1
|
Ren H, Guo A, Luo C. Sandwich hydrogel to realize cartilage-mimetic structures and performances from polyvinyl alcohol, chitosan and sodium hyaluronate. Carbohydr Polym 2024; 328:121738. [PMID: 38220330 DOI: 10.1016/j.carbpol.2023.121738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/12/2023] [Accepted: 12/23/2023] [Indexed: 01/16/2024]
Abstract
Developing artificial substitutes that mimic the structures and performances of natural cartilage is of great importance. However, it is challenging to integrate the high strength, excellent biocompatibility, low coefficient of friction, long-term wear resistance, outstanding swelling resistance, and osseointegration potential into one material. Herein, a sandwich hydrogel with cartilage-mimetic structures and performances was prepared to achieve this goal. The precursor hydrogel was obtained by freezing-thawing the mixture of poly vinyl alcohol, chitosan and deionized water three cycles, accompanied by soaking in sodium hyaluronate solution. The top of the precursor hydrogel was hydrophobically modified with lauroyl chloride and then loaded with lecithin, while the bottom was mineralized with hydroxyapatite. Due to the multiple linkages (crystalline domains, hydrogen bonds, and ionic interactions), the compressive stress was 71 MPa. Owing to the synergy of the hydrophobic modification and lecithin, the coefficient of friction was 0.01. Additionally, no wear trace was observed after 50,000 wear cycles. Remarkably, hydroxyapatite enabled the hydrogel osseointegration potential. The swelling ratio of the hydrogel was 0.06 g/g after soaking in simulated synovial fluid for 7 days. Since raw materials were non-toxic, the cell viability was 100 %. All of the above merits make it an ideal material for cartilage replacement.
Collapse
Affiliation(s)
- Hanyu Ren
- College of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, Ningxia 750021, China
| | - Andi Guo
- College of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, Ningxia 750021, China
| | - Chunhui Luo
- College of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, Ningxia 750021, China; Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, Ningxia, China; Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, China.
| |
Collapse
|
2
|
Oliveira AS, Silva JC, Loureiro MV, Marques AC, Kotov NA, Colaço R, Serro AP. Super-Strong Hydrogel Composites Reinforced with PBO Nanofibers for Cartilage Replacement. Macromol Biosci 2023; 23:e2200240. [PMID: 36443994 DOI: 10.1002/mabi.202200240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/28/2022] [Indexed: 11/30/2022]
Abstract
Cartilage replacement materials exhibiting a set of demanding properties such as high water content, high mechanical stiffness, low friction, and excellent biocompatibility are quite difficult to achieve. Here, poly(p-phenylene-2,6-benzobisoxazole) (PBO) nanofibers are combined with polyvinyl alcohol (PVA) to form a super-strong structure with a performance that surpasses the vast majority of previously existing hydrogels. PVA-PBO composites with water contents in the 59-76% range exhibit tensile and compressive moduli reaching 20.3 and 4.5 MPa, respectively, and a coefficient of friction below 0.08. Further, they are biocompatible and support the viability of chondrocytes for 1 week, with significant improvements in cell adhesion, proliferation, and differentiation compared to PVA. The new composites can be safely sterilized by steam heat or gamma radiation without compromising their integrity and overall performance. In addition, they show potential to be used as local delivery platforms for anti-inflammatory drugs. These attractive features make PVA-PBO composites highly competitive engineered materials with remarkable potential for use in the design of load-bearing tissues. Complementary work has also revealed that these composites will be interesting alternatives in other industrial fields where high thermal and mechanical resistance are essential requirements, or which can take advantage of the pH responsiveness functionality.
Collapse
Affiliation(s)
- Andreia S Oliveira
- Centro de Química Estrutural, Institute of Molecular Sciences, and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal.,Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, Caparica, 2829-511, Portugal.,Instituto de Engenharia Mecânica and Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal
| | - João C Silva
- Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal.,Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal.,Centre for Rapid and Sustainable Product Development, Politécnico de Leiria, Rua de Portugal-Zona Industrial, Marinha Grande, 2430-028, Portugal
| | - Mónica V Loureiro
- Centro de Recursos Naturais e Ambiente, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal
| | - Ana C Marques
- Centro de Recursos Naturais e Ambiente, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal
| | - Nicholas A Kotov
- Biointerfaces Institute, Department of Chemical Engineering, and Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Rogério Colaço
- Instituto de Engenharia Mecânica and Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal
| | - Ana P Serro
- Centro de Química Estrutural, Institute of Molecular Sciences, and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal.,Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, Caparica, 2829-511, Portugal
| |
Collapse
|
3
|
Kanca Y, Özkahraman B. An investigation on tribological behavior of methacrylated κ-carrageenan and gellan gum hydrogels as a candidate for chondral repair. J Biomater Appl 2023; 37:1271-1285. [PMID: 36473707 DOI: 10.1177/08853282221144235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Natural polysaccharides have recently attracted attention as structural biomaterials to replace focal chondral defects. In the present study, in-vitro tribological performance of methacrylated κ-carrageenan and gellan gum hydrogels (KA-MA and GG-MA) was evaluated under physiological conditions. Coefficient of friction (COF) was continuously recorded over testing whilst worn area was measured post-testing. The findings help improve our understanding of KA-MA-H and GG-MA-H tribological performance under various physiological conditions. The friction and wear performance of the hydrogels improved in bovine calf serum lubricant at lower applied loads. Adhesion was the dominant wear mechanism detected by SEM. Among the proposed hydrogels GG-MA-H found robust mechanical properties, increased wear resistance and considerably low COF, which may suggest its potential usage as a cartilage substitute.
Collapse
Affiliation(s)
- Yusuf Kanca
- Department of Mechanical Engineering, Faculty of Engineering, 162313Hitit University, Çorum, Turkey
| | - Bengi Özkahraman
- Department of Polymer Materials Engineering, Faculty of Engineering, 162313Hitit University, Çorum, Turkey
| |
Collapse
|
4
|
Abstract
A novel composite hydrogel was developed that shows remarkable similarities to load bearing biological tissues. The composite gel consisting of a poly(vinyl alcohol (PVA) matrix filled with poly(acrylic acid) (PAA) microgel particles exhibits osmotic and mechanical properties that are qualitatively different from regular gels. In the PVA/PAA system the swollen PAA particles "inflate" the PVA network. The swelling of the PAA is limited by the tensile stress Pel developing in the PVA matrix. Pel increases with increasing swelling degree, which is opposite to the decrease of the elastic pressure observed in regular gels. The maximum tensile stress Pmaxel can be identified as a quantity that defines the load bearing ability of the composite gel. Systematic osmotic swelling pressure measurements have been made on PVA/PAA gels to determine the effects of PVA stiffness, PAA crosslink density, and Ca2+ ion concentration on Pmaxel. It is found that Pmaxel increases with the stiffness of the PVA matrix, and decreases with (i) increasing crosslink density of the PAA and (ii) increasing Ca2+ ion concentration. Small angle neutron scattering (SANS) measurements indicate only a weak interaction between the PVA and PAA gels. It is demonstrated that the osmotic swelling pressure of PVA/PAA composite gels reproduces the osmotic behavior of healthy and osteoarthritic cartilage.
Collapse
Affiliation(s)
- Ferenc Horkay
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Peter J Basser
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
5
|
Co-formulations of adalimumab with hyaluronic acid / polyvinylpyrrolidone to combine intraarticular drug delivery and viscosupplementation. Eur J Pharm Biopharm 2022; 177:39-49. [PMID: 35691537 DOI: 10.1016/j.ejpb.2022.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/01/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
Abstract
Polymer-based formulations present an attractive strategy in intraarticular drug-delivery to refrain biologicals from early leakage from the joint. In this study, co-formulations of hyaluronic acid and polyvinylpyrrolidone were investigated for their potential as viscosupplements and their influence on the transsynovial loss of adalimumab. For this purpose, polymer mixtures were evaluated for their viscosity and elasticity behavior while their influence on the permeation of adalimumab across a porcine ex-vivo synovial membrane was determined. Hyaluronic acid showed strong shear thinning behavior and exhibited high viscosity and elasticity at low motions, while combinations with polyvinylpyrrolidone provided absorption and stiffness at high mechanical stress, so that they can potentially restore the rheological properties of the synovial fluid over the range of joint motion. In addition, the formulations showed significant influence on transsynovial permeation kinetics of adalimumab and hyaluronic acid, which could be decelerated up to 5- and 3-fold, respectively. Besides viscosity effects, adalimumab was retained primarily by an electrostatic interaction with hyaluronic acid, as detected by isothermal calibration calorimetry. Furthermore, polymer-mediated stabilization of the antibody activity was detected. In summary, hyaluronic acid - polyvinylpyrrolidone combinations can be efficiently used to prolong the residence of adalimumab in the joint cavity while simultaneously supplying viscosupplementation.
Collapse
|
6
|
Hickman TT, Rathan-Kumar S, Peck SH. Development, Pathogenesis, and Regeneration of the Intervertebral Disc: Current and Future Insights Spanning Traditional to Omics Methods. Front Cell Dev Biol 2022; 10:841831. [PMID: 35359439 PMCID: PMC8963184 DOI: 10.3389/fcell.2022.841831] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/09/2022] [Indexed: 02/06/2023] Open
Abstract
The intervertebral disc (IVD) is the fibrocartilaginous joint located between each vertebral body that confers flexibility and weight bearing capabilities to the spine. The IVD plays an important role in absorbing shock and stress applied to the spine, which helps to protect not only the vertebral bones, but also the brain and the rest of the central nervous system. Degeneration of the IVD is correlated with back pain, which can be debilitating and severely affects quality of life. Indeed, back pain results in substantial socioeconomic losses and healthcare costs globally each year, with about 85% of the world population experiencing back pain at some point in their lifetimes. Currently, therapeutic strategies for treating IVD degeneration are limited, and as such, there is great interest in advancing treatments for back pain. Ideally, treatments for back pain would restore native structure and thereby function to the degenerated IVD. However, the complex developmental origin and tissue composition of the IVD along with the avascular nature of the mature disc makes regeneration of the IVD a uniquely challenging task. Investigators across the field of IVD research have been working to elucidate the mechanisms behind the formation of this multifaceted structure, which may identify new therapeutic targets and inform development of novel regenerative strategies. This review summarizes current knowledge base on IVD development, degeneration, and regenerative strategies taken from traditional genetic approaches and omics studies and discusses the future landscape of investigations in IVD research and advancement of clinical therapies.
Collapse
Affiliation(s)
- Tara T. Hickman
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sudiksha Rathan-Kumar
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sun H. Peck
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- *Correspondence: Sun H. Peck,
| |
Collapse
|
7
|
Liu S, Zhou X, Nie L, Wang Y, Hu Z, Okoro OV, Shavandi A, Fan L. Anisotropic PLGA microsphere/PVA hydrogel composite with aligned macroporous structures for directed cell adhesion and proliferation. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.2018317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Shuang Liu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China
| | - Xiaohu Zhou
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Youli Wang
- Rizhao Biomedicine and New Materials Research, Wuhan University of Technology, Rizhao, China
| | - Zhihai Hu
- Rizhao Biomedicine and New Materials Research, Wuhan University of Technology, Rizhao, China
| | - Oseweuba Valentine Okoro
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles - BioMatter Unit, Brussels, Belgium
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles - BioMatter Unit, Brussels, Belgium
| | - Lihong Fan
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
8
|
Abstract
Hydrogels have three-dimensional network structures, high water content, good flexibility, biocompatibility, and stimulation response, which have provided a unique role in many fields such as industry, agriculture, and medical treatment. Poly(vinyl alcohol) PVA hydrogel is one of the oldest composite hydrogels. It has been extensively explored due to its chemical stability, nontoxic, good biocompatibility, biological aging resistance, high water-absorbing capacity, and easy processing. PVA-based hydrogels have been widely investigated in drug carriers, articular cartilage, wound dressings, tissue engineering, and other intelligent materials, such as self-healing and shape-memory materials, supercapacitors, sensors, and other fields. In this paper, the discovery, development, preparation, modification methods, and applications of PVA functionalized hydrogels are reviewed, and their potential applications and future research trends are also prospected.
Collapse
|
9
|
Deng F, Li K, Feng Q, Yang K, Huang F. Evaluation of frictional and rheological properties of choline/N-acetyl-l-proline ionic liquid modified with molecular aggregates of tea saponin derivatives. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Applications of Functionalized Hydrogels in the Regeneration of the Intervertebral Disc. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2818624. [PMID: 34458364 PMCID: PMC8397561 DOI: 10.1155/2021/2818624] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/26/2021] [Indexed: 02/08/2023]
Abstract
Intervertebral disc degeneration (IDD) is caused by genetics, aging, and environmental factors and is one of the leading causes of low back pain. The treatment of IDD presents many challenges. Hydrogels are biomaterials that possess properties similar to those of the natural extracellular matrix and have significant potential in the field of regenerative medicine. Hydrogels with various functional qualities have recently been used to repair and regenerate diseased intervertebral discs. Here, we review the mechanisms of intervertebral disc homeostasis and degeneration and then discuss the applications of hydrogel-mediated repair and intervertebral disc regeneration. The classification of artificial hydrogels and natural hydrogels is then briefly introduced, followed by an update on the development of functional hydrogels, which include noncellular therapeutic hydrogels, cellular therapeutic hydrogel scaffolds, responsive hydrogels, and multifunctional hydrogels. The challenges faced and future developments of the hydrogels used in IDD are discussed as they further promote their clinical translation.
Collapse
|
11
|
Gao DY, Liu Z, Cheng ZL. 2D Ni-Fe MOF nanosheets reinforced poly(vinyl alcohol) hydrogels with enhanced mechanical and tribological performance. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125934] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Saygili E, Kaya E, Ilhan-Ayisigi E, Saglam-Metiner P, Alarcin E, Kazan A, Girgic E, Kim YW, Gunes K, Eren-Ozcan GG, Akakin D, Sun JY, Yesil-Celiktas O. An alginate-poly(acrylamide) hydrogel with TGF-β3 loaded nanoparticles for cartilage repair: Biodegradability, biocompatibility and protein adsorption. Int J Biol Macromol 2021; 172:381-393. [PMID: 33476613 DOI: 10.1016/j.ijbiomac.2021.01.069] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/27/2020] [Accepted: 01/12/2021] [Indexed: 02/04/2023]
Abstract
Current implantable materials are limited in terms of function as native tissue, and there is still no effective clinical treatment to restore articular impairments. Hereby, a functionalized polyacrylamide (PAAm)-alginate (Alg) Double Network (DN) hydrogel acting as an articular-like tissue is developed. These hydrogels sustain their mechanical stability under different temperature (+4 °C, 25 °C, 40 °C) and humidity conditions (60% and 75%) over 3 months. As for the functionalization, transforming growth factor beta-3 (TGF-β3) encapsulated (NPTGF-β3) and empty poly(lactide-co-glycolide) (PLGA) nanoparticles (PLGA NPs) are synthesized by using microfluidic platform, wherein the mean particle sizes are determined as 81.44 ± 9.2 nm and 126 ± 4.52 nm with very low polydispersity indexes (PDI) of 0.194 and 0.137, respectively. Functionalization process of PAAm-Alg hydrogels with ester-end PLGA NPs is confirmed by FTIR analysis, and higher viscoelasticity is obtained for functionalized hydrogels. Moreover, cartilage regeneration capability of these hydrogels is evaluated with in vitro and in vivo experiments. Compared with the PAAm-Alg hydrogels, functionalized formulations exhibit a better cell viability. Histological staining, and score distribution confirmed that proposed hydrogels significantly enhance regeneration of cartilage in rats due to stable hydrogel matrix and controlled release of TGF-β3. These findings demonstrated that PAAm-Alg hydrogels showed potential for cartilage repair and clinical application.
Collapse
Affiliation(s)
- Ecem Saygili
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey
| | - Elif Kaya
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey
| | - Esra Ilhan-Ayisigi
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey
| | - Pelin Saglam-Metiner
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey
| | - Emine Alarcin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Marmara University, 34668 Istanbul, Turkey
| | - Aslihan Kazan
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey; Department of Bioengineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, 16310 Bursa, Turkey
| | - Ezgi Girgic
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey
| | - Yong-Woo Kim
- Department of Materials Science and Engineering, Seoul National University, 08826 Seoul, Republic of Korea; Research Institute of Advanced Materials (RIAM), Seoul National University, 08826 Seoul, Republic of Korea
| | - Kasim Gunes
- School of Medicine, Department of Histology and Embryology, Marmara University, 34854, Istanbul, Turkey
| | | | - Dilek Akakin
- School of Medicine, Department of Histology and Embryology, Marmara University, 34854, Istanbul, Turkey
| | - Jeong-Yun Sun
- Department of Materials Science and Engineering, Seoul National University, 08826 Seoul, Republic of Korea; Research Institute of Advanced Materials (RIAM), Seoul National University, 08826 Seoul, Republic of Korea
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey.
| |
Collapse
|
13
|
Porte E, Cann P, Masen M. A lubrication replenishment theory for hydrogels. SOFT MATTER 2020; 16:10290-10300. [PMID: 33047773 DOI: 10.1039/d0sm01236j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Hydrogels are suggested as less invasive alternatives to total joint replacements, but their inferior tribological performance compared to articular cartilage remains a barrier to implementation. Existing lubrication theories do not fully characterise the friction response of all hydrogels, and a better insight into the lubrication mechanisms must be established to enable optimised hydrogel performance. We therefore studied the lubricating conditions in a hydrogel contact using fluorescent imaging under simulated physiological sliding conditions. A reciprocating configuration was used to examine the effects of contact dimension and stroke length on the lubricant replenishment in the contact. The results show that the lubrication behaviour is strongly dependent on the contact configurations; When the system operates in a 'migrating' configuration, with the stroke length larger than the contact width, the contact is uniformly lubricated and shows low friction; When the contact is in an 'overlapping' configuration with a stroke length smaller than the contact width, the contact is not fully replenished, resulting in high friction. The mechanism of non-replenishment at small relative stroke length was also observed in a cartilage contact, indicating that the theory could be generalised to soft porous materials. The lubrication replenishment theory is important for the development of joint replacement materials, as most physiological joints operate under conditions of overlapping contact, meaning steady-state lubrication does not necessarily occur.
Collapse
Affiliation(s)
- Elze Porte
- Tribology Group, Department of Mechanical Engineering, Imperial College London, SW7 2AZ, UK
| | | | | |
Collapse
|
14
|
Abstract
Since their inception, hydrogels have gained popularity among multiple fields, most significantly in biomedical research and industry. Due to their resemblance to biological tribosystems, a significant amount of research has been conducted on hydrogels to elucidate biolubrication mechanisms and their possible applications as replacement materials. This review is focused on lubrication mechanisms and covers friction models that have attempted to quantify the complex frictional characteristics of hydrogels. From models developed on the basis of polymer physics to the concept of hydration lubrication, assumptions and conditions for their applicability are discussed. Based on previous models and our own experimental findings, we propose the viscous-adhesive model for hydrogel friction. This model accounts for the effects of confinement of the polymer network provided by a solid surface and poroelastic relaxation as well as the (non) Newtonian shear of a complex fluid on the frictional force and quantifies the frictional response of hydrogels-solid interfaces. Finally, the review delineates potential areas of future research based on the current knowledge.
Collapse
|
15
|
|
16
|
In situ covalent bonding in polymerization to construct robust hydrogel lubrication coating on surface of silicone elastomer. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124753] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
17
|
Rebenda D, Vrbka M, Čípek P, Toropitsyn E, Nečas D, Pravda M, Hartl M. On the Dependence of Rheology of Hyaluronic Acid Solutions and Frictional Behavior of Articular Cartilage. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2659. [PMID: 32545213 PMCID: PMC7321645 DOI: 10.3390/ma13112659] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/03/2020] [Accepted: 06/09/2020] [Indexed: 01/27/2023]
Abstract
Hyaluronic acid (HA) injections represent one of the most common methods for the treatment of osteoarthritis. However, the clinical results of this method are unambiguous mainly because the mechanism of action has not been clearly clarified yet. Viscosupplementation consists, inter alia, of the improvement of synovial fluid rheological properties by injected solution. The present paper deals with the effect of HA molecular weight on the rheological properties of its solutions and also on friction in the articular cartilage model. Viscosity and viscoelastic properties of HA solutions were analyzed with a rotational rheometer in a cone-plate and plate-plate configuration. In total, four HA solutions with molecular weights between 77 kDa and 2010 kDa were tested. The frictional measurements were realized on a commercial tribometer Bruker UMT TriboLab, while the coefficient of friction (CoF) dependency on time was measured. The contact couple consisted of the articular cartilage pin and the plate made from optical glass. The contact was fully flooded with tested HA solutions. Results showed a strong dependency between HA molecular weight and its rheological properties. However, no clear dependence between HA molecular weight and CoF was revealed from the frictional measurements. This study presents new insight into the dependence between rheological and frictional behavior of the articular cartilage, while such an extensive investigation has not been presented before.
Collapse
Affiliation(s)
- David Rebenda
- Faculty of Mechanical Engineering, Brno University of Technology, 616 69 Brno, Czech Republic; (M.V.); (P.Č.); (D.N.); (M.H.)
| | - Martin Vrbka
- Faculty of Mechanical Engineering, Brno University of Technology, 616 69 Brno, Czech Republic; (M.V.); (P.Č.); (D.N.); (M.H.)
| | - Pavel Čípek
- Faculty of Mechanical Engineering, Brno University of Technology, 616 69 Brno, Czech Republic; (M.V.); (P.Č.); (D.N.); (M.H.)
| | - Evgeniy Toropitsyn
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic; (E.T.); (M.P.)
| | - David Nečas
- Faculty of Mechanical Engineering, Brno University of Technology, 616 69 Brno, Czech Republic; (M.V.); (P.Č.); (D.N.); (M.H.)
| | - Martin Pravda
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic; (E.T.); (M.P.)
| | - Martin Hartl
- Faculty of Mechanical Engineering, Brno University of Technology, 616 69 Brno, Czech Republic; (M.V.); (P.Č.); (D.N.); (M.H.)
| |
Collapse
|
18
|
Itagaki N, Kawaguchi D, Oda Y, Nemoto F, Yamada NL, Yamaguchi T, Tanaka K. Surface Effect on Frictional Properties for Thin Hydrogel Films of Poly(vinyl ether). Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01786] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | - Fumiya Nemoto
- Neutron Science Laboratory, High Energy Accelerator Research Organization, Naka, Ibaraki 319-1106, Japan
| | - Norifumi L. Yamada
- Neutron Science Laboratory, High Energy Accelerator Research Organization, Naka, Ibaraki 319-1106, Japan
| | | | | |
Collapse
|
19
|
Bonyadi SZ, Atten M, Dunn AC. Self-regenerating compliance and lubrication of polyacrylamide hydrogels. SOFT MATTER 2019; 15:8728-8740. [PMID: 31553022 DOI: 10.1039/c9sm01607d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pristine hydrogel surfaces typically have low friction, which is controlled by composition, slip speeds, and immediate slip history. The stiffness of such samples is typically measured with bulk techniques, and is assumed to be homogeneous at the surface. While the surface properties of homogeneous hydrogel samples are generally controlled by composition, the surface also interfaces with the open bath, which distinguishes it from the bulk. In this work, we disrupt as-molded polyacrylamide surfaces with abrasive wear and connect the effects on the surface stiffness and lubrication to the wear events. At both the nanoscale and the microscale, quasistatic indentations reveal a stiffer surface by up to two times following wear events, even considering roughness. Longitudinal experiments with a series of wear episodes interposed with periods of re-equilibration show that increased stiffness is reversible: more compliant surfaces regenerate within 24 hours. The timescale suggests an osmotic swelling mechanism, and we postulate that abrasive wear removes a swollen surface layer, revealing the stiffer bulk. The newly-revealed bulk becomes the surface, which re-swells over time. We quantify the effects on the self-lubricating ability of these surfaces following abrasive wear using micro-tribometry. The lubrication curve shows that robust low friction is maintained, and that the friction becomes less dependent upon the sliding speed. The unique ability of these materials to regenerate swollen surfaces and maintain robust low friction following abrasive wear is promising for designing their slip behavior into aqueous soft robotics components or biomedicine applications.
Collapse
Affiliation(s)
- Shabnam Z Bonyadi
- Department of Mechanical Science & Engineering, University of Illinois at Urbana-Champaign, MechSE @ UIUC, 1206 W Green St, MC 244, Urbana, IL 61801, USA.
| | - Michael Atten
- Department of Mechanical Science & Engineering, University of Illinois at Urbana-Champaign, MechSE @ UIUC, 1206 W Green St, MC 244, Urbana, IL 61801, USA.
| | - Alison C Dunn
- Department of Mechanical Science & Engineering, University of Illinois at Urbana-Champaign, MechSE @ UIUC, 1206 W Green St, MC 244, Urbana, IL 61801, USA.
| |
Collapse
|
20
|
Oliveira AS, Seidi O, Ribeiro N, Colaço R, Serro AP. Tribomechanical Comparison between PVA Hydrogels Obtained Using Different Processing Conditions and Human Cartilage. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3413. [PMID: 31635284 PMCID: PMC6829290 DOI: 10.3390/ma12203413] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
Abstract
Designing materials for cartilage replacement raises several challenges due to the complexity of the natural tissue and its unique tribomechanical properties. Poly(vinyl alcohol) (PVA) hydrogels have been explored for such purpose since they are biocompatible, present high chemical stability, and their properties may be tailored through different strategies. In this work, the influence of preparation conditions of PVA hydrogels on its morphology, water absorption capacity, thermotropic behavior, mechanical properties, and tribological performance was evaluated and compared with those of human cartilage (HC). The hydrogels were obtained by cast-drying (CD) and freeze-thawing (FT), in various conditions. It was found that the method of preparation of the PVA hydrogels critically affects their microstructure and performance. CD gels presented a denser structure, absorbed less water, were stiffer, dissipated less energy, and withstood higher loads than FT gels. Moreover, they led to friction coefficients against stainless steel comparable with those of HC. Overall, CD hydrogels had a closer performance to natural HC, when compared to FT ones.
Collapse
Affiliation(s)
- Andreia Sofia Oliveira
- Centro de Química Estrutural (CQE), Instituto Superior Técnico-Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.
- Instituto de Engenharia Mecânica Instituto Superior Técnico (IDMEC)-Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.
| | - Oumar Seidi
- Institut Supérieur des BioSciences (ISBS), École Supérieure d'Ingénieurs de Paris-Est Créteil, 71 Rue Saint-Simon, 94000 Créteil, France.
| | - Nuno Ribeiro
- Centro de Química Estrutural (CQE), Instituto Superior Técnico-Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.
- Instituto de Engenharia Mecânica Instituto Superior Técnico (IDMEC)-Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.
- Departamento de Ortopedia, Hospital Lusíadas Lisboa, R. Abílio Mendes 12, 1500-458 Lisboa, Portugal.
| | - Rogério Colaço
- Instituto de Engenharia Mecânica Instituto Superior Técnico (IDMEC)-Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.
| | - Ana Paula Serro
- Centro de Química Estrutural (CQE), Instituto Superior Técnico-Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal.
| |
Collapse
|
21
|
Li G, Dobryden I, Salazar-Sandoval EJ, Johansson M, Claesson PM. Load-dependent surface nanomechanical properties of poly-HEMA hydrogels in aqueous medium. SOFT MATTER 2019; 15:7704-7714. [PMID: 31508653 DOI: 10.1039/c9sm01113g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The mechanical properties of hydrogels are of importance in many applications, including scaffolds and drug delivery vehicles where the release of drugs is controlled by water transport. While the macroscopic mechanical properties of hydrogels have been reported frequently, there are less studies devoted to the equally important nanomechanical response to local load and shear. Scanning probe methods offer the possibility to gain insight on surface nanomechanical properties with high spatial resolution, and thereby provide fundamental insights on local material property variations. In this work, we investigate the local response to load and shear of poly(2-hydroxyethyl methacrylate) hydrogels with two different cross-linking densities submerged in aqueous solution. The response of the hydrogels to purely normal loads, as well as the combined action of load and shear, was found to be complex due to viscoelastic effects. Our results show that the surface stiffness of the hydrogel samples increased with increasing load, while the tip-hydrogel adhesion was strongly affected by the load only when the cross-linking density was low. The combined action of load and shear results in the formation of a temporary sub-micrometer hill in front of the laterally moving tip. As the tip pushes against such hills, a pronounced stick-slip effect is observed for the hydrogel with low cross-linking density. No plastic deformation or permanent wear scar was found under our experimental conditions.
Collapse
Affiliation(s)
- Gen Li
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science, Drottning Kristinas väg 51, SE 10044 Stockholm, Sweden.
| | - Illia Dobryden
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science, Drottning Kristinas väg 51, SE 10044 Stockholm, Sweden.
| | | | - Mats Johansson
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre & Polymer Technology, Teknikringen 48, SE 10044 Stockholm, Sweden
| | - Per M Claesson
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science, Drottning Kristinas väg 51, SE 10044 Stockholm, Sweden. and RISE Research Institutes of Sweden, Division of Bioscience and Materials, Box 5607, SE 114 86 Stockholm, Sweden
| |
Collapse
|
22
|
Arjmandi M, Ramezani M. Mechanical and tribological assessment of silica nanoparticle-alginate-polyacrylamide nanocomposite hydrogels as a cartilage replacement. J Mech Behav Biomed Mater 2019; 95:196-204. [DOI: 10.1016/j.jmbbm.2019.04.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 03/04/2019] [Accepted: 04/11/2019] [Indexed: 12/19/2022]
|
23
|
Means AK, Shrode CS, Whitney LV, Ehrhardt DA, Grunlan MA. Double Network Hydrogels that Mimic the Modulus, Strength, and Lubricity of Cartilage. Biomacromolecules 2019; 20:2034-2042. [DOI: 10.1021/acs.biomac.9b00237] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- A. Kristen Means
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843-3003 United States
| | - Courtney S. Shrode
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-3120 United States
| | - Lauren V. Whitney
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-3120 United States
| | - Daniel A. Ehrhardt
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-3120 United States
| | - Melissa A. Grunlan
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843-3003 United States
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-3120 United States
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3120 United States
- Center for Remote Health Technologies Systems, Texas A&M University, College Station, Texas 77843-3120 United States
| |
Collapse
|
24
|
Wahab AHA, Saad APM, Harun MN, Syahrom A, Ramlee MH, Sulong MA, Kadir MRA. Developing functionally graded PVA hydrogel using simple freeze-thaw method for artificial glenoid labrum. J Mech Behav Biomed Mater 2019; 91:406-415. [DOI: 10.1016/j.jmbbm.2018.12.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 12/18/2022]
|
25
|
Biomaterials of PVA and PVP in medical and pharmaceutical applications: Perspectives and challenges. Biotechnol Adv 2018; 37:109-131. [PMID: 30472307 DOI: 10.1016/j.biotechadv.2018.11.008] [Citation(s) in RCA: 249] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 10/25/2018] [Accepted: 11/20/2018] [Indexed: 01/12/2023]
Abstract
Poly(vinyl alcohol) (PVA) has attracted considerable research interest and is recognized among the largest volume of synthetic polymers that have been produced worldwide for almost one century. This is due to its exceptional properties which dictated its extensive use in a wide variety of applications, especially in medical and pharmaceutical fields. However, studies revealed that PVA-based biomaterials present some limitations that can restrict their use or performances. To overcome these limitations, various methods have been reported, among which blending with poly(vinylpyrrolidone) (PVP) showed promising results. Thus, our aim was to offer a systematic overview on the current state concerning the preparation, properties and various applications of biomaterials based on synergistic effect of mixtures between PVA and PVP. Future trends towards where the biomaterials research is headed were discussed, showing the promising opportunities that PVA and PVP can offer.
Collapse
|
26
|
Cooper BG, Catalina Bordeianu, Nazarian A, Snyder BD, Grinstaff MW. Active agents, biomaterials, and technologies to improve biolubrication and strengthen soft tissues. Biomaterials 2018; 181:210-226. [PMID: 30092370 PMCID: PMC6766080 DOI: 10.1016/j.biomaterials.2018.07.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 07/22/2018] [Accepted: 07/25/2018] [Indexed: 12/27/2022]
Abstract
Normal functioning of articulating tissues is required for many physiological processes occurring across length scales from the molecular to whole organism. Lubricating biopolymers are present natively on tissue surfaces at various sites of biological articulation, including eyelid, mouth, and synovial joints. The range of operating conditions at these disparate interfaces yields a variety of tribological mechanisms through which compressive and shear forces are dissipated to protect tissues from material wear and fatigue. This review focuses on recent advances in active agents and biomaterials for therapeutic augmentation of friction, lubrication, and wear in disease and injured states. Various small-molecule, biological, and gene delivery therapies are described, as are tribosupplementation with naturally-occurring and synthetic biolubricants and polymer reinforcements. While reintroduction of a diseased tissue's native lubricant received significant attention in the past, recent discoveries and pre-clinical research are capitalizing on concurrent advances in the molecular sciences and bioengineering fields, with an understanding of the underlying tissue structure and physiology, to afford a desired, and potentially patient-specific, tissue mechanical response for restoration of normal function. Small and large molecule drugs targeting recently elucidated pathways as well as synthetic and hybrid natural/synthetic biomaterials for restoring a desired tissue mechanical response are being investigated for treatment of, for example, keratoconjunctivitis sicca, xeroderma, and osteoarthritis.
Collapse
Affiliation(s)
- Benjamin G Cooper
- Department of Chemistry, Boston University, Boston, MA, United States; Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
| | - Catalina Bordeianu
- Department of Chemistry, Boston University, Boston, MA, United States; Department of Biomedical Engineering, Boston University, Boston, MA, United States.
| | - Ara Nazarian
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
| | - Brian D Snyder
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Department of Biomedical Engineering, Boston University, Boston, MA, United States; Department of Orthopaedic Surgery, Boston Children's Hospital, Boston, MA, United States.
| | - Mark W Grinstaff
- Department of Chemistry, Boston University, Boston, MA, United States; Department of Biomedical Engineering, Boston University, Boston, MA, United States; Department of Medicine, Boston University, Boston, MA, United States.
| |
Collapse
|
27
|
Inyang AO, Abdalrahman T, Bezuidenhout D, Bowen J, Vaughan CL. Suitability of developed composite materials for meniscal replacement: Mechanical, friction and wear evaluation. J Mech Behav Biomed Mater 2018; 89:217-226. [PMID: 30296703 DOI: 10.1016/j.jmbbm.2018.09.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/17/2018] [Indexed: 11/19/2022]
Abstract
The meniscus is a complex and frequently damaged tissue which requires a substitute capable of reproducing similar biomechanical functions. This study aims to develop a synthetic meniscal substitute that can mimic the function of the native meniscus. Medical grade silicones reinforced with nylon were fabricated using compression moulding and evaluated for mechanical and tribological properties. The optimal properties were obtained with tensile modulus increased considerably from 10.7 ± 2.9 MPa to 114.6 ± 20.9 MPa while compressive modulus was found to reduce from 2.5 ± 0.6 MPa to 0.7 ± 0.3 MPa. Using a tribometer, the coefficient of friction of 0.08 ± 0.02 was measured at the end of the 100,000 cycles. The developed composite could be an auspicious substitute for the native meniscus and the knowledge gained from this study is useful as it enhances the understanding of a potentially suitable material for meniscal implants.
Collapse
Affiliation(s)
- Adijat Omowumi Inyang
- Division of Biomedical Engineering, Human Biology Department, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa.
| | - Tamer Abdalrahman
- Division of Biomedical Engineering, Human Biology Department, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa.
| | - Deon Bezuidenhout
- Cardiovascular Research Unit, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa.
| | - James Bowen
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Chistopher Leonard Vaughan
- Division of Biomedical Engineering, Human Biology Department, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa.
| |
Collapse
|
28
|
Tribological properties of PVA/PVP blend hydrogels against articular cartilage. J Mech Behav Biomed Mater 2018; 78:36-45. [DOI: 10.1016/j.jmbbm.2017.10.027] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 10/16/2017] [Accepted: 10/23/2017] [Indexed: 11/21/2022]
|
29
|
Lee JM, Sultan MT, Kim SH, Kumar V, Yeon YK, Lee OJ, Park CH. Artificial Auricular Cartilage Using Silk Fibroin and Polyvinyl Alcohol Hydrogel. Int J Mol Sci 2017; 18:E1707. [PMID: 28777314 PMCID: PMC5578097 DOI: 10.3390/ijms18081707] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/29/2017] [Accepted: 08/01/2017] [Indexed: 01/28/2023] Open
Abstract
Several methods for auricular cartilage engineering use tissue engineering techniques. However, an ideal method for engineering auricular cartilage has not been reported. To address this issue, we developed a strategy to engineer auricular cartilage using silk fibroin (SF) and polyvinyl alcohol (PVA) hydrogel. We constructed different hydrogels with various ratios of SF and PVA by using salt leaching, silicone mold casting, and freeze-thawing methods. We characterized each of the hydrogels in terms of the swelling ratio, tensile strength, pore size, thermal properties, morphologies, and chemical properties. Based on the cell viability results, we found a blended hydrogel composed of 50% PVA and 50% SF (P50/S50) to be the best hydrogel among the fabricated hydrogels. An intact 3D ear-shaped auricular cartilage formed six weeks after the subcutaneous implantation of a chondrocyte-seeded 3D ear-shaped P50/S50 hydrogel in rats. We observed mature cartilage with a typical lacunar structure both in vitro and in vivo via histological analysis. This study may have potential applications in auricular tissue engineering with a human ear-shaped hydrogel.
Collapse
Affiliation(s)
- Jung Min Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, Korea.
| | - Md Tipu Sultan
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, Korea.
| | - Soon Hee Kim
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, Korea.
| | - Vijay Kumar
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, Korea.
| | - Yeung Kyu Yeon
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, Korea.
| | - Ok Joo Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, Korea.
| | - Chan Hum Park
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, Korea.
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 200-704, Korea.
| |
Collapse
|
30
|
Raleigh A, McCarty W, Chen A, Meinert C, Klein T, Sah R. 6.7 Synovial Joints: Mechanobiology and Tissue Engineering of Articular Cartilage and Synovial Fluid ☆. COMPREHENSIVE BIOMATERIALS II 2017:107-134. [DOI: 10.1016/b978-0-12-803581-8.09304-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
31
|
Yoon YE, Im BG, Kim JS, Jang JH. Multifunctional Self-Adhesive Fibrous Layered Matrix (FiLM) for Tissue Glues and Therapeutic Carriers. Biomacromolecules 2016; 18:127-140. [DOI: 10.1021/acs.biomac.6b01413] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ye-Eun Yoon
- Department of Chemical and Biomolecular
Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Korea
| | - Byung Gee Im
- Department of Chemical and Biomolecular
Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Korea
| | - Jung-suk Kim
- Department of Chemical and Biomolecular
Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Korea
| | - Jae-Hyung Jang
- Department of Chemical and Biomolecular
Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Korea
| |
Collapse
|
32
|
Synthesis and characterization of a zwitterionic hydrogel blend with low coefficient of friction. Acta Biomater 2016; 46:245-255. [PMID: 27650587 DOI: 10.1016/j.actbio.2016.09.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/02/2016] [Accepted: 09/16/2016] [Indexed: 02/07/2023]
Abstract
Hydrogels display a great deal of potential for a wide variety of biomedical applications. Often times the performance of these biomimetic materials is limited due to inferior friction and wear properties. This manuscript presents a method inspired by the tribological phenomena observed in nature for enhancing the lubricious properties of poly(vinyl alcohol) (PVA) hydrogels. This was achieved by blending PVA with various amounts of zwitterionic polymer, poly([2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide) (pMEDSAH). Our results indicate that pMEDSAH acts as an effective boundary lubricant, allowing for reduction in coefficient of friction by more than 80%. This reduction in friction coefficient was achieved while maintaining comparable mechanical and physical properties to that of the neat material. Also, these zwitterionic blends were found to be cytocompatible. Analysis of the structure to property relationships within this system indicate that the zwitterionic polymer served as a boundary lubricant and promoted a reduction in friction through hydration lubrication. This novel approach provides a promising platform for further investigations enhancing the tribological properties of hydrogels for biomedical applications. STATEMENT OF SIGNIFICANCE The novelty of this work stems from showing that zwitterionic polymers can be used as an extremely effective hydrogel boundary lubricant. This work will have significant scientific impact because to date, design of hydrogels has emphasized replication of mechanical properties, but in order for these types of materials to be fully utilized as biomaterials it is imperative that they possess improved tribological and lubrication properties, because ignoring the surface and boundary lubrication mechanism, make these potential load-bearing substitutes incompatible with other natural articulating surfaces, leading the constructs to wear, fail, and damage healthy tissue. Our work also provides unique insight to the structure-property-function relationships of these biomaterials which will be of great interest to the readership of the journal.
Collapse
|
33
|
Lin P, Zhang R, Wang X, Cai M, Yang J, Yu B, Zhou F. Articular Cartilage Inspired Bilayer Tough Hydrogel Prepared by Interfacial Modulated Polymerization Showing Excellent Combination of High Load-Bearing and Low Friction Performance. ACS Macro Lett 2016; 5:1191-1195. [PMID: 35614743 DOI: 10.1021/acsmacrolett.6b00674] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Articular cartilage is a load-bearing and lubricious tissue covering the ends of articulating bones in synovial joints to reduce friction and wear. It ideally combines the high mechanical property and the ultralow friction performance as a result of biphasic structure and lubricious biomolecules. A biomimicking hydrogel with bilayer structure of thin porous top layer covering a compact and tough hydrogel bulk is fabricated with interfacial modulated polymerization. The top porous layer ensures the ultralow friction toward its contact pairs, while the bottom renders the high load-bearing property. Therefore, with bilayer architecture, hydrogel achieves an outstanding combination of low friction and high load bearing performance with long wear life when sliding against either steel or silicone elastomer counterpair.
Collapse
Affiliation(s)
- Peng Lin
- State
Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical
Physics, Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China
- University of
Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Ran Zhang
- State
Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical
Physics, Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China
- University of
Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Xiaolong Wang
- State
Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical
Physics, Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China
| | - Meirong Cai
- State
Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical
Physics, Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China
| | - Jun Yang
- State
Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical
Physics, Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China
| | - Bo Yu
- State
Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical
Physics, Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China
| | - Feng Zhou
- State
Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical
Physics, Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China
| |
Collapse
|
34
|
Morariu S, Bercea M, Teodorescu M, Avadanei M. Tailoring the properties of poly(vinyl alcohol)/poly(vinylpyrrolidone) hydrogels for biomedical applications. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.09.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Rheological investigation of poly(vinyl alcohol)/poly(N-vinyl pyrrolidone) mixtures in aqueous solution and hydrogel state. JOURNAL OF POLYMER RESEARCH 2016. [DOI: 10.1007/s10965-016-1040-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
36
|
Ma Y, Bai T, Wang F. The physical and chemical properties of the polyvinylalcohol/polyvinylpyrrolidone/hydroxyapatite composite hydrogel. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 59:948-957. [DOI: 10.1016/j.msec.2015.10.081] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 09/25/2015] [Accepted: 10/26/2015] [Indexed: 02/09/2023]
|
37
|
|
38
|
Smith J, Radzi Z, Czernuszka J. The effects of hot pressing on the swelling behavior of P(MMA-co
-NVP) hydrogel discs. POLYM ENG SCI 2015. [DOI: 10.1002/pen.24067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Z. Radzi
- University of Malaya; 50603 Kuala Lumpur Malaysia
| | | |
Collapse
|
39
|
Oungoulian SR, Hehir KE, Zhu K, Willis CE, Marinescu AG, Merali N, Ahmad CS, Hung CT, Ateshian GA. Effect of glutaraldehyde fixation on the frictional response of immature bovine articular cartilage explants. J Biomech 2013; 47:694-701. [PMID: 24332617 DOI: 10.1016/j.jbiomech.2013.11.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/19/2013] [Accepted: 11/24/2013] [Indexed: 10/25/2022]
Abstract
This study examined functional properties and biocompatibility of glutaraldehyde-fixed bovine articular cartilage over several weeks of incubation at body temperature to investigate its potential use as a resurfacing material in joint arthroplasty. In the first experiment, treated cartilage disks were fixed using 0.02, 0.20 and 0.60% glutaraldehyde for 24h then incubated, along with an untreated control group, in saline for up to 28d at 37°C. Both the equilibrium compressive and tensile moduli increased nearly twofold in treated samples compared to day 0 control, and remained at that level from day 1 to 28; the equilibrium friction coefficient against glass rose nearly twofold immediately after fixation (day 1) but returned to control values after day 7. Live explants co-cultured with fixed explants showed no quantitative difference in cell viability over 28d. In general, no significant differences were observed between 0.20 and 0.60% groups, so 0.20% was deemed sufficient for complete fixation. In the second experiment, cartilage-on-cartilage frictional measurements were performed under a migrating contact configuration. In the treated group, one explant was fixed using 0.20% glutaraldehyde while the apposing explant was left untreated; in the control group both explants were left untreated. From day 1 to 28, the treated group exhibited either no significant difference or slightly lower friction coefficient than the untreated group. These results suggest that a properly titrated glutaraldehyde treatment can reproduce the desired functional properties of native articular cartilage and maintain these properties for at least 28d at body temperature.
Collapse
Affiliation(s)
- Sevan R Oungoulian
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Kristin E Hehir
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Kaicen Zhu
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Callen E Willis
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Anca G Marinescu
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Natasha Merali
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | | | - Clark T Hung
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Gerard A Ateshian
- Department of Mechanical Engineering, Columbia University, New York, NY, USA; Department of Biomedical Engineering, Columbia University, New York, NY, USA.
| |
Collapse
|
40
|
Liu G, Wang X, Zhou F, Liu W. Tuning the tribological property with thermal sensitive microgels for aqueous lubrication. ACS APPLIED MATERIALS & INTERFACES 2013; 5:10842-52. [PMID: 24117133 DOI: 10.1021/am403041r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Thermoresponsive microgels, poly(N-isopropylacrylamide)-graft-poly(ethylene glycol) (PNIPAAm-g-PEG), were synthesized via emulsifier-free emulsion polymerization and the tribological property as water lubricating additive was studied. The microgels had good thermoresponsive collapse/swelling performance with lower critical solution temperature (LCST) ca. 38.4 °C. The rheological characterization and tribological tests showed that the microgels had a good lubricating performance in aqueous lubrication through interfacial physisorption and hydration lubrication, but the friction coefficient was impacted by temperature (below and above LCST). The tunable thermosensitive tribological property was attributed to the hydrophobic interaction and the enhanced interfacial absorption, which were both triggered by the elevated temperature. Furthermore, in order to avoid the water erosion in aqueous lubrication, the microgels were used together with 1H-benzotriazoles (BTA). Because of the good antifriction and anticorrosion property of BTA and the interplay between microgels and BTA, the microgels/BTA exhibited a synergistic effect in aqueous lubrication and the tribological property was more sensitive around the LCST. The present work is beneficial to understanding the tribological property of responsive microgels in aqueous lubrication and provides a novel approach for achieving low-friction through soft matters.
Collapse
Affiliation(s)
- Guoqiang Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , Lanzhou 730000, China
| | | | | | | |
Collapse
|
41
|
Iravani A, Mueller J, Yousefi AM. Producing homogeneous cryogel phantoms for medical imaging: a finite-element approach. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2013; 25:181-202. [DOI: 10.1080/09205063.2013.848327] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
42
|
Low friction hydrogel for articular cartilage repair: Evaluation of mechanical and tribological properties in comparison with natural cartilage tissue. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:4377-83. [DOI: 10.1016/j.msec.2013.06.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 04/09/2013] [Accepted: 06/20/2013] [Indexed: 11/24/2022]
|
43
|
Baykal D, Underwood RJ, Mansmann K, Marcolongo M, Kurtz SM. Evaluation of friction properties of hydrogels based on a biphasic cartilage model. J Mech Behav Biomed Mater 2013; 28:263-73. [PMID: 24008138 DOI: 10.1016/j.jmbbm.2013.07.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 07/28/2013] [Indexed: 11/16/2022]
Abstract
Characterizing hydrogels using a biphasic cartilage model, which can predict their behavior based on structural properties, such as permeability and aggregate modulus, may be useful for comparing active lubrication modes of cartilage and hydrogels for the design of articular cartilage implants. The effects of interstitial fluid pressurization, inherent matrix viscoelasticity and tension-compression nonlinearity on mechanical properties of the biphasic material were evaluated by linear biphasic (KLM), biphasic poroviscoelastic (BPVE) and linear biphasic with anisotropy cartilage models, respectively. The BPVE model yielded the lowest root mean square error and highest coefficient of determination when predicting confined and unconfined compression stress-relaxation response of hydrogels (n=15): 0.220±0.316MPa and 0.93±0.08; and 0.017±0.008MPa and 0.98±0.01 respectively. Since the differences in error between models were not statistically significant, the simplest model we considered, KLM model, was sufficient to predict the mechanical response of this family of hydrogels. The coefficient of friction (COF) of a hydrogel-ceramic articulation was measured at varying loads and pressures to explore the full range of lubrication behavior of hydrogel. Material parameters obtained by biphasic models correlated with COF. Based on the linear biphasic model, COF correlated positively with aggregate modulus (spearman's rho=0.5; p<0.001) and velocity (rho=0.3; p<0.001), and negatively with permeability (rho=-0.3; p<0.001) and load (rho=-0.6; p<0.001). Negative correlation of COF with load and positive correlation with velocity indicated that hydrogel-ceramic articulation was separated by a fluid film. These results together suggested that interstitial fluid pressurization was dominant in the viscoelasticity and lubrication properties of this biphasic material.
Collapse
Affiliation(s)
- D Baykal
- School of Biomedical Engineering, Health and Science Systems, Drexel University, 3401 Market Street, Suite 300, Philadelphia PA, 19104, USA.
| | | | | | | | | |
Collapse
|
44
|
Holloway JL, Lowman AM, Palmese GR. Aging behavior of PVA hydrogels for soft tissue applications after in vitro swelling using osmotic pressure solutions. Acta Biomater 2013; 9:5013-21. [PMID: 23022548 DOI: 10.1016/j.actbio.2012.09.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/17/2012] [Accepted: 09/18/2012] [Indexed: 11/16/2022]
Abstract
The osmotic pressure of the medium used for in vitro swelling evaluation has been shown to have a significant effect on the swelling behavior of a material. In this study, the effect of osmotic pressure during swelling on poly(vinyl alcohol) hydrogel material properties was evaluated in vitro. Osmotic pressure solutions are necessary in order to mimic the swelling pressure observed in vivo for soft tissues present in load-bearing joints. Hydrogels were characterized after swelling by mechanical testing, X-ray diffraction and optical microscopy in the hydrated state. Results indicated that hydrogel mechanical properties remained tailorable with respect to initial processing parameters; however, significant aging occurred in osmotic solution. This was observed when evaluating the mechanical properties of the hydrogels, which, before swelling, ranged from 0.04 to 0.78 MPa but, after swelling in vitro using osmotic pressure solution, ranged from 0.32 to 0.93 MPa. Significant aging was also noted when evaluating crystallinity, with the relative crystallinity ranging between 0.4 and 5.0% before swelling and between 6.5 nd 8.0% after swelling. When compared to swelling in a non-osmotic pressure solution or in phosphate-buffered saline solution, the mechanical properties were more dependent upon the final swelling content. Furthermore, increases in crystallinity were not as significant after swelling. These results highlight the importance of choosing the appropriate swelling medium for in vitro characterization based on the desired application.
Collapse
Affiliation(s)
- Julianne L Holloway
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, 3141 Chestnut St., PA 19104, USA
| | | | | |
Collapse
|
45
|
Sulek MW, Sas W, Wasilewski T, Bak-Sowinska A, Piotrowska U. Polymers (Polyvinylpyrrolidones) As Active Additives Modifying the Lubricating Properties of Water. Ind Eng Chem Res 2012. [DOI: 10.1021/ie301431v] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marian W. Sulek
- Department
of Chemistry, Technical University of Radom, 26-600 Radom, Chrobrego 27, Poland
| | - Witold Sas
- Department
of Chemistry, Technical University of Radom, 26-600 Radom, Chrobrego 27, Poland
| | - Tomasz Wasilewski
- Department
of Chemistry, Technical University of Radom, 26-600 Radom, Chrobrego 27, Poland
| | - Anna Bak-Sowinska
- Department
of Chemistry, Technical University of Radom, 26-600 Radom, Chrobrego 27, Poland
| | - Urszula Piotrowska
- Department
of Chemistry, Technical University of Radom, 26-600 Radom, Chrobrego 27, Poland
| |
Collapse
|
46
|
Minton JA, Iravani A, Azizeh-Mitra Yousefi. Improving the homogeneity of tissue-mimicking cryogel phantoms for medical imaging. Med Phys 2012; 39:6796-807. [DOI: 10.1118/1.4757617] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
47
|
Baykal D, Day J, Jaekel D, Katta J, Mansmann K, Kurtz S. Tribological evaluation of hydrogel articulations for joint arthroplasty applications. J Mech Behav Biomed Mater 2012; 14:39-47. [DOI: 10.1016/j.jmbbm.2012.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Revised: 05/19/2012] [Accepted: 05/20/2012] [Indexed: 10/28/2022]
|
48
|
Blum MM, Ovaert TC. A novel polyvinyl alcohol hydrogel functionalized with organic boundary lubricant for use as low-friction cartilage substitute: Synthesis, physical/chemical, mechanical, and friction characterization. J Biomed Mater Res B Appl Biomater 2012; 100:1755-63. [DOI: 10.1002/jbm.b.32742] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 03/26/2012] [Accepted: 05/08/2012] [Indexed: 11/11/2022]
|
49
|
What's next? Alternative materials for articulation in total joint replacement. Acta Biomater 2012; 8:2434-41. [PMID: 22446959 DOI: 10.1016/j.actbio.2012.03.029] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 03/13/2012] [Accepted: 03/18/2012] [Indexed: 11/21/2022]
Abstract
The use of an artificial joint is always related to a certain amount of wear. Its biological effects, e.g., the osteolysis potential, are a function of the bulk material as well as its debris. Following comprehensive experiences with polyethylene (PE) wear, material science is tracking two ways to minimize the risk of a particle-induced aseptic implant loosening: (i) reduction of the PE debris by a low-wearing articulation partner; and (ii) replacement of the PE by other materials. Therefore, new ceramics (e.g., ZTA, Si(3)N(4)), as well as coatings (e.g., TiN, "diamond-like" carbon) and modifications of a bulk metal (e.g., oxidizes zirconium) or cushion bearings (polyurethane, hydrogels), are currently available for total joint replacements or have been used for pre-clinical testing. This review gives a brief overview and evaluates the potential of those that have recently been published in literature.
Collapse
|
50
|
Blum MM, Ovaert TC. Experimental and numerical tribological studies of a boundary lubricant functionalized poro-viscoelastic PVA hydrogel in normal contact and sliding. J Mech Behav Biomed Mater 2012; 14:248-58. [PMID: 22947923 DOI: 10.1016/j.jmbbm.2012.06.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 06/13/2012] [Accepted: 06/18/2012] [Indexed: 10/28/2022]
Abstract
Hydrogels are a cross-linked network of polymers swollen with liquid and have the potential to be used as a synthetic replacement for local defects in load bearing tissues such as articular cartilage. Hydrogels display viscoelastic time dependent behavior, therefore experimental analysis of stresses at the surface and within the gel is difficult to perform. A three-dimensional model of a hydrogel was developed in the commercial finite element software ABAQUS™, implementing a poro-viscoelastic constitutive model along with a contact-dependent flow state and friction conditions. Water content measurements, sliding, and indentation experiments were performed on neat polyvinyl alcohol (PVA), and on low friction boundary lubricant functionalized (BLF-PVA) hydrogels, both manufactured by freeze-thaw processes. Modulus results from the indentation experiments and coefficient of friction values from the sliding experiments were used as material property inputs to the model, while water content was used to calculate initial flow conditions. Tangential force and normal displacement data from a three-dimensional simulation of sliding were compared with the experiments. The tangential force patterns indicated important similarities with the fabricated hydrogels that included an initially high force value due to time dependent deformation followed by a decrease in a stabile value. A similar trend was observed with the normal displacement. These comparisons rendered the model suitable as a representation and were used to analyze the development and propagation of stresses in the immediate surface region. The results showed that in a three-dimensional stress field during sliding, the maximum stress shifted to the surface and rotated closer to the leading edge of contact. This occurred because the stress field becomes dominated by an amplified compressive stress at the leading edge due to the biphasic viscoelastic response of the material during sliding. Also, the complex multi-axial contact stress field was reduced to focus predominately on stress in the contact surface region in the direction of sliding. The results showed that during biphasic viscoelastic frictional sliding, the maximum tensile stress develops at the trailing edge of contact and a compressive stress develops at the leading edge in the direction of motion. The BLF-PVA hydrogels displayed a decrease in this tensile and compressive stress as compared to the standard PVA. The diminishment of these stresses would be expected to give the BLF-PVA hydrogels lower material wear with greater life expectancy as a synthetic articular cartilage implant.
Collapse
Affiliation(s)
- Michelle M Blum
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, USA
| | | |
Collapse
|