air drying, hexamethyldisilazane (HMDS) or tetramethysilane (TMS) treatment and critical point drying (CPD). On the other side, freeze-drying has been widely employed in dehydrating biological samples and also in preparing porous biomaterial scaffolds but not in preparing cells on three-dimensional (3D) biomaterials for SEM examination. In this study, we compare cells on porous hydroxyapatite (HA) prepared by air drying, HMDS and freeze-drying. The effects of fixation and using phosphate buffered saline (PBS) in the fixation were also assessed on three porous calcium phosphate (CaP) materials, namely, HA, α-tricalcium phosphate (α-TCP) and β-tricalcium phosphate (β-TCP) samples. There is no significant difference in samples prepared by HMDS treatment and freeze-drying viewed at low magnification. Besides, it is better not to use phosphate buffer in the fixation step for CaP materials to avoid undesirable spontaneous precipitation of CaPs. On the other hand, fewer exchanges of liquids are required for freeze-drying and hence chemical fixation may not be absolutely required for samples prepared by freeze-drying. Other technical details of the preparation were also investigated and discussed. This study suggests both HMDS and freeze-drying can be employed to dehydrate cells on 3D scaffolds for SEM examination.
Collapse
Affiliation(s)
- Juliana Tsz Yan Lee
- Bioengineering Graduate Program, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | | |
Collapse
|
34
|
Vallet-Regí M, Ruiz-Hernández E. Bioceramics: from bone regeneration to cancer nanomedicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2011; 23:5177-5218. [PMID: 22009627 DOI: 10.1002/adma.201101586] [Citation(s) in RCA: 236] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Indexed: 05/31/2023]
Abstract
Research on biomaterials has been growing in the last few years due to the clinical needs in organs and tissues replacement and regeneration. In addition, cancer nanomedicine has recently appeared as an effective means to combine nanotechnology developments towards a clinical application. Ceramic materials are suitable candidates to be used in the manufacturing of bone-like scaffolds. Bioceramic materials may also be designed to deliver biologically active substances aimed at repairing, maintaining, restoring or improving the function of organs and tissues in the organism. Several materials such as calcium phosphates, glasses and glass ceramics able to load and subsequently release in a controlled fashion drugs, hormones, growth factors, peptides or nucleic acids have been developed. In particular, to prevent post surgical infections bioceramics may be surface modified and loaded with certain antibiotics, thus preventing the formation of bacterial biofilms. Remarkably, mesoporous bioactive glasses have shown excellent characteristics as drug carrying bone regeneration materials. These bioceramics are not only osteoconductive and osteoproductive, but also osteoinductive, and have therefore been proposed as ideal components for the fabrication of scaffolds for bone tissue engineering. A recent promising development of bioceramic materials is related to the design of magnetic mediators against tumors. Magnetic composites are suitable thermoseeds for cancer treatment by hyperthermia. Moreover, magnetic nanomaterials offer a wide range of possibilities for diagnosis and therapy. These nanoparticles may be conjugated with therapeutic agents and heat the surrounding tissue under the action of alternating magnetic fields, enabling hyperthermia of cancer as an effective adjunct to chemotherapy regimens.
Collapse
Affiliation(s)
- María Vallet-Regí
- Departamento de Química Inorgánica y Bioinorgánica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | | |
Collapse
|
35
|
Carvalho SM, Oliveira AA, Jardim CA, Melo CB, Gomes DA, de Fátima Leite M, Pereira MM. Characterization and induction of cementoblast cell proliferation by bioactive glass nanoparticles. J Tissue Eng Regen Med 2011; 6:813-21. [DOI: 10.1002/term.488] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 02/25/2011] [Accepted: 07/12/2011] [Indexed: 11/12/2022]
Affiliation(s)
- Sandhra M. Carvalho
- Departments of Metallurgical and Materials Engineering; Federal University of Minas Gerais; Av. Antônio Carlos 6627; Belo Horizonte; CEP: 31270-901; Brazil
| | - Agda A.R. Oliveira
- Departments of Metallurgical and Materials Engineering; Federal University of Minas Gerais; Av. Antônio Carlos 6627; Belo Horizonte; CEP: 31270-901; Brazil
| | - Camila A. Jardim
- Department of Physiology and Biophysics; Federal University of Minas Gerais; Av. Antônio Carlos 6627; Belo Horizonte; CEP: 31270-901; Brazil
| | - Carolina B.S. Melo
- Department of Biochemistry and Immunology; Federal University of Minas Gerais; Av. Antônio Carlos 6627; Belo Horizonte; CEP: 31270-901; Brazil
| | - Dawidson A. Gomes
- Department of Biochemistry and Immunology; Federal University of Minas Gerais; Av. Antônio Carlos 6627; Belo Horizonte; CEP: 31270-901; Brazil
| | | | - Marivalda M. Pereira
- Departments of Metallurgical and Materials Engineering; Federal University of Minas Gerais; Av. Antônio Carlos 6627; Belo Horizonte; CEP: 31270-901; Brazil
| |
Collapse
|
36
|
Marelli B, Ghezzi CE, Mohn D, Stark WJ, Barralet JE, Boccaccini AR, Nazhat SN. Accelerated mineralization of dense collagen-nano bioactive glass hybrid gels increases scaffold stiffness and regulates osteoblastic function. Biomaterials 2011; 32:8915-26. [PMID: 21889796 DOI: 10.1016/j.biomaterials.2011.08.016] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 08/08/2011] [Indexed: 02/07/2023]
Abstract
Plastically compressed dense collagen (DC) gels mimic the microstructural, mechanical, and biological properties of native osteoid. This study investigated the effect of hybridizing DC with osteoinductive nano-sized bioactive glass (nBG) particles in order to potentially produce readily implantable, and mineralizable, cell seeded hydrogel scaffolds for bone tissue engineering. Due to the high surface area of nBG and increased reactivity, calcium phosphate formation was immediately detected within as processed DC-nGB hybrid gel scaffolds. By day 3 in simulated body fluid, accelerated mineralization was confirmed through the homogeneous growth of carbonated hydroxylapatite on the nanofibrillar collagen framework. At day 7, there was a 13 fold increase in the hybrid gel scaffold compressive modulus. MC3T3-E1 pre-osteoblasts, three-dimensionally seeded at the point of nanocomposite self-assembly, were viable up to day 28 in culture. In the absence of osteogenic supplements, MC3T3-E1 metabolic activity and alkaline phosphatase production were affected by the presence of nBG, indicating accelerated osteogenic differentiation. Additionally, no cell-induced contraction of DC-nBG gel scaffolds was detected. The accelerated mineralization of rapidly produced DC-nBG hybrid gels indicates their potential suitability as osteoinductive cell delivery scaffolds for bone regenerative therapy.
Collapse
Affiliation(s)
- Benedetto Marelli
- Department of Mining and Materials Engineering, McGill University, Montreal, QC, Canada
| | | | | | | | | | | | | |
Collapse
|
37
|
The pro-angiogenic properties of multi-functional bioactive glass composite scaffolds. Biomaterials 2011; 32:4096-108. [DOI: 10.1016/j.biomaterials.2011.02.032] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Accepted: 02/15/2011] [Indexed: 12/23/2022]
|
38
|
Will J, Gerhardt LC, Boccaccini AR. Bioactive glass-based scaffolds for bone tissue engineering. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2011; 126:195-226. [PMID: 22085919 DOI: 10.1007/10_2011_106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Originally developed to fill and restore bone defects, bioactive glasses are currently also being intensively investigated for bone tissue engineering applications. In this chapter, we review and discuss current knowledge on porous bone tissue engineering scaffolds made from bioactive silicate glasses. A brief historical review and the fundamental requirements in the field of bone tissue engineering scaffolds will be presented, followed by a detailed overview of recent developments in bioactive glass-based scaffolds. In addition, the effects of ionic dissolution products of bioactive glasses on osteogenesis and angiogenic properties of scaffolds are briefly addressed. Finally, promising areas of future research and requirements for the advancement of the field are highlighted and discussed.
Collapse
Affiliation(s)
- Julia Will
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058, Erlangen, Germany
| | | | | |
Collapse
|
39
|
Alno N, Jegoux F, Pellen-Mussi P, Tricot-Doleux S, Oudadesse H, Cathelineau G, De Mello G. Development of a three-dimensional model for rapid evaluation of bone substitutes in vitro: effect of the 45S5 bioglass. J Biomed Mater Res A 2010; 95:137-45. [PMID: 20540096 DOI: 10.1002/jbm.a.32818] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The evaluation of innovative bone substitutes requires the development of an optimal model close to physiological conditions. An interesting alternative is the use of an immortalized cell line to construct multicellular spheroids, that is, three-dimensional (3D) cultures. In this study, a modified hanging drops method has resulted in the generation of spheroids with a well-established human fetal osteoblasts line (hFOB 1.19), and tests have been focused on the effect of 45S5 bioglass ionic dissolution products in comparison with two-dimensional (2D) cultures. Depending on cell culture type, quantitative analysis (cell proliferation, viability/cytotoxicity, and cellular cycle) and qualitative analysis (electron microscopy and genes expression) showed a differential effect. Cell proliferation was enhanced in 2D-conditioned cultures in accordance with literature data, but decreased in 3D cultures submitted to the same conditions, without change of gene expression patterns. The decrease of cell proliferation, observed in conditioned spheroids, appears to be in agreement with clinical observations showing the insufficiency of commercially available bioglasses for bone repairing within nonbearing sites, such as periodontal defects or small bone filling, in general. Therefore, we suggest that this model could be adapted to the screening of innovative bioactive materials by laboratory techniques already available and extended monitoring of their bioactivity.
Collapse
Affiliation(s)
- Nora Alno
- Service de Chirurgie et Pathologie Buccales, Centre Hospitalier Universitaire, Rennes, France.
| | | | | | | | | | | | | |
Collapse
|
40
|
Fu Q, Rahaman MN, Bal BS, Brown RF. Preparation and in vitro evaluation of bioactive glass (13-93) scaffolds with oriented microstructures for repair and regeneration of load-bearing bones. J Biomed Mater Res A 2010; 93:1380-90. [PMID: 19911380 DOI: 10.1002/jbm.a.32637] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bioactive glass (13-93) scaffolds with oriented microstructures, referred to as 'columnar' and 'lamellar', were prepared by unidirectional freezing of suspensions, and evaluated in vitro for potential use in the repair and regeneration of load-bearing bones in vivo. Both groups of scaffolds showed an 'elastic-plastic' mechanical response in compression, large strain for failure (>20%), and strain rate sensitivity, but the columnar scaffolds had the additional advantages of higher strength and larger pore width. At the equivalent porosity (55-60%) and deformation rate (0.5 mm/min), the columnar scaffolds had a compressive strength of 25 +/- 3 MPa, elastic modulus of 1.2 GPa, and pore width of 90-110 microm, compared to values of 10 +/- 2 MPa, 0.4 GPa, and 20-30 microm, respectively, for the lamellar scaffolds. Cellular response to the scaffolds was evaluated using murine MLO-A5 cells, an osteogenic cell line. While the cellular response to both groups of scaffolds was better than control wells, the columnar scaffolds with the larger pore width provided the most favorable substrate for cell proliferation and function. These results indicate that 13-93 bioactive glass scaffolds with the columnar microstructure could be used for the repair and regeneration of load-bearing bones in vivo.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
| | | | | | | |
Collapse
|
41
|
Gerhardt LC, Boccaccini AR. Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2010; 3:3867-3910. [PMID: 28883315 PMCID: PMC5445790 DOI: 10.3390/ma3073867] [Citation(s) in RCA: 453] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 06/29/2010] [Indexed: 12/24/2022]
Abstract
Traditionally, bioactive glasses have been used to fill and restore bone defects. More recently, this category of biomaterials has become an emerging research field for bone tissue engineering applications. Here, we review and discuss current knowledge on porous bone tissue engineering scaffolds on the basis of melt-derived bioactive silicate glass compositions and relevant composite structures. Starting with an excerpt on the history of bioactive glasses, as well as on fundamental requirements for bone tissue engineering scaffolds, a detailed overview on recent developments of bioactive glass and glass-ceramic scaffolds will be given, including a summary of common fabrication methods and a discussion on the microstructural-mechanical properties of scaffolds in relation to human bone (structure-property and structure-function relationship). In addition, ion release effects of bioactive glasses concerning osteogenic and angiogenic responses are addressed. Finally, areas of future research are highlighted in this review.
Collapse
Affiliation(s)
| | - Aldo R Boccaccini
- Department of Materials, Imperial College London, Prince Consort Road, London SW7 2BP, UK.
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| |
Collapse
|
42
|
Gentleman E, Fredholm YC, Jell G, Lotfibakhshaiesh N, O'Donnell MD, Hill RG, Stevens MM. The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro. Biomaterials 2010; 31:3949-56. [DOI: 10.1016/j.biomaterials.2010.01.121] [Citation(s) in RCA: 396] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 01/20/2010] [Indexed: 01/21/2023]
|
43
|
Kim EJ, Boehm CA, Mata A, Fleischman AJ, Muschler GF, Roy S. Post microtextures accelerate cell proliferation and osteogenesis. Acta Biomater 2010; 6:160-9. [PMID: 19539062 DOI: 10.1016/j.actbio.2009.06.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 05/08/2009] [Accepted: 06/10/2009] [Indexed: 10/20/2022]
Abstract
The influence of surface microtexture on osteogenesis was investigated in vitro by examining the proliferation and differentiation characteristics of a class of adult stem cells and their progeny, collectively known as connective tissue progenitor cells (CTPs). Human bone marrow-derived CTPs were cultured for up to 60 days on smooth polydimethylsiloxane (PDMS) surfaces and on PDMS with post microtextures that were 10 microm in diameter and 6 microm in height, with 10 microm separation. DNA quantification revealed that the numbers of CTPs initially attached to both substrates were similar. However, cells on microtextured PDMS transitioned from lag phase after 4 days of culture, in contrast to 6 days for cells on smooth surfaces. By day 9 cells on the smooth surfaces exhibited arbitrary flattened shapes and migrated without any preferred orientation. In contrast, cells on the microtextured PDMS grew along the array of posts in an orthogonal manner. By days 30 and 60 cells grew and covered all surfaces with extracellular matrix. Western blot analysis revealed that the expression of integrin alpha5 was greater on the microtextured PDMS compared with smooth surfaces. Real time reverse transcription-polymerase chain reaction revealed that gene expression of alkaline phosphatase had decreased by days 30 and 60, compared with that on day 9, for both substrates. Gene expression of collagen I and osteocalcin was consistently greater on post microtextures relative to smooth surfaces at all time points.
Collapse
|
44
|
Kim EJ, Boehm CA, Fleischman AJ, Muschler GF, Kostov YV, Roy S. Modulating human connective tissue progenitor cell behavior on cellulose acetate scaffolds by surface microtextures. J Biomed Mater Res A 2009; 90:1198-205. [PMID: 18680188 DOI: 10.1002/jbm.a.32160] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Soft lithography techniques are used to fabricate cellulose acetate (CA) scaffolds with surface microtextures to observe growth characteristics of the progeny of human marrow-derived connective tissue progenitor cells (CTPs). Human CTPs were collected and cultured on CA scaffolds comprised postmicrotextures and smooth surfaces for up to 30 days. Cells on the smooth surfaces migrated without any preferred orientation for up to 30 days. On microtextures, cells tended to direct their processes toward posts and other cells on day 9. By day 30, cells on microtextures covered the surface with extracellular matrix. DNA quantification revealed approximately threefold more cells on microtextures than on the smooth surfaces. The alkaline phosphatase (AP) mRNA expression was slightly higher on smooth surfaces on day 9. However, by day 30, AP mRNA showed higher expression on microtextures. The mRNA expression of collagen type I was increased on microtextures by day 30, whereas smooth surfaces demonstrated similar expression. The osteocalcin mRNA expression was increased on postmicrotextures relative to smooth surfaces by day 30.
Collapse
Affiliation(s)
- Eun Jung Kim
- BioMEMS Laboratory, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | | | | | | | | | | |
Collapse
|
45
|
Haimi S, Suuriniemi N, Haaparanta AM, Ellä V, Lindroos B, Huhtala H, Räty S, Kuokkanen H, Sándor GK, Kellomäki M, Miettinen S, Suuronen R. Growth and osteogenic differentiation of adipose stem cells on PLA/bioactive glass and PLA/beta-TCP scaffolds. Tissue Eng Part A 2009; 15:1473-80. [PMID: 19072198 DOI: 10.1089/ten.tea.2008.0241] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to compare the effects of novel three-dimensional composite scaffolds consisting of a bioactive phase (bioactive glass or beta-tricalcium phosphate [beta-TCP] 10 and 20 wt%) incorporated within a polylactic acid (PLA) matrix on viability, distribution, proliferation, and osteogenic differentiation of human adipose stem cells (ASCs). The viability and distribution of ASCs on the bioactive composite scaffolds was evaluated using Live/Dead fluorescence staining, environmental scanning electron microscopy, and scanning electron microscopy. There were no differences between the two concentrations of bioactive glass and beta-TCP in PLA scaffolds on proliferation and osteogenic differentiation of ASCs. After 2 weeks of culture, DNA content and alkaline phosphatase (ALP) activity of ASCs cultured on PLA/beta-TCP composite scaffolds were higher relative to other scaffold types. Interestingly, the cell number was significantly lower, but the relative ALP/DNA ratio of ASCs was significantly higher in PLA/bioactive glass scaffolds than in other three scaffold types. These results indicate that the PLA/beta-TCP composite scaffolds significantly enhance ASC proliferation and total ALP activity compared to other scaffold types. This supports the potential future use of PLA/beta-TCP composites as effective scaffolds for tissue engineering and as bone replacement materials.
Collapse
Affiliation(s)
- Suvi Haimi
- Regea Institute for Regenerative Medicine, University of Tampere, Tampere, Finland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Tsigkou O, Jones JR, Polak JM, Stevens MM. Differentiation of fetal osteoblasts and formation of mineralized bone nodules by 45S5 Bioglass conditioned medium in the absence of osteogenic supplements. Biomaterials 2009; 30:3542-50. [PMID: 19339047 DOI: 10.1016/j.biomaterials.2009.03.019] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 03/11/2009] [Indexed: 11/29/2022]
Abstract
Bioactive glasses bond strongly to bone in vivo and their ionic dissolution products have previously been shown to have stimulatory properties on adult and fetal osteoblasts and to induce the differentiation of embryonic stem cells towards the osteoblastic lineage in vitro. In the present study, the effect of 45S5 Bioglass conditioned medium with two different Si concentrations (15 microg/ml (BGCM/15) and 20 microg/ml (BGCM/20)) on human fetal osteoblast growth, differentiation and extracellular matrix production and mineralization was investigated. In the first instance, primary fetal osteoblasts were examined for the osteoblast phenotypic markers alkaline phosphatase (ALP), collagen type I (Col I) and OB Cadherin (Cadherin 11) (OB Cad) as well as for the mesenchymal stem cell markers CD105 and CD166. At passage 0 more than 50% of the population was positive for Col I and ALP, but at passage 2, the proportion of cells expressing ALP increased. In addition at passage 0 more than 50% of the fetal osteoblasts expressed the mesenchymal stem cell surface markers CD105 and CD166. Treatment with BGCM/15 and BGCM/20 in the absence of osteogenic supplements increased the gene expression of the bone extracellular matrix proteins alkaline phosphatase, osteonectin and bone sialoprotein as determined by quantitative real time reverse transcriptase-polymerase chain reaction (rt RT-PCR) analysis. Extracellular matrix production was also enhanced in the absence of osteogenic supplements by the 45S5 Bioglass conditioned medium as demonstrated by ALP enzymatic activity, osteocalcin and Col I protein synthesis. Furthermore, BGCM/15 and BGCM/20 significantly enhanced the formation of mineralized nodules, based on alizarin red histochemical staining, without necessitating the addition of beta-glycerophosphate, l-ascorbate-2-phosphate or dexamethasone (commonly used osteogenic supplements).
Collapse
Affiliation(s)
- Olga Tsigkou
- Department of Materials, Imperial College London, London, United Kingdom; Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
| | | | | | | |
Collapse
|
47
|
Zhang J, Wang M, Cha JM, Mantalaris A. The incorporation of 70s bioactive glass to the osteogenic differentiation of murine embryonic stem cells in 3D bioreactors. J Tissue Eng Regen Med 2009; 3:63-71. [DOI: 10.1002/term.135] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
48
|
Jell G, Notingher I, Tsigkou O, Notingher P, Polak J, Hench L, Stevens M. Bioactive glass-induced osteoblast differentiation: A noninvasive spectroscopic study. J Biomed Mater Res A 2008; 86:31-40. [DOI: 10.1002/jbm.a.31542] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
49
|
Polak JM, Mantalaris S. Stem cells bioprocessing: an important milestone to move regenerative medicine research into the clinical arena. Pediatr Res 2008; 63:461-6. [PMID: 18427288 DOI: 10.1203/pdr.0b013e31816a8c1c] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Regenerative Medicine is a new, multidisciplinary field that combines expertise in biology, chemistry, engineering, materials, and medicine, to find solutions to some of the most challenging medical problems faced by humankind. Regenerative Medicine has the potential to impact the whole spectrum of health care, such as heart disease, emphysema, and diabetes. Regenerative Medicine employs various combinations of specially grown cells, tissues, and laboratory-made compounds to replace or amplify the body's natural healing process. The impact of Regenerative Medicine to the health care industry is likely to be comparable with that of antibiotics, vaccines and lately, monoclonal antibodies have had in clinical care. Regenerative Medicine is growing and maturing steadily; however, many challenges lie ahead. These include best cell source, most appropriate biomaterials, and reliable ways of expanding the cells and growing them in a three-dimensional environment (stem cell bioprocessing). This concise review deals with current achievements in the field, challenges that lie ahead and potential ways of having robust and reliable "off the shelf" cellular products.
Collapse
Affiliation(s)
- Julia M Polak
- Department of Chemical Engineering, Faculty of Medicine and Faculty of Engineering, Imperial College London, London SW7 2AZ, United Kingdom.
| | | |
Collapse
|