1
|
Forouharshad M, Raspa A, Fortino G, Ciulla MG, Farazdaghi A, Stolojan V, Stendardo L, Bracco S, Gelain F. Biomimetic electrospun PVDF/self-assembling peptide piezoelectric scaffolds for neural stem cell transplantation in neural tissue engineering. RSC Adv 2024; 14:21277-21291. [PMID: 38974226 PMCID: PMC11225063 DOI: 10.1039/d4ra02309a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/29/2024] [Indexed: 07/09/2024] Open
Abstract
Piezoelectric materials can provide in situ electrical stimulation without external chemical or physical support, opening new frontiers for future bioelectric therapies. Polyvinylidene fluoride (PVDF) possesses piezoelectricity and biocompatibility, making it an electroactive biomaterial capable of enhancing bioactivity through instantaneous electrical stimulation, which indicates significant potential in tissue engineering. In this study, we developed electroactive and biomimetic scaffolds made of electrospun PVDF and self-assembling peptides (SAPs) to enhance stem cell transplantation for spinal cord injury regeneration. We investigated the morphology and crystalline polymorphs of the electrospun scaffolds. Morphological studies demonstrated the benefit of using mixed sodium dodecyl sulfate (SDS) and SAPs as additives to form thinner, uniform, and defect-free fibers. Regarding electroactive phases, β and γ phases-evidence of electroactivity-were predominant in aligned scaffolds and scaffolds modified with SDS and SAPs. In vitro studies showed that neural stem cells (NSCs) seeded on electrospun PVDF with additives exhibited desirable proliferation and differentiation compared to the gold standard. Furthermore, the orientation of the fibers influenced scaffold topography, resulting in a higher degree of cell orientation in fiber-aligned scaffolds compared to randomly oriented ones.
Collapse
Affiliation(s)
- Mahdi Forouharshad
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda 20162 Milan Italy
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza 71013 San Giovanni Rotondo Italy
| | - Andrea Raspa
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza 71013 San Giovanni Rotondo Italy
| | - Giuseppe Fortino
- Department of Biotechnology and Bioscience, University of Milano - Bicocca via R. Cozzi 55 20125 Milano Italy
| | - Maria Gessica Ciulla
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda 20162 Milan Italy
| | - Arman Farazdaghi
- Chemical and Biomolecular Engineering Department, Whiting School of Engineering, Johns Hopkins University MD USA
| | - Vlad Stolojan
- Advanced Technology Institute, Electrical and Electronic Engineering, University of Surrey Guildford GU2 7XH UK
| | - Luca Stendardo
- Department of Materials Science, University of Milano - Bicocca via R. Cozzi 55 20125 Milano Italy
| | - Silvia Bracco
- Department of Materials Science, University of Milano - Bicocca via R. Cozzi 55 20125 Milano Italy
| | - Fabrizio Gelain
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda 20162 Milan Italy
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza 71013 San Giovanni Rotondo Italy
| |
Collapse
|
2
|
Wu L, Vllasaliu D, Cui Q, Raimi-Abraham BT. In Situ Self-Assembling Liver Spheroids with Synthetic Nanoscaffolds for Preclinical Drug Screening Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25610-25621. [PMID: 38741479 PMCID: PMC11129140 DOI: 10.1021/acsami.3c17384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024]
Abstract
Drug-induced liver injury (DILI) is one of the most common reasons for acute liver failure and a major reason for the withdrawal of medications from the market. There is a growing need for advanced in vitro liver models that can effectively recapitulate hepatic function, offering a robust platform for preclinical drug screening applications. Here, we explore the potential of self-assembling liver spheroids in the presence of electrospun and cryomilled poly(caprolactone) (PCL) nanoscaffolds for use as a new preclinical drug screening tool. This study investigated the extent to which nanoscaffold concentration may have on spheroid size and viability and liver-specific biofunctionality. The efficacy of our model was further validated using a comprehensive dose-dependent acetaminophen toxicity protocol. Our findings show the strong potential of PCL-based nanoscaffolds to facilitate in situ self-assembly of liver spheroids with sizes under 350 μm. The presence of the PCL-based nanoscaffolds (0.005 and 0.01% w/v) improved spheroid viability and the secretion of critical liver-specific biomarkers, namely, albumin and urea. Liver spheroids with nanoscaffolds showed improved drug-metabolizing enzyme activity and greater sensitivity to acetaminophen compared to two-dimensional monolayer cultures and scaffold-free liver spheroids. These promising findings highlight the potential of our nanoscaffold-based liver spheroids as an in vitro liver model for drug-induced hepatotoxicity and drug screening.
Collapse
Affiliation(s)
- Lina Wu
- King’s College London,
Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical
Sciences, Institute of Pharmaceutical Science, Franklin-Wilkins Building, 150 Stamford
Street, London SE1 9NH, U.K.
| | - Driton Vllasaliu
- King’s College London,
Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical
Sciences, Institute of Pharmaceutical Science, Franklin-Wilkins Building, 150 Stamford
Street, London SE1 9NH, U.K.
| | - Qi Cui
- King’s College London,
Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical
Sciences, Institute of Pharmaceutical Science, Franklin-Wilkins Building, 150 Stamford
Street, London SE1 9NH, U.K.
| | - Bahijja Tolulope Raimi-Abraham
- King’s College London,
Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical
Sciences, Institute of Pharmaceutical Science, Franklin-Wilkins Building, 150 Stamford
Street, London SE1 9NH, U.K.
| |
Collapse
|
3
|
Qiu B, Wu D, Xue M, Ou L, Zheng Y, Xu F, Jin H, Gao Q, Zhuang J, Cen J, Lin B, Su YC, Chen S, Sun D. 3D Aligned Nanofiber Scaffold Fabrication with Trench-Guided Electrospinning for Cardiac Tissue Engineering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4709-4718. [PMID: 38388349 DOI: 10.1021/acs.langmuir.3c03358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Constructing three-dimensional (3D) aligned nanofiber scaffolds is significant for the development of cardiac tissue engineering, which is promising in the field of drug discovery and disease mechanism study. However, the current nanofiber scaffold preparation strategy, which mainly includes manual assembly and hybrid 3D printing, faces the challenge of integrated fabrication of morphology-controllable nanofibers due to its cross-scale structural feature. In this research, a trench-guided electrospinning (ES) strategy was proposed to directly fabricate 3D aligned nanofiber scaffolds with alternative ES and a direct ink writing (DIW) process. The electric field effect of DIW poly(dimethylsiloxane) (PDMS) side walls on guiding whipping ES nanofibers was investigated to construct trench design rules. It was found that the width/height ratio of trenches greatly affected the nanofiber alignment, and the trench width/height ratio of 1.5 provided the nanofiber alignment degree over 60%. As a proof of principle, 3D nanofiber scaffolds with controllable porosity (60-80%) and alignment (30-60%) were fabricated. The effect of the scaffolds was verified by culturing human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), which resulted in the uniform 3D distribution of aligned hiPSC-CMs with ∼1000 μm thickness. Therefore, this printing strategy shows great potential for the efficient engineered tissue construction.
Collapse
Affiliation(s)
- Bin Qiu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| | - Dongyang Wu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| | - Mingcheng Xue
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| | - Lu Ou
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| | - Yanfei Zheng
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Feng Xu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| | - Hang Jin
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| | - Qiang Gao
- Guangdong Provincial People's Hospital, Guangzhou 510080, China
| | - Jian Zhuang
- Guangdong Provincial People's Hospital, Guangzhou 510080, China
| | - Jianzheng Cen
- Guangdong Provincial People's Hospital, Guangzhou 510080, China
| | - Bin Lin
- Guangdong Beating Origin Regenerative Medicine Co. Ltd., Foshan 528231, Guangdong, China
| | - Yu-Chuan Su
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300044, Taiwan, China
| | - Songyue Chen
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| | - Daoheng Sun
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| |
Collapse
|
4
|
Hemmati Dezaki Z, Parivar K, Goodarzi V, Nourani MR. Cobalt/Bioglass Nanoparticles Enhanced Dermal Regeneration in a 3-Layered Electrospun Scaffold. Adv Pharm Bull 2024; 14:192-207. [PMID: 38585469 PMCID: PMC10997931 DOI: 10.34172/apb.2024.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 11/12/2022] [Accepted: 07/19/2023] [Indexed: 04/09/2024] Open
Abstract
Purpose Due to the multilayered structure of the skin tissue, the architecture of its engineered scaffolds needs to be improved. In the present study, 45s5 bioglass nanoparticles were selected to induce fibroblast proliferation and their protein secretion, although cobalt ions were added to increase their potency. Methods A 3-layer scaffold was designed as polyurethane (PU) - polycaprolactone (PCL)/ collagen/nanoparticles-PCL/collagen. The scaffolds examined by scanning electron microscopy (SEM), Fourier transform infrared (FTIR), tensile, surface hydrophilicity and weight loss. Biological tests were performed to assess cell survival, adhesion and the pattern of gene expression. Results The mechanical assay showed the highest young modulus for the scaffold with the doped nanoparticles and the water contact angle of this scaffold after chemical crosslinking of collagen was reduced to 52.34±7.7°. In both assessments, the values were statistically compared to other groups. The weight loss of the corresponding scaffold was the highest value of 82.35±4.3 % due to the alkaline effect of metal ions and indicated significant relations in contrast to the scaffold with non-doped particles and bare one (P value<0.05). Moreover, better cell expansion, greater cell confluence and a lower degree of toxicity were confirmed. The up-regulation of TGF β1 and VEGF genes introduced this scaffold as a better model for the fibroblasts commitment to a new skin tissue among bare and nondoped scaffold (P value<0.05). Conclusion The 3-layered scaffold which is loaded with cobalt ions-bonded bioglass nanoparticles, is a better substrate for the culture of the fibroblasts.
Collapse
Affiliation(s)
- Zahra Hemmati Dezaki
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kazem Parivar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Vahabodin Goodarzi
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohamad Reza Nourani
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Gao X, Hou T, Wang L, Liu Y, Guo J, Zhang L, Yang T, Tang W, An M, Wen M. Aligned electrospun fibers of different diameters for improving cell migration capacity. Colloids Surf B Biointerfaces 2024; 234:113674. [PMID: 38039823 DOI: 10.1016/j.colsurfb.2023.113674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/27/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
Electrospun fibers have gained significant attention as scaffolds in skin tissue engineering due to their biomimetic properties, which resemble the fibrous extracellular matrix. The morphological characteristics of electrospun fibers play a crucial role in determining cell behavior. However, the effects of electrospun fibers' arrangement and diameters on human skin fibroblasts (HSFs) remain elusive. Here, we revealed the impact of electrospun fiber diameters (700 nm, 2000 nm, and 3000 nm) on HSFs' proliferation, migration, and functional expression. The results demonstrated that all fibers exhibited good cytocompatibility. HSFs cultured on nanofibers (700 nm diameter) displayed a more dispersed and elongated morphology. Conversely, fibers with a diameter of 3000 nm exhibited a reduced specific surface area and lower adsorption of adhesion proteins, resulting in enhanced cell migration speed and effective migration rate. Meanwhile, the expression levels of migration-related genes and proteins were upregulated at 48 h for the 3000 nm fibers. This study demonstrated the unique role of fiber diameters in controlling the physiological functions of cells, especially decision-making and navigating migration in complex microenvironments of aligned electrospun fibers, and highlights the utility of these bioactive substitutes in skin tissue engineering applications.
Collapse
Affiliation(s)
- Xiang Gao
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi 030024, China
| | - Tian Hou
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi 030024, China
| | - Li Wang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi 030024, China
| | - Yang Liu
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi 030024, China
| | - Jiqiang Guo
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi 030024, China
| | - Li Zhang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Tiantian Yang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi 030024, China
| | - Wenjie Tang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi 030024, China
| | - Meiwen An
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi 030024, China.
| | - Meiling Wen
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi 030024, China.
| |
Collapse
|
6
|
Shaker A, Khedewy A, Hassan M, El-baky MA. Thermo-Mechanical Characterization of Electrospun Polyurethane /Carbon- Nanotubes Nanofibers: A Comparative Study.. [DOI: 10.21203/rs.3.rs-2939166/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Abstract
Creating ultrathin mountable fibers from a wide range of polymeric functional materials have made electrospinning an adequate approach to produce highly flexible and elastic materials. In this paper, electrospinning was utilized to produce thermoplastic polyurethane (TPU) nanofibrous membranes for the purpose of studying their thermal and mechanical properties. Towards a study of the effects of fiber orientation and multi-walled carbon nanotubes (MWCNTs) as a filler on both mechanical and thermal characteristics of electrospun TPU mats, an experimental comparison was held between a unidirectional and randomly aligned TPU and TPU/CNT nanofibrous structures. Incorporation of MWCNTs into randomly oriented TPU nanofibers resulted in a significant increase in Young's modulus (E), from 3.66 MPa to 5.68 MPa. Conversely, for unidirectionally spun fibers, Young's modulus decreased from 16.68 MPa to 11.63 MPa upon addition of MWCNTs. However, dynamic mechanical analysis (DMA) revealed a different behavior. The randomly oriented specimens exhibited a storage modulus with a significant increase from 180 MPa to 614 MPa for TPU and TPU/CNT mats, respectively, and a slight decrease from 157 MPa to 143 MPa for unidirectional TPU and TPU/CNT mats, respectively. Meanwhile, the loss modulus increased with the addition of MWCNTs from 15.7 MPa to 58.9 MPa and from 6.4 MPa to 12 MPa for the random and aligned fibers, respectively. Thermal degradation of the membranes was not significantly affected by the addition of MWCNTs, indicating that the mixing of the two constituents did not change the TPU’s polymer structure, and the TPU/CNT nanocomposite exhibited stable thermal degradation properties.
Collapse
|
7
|
Hosseinkhani H, Domb AJ, Sharifzadeh G, Nahum V. Gene Therapy for Regenerative Medicine. Pharmaceutics 2023; 15:856. [PMID: 36986717 PMCID: PMC10057434 DOI: 10.3390/pharmaceutics15030856] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The development of biological methods over the past decade has stimulated great interest in the possibility to regenerate human tissues. Advances in stem cell research, gene therapy, and tissue engineering have accelerated the technology in tissue and organ regeneration. However, despite significant progress in this area, there are still several technical issues that must be addressed, especially in the clinical use of gene therapy. The aims of gene therapy include utilising cells to produce a suitable protein, silencing over-producing proteins, and genetically modifying and repairing cell functions that may affect disease conditions. While most current gene therapy clinical trials are based on cell- and viral-mediated approaches, non-viral gene transfection agents are emerging as potentially safe and effective in the treatment of a wide variety of genetic and acquired diseases. Gene therapy based on viral vectors may induce pathogenicity and immunogenicity. Therefore, significant efforts are being invested in non-viral vectors to enhance their efficiency to a level comparable to the viral vector. Non-viral technologies consist of plasmid-based expression systems containing a gene encoding, a therapeutic protein, and synthetic gene delivery systems. One possible approach to enhance non-viral vector ability or to be an alternative to viral vectors would be to use tissue engineering technology for regenerative medicine therapy. This review provides a critical view of gene therapy with a major focus on the development of regenerative medicine technologies to control the in vivo location and function of administered genes.
Collapse
Affiliation(s)
- Hossein Hosseinkhani
- Innovation Center for Advanced Technology, Matrix, Inc., New York, NY 10019, USA
| | - Abraham J. Domb
- The Center for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Ghorbanali Sharifzadeh
- Department of Polymer Engineering, School of Chemical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Victoria Nahum
- The Center for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
8
|
Photocrosslinked Fish Collagen Peptide/Chitin Nanofiber Composite Hydrogels from Marine Resources: Preparation, Mechanical Properties, and an In Vitro Study. Polymers (Basel) 2023; 15:polym15030682. [PMID: 36771982 PMCID: PMC9920125 DOI: 10.3390/polym15030682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/29/2022] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Fish collagen peptide (FCP) is a water-soluble polymer with easy accessibility, bioactivity, and reactivity due to its solubility. The gelation of FCP can be carried out by chemical crosslinking, but the mechanical strength of FCP hydrogel is very low because of its intrinsically low molecular weight. Therefore, the mechanical properties of FCP gel should be improved for its wider application as a biomaterial. In this study, we investigated the mechanical properties of M-FCP gel in the context of understanding the influence of chitin nanofibers (CHNFs) on FCP hydrogels. FCP with a number average molecular weight (Mn) of ca. 5000 was reacted with glycidyl methacrylate (GMA) and used for the preparation of photocrosslinked hydrogels. Subsequently, composite hydrogels of methacrylate-modified FCP (M-FCP) and CHNF were prepared by the photoirradiation of a solution of M-FCP containing dispersed CHNF at an intensity of ~60 mW/cm2 for 450 s in the presence of 2-hydroxy-1-[4-(hydroxyethoxy)phenyl]-2-methyl-1-propanone (Irgacure 2959) as a photoinitiator. Compression and tensile tests of the FCP hydrogels were carried out using a universal tester. The compression and tensile strength of the hydrogel increased 10-fold and 4-fold, respectively, by the addition of 0.6% CHNF (20% M-FCP), and Young's modulus increased 2.5-fold (20% M-FCP). The highest compression strength of the M-FCP/CHNF hydrogel was ~300 kPa. Cell proliferation tests using fibroblast cells revealed that the hydrogel with CHNF showed good cell compatibility. The cells showed good adhesion on the M-FCP gel with CHNF, and the growth of fibroblast cells after 7 days was higher on the M-FCP/CHNF gel than on the M-FCP gel without CHNF. In conclusion, we found that CHNF improved the mechanical properties as well as the fibroblast cell compatibility, indicating that M-FCP hydrogels reinforced with CHNF are useful as scaffolds and wound-dressing materials.
Collapse
|
9
|
Sueyoshi Y, Niwa A, Nishikawa Y, Isogai N. The significance of nanofiber polyglycolic acid for promoting tissue repair in a rat subcutaneous implantation model. J Biomed Mater Res B Appl Biomater 2023; 111:16-25. [PMID: 35833260 DOI: 10.1002/jbm.b.35128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/03/2022] [Accepted: 06/22/2022] [Indexed: 11/08/2022]
Abstract
Among various biomaterials, we focused on nanofiber-based polyglycolic acid (PGA) fabric and examined the dynamics of cells that migrate within the non-woven fabric after implantation. The efficacy of nano-PGA as a tissue reinforcement in the process of subcutaneous tissue repair was immunohistochemically investigated. Two types of clinically available PGA non-woven sheet (nano-PGA: fiber diameter = 2.0 μm, conventional PGA: fiber diameter = 14.2 μm) were used and subcutaneously implanted in rats. Samples were collected 3 days, and 1, 2, 3, and 4 weeks after the implantation to perform histological and immunohistochemical (CD68, CD163, α-SMA, Type I collagen, CD34, MCP-1, IL-6, TNF-α, TGF-β, VEGF, IgG) examinations to assess the expression of molecules related to inflammation or tissue repair. Immunohistochemical analysis in nano-PGA revealed that the intensity and positive cells (CD68, MCP-1, IL-6, TNF-α) significantly increased which indicated an early inflammatory response. This was followed by phagocytosis of nano-PGA with foreign body giant cells and CD68+ macrophages. Finally, the number of proliferating cells (CD163, α-SMA, TGF-β) and angiogenesis (CD34, VEGF) for tissue repair promoted the formation of collagen fibers (type I collagen). Unlike nano-PGA, implantation of conventional PGA sheet resulted in a prolonged inflammatory response and was characterized by the presence of discontinuous collagen fibers with many foreign body giant cells, which did not lead to tissue repair. Nano-PGA sheets demonstrated a better tissue compatibility compared with conventional PGA by inducing early polarization to M2 phenotype macrophages, which triggered subsequent angiogenesis and tissue repair in the subcutaneous tissue.
Collapse
Affiliation(s)
- Yu Sueyoshi
- Department of Plastic and Reconstructive Surgery, Kindai University Faculty of Medicine, Osaka-sayama, Japan
| | - Atsuko Niwa
- Department of Plastic and Reconstructive Surgery, Kindai University Faculty of Medicine, Osaka-sayama, Japan
| | - Yuki Nishikawa
- Department of Plastic and Reconstructive Surgery, Kindai University Faculty of Medicine, Osaka-sayama, Japan
| | - Noritaka Isogai
- Department of Plastic and Reconstructive Surgery, Kindai University Faculty of Medicine, Osaka-sayama, Japan
| |
Collapse
|
10
|
Renkler NZ, Cruz-Maya I, Bonadies I, Guarino V. Electro Fluid Dynamics: A Route to Design Polymers and Composites for Biomedical and Bio-Sustainable Applications. Polymers (Basel) 2022; 14:polym14194249. [PMID: 36236197 PMCID: PMC9572386 DOI: 10.3390/polym14194249] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 12/01/2022] Open
Abstract
In the last two decades, several processes have been explored for the development of micro and/or nanostructured substrates by sagely physically and/or chemically manipulating polymer materials. These processes have to be designed to overcome some of the limitations of the traditional ones in terms of feasibility, reproducibility, and sustainability. Herein, the primary aim of this work is to focus on the enormous potential of using a high voltage electric field to manipulate polymers from synthetic and/or natural sources for the fabrication of different devices based on elementary units, i.e., fibers or particles, with different characteristic sizes—from micro to nanoscale. Firstly, basic principles and working mechanisms will be introduced in order to correlate the effect of selected process parameters (i.e., an applied voltage) on the dimensional features of the structures. Secondly, a comprehensive overview of the recent trends and potential uses of these processes will be proposed for different biomedical and bio-sustainable application areas.
Collapse
|
11
|
Lou L, Paul T, Aguiar BA, Dolmetsch T, Zhang C, Agarwal A. Direct Observation of Adhesion and Mechanical Behavior of a Single Poly(lactic- co-glycolic acid) (PLGA) Fiber Using an In Situ Technique for Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42876-42886. [PMID: 36107749 DOI: 10.1021/acsami.2c09665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanometer- and submicrometer-sized fiber have been used as scaffolds for tissue engineering, because of their fundamental load-bearing properties in synergy with mechano-transduction. This study investigates a single biodegradable poly(lactic-co-glycolic acid) (PLGA) fiber's load-displacement behavior utilizing the nanoindentation technique coupled with a high-resolution in situ imaging system. It is demonstrated that a maximum force of ∼3 μN in the radial direction and displacement of at least 150% of fiber diameter should be applied to acquire the fiber's macroscopic mechanical properties for tissue engineering. The adhesion behavior of a single fiber is captured using a high-resolution camera. The digital image correlation (DIC) technique is adopted to quantify the adhesion force (∼25 μN) between the fiber and the tip. Adhesion force has also been quantified for the fiber after immersing in phosphate-buffered saline (PBS) to mimic the bioenvironment. A 4-fold increase in adhesion force after PBS treatment was observed due to water penetration and hydrolysis on the fiber's surface. A high similarity between mechanical properties of a single fiber and native tissues (elastic modulus of 10-25 kPa) and superior adhesion force (25-107.25 μN) was observed, which is excellent for promoting cell-matrix communication. Overall, this study examines the mechanics of a single fiber using innovative indentation and imaging processing techniques, disclosing its profound and striking roles in tissue engineering.
Collapse
Affiliation(s)
- Lihua Lou
- Plasma Forming Laboratory, Mechanical and Materials Engineering, College of Engineering and Computing, Florida International University, Miami, Florida 33174, United States
| | - Tanaji Paul
- Plasma Forming Laboratory, Mechanical and Materials Engineering, College of Engineering and Computing, Florida International University, Miami, Florida 33174, United States
| | - Brandon A Aguiar
- Plasma Forming Laboratory, Mechanical and Materials Engineering, College of Engineering and Computing, Florida International University, Miami, Florida 33174, United States
| | - Tyler Dolmetsch
- Plasma Forming Laboratory, Mechanical and Materials Engineering, College of Engineering and Computing, Florida International University, Miami, Florida 33174, United States
| | - Cheng Zhang
- Plasma Forming Laboratory, Mechanical and Materials Engineering, College of Engineering and Computing, Florida International University, Miami, Florida 33174, United States
| | - Arvind Agarwal
- Plasma Forming Laboratory, Mechanical and Materials Engineering, College of Engineering and Computing, Florida International University, Miami, Florida 33174, United States
| |
Collapse
|
12
|
Raza A, Mumtaz M, Hayat U, Hussain N, Ghauri MA, Bilal M, Iqbal HM. Recent advancements in extrudable gel-based bioinks for biomedical settings. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Singh YP, Mishra B, Gupta MK, Mishra NC, Dasgupta S. Enhancing physicochemical, mechanical, and bioactive performances of monetite nanoparticles reinforced
chitosan‐PEO
electrospun scaffold for bone tissue engineering. J Appl Polym Sci 2022. [DOI: 10.1002/app.52844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yogendra Pratap Singh
- Department of Ceramic Engineering National Institute of Technology Rourkela Odisha India
| | - Balaram Mishra
- Department of Biotechnology and Medical Engineering National Institute of Technology Rourkela Odisha India
| | - Mukesh Kumar Gupta
- Department of Biotechnology and Medical Engineering National Institute of Technology Rourkela Odisha India
| | - Narayan Chandra Mishra
- Department of Polymer and Process Engineering Indian Institute of Technology (IIT) Roorkee India
| | - Sudip Dasgupta
- Department of Ceramic Engineering National Institute of Technology Rourkela Odisha India
| |
Collapse
|
14
|
Development of PVA/Chitosan-g-Poly (N-vinyl imidazole)/TiO2/curcumin nanofibers as high-performance wound dressing. Carbohydr Polym 2022; 296:119956. [DOI: 10.1016/j.carbpol.2022.119956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 12/29/2022]
|
15
|
Ghalei S, Douglass M, Handa H. Nitric Oxide-Releasing Nanofibrous Scaffolds Based on Silk Fibroin and Zein with Enhanced Biodegradability and Antibacterial Properties. ACS Biomater Sci Eng 2022; 8:3066-3077. [PMID: 35704780 DOI: 10.1021/acsbiomaterials.2c00103] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Clinical applications of scaffolds and implants have been associated with bacterial infection resulting in impaired tissue regeneration. Nanofibers provide a versatile structure for both antimicrobial molecule delivery and tissue engineering. In this study, the nitric oxide (NO) donor molecule S-nitrosoglutathione (GSNO) and the natural biodegradable polymer zein (ZN) were combined with silk fibroin (SF) to develop antibacterial and biodegradable nanofibrous scaffolds for tissue engineering applications. The compatibility and intermolecular interactions of SF and ZN were studied using differential scanning calorimetry and Fourier transform infrared spectroscopy. The incorporation of ZN increased the hydrophobicity of the fibers and resulted in a more controlled and prolonged NO release profile lasting for 48 h. Moreover, the degradation kinetics of the fibers was significantly improved after blending with ZN. The results of tensile testing indicated that the addition of ZN and GSNO had a positive effect on the strength and stretchability of SF fibers and did not adversely affect their mechanical properties. Finally, due to the antibacterial properties of both NO and ZN, the SF-ZN-GSNO fibers showed a synergistically high antibacterial efficacy with 91.6 ± 2.5% and 77.5 ± 3.1% reduction in viability of adhered Staphylococcus aureus and Escherichia coli after 24 h exposure, respectively. The developed NO-releasing fibers were not only antibacterial but also non-cytotoxic and successfully enhanced the proliferation and growth of fibroblast cells, which was quantitatively studied by a CCK-8 assay and visually observed through fluorescent staining. Overall, SF-ZN-GSNO fibers developed in this study were biodegradable and highly antibacterial and showed great cytocompatibility with fibroblasts, indicating their promising potential for a range of tissue engineering and medical device applications.
Collapse
Affiliation(s)
- Sama Ghalei
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30605, United States
| | - Megan Douglass
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30605, United States
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30605, United States.,Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30605, United States
| |
Collapse
|
16
|
Gopal D, Ramani M, George R, Janakiraman N. Understanding the cellular response of human tenon fibroblast on polycaprolactone-Aloe vera blend fiber. J Biomater Appl 2022; 37:375-388. [PMID: 35446716 DOI: 10.1177/08853282221091042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The signalling response is determined by the cell's reaction to different biochemical and biophysical inputs such as stiffness, topological, and structural alignment. The surface patterns at the nano-scale can be an influential factor in cell signalling behaviour. It is important to understand the cellular response to the biophysical cues for biomedical applications. Biomaterials have an important role in regenerative tissue engineering. In this study, we have fabricated electrospun polycaprolactone (PCL) and PCL-Aloe vera (PCL-AV) nanofibrous matrix and studied its effect on the human tenon fibroblast (HTF) cellular and morphological changes. The electrospun fibers were characterized using Scanning Electron Microscope (SEM), Fourier Transform Infrared spectroscopy (FTIR), Atomic Force Microscopy (AFM) and Brunaur, Emette and Teller (BET) analysis for their morphology, composition, topography, surface area and porosity. The results revealed fiber size, roughness and porosity has been altered by addition of AV. The HTF cell viability, proliferation and expression of focal adhesion proteins, such as FAK, Ezrin, Vasp and Cofilin on the PCL-AV fiber matrix were examined. The results showed a change in cellular morphology and a significant change in the cofilin phosphorylation on PCL-AV nanofiber. The influence of Aloe vera composition on the nano-dimension of the PCL has made a significant impact on the cellular morphology at both gene and protein levels. This observation suggests that AV composition in the nanofiber can significantly influence the HTF cellular adhesions.
Collapse
Affiliation(s)
- Divya Gopal
- 29853Vision Research Foundation, Chennai, Tamil Nadu, India
| | - Madhura Ramani
- 29853Vision Research Foundation, Chennai, Tamil Nadu, India
| | - Ronnie George
- Medical Research Foundation, 29853Sankara Nethralaya, Chennai, Tamil Nadu, India
| | | |
Collapse
|
17
|
Abstract
The excellent combination of properties has seen a steep increase in the demand for titanium (Ti)-based material as biomedical implant devices. However, some features that promote biocompatibility are found to be lacking in Ti implants. The use of polymer nanofiber (NF) coating on the surfaces of the implants has been proven to remedy these setbacks. In particular, electrospun NFs are versatile as natural extracellular matrix mimics and as facilitators in the biocompatibility function of Ti-based implants. Therefore, various properties of Ti implants coated with polymer NFs and the correlations among these properties are explored in this review. Synthetic polymers are favorable in tissue engineering applications because they are biocompatible and have low toxicity and degradation rates. Several approved synthetic polymers and polymer hybrids have been electrospun onto Ti implant surfaces to successfully improve the biomedical applicability of the implants with regard to their physical (including diameter and porosity), chemical (including corrosion resistance), mechanical (including elastic modulus, strength and ductility) and biological properties (including tissue integration, antimicrobial and cytotoxicity).
Collapse
|
18
|
Bowers DT, Brown JL. Nanofiber curvature with Rho GTPase activity increases mouse embryonic fibroblast random migration velocity. Integr Biol (Camb) 2022; 13:295-308. [PMID: 35022716 PMCID: PMC8759537 DOI: 10.1093/intbio/zyab022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/30/2021] [Indexed: 01/14/2023]
Abstract
Mechanotransduction arises from information encoded in the shape of materials such as curvature. It induces activation of small GTPase signaling affecting cell phenotypes including differentiation. We carried out a set of preliminary experiments to test the hypothesis that curvature (1/radius) would also affect cell motility due to signal pathway crosstalk. High molecular weight poly (methyl methacrylate) straight nanofibers were electrospun with curvature ranging from 41 to 1 μm-1 and collected on a passivated glass substrate. The fiber curvature increased mouse mesenchymal stem cell aspect ratio (P < 0.02) and decreased cell area (P < 0.01). Despite little effect on some motility patterns such as polarity and persistence, we found selected fiber curvatures can increase normalized random fibroblastic mouse embryonic cell (MEF) migration velocity close to 2.5 times compared with a flat surface (P < 0.001). A maximum in the velocity curve occurred near 2.5 μm-1 and may vary with the time since initiation of attachment to the surface (range of 0-20 h). In the middle range of fiber curvatures, the relative relationship to curvature was similar regardless of treatment with Rho-kinase inhibitor (Y27632) or cdc42 inhibitor (ML141), although it was decreased on most curvatures (P < 0.05). However, below a critical curvature threshold MEFs may not be able to distinguish shallow curvature from a flat surface, while still being affected by contact guidance. The preliminary data in this manuscript suggested the large low curvature fibers were interpreted in a manner similar to a non-curved surface. Thus, curvature is a biomaterial construct design parameter that should be considered when specific biological responses are desired. Statement of integration, innovation, and insight Replacement of damaged or diseased tissues that cannot otherwise regenerate is transforming modern medicine. However, the extent to which we can rationally design materials to affect cellular outcomes remains low. Knowing the effect of material stiffness and diameter on stem cell differentiation, we investigated cell migration and signaling on fibrous scaffolds. By investigating diameters across orders of magnitude (50-2000 nm), we identified a velocity maximum of ~800 nm. Furthermore, the results suggest large fibers may not be interpreted by single cells as a curved surface. This work presents insight into the design of constructs for engineering tissues.
Collapse
|
19
|
The diameter factor of aligned membranes facilitates wound healing by promoting epithelialization in an immune way. Bioact Mater 2021; 11:206-217. [PMID: 34938924 PMCID: PMC8665262 DOI: 10.1016/j.bioactmat.2021.09.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/01/2021] [Accepted: 09/16/2021] [Indexed: 02/05/2023] Open
Abstract
Topographical properties, such as pattern and diameter, of biomaterials play important roles in influencing cell activities and manipulating the related immune response during wound healing. We prepared aligned electrospinning membranes with different fiber diameters, including 319 ± 100 nm (A300), 588 ± 132 nm (A600), and 1048 ± 130 nm (A1000), by adjusting the distance from the tip to the collector, the injection rate, and the concentration of the solution. The A300 membranes significantly improved cell proliferation and spreading and facilitated wound healing (epithelization and vascularization) with the regeneration of immature hair follicles compared to the other membranes. Transcriptomics revealed the underlying molecular mechanism that A300 could promote immune-related processes towards a pro-healing direction, significantly promoting keratinocyte migration and skin wound healing. All the results indicated that wound healing requires the active participation of the immune process, and that A300 was a potential candidate for guided skin regeneration applications. It is still unclear which diameter interval of aligned membranes is most suitable for tissue regeneration. Outstanding performances in the wound healing process was presented by the A300 membranes. The transcriptome revealed that A300 could promote immune related processes towards a pro-healing direction. A300 promoted keratinocytes migration and final wound healing partially through MMP12.
Collapse
|
20
|
Serati-Nouri H, Mahmoudnezhad A, Bayrami M, Sanajou D, Tozihi M, Roshangar L, Pilehvar Y, Zarghami N. Sustained delivery efficiency of curcumin through ZSM-5 nanozeolites/electrospun nanofibers for counteracting senescence of human adipose-derived stem cells. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
21
|
Doostmohammadi M, Forootanfar H, Shakibaie M, Torkzadeh-Mahani M, Rahimi HR, Jafari E, Ameri A, Ameri A. Polycaprolactone/gelatin electrospun nanofibres containing biologically produced tellurium nanoparticles as a potential wound dressing scaffold: Physicochemical, mechanical, and biological characterisation. IET Nanobiotechnol 2021; 15:277-290. [PMID: 34694673 PMCID: PMC8675828 DOI: 10.1049/nbt2.12020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/01/2020] [Accepted: 10/19/2020] [Indexed: 12/19/2022] Open
Abstract
The biologically synthesised tellurium nanoparticles (Te NPs) were applied in the fabrication of Te NP‐embedded polycaprolactone/gelatin (PCL/GEL) electrospun nanofibres and their antioxidant and in vivo wound healing properties were determined. The as‐synthesised nanofibres were characterised using scanning electron microscopy (SEM), energy‐dispersive X‐ray (EDX) spectroscopy and elemental mapping, thermogravimetric analysis (TGA), and Fourier‐transform infrared (FTIR) spectroscopy. The mechanical properties and surface hydrophobicity of scaffolds were investigated using tensile analysis and contact angle tests, respectively. The biocompatibility of the produced scaffolds on mouse embryonic fibroblast cells (3T3) was evaluated using MTT assay. The highest wound healing activity (score 15/19) was achieved for scaffolds containing Te NPs. The wounds treated with PCL/GEL/Te NPs had inflammation state equal to the positive control. Also, the mentioned scaffold represented positive effects on collagen formation and collagen fibre's horizontalisation in a dose‐dependent manner. The antioxidative potency of Te NP‐containing scaffolds was demonstrated with lower levels of malondialdehyde (MDA) and catalase (∼3 times) and a higher level of glutathione (GSH) (∼2 times) in PCL/GEL/Te NP‐treated samples than the negative control. The obtained results strongly demonstrated the healing activity of the produced nanofibres, and it can be inferred that scaffolds containing Te NPs are suitable for wound dressing.
Collapse
Affiliation(s)
- Mohsen Doostmohammadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Forootanfar
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mojtaba Shakibaie
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.,Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoud Torkzadeh-Mahani
- Department of Biotechnology, Institute of Science High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Hamid-Reza Rahimi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Jafari
- Pathology and Stem Cells Research Center, Kerman University of Medical Science, Kerman, Iran
| | - Atefeh Ameri
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Alieh Ameri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
22
|
Preparation of a Cage-Type Polyglycolic Acid/Collagen Nanofiber Blend with Improved Surface Wettability and Handling Properties for Potential Biomedical Applications. Polymers (Basel) 2021; 13:polym13203458. [PMID: 34685218 PMCID: PMC8541674 DOI: 10.3390/polym13203458] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
Electrospun biobased polymeric nanofiber blends are widely used as biomaterials for different applications, such as tissue engineering and cell adhesion; however, their surface wettability and handling require further improvements for their practical utilization in the assistance of surgical operations. Therefore, Polyglycolic acid (PGA) and collagen-based nanofibers with three different ratios (40:60, 50:50 and 60:40) were prepared using the electrospinning method, and their surface wettability was improved using ozonation and plasma (nitrogen) treatment. The effect on the wettability and the morphology of pristine and blended PGA and collagen nanofibers was assessed using the WCA test and SEM, respectively. It was observed that PGA/collagen with the ratio 60:40 was the optimal blend, which resulted in nanofibers with easy handling and bead-free morphology that could maintain their structural integrity even after the surface treatments, imparting hydrophilicity on the surface, which can be advantageous for cell adhesion applications. Additionally, a cage-type collector was used during the electrospinning process to provide better handling properties to (PGA/collagen 60:40) blend. The resultant nanofiber mat was then incorporated with activated poly (α,β-malic acid) to improve its surface hydrophilicity. The chemical composition of PGA/collagen 60:40 was assessed using FTIR spectroscopy, supported by Raman spectroscopy.
Collapse
|
23
|
Kunisaki A, Kodama A, Ishikawa M, Ueda T, Lima MD, Kondo T, Adachi N. Carbon-nanotube yarns induce axonal regeneration in peripheral nerve defect. Sci Rep 2021; 11:19562. [PMID: 34599218 PMCID: PMC8486759 DOI: 10.1038/s41598-021-98603-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 09/13/2021] [Indexed: 11/20/2022] Open
Abstract
Carbon nanotubes (CNTs) are cylindrical nanostructures and have unique properties, including flexibility, electrical conductivity, and biocompatibility. We focused on CNTs fabricated with the carbon nanotube yarns (cYarn) as a possible substrate promoting peripheral nerve regeneration with these properties. We bridged a 15 mm rat sciatic nerve defect with five different densities of cYarn. Eight weeks after the surgery, the regenerated axons crossing the CNTs, electromyographical findings, and muscle weight ratio of the lower leg showed recovery of the nerve function by interfacing with cYarn. Furthermore, the sciatic nerve functional index (SFI) at 16 weeks showed improvement in gait function. A 2% CNT density tended to be the most effective for nerve regeneration as measured by both histological axonal regeneration and motor function. We confirmed that CNT yarn promotes peripheral nerve regeneration by using it as a scaffold for repairing nerve defects. Our results support the future clinical application of CNTs for bridging nerve defects as an off-the-shelf material.
Collapse
Affiliation(s)
- Atsushi Kunisaki
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akira Kodama
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Masakazu Ishikawa
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takahiro Ueda
- Nano-Science and Technology Center, LINTEC OF AMERICA, INC., Richardson, USA
| | - Marcio D Lima
- Nano-Science and Technology Center, LINTEC OF AMERICA, INC., Richardson, USA
| | - Takeshi Kondo
- Nano-Science and Technology Center, LINTEC OF AMERICA, INC., Richardson, USA
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
24
|
Ma W, Zhou M, Dong W, Zhao S, Wang Y, Yao J, Liu Z, Han H, Sun D, Zhang M. A bi-layered scaffold of a poly(lactic- co-glycolic acid) nanofiber mat and an alginate-gelatin hydrogel for wound healing. J Mater Chem B 2021; 9:7492-7505. [PMID: 34551047 DOI: 10.1039/d1tb01039e] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A resveratrol-loaded bi-layered scaffold (RBS) that consists of a resveratrol-loaded poly(lactic-co-glycolic acid) (Res-PLGA) electrospinning nanofiber mat (upper layer) and an alginate di-aldehyde (ADA)-gelatin (GEL) crosslinking hydrogel (ADA-GEL) (lower layer) was fabricated as a wound dressing material. It was made through mimicking the epidermis and dermis of the skin. The RBS exhibited good hemostatic ability and proper swelling ability. Furthermore, HaCaT cells and human embryonic skin fibroblasts (ESFs) were also cultured in the nanofiber layer and hydrogel layer of RBS, and the results indicated that both HaCaT and ESFs could grow well in the materials. The in vivo experiment using a Sprague-Dawley (SD) rat skin wound as a model showed that the RBS could accelerate the wound healing rate compared with the Res-PLGA group and ADA4-GEL6 group. These results indicated that this resveratrol-loaded bi-layered scaffold can be a potential candidate in promoting wound healing.
Collapse
Affiliation(s)
- Wendi Ma
- College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Mingjuan Zhou
- College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Wenying Dong
- College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Shanshan Zhao
- College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Yilong Wang
- College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Jihang Yao
- Norman Bethune First Hospital, Jilin University, Changchun, 130021, China
| | - Zhewen Liu
- Norman Bethune First Hospital, Jilin University, Changchun, 130021, China
| | - Hongshuang Han
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Dahui Sun
- Norman Bethune First Hospital, Jilin University, Changchun, 130021, China
| | - Mei Zhang
- College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
25
|
PEDOT:PSS-Coated Polybenzimidazole Electroconductive Nanofibers for Biomedical Applications. Polymers (Basel) 2021; 13:polym13162786. [PMID: 34451324 PMCID: PMC8401200 DOI: 10.3390/polym13162786] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 11/18/2022] Open
Abstract
Bioelectricity drives several processes in the human body. The development of new materials that can deliver electrical stimuli is gaining increasing attention in the field of tissue engineering. In this work, novel, highly electrically conductive nanofibers made of poly [2,2′-m-(phenylene)-5,5′-bibenzimidazole] (PBI) have been manufactured by electrospinning and then coated with cross-linked poly (3,4-ethylenedioxythiophene) doped with poly (styrene sulfonic acid) (PEDOT:PSS) by spin coating or dip coating. These scaffolds have been characterized by scanning electron microscopy (SEM) imaging and attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy. The electrical conductivity was measured by the four-probe method at values of 28.3 S·m−1 for spin coated fibers and 147 S·m−1 for dip coated samples, which correspond, respectively, to an increase of about 105 and 106 times in relation to the electrical conductivity of PBI fibers. Human bone marrow-derived mesenchymal stromal cells (hBM-MSCs) cultured on the produced scaffolds for one week showed high viability, typical morphology and proliferative capacity, as demonstrated by calcein fluorescence staining, 4′,6-diamidino-2-phenylindole (DAPI)/Phalloidin staining and MTT [3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide] assay. Therefore, all fiber samples demonstrated biocompatibility. Overall, our findings highlight the great potential of PEDOT:PSS-coated PBI electrospun scaffolds for a wide variety of biomedical applications, including their use as reliable in vitro models to study pathologies and the development of strategies for the regeneration of electroactive tissues or in the design of new electrodes for in vivo electrical stimulation protocols.
Collapse
|
26
|
Hirano N, Kusuhara H, Sueyoshi Y, Teramura T, Murthy A, Asamura S, Isogai N, Jacquet RD, Landis WJ. Ethanol treatment of nanoPGA/PCL composite scaffolds enhances human chondrocyte development in the cellular microenvironment of tissue-engineered auricle constructs. PLoS One 2021; 16:e0253149. [PMID: 34242238 PMCID: PMC8270150 DOI: 10.1371/journal.pone.0253149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/24/2021] [Indexed: 11/24/2022] Open
Abstract
A major obstacle for tissue engineering ear-shaped cartilage is poorly developed tissue comprising cell-scaffold constructs. To address this issue, bioresorbable scaffolds of poly-ε-caprolactone (PCL) and polyglycolic acid nanofibers (nanoPGA) were evaluated using an ethanol treatment step before auricular chondrocyte scaffold seeding, an approach considered to enhance scaffold hydrophilicity and cartilage regeneration. Auricular chondrocytes were isolated from canine ears and human surgical samples discarded during otoplasty, including microtia reconstruction. Canine chondrocytes were seeded onto PCL and nanoPGA sheets either with or without ethanol treatment to examine cellular adhesion in vitro. Human chondrocytes were seeded onto three-dimensional bioresorbable composite scaffolds (PCL with surface coverage of nanoPGA) either with or without ethanol treatment and then implanted into athymic mice for 10 and 20 weeks. On construct retrieval, scanning electron microscopy showed canine auricular chondrocytes seeded onto ethanol-treated scaffolds in vitro developed extended cell processes contacting scaffold surfaces, a result suggesting cell-scaffold adhesion and a favorable microenvironment compared to the same cells with limited processes over untreated scaffolds. Adhesion of canine chondrocytes was statistically significantly greater (p ≤ 0.05) for ethanol-treated compared to untreated scaffold sheets. After implantation for 10 weeks, constructs of human auricular chondrocytes seeded onto ethanol-treated scaffolds were covered with glossy cartilage while constructs consisting of the same cells seeded onto untreated scaffolds revealed sparse connective tissue and cartilage regeneration. Following 10 weeks of implantation, RT-qPCR analyses of chondrocytes grown on ethanol-treated scaffolds showed greater expression levels for several cartilage-related genes compared to cells developed on untreated scaffolds with statistically significantly increased SRY-box transcription factor 5 (SOX5) and decreased interleukin-1α (inflammation-related) expression levels (p ≤ 0.05). Ethanol treatment of scaffolds led to increased cartilage production for 20- compared to 10-week constructs. While hydrophilicity of scaffolds was not assessed directly in the present findings, a possible factor supporting the summary data is that hydrophilicity may be enhanced for ethanol-treated nanoPGA/PCL scaffolds, an effect leading to improvement of chondrocyte adhesion, the cellular microenvironment and cartilage regeneration in tissue-engineered auricle constructs.
Collapse
Affiliation(s)
- Narihiko Hirano
- Department of Plastic and Reconstructive Surgery, Kindai University, Osakasayama, Japan
| | - Hirohisa Kusuhara
- Department of Plastic and Reconstructive Surgery, Kindai University, Osakasayama, Japan
| | - Yu Sueyoshi
- Department of Plastic and Reconstructive Surgery, Kindai University, Osakasayama, Japan
| | - Takeshi Teramura
- Institute of Advanced Clinical Medicine, Kindai University, Osakasayama, Japan
| | - Ananth Murthy
- Division of Plastic and Reconstructive Surgery, Children’s Hospital Medical Center, Akron, Ohio, United States of America
| | - Shinichi Asamura
- Department of Plastic and Reconstructive Surgery, Wakayama Medical College, Wakayama, Japan
| | - Noritaka Isogai
- Department of Plastic and Reconstructive Surgery, Kindai University, Osakasayama, Japan
- * E-mail: (WJL); (NI)
| | - Robin DiFeo Jacquet
- Division of Plastic and Reconstructive Surgery, Children’s Hospital Medical Center, Akron, Ohio, United States of America
- Department of Polymer Science, University of Akron, Akron, Ohio, United States of America
| | - William J. Landis
- Department of Polymer Science, University of Akron, Akron, Ohio, United States of America
- * E-mail: (WJL); (NI)
| |
Collapse
|
27
|
Wang Z, Wang L, Li T, Liu S, Guo B, Huang W, Wu Y. 3D bioprinting in cardiac tissue engineering. Am J Cancer Res 2021; 11:7948-7969. [PMID: 34335973 PMCID: PMC8315053 DOI: 10.7150/thno.61621] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/06/2021] [Indexed: 12/22/2022] Open
Abstract
Heart disease is the main cause of death worldwide. Because death of the myocardium is irreversible, it remains a significant clinical challenge to rescue myocardial deficiency. Cardiac tissue engineering (CTE) is a promising strategy for repairing heart defects and offers platforms for studying cardiac tissue. Numerous achievements have been made in CTE in the past decades based on various advanced engineering approaches. 3D bioprinting has attracted much attention due to its ability to integrate multiple cells within printed scaffolds with complex 3D structures, and many advancements in bioprinted CTE have been reported recently. Herein, we review the recent progress in 3D bioprinting for CTE. After a brief overview of CTE with conventional methods, the current 3D printing strategies are discussed. Bioink formulations based on various biomaterials are introduced, and strategies utilizing composite bioinks are further discussed. Moreover, several applications including heart patches, tissue-engineered cardiac muscle, and other bionic structures created via 3D bioprinting are summarized. Finally, we discuss several crucial challenges and present our perspective on 3D bioprinting techniques in the field of CTE.
Collapse
|
28
|
Wan Y, Yang S, Peng M, Gama M, Yang Z, Deng X, Zhou J, Ouyang C, Luo H. Controllable synthesis of biomimetic nano/submicro-fibrous tubes for potential small-diameter vascular grafts. J Mater Chem B 2021; 8:5694-5706. [PMID: 32510089 DOI: 10.1039/d0tb01002b] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mimicking the morphological structure of native blood vessels is critical for the development of vascular grafts. Herein, small-diameter composite vascular grafts that integrate the nanofibrous bacterial cellulose (BC) and submicrofibrous cellulose acetate (CA) were fabricated via a combined electrospinning and step-by-step in situ biosynthesis. Scanning electron microscopy (SEM) observation shows the nano/submicro-fibrous morphology and well-interconnected porous structure of the BC/CA grafts. It is found that the BC/CA graft with a suitable BC content demonstrates lower potential of thrombus formation and enhanced endothelialization as compared to the BC and CA counterparts. Western blotting and RT-qPCR results suggest that the BC/CA-2 graft promotes endothelialization by improving expressions of genes vWF-1 and CD31 and protein CD31. The in vivo tests demonstrate much lower inflammatory response to the BC/CA graft. These results suggest that the BC/CA graft shows a great potential as an artificial graft for rapid formation of an endothelial cell monolayer.
Collapse
Affiliation(s)
- Yizao Wan
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China. and School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Shanshan Yang
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China.
| | - Mengxia Peng
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China.
| | - Miguel Gama
- Centro de Engenharia Biológica, Universidade do Minho, Campus de Gualtar, P 4715-057 Braga, Portugal
| | - Zhiwei Yang
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China.
| | - Xiaoyan Deng
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China. and Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Jianye Zhou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Chenxi Ouyang
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Honglin Luo
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China. and School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
29
|
Rather AH, Wani TU, Khan RS, Pant B, Park M, Sheikh FA. Prospects of Polymeric Nanofibers Loaded with Essential Oils for Biomedical and Food-Packaging Applications. Int J Mol Sci 2021; 22:4017. [PMID: 33924640 PMCID: PMC8069027 DOI: 10.3390/ijms22084017] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 02/08/2023] Open
Abstract
Essential oils prevent superbug formation, which is mainly caused by the continuous use of synthetic drugs. This is a significant threat to health, the environment, and food safety. Plant extracts in the form of essential oils are good enough to destroy pests and fight bacterial infections in animals and humans. In this review article, different essential oils containing polymeric nanofibers fabricated by electrospinning are reviewed. These nanofibers containing essential oils have shown applications in biomedical applications and as food-packaging materials. This approach of delivering essential oils in nanoformulations has attracted considerable attention in the scientific community due to its low price, a considerable ratio of surface area to volume, versatility, and high yield. It is observed that the resulting nanofibers possess antimicrobial, anti-inflammatory, and antioxidant properties. Therefore, they can reduce the use of toxic synthetic drugs that are utilized in the cosmetics, medicine, and food industries. These nanofibers increase barrier properties against light, oxygen, and heat, thereby protecting and preserving the food from oxidative damage. Moreover, the nanofibers discussed are introduced with naturally derived chemical compounds in a controlled manner, which simultaneously prevents their degradation. The nanofibers loaded with different essential oils demonstrate an ability to increase the shelf-life of various food products while using them as active packaging materials.
Collapse
Affiliation(s)
- Anjum Hamid Rather
- Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar 190006, Jammu and Kashmir, India; (A.H.R.); (T.U.W.); (R.S.K.)
| | - Taha Umair Wani
- Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar 190006, Jammu and Kashmir, India; (A.H.R.); (T.U.W.); (R.S.K.)
| | - Rumysa Saleem Khan
- Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar 190006, Jammu and Kashmir, India; (A.H.R.); (T.U.W.); (R.S.K.)
| | - Bishweshwar Pant
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju-Gun 55338, Jeollabuk-do, Korea;
| | - Mira Park
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju-Gun 55338, Jeollabuk-do, Korea;
| | - Faheem A. Sheikh
- Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar 190006, Jammu and Kashmir, India; (A.H.R.); (T.U.W.); (R.S.K.)
| |
Collapse
|
30
|
Ghalei S, Li J, Douglass M, Garren M, Handa H. Synergistic Approach to Develop Antibacterial Electrospun Scaffolds Using Honey and S-Nitroso-N-acetyl Penicillamine. ACS Biomater Sci Eng 2021; 7:517-526. [DOI: 10.1021/acsbiomaterials.0c01411] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Sama Ghalei
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, Georgia, United States
| | - Jianwen Li
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, Georgia, United States
| | - Megan Douglass
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, Georgia, United States
| | - Mark Garren
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, Georgia, United States
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, Georgia, United States
| |
Collapse
|
31
|
Babaie A, Bakhshandeh B, Abedi A, Mohammadnejad J, Shabani I, Ardeshirylajimi A, Reza Moosavi S, Amini J, Tayebi L. Synergistic effects of conductive PVA/PEDOT electrospun scaffolds and electrical stimulation for more effective neural tissue engineering. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110051] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Matsugami D, Murakami T, Yoshida W, Imamura K, Bizenjima T, Seshima F, Saito A. Treatment with functionalized designer self-assembling peptide hydrogels promotes healing of experimental periodontal defects. J Periodontal Res 2020; 56:162-172. [PMID: 33022075 DOI: 10.1111/jre.12807] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/12/2020] [Accepted: 09/08/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND/OBJECTIVES It has been reported that self-assembling peptide (SAP) hydrogels with functionalized motifs enhance proliferation and migration of host cells. How these designer SAP hydrogels perform in the treatment of periodontal defects remains unknown. This study aimed to test the potential of local application of designer SAP hydrogels with two different functionalized motifs in the treatment of experimental periodontal defects. MATERIAL AND METHODS In vitro, viability/proliferation of rat periodontal ligament-derived cells (PDLCs) cultured on an SAP hydrogel RADA16 and RADA16 with functionalized motifs, PRG (integrin binding sequence) and PDS (laminin cell adhesion motif), was assessed. Cell morphology was analyzed by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). In vivo, standardized periodontal defects were made mesially in the maxillary first molars of Wistar rats. Defects received RADA16, PRG, PDS or left unfilled. At 2 or 4 weeks postoperatively, healing was assessed by microcomputed tomography, histological and immunohistochemical methods. RESULTS Viability/proliferation of PDLCs was significantly greater on PRG than on RADA16 or PDS at 72 hours. rPDLCs in the PRG group showed enhanced elongations and cell protrusions. In vivo, at 4 weeks, bone volume fractions in the PRG and PDS groups were significantly greater than the RADA16 group. Histologically, bone formation was more clearly observed in the PRG and PDS groups compared with the RADA16 group. At 4 weeks, epithelial downgrowth in the hydrogel groups was significantly reduced compared to the Unfilled group. In Azan-Mallory staining, PDL-like bundles ran in oblique direction in the hydrogel groups. At 2 weeks, in the area near the root, proliferating cell nuclear antigen (PCNA)-positive cells were detected significantly more in the PRG group than other groups. At 4 weeks, in the middle part of the defect, a significantly greater level of vascular endothelial growth factor (VEGF)-positive cells and α-smooth muscle actin (SMA)-positive blood vessels were observed in the PRG group than in other groups. CONCLUSION The results indicate that local application of the functionalized designer SAP hydrogels, especially PRG, promotes periodontal healing by increasing cell proliferation and angiogenesis.
Collapse
Affiliation(s)
- Daisuke Matsugami
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Tasuku Murakami
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan
| | - Wataru Yoshida
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan
| | - Kentaro Imamura
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | | | - Fumi Seshima
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan
| | - Atsushi Saito
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|
33
|
Narayanan KB, Park GT, Han SS. Electrospun poly(vinyl alcohol)/reduced graphene oxide nanofibrous scaffolds for skin tissue engineering. Colloids Surf B Biointerfaces 2020; 191:110994. [PMID: 32298954 DOI: 10.1016/j.colsurfb.2020.110994] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/11/2019] [Accepted: 10/02/2019] [Indexed: 12/20/2022]
Abstract
Graphene is composed of a two-dimensional (2D) layer of carbon atoms arranged in a honeycomb lattice configuration. In this paper, we adopted a green synthetic method of producing reduced graphene oxide using glucose as a reducing and stabilizing agent. We also investigated the fabrication of electrospun nanofibers of glucose-reduced graphene oxide (GRGO) (0-1.0 wt%) reinforced with polyvinyl alcohol (PVA) as (PG) scaffolds, and chemically crosslinked with acidic glutaraldehyde (GA) in acetone medium to mimic the extracellular matrix (ECM) for skin tissue engineering applications. These PG scaffolds were evaluated for morphology, mechanical strength, surface wettability, thermal properties, hemocompatibility, and biocompatibility. Field emission-scanning electron microscopy (FE-SEM) revealed an increase in the thickness of nanofibers in PG scaffolds with an increase in the concentration of GRGO. X-ray diffraction and attenuated total reflectance-infrared and Raman spectra showed the GRGO was incorporated in the PVA nanofibrous matrix. As the concentration of GRGO was increased in PG scaffolds, tensile strengths and elongations at break decreased, whereas thermal properties increased. The biological activities of PG scaffolds were evaluated using in vitro hemolysis, using CCD-986Sk (a human skin fibroblast cell line) viability and proliferation assays, and by live/dead cell imaging. Results showed GRGO inclusion in PVA nanofibers caused a slight hydrophilic to hydrophobic shift. PG scaffolds did not cause hemolysis of red blood cells even at a GRGO loading of 1.0 wt%, and PG-1.0 scaffold (with a GRGO loading of 1.0 wt%) exhibited excellent compatibility with fibroblasts and significantly increased metabolic activity after culture for 21 days as compared with PG-0 controls. DAPI staining and live/dead imaging assays showed that all PG scaffolds increased fibroblast proliferation and viability, indicating the potential for skin tissue engineering applications.
Collapse
Affiliation(s)
- Kannan Badri Narayanan
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Department of Nano, Medical & Polymer Materials, College of Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Gyu Tae Park
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Department of Nano, Medical & Polymer Materials, College of Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Department of Nano, Medical & Polymer Materials, College of Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
34
|
Khalaji S, Golshan Ebrahimi N, Hosseinkhani H. Enhancement of biocompatibility of PVA/HTCC blend polymer with collagen for skin care application. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1725761] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Saeideh Khalaji
- Department of Polymer Engineering, Chemical Engineering Faculty, Tarbiat Modares University, Tehran, Iran
| | - Nadereh Golshan Ebrahimi
- Department of Polymer Engineering, Chemical Engineering Faculty, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
35
|
Role of nanofibers on MSCs fate: Influence of fiber morphologies, compositions and external stimuli. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 107:110218. [DOI: 10.1016/j.msec.2019.110218] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 09/04/2019] [Accepted: 09/16/2019] [Indexed: 01/09/2023]
|
36
|
Electrospun triazole-based chitosan nanofibers as a novel scaffolds for bone tissue repair and regeneration. Carbohydr Polym 2020; 230:115707. [DOI: 10.1016/j.carbpol.2019.115707] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/25/2019] [Accepted: 12/05/2019] [Indexed: 10/25/2022]
|
37
|
Krishna L, Nilawar S, Ponnalagu M, Subramani M, Jayadev C, Shetty R, Chatterjee K, Das D. Fiber Diameter Differentially Regulates Function of Retinal Pigment and Corneal Epithelial Cells on Nanofibrous Tissue Scaffolds. ACS APPLIED BIO MATERIALS 2020; 3:823-837. [DOI: 10.1021/acsabm.9b00897] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Lekshmi Krishna
- Stem Cell Research Laboratory, GROW Laboratory, Narayana Nethralaya Foundation, Narayana Nethralaya, Bangalore 560 099, Karnataka, India
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| | - Sagar Nilawar
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560 012, Karnataka, India
| | - Murugeswari Ponnalagu
- Stem Cell Research Laboratory, GROW Laboratory, Narayana Nethralaya Foundation, Narayana Nethralaya, Bangalore 560 099, Karnataka, India
| | - Murali Subramani
- Stem Cell Research Laboratory, GROW Laboratory, Narayana Nethralaya Foundation, Narayana Nethralaya, Bangalore 560 099, Karnataka, India
| | - Chaitra Jayadev
- Vitreoretina Services, Narayana Nethralaya Eye Hospital, Bangalore 560 010, Karnataka, India
| | - Rohit Shetty
- Department of Cornea and Refractive Surgery, Narayana Nethralaya Eye Hospital, Bangalore 560 010, Karnataka, India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560 012, Karnataka, India
| | - Debashish Das
- Stem Cell Research Laboratory, GROW Laboratory, Narayana Nethralaya Foundation, Narayana Nethralaya, Bangalore 560 099, Karnataka, India
| |
Collapse
|
38
|
Kralovic M, Vjaclovsky M, Kestlerova A, Rustichelli F, Hoch J, Amler E. Electrospun nanofibers as support for the healing of intestinal anastomoses. Physiol Res 2019; 68:S517-S525. [PMID: 32118484 DOI: 10.33549/physiolres.934387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The breakdown of intestinal anastomosis is a serious postsurgical complication. The worst complication is anastomotic leakage, resulting in contaminated peritoneal cavity, sepsis, multi-organ failure and even death. In problematic locations like the rectum, the leakage rate has not yet fallen below 10 %. Such a life-threatening condition is the result of impaired healing in the anastomotic wound. It is still vital to find innovative strategies and techniques in order to support regeneration of the anastomotic wound. This paper reviews the surgical techniques and biomaterials used, tested or published. Electrospun nanofibers are introduced as a novel and potential material in gastrointestinal surgery. Nanofibers possess several, unique, physical and chemical properties, that may effectively stimulate cell proliferation and collagen production; a key requirement for the healed intestinal wound.
Collapse
Affiliation(s)
- M Kralovic
- Czech Technical University Prague, University Center for Energy Efficient Buildings, Buštěhrad, Czech Republic.
| | | | | | | | | | | |
Collapse
|
39
|
Osseointegrated membranes based on electro-spun TiO 2/hydroxyapatite/polyurethane for oral maxillofacial surgery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110479. [PMID: 31923963 DOI: 10.1016/j.msec.2019.110479] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/22/2019] [Accepted: 11/20/2019] [Indexed: 12/16/2022]
Abstract
Membranes which have an osseointegration abilty are often selected as biomaterials in oral and maxillofacial surgery. Although these membranes are often the best option for certain uses, it is a challenge to create functionally attractive membranes. In this research, electro-spun titanium oxide (TiO2)/hydroxyapatite (HA)/polyurethane (PU) membranes were fabricated with different ratios of HA and TiO2: 100: 0, 70:30, 50:50, 30:70 and 0:100 w/w. The morphologies of the different mixtures were assessed with a Scanning Electron Microscope (SEM) and Field Emission Microscope (FESEM). Element analysis was performed with EDX. The physical properties of the water contact angles and mechanical strength were tested and the membranes cultured with osteoblasts to evaluate their biological functions, cell adhesion, viability, proliferation, alkaline phosphatase (ALP) activity, and calcium content. The results showed that the membranes with TiO2 and HA had smaller fibers than those without TiO2 and HA. The TiO2- and HA-including compounds showed the formation of particle aggregation on the surface of the fibers. They also had higher water contact angles, mechanical strength, and stiffness than those without TiO2 and HA, and they had better cell adhesion, viability, proliferation, ALP activity and calcium content. The membrane with a 50:50 TiO2:HA ratio had more unique biological functions than the others. Finally, our research demonstrated that osseointegrated membranes with 50:50 TiO2:HA are promising for oral and maxillofacial surgery.
Collapse
|
40
|
Jaganathan SK, Prasath Mani M, Khudzari AZM, Fauzi bin Ismail A. Physicochemical assessment of tailor made fibrous polyurethane scaffolds incorporated with turmeric oil for wound healing applications. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2019. [DOI: 10.1080/1023666x.2019.1676010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Saravana Kumar Jaganathan
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Mohan Prasath Mani
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Ahmad Zahran Md Khudzari
- IJN-UTM Cardiovascular Engineering Center, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, UniversitiTeknologi Malaysia, Skudai, Malaysia
| | - Ahmad Fauzi bin Ismail
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| |
Collapse
|
41
|
Jaganathan SK, Mani MP, Khudzari AZM, Ismail AF, Ayyar M, Rathanasamy R. Enriched physicochemical and blood-compatible properties of nanofibrous polyurethane patch engrafted with juniper oil and titanium dioxide for cardiac tissue engineering. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2019. [DOI: 10.1080/1023666x.2019.1662590] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Saravana Kumar Jaganathan
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Department of Engineering, Faculty of Science and Engineering, University of Hull, Hull, UK
| | - Mohan Prasath Mani
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Ahmad Zahran Md Khudzari
- IJN-UTM Cardiovascular Engineering Center, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Manikandan Ayyar
- Department of Chemistry, Bharath Institute of Higher Education and Research (BIHER), Bharath University, Chennai, India
| | | |
Collapse
|
42
|
Lei Q, He J, Li D. Electrohydrodynamic 3D printing of layer-specifically oriented, multiscale conductive scaffolds for cardiac tissue engineering. NANOSCALE 2019; 11:15195-15205. [PMID: 31380883 DOI: 10.1039/c9nr04989d] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Mimicking the hierarchical microarchitecture of native myocardium in vitro plays an important role in cardiac tissue engineering. Here we present a novel strategy to produce multiscale conductive scaffolds with layer-specific fiber orientations for cardiac regeneration by combining solution-based and melt-based electrohydrodynamic (EHD) printing techniques. Polycaprolactone (PCL) microfibers were printed by melt-based EHD printing and the fiber orientation was flexibly controlled in a layer-by-layer manner according to user-specific design. The as-printed microfibrous scaffolds can provide the seeded cells necessary contact cues to guide layer-specific cellular alignments. Sub-microscale conductive fibers were simultaneously incorporated inside the well-organized PCL scaffolds by solution-based EHD printing, which significantly improved the conductivity as well as the cellular adhesion and proliferation capacity. The multiscale conductive scaffolds can further direct the multiple-layer alignments of primary cardiomyocytes and facilitate cardiomyocyte-specific gene expressions, which exhibited enhanced synchronous beating behavior compared with pure microfibrous scaffolds. It is envisioned that the proposed hybrid EHD printing technique might provide a promising strategy to fabricate multifunctional micro/nanofibrous scaffolds with biomimetic architectures, electrical conductivity and even biosensing properties for the regeneration of electroactive tissues.
Collapse
Affiliation(s)
- Qi Lei
- State key laboratory for manufacturing systems engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | | | | |
Collapse
|
43
|
Enriched Mechanical Strength and Bone Mineralisation of Electrospun Biomimetic Scaffold Laden with Ylang Ylang Oil and Zinc Nitrate for Bone Tissue Engineering. Polymers (Basel) 2019; 11:polym11081323. [PMID: 31398835 PMCID: PMC6723857 DOI: 10.3390/polym11081323] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/02/2019] [Accepted: 07/06/2019] [Indexed: 12/11/2022] Open
Abstract
Scaffolds supplemented with naturally derived materials seem to be a good choice in bone tissue engineering. This study aims to develop polyurethane (PU) nanofibers added with ylang ylang (YY) and zinc nitrate (ZnNO3) using the electrospinning method. Field emission scanning electron microscopy (FESEM) images showed that the diameter of the PU nanofibers (869 ± 122 nm) was reduced with the addition of YY and ZnNO3 (PU/YY-467 ± 132 nm and PU/YY/ZnNO3-290 ± 163 nm). Fourier transform infrared (FTIR), a thermal gravimetric analysis (TGA) and an X-ray diffraction (XRD) analysis confirmed the interactions between PU with YY and ZnNO3. In addition, a thermal gravimetric analysis (TGA) study revealed the improved thermal stability for PU/YY and a slight reduction in the thermal stability for PU/YY/ZnNO3. A tensile test indicated that the addition of YY and ZnNO3 (PU/YY-12.32 MPa and PU/YY/ZnNO3-14.90 MPa) improved the mechanical properties of the pristine PU (6.83 MPa). The electrospun PU/YY (524 nm) and PU/YY/ZnNO3 (284 nm) showed a reduced surface roughness when compared with the pristine PU (776 nm) as depicted in the atomic force microscopy (AFM) analysis. The addition of YY and ZnNO3 improved the anticoagulant and biocompatibility nature of the pristine PU. Furthermore, the bone mineralization study depicted the improved calcium deposition in the fabricated composites (PU/YY-7.919% and PU/YY/ZnNO3-10.150%) compared to the pristine PU (5.323%). Hence, the developed composites with desirable physico-chemical properties, biocompatibility and calcium deposition can serve as plausible candidates for bone tissue engineering.
Collapse
|
44
|
Mani MP, Jaganathan SK, Prabhakaran P, Nageswaran G, Krishnasamy NP. Electrospun polyurethane patch in combination with cedarwood and cobalt nitrate for cardiac applications. J Appl Polym Sci 2019. [DOI: 10.1002/app.48226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mohan Prasath Mani
- School of Biomedical Engineering and Health Sciences, Faculty of EngineeringUniversiti Teknologi Malaysia Skudai 81310 Malaysia
| | - Saravana Kumar Jaganathan
- Department for Management of Science and Technology DevelopmentTon Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Applied SciencesTon Duc Thang University Ho Chi Minh City Vietnam
- IJNUTM Cardiovascular Engineering center, School of Biomedical Engineering and Health Sciences, Faculty of EngineeringUniversiti Teknologi Malaysia Skudai 81310 Malaysia
| | - Praseetha Prabhakaran
- Department of Biosciences, Faculty of ScienceUniversiti Teknologi Malaysia Skudai 81310 Johor Malaysia
| | - Gomathi Nageswaran
- Department of ChemistryIndian Institute of Space Science and Technology Trivandrum 695547 Kerala India
| | - Navaneetha Pandiyaraj Krishnasamy
- Surface Engineering Laboratory, Department of PhysicsSri Shakthi Institute of Engineering and Technology, L&T By Pass, Chinniyam Palayam (Post) Coimbatore 641062 India
| |
Collapse
|
45
|
Shaker A, Hassanin AH, Shaalan NM, Hassan MA, El-Moneim AA. Micropatterned flexible strain gauge sensor based on wet electrospun polyurethane/PEDOT: PSS nanofibers. SMART MATERIALS AND STRUCTURES 2019; 28:075029. [DOI: 10.1088/1361-665x/ab20a2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
46
|
Gill E, Willis S, Gerigk M, Cohen P, Zhang D, Li X, Huang YYS. Fabrication of Designable and Suspended Microfibers via Low-Voltage 3D Micropatterning. ACS APPLIED MATERIALS & INTERFACES 2019; 11:19679-19690. [PMID: 31081331 PMCID: PMC6613729 DOI: 10.1021/acsami.9b01258] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 05/13/2019] [Indexed: 05/02/2023]
Abstract
Building two-dimensional (2D) and three-dimensional (3D) fibrous structures in the micro- and nanoscale will offer exciting prospects for numerous applications spanning from sensors to energy storage and tissue engineering scaffolds. Electrospinning is a well-suited technique for drawing micro- to nanoscale fibers, but current methods of building electrospun fibers in 3D are restrictive in terms of printed height, design of macroscopic fiber networks, and choice of polymer. Here, we combine low-voltage electrospinning and additive manufacturing as a method to pattern layers of suspended mesofibers. Layers of fibers are suspended between 3D-printed supports in situ in multiple fiber layers and designable orientations. We examine the key working parameters to attain a threshold for fiber suspension, use those behavioral observations to establish a "fiber suspension indicator", and demonstrate its utility through design of intricate suspended fiber architectures. Individual fibers produced by this method approach the micrometer/submicrometer scale, while the overall suspended 3D fiber architecture can span over a centimeter in height. We demonstrate an application of suspended fiber architectures in 3D cell culture, utilizing patterned fiber topography to guide the assembly of suspended high-cellular-density structures. The solution-based fiber suspension patterning process we report offers a unique competence in patterning soft polymers, including extracellular matrix-like materials, in a high resolution and aspect ratio. The platform could thus offer new design and manufacturing capabilities of devices and functional products by incorporating functional fibrous elements.
Collapse
Affiliation(s)
- Elisabeth
L. Gill
- Department
of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, U.K.
- The
Nanoscience Centre, University of Cambridge, 11 JJ Thomson Avenue, Cambridge CB3 0FF, U.K.
| | - Samuel Willis
- Department
of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, U.K.
| | - Magda Gerigk
- Department
of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, U.K.
- The
Nanoscience Centre, University of Cambridge, 11 JJ Thomson Avenue, Cambridge CB3 0FF, U.K.
| | - Paul Cohen
- Department
of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, U.K.
| | - Duo Zhang
- Department
of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, U.K.
- The
Nanoscience Centre, University of Cambridge, 11 JJ Thomson Avenue, Cambridge CB3 0FF, U.K.
| | - Xia Li
- Department
of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, U.K.
| | - Yan Yan Shery Huang
- Department
of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, U.K.
- The
Nanoscience Centre, University of Cambridge, 11 JJ Thomson Avenue, Cambridge CB3 0FF, U.K.
| |
Collapse
|
47
|
Zhang Z, Zheng Y, Zhang L, Mani MP, Jaganathan SK. In vitro blood compatibility and bone mineralization aspects of polymeric scaffold laden with essential oil and metallic particles for bone tissue engineering. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2019. [DOI: 10.1080/1023666x.2019.1611029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Zhizhong Zhang
- Department of Traumatic Orthopedics, Hanzhong Central Hospital in Shanxi Province, Hanzhong, China
| | - Yu Zheng
- Department of Traumatic Orthopedics, Hanzhong Central Hospital in Shanxi Province, Hanzhong, China
| | - Lipeng Zhang
- Department of Traumatic Orthopedics, Hanzhong Central Hospital in Shanxi Province, Hanzhong, China
| | - Mohan Prasath Mani
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Saravana Kumar Jaganathan
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- IJNUTM Cardiovascular Engineering Center, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| |
Collapse
|
48
|
Jin S, Sun F, Zou Q, Huang J, Zuo Y, Li Y, Wang S, Cheng L, Man Y, Yang F, Li J. Fish Collagen and Hydroxyapatite Reinforced Poly(lactide-co-glycolide) Fibrous Membrane for Guided Bone Regeneration. Biomacromolecules 2019; 20:2058-2067. [PMID: 31009574 DOI: 10.1021/acs.biomac.9b00267] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Shue Jin
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Fuhua Sun
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Qin Zou
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Jinhui Huang
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Yi Zuo
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Yubao Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Suping Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610065, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610065, China
| | - Yi Man
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610065, China
| | - Fang Yang
- Department of Biomaterials, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Jidong Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| |
Collapse
|
49
|
Mani MP, Jaganathan SK, Faudzi AAM, Sunar MS. Engineered Electrospun Polyurethane Composite Patch Combined with Bi-functional Components Rendering High Strength for Cardiac Tissue Engineering. Polymers (Basel) 2019; 11:E705. [PMID: 30999634 PMCID: PMC6523429 DOI: 10.3390/polym11040705] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/05/2019] [Accepted: 04/11/2019] [Indexed: 01/08/2023] Open
Abstract
Cardiovascular application of nanomaterial's is of increasing demand and its usage is limited by its mechanical and blood compatible properties. In this work, an attempt is made to develop an electrospun novel nanocomposite loaded with basil oil and titanium dioxide (TiO2) particles. The composite material displayed increase in hydrophobic and reduced fiber diameter compared to the pristine polymer. Fourier transform infrared spectroscopy results showed the interaction of the pristine polymer with the added substances. Thermal analysis showed the increased onset degradation, whereas the mechanical testing portrayed the increased tensile strength of the composites. Finally, the composite delayed the coagulation times and also rendered safe environment for red blood cells signifying its suitability to be used in contact with blood. Strikingly, the cellular toxicity of the developed composite was lower than the pristine polymer suggesting its compatible nature with the surrounding tissues. With these promising characteristics, developed material with enhanced physicochemical properties and blood compatibility can be successfully utilized for cardiac tissue applications.
Collapse
Affiliation(s)
- Mohan Prasath Mani
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Malaysia.
| | - Saravana Kumar Jaganathan
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City 71000, Vietnam.
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 71000, Vietnam.
- IJNUTM Cardiovascular Engineering center, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Malaysia.
| | - Ahmad Athif Mohd Faudzi
- Centre for Artificial Intelligence and Robotics, Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia.
- School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia.
| | - Mohd Shahrizal Sunar
- Media and Game Innovation Centre of Excellence (MaGICX), Institute of Human Centered Engineering (iHumEn), Universiti Teknologi Malaysia, Skudai 81310, Malaysia.
- School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Malaysia.
| |
Collapse
|
50
|
Prasath Mani M, Jaganathan SK, Prabhakaran P, Nageswaran G, Pandiyaraj Krishnasamy N. Fabrication and characterization of polyurethane patch loaded with palmarosa and cobalt nitrate for cardiac tissue engineering. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2019. [DOI: 10.1080/1023666x.2019.1598665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Mohan Prasath Mani
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Saravana Kumar Jaganathan
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- IJNUTM Cardiovascular Engineering Center, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Praseetha Prabhakaran
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Gomathi Nageswaran
- Department of Chemistry, Indian Institute of Space Science and Technology, Trivandrum, India
| | | |
Collapse
|