1
|
Dorchei F, Heydari A, Kroneková Z, Kronek J, Pelach M, Cseriová Z, Chorvát D, Zúñiga-Navarrete F, Rios PD, McGarrigle J, Ghani S, Isa D, Joshi I, Vasuthas K, Rokstad AMA, Oberholzer J, Raus V, Lacík I. Postmodification with Polycations Enhances Key Properties of Alginate-Based Multicomponent Microcapsules. Biomacromolecules 2024; 25:4118-4138. [PMID: 38857534 DOI: 10.1021/acs.biomac.4c00222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Postmodification of alginate-based microspheres with polyelectrolytes (PEs) is commonly used in the cell encapsulation field to control microsphere stability and permeability. However, little is known about how different applied PEs shape the microsphere morphology and properties, particularly in vivo. Here, we addressed this question using model multicomponent alginate-based microcapsules postmodified with PEs of different charge and structure. We found that the postmodification can enhance or impair the mechanical resistance and biocompatibility of microcapsules implanted into a mouse model, with polycations surprisingly providing the best results. Confocal Raman microscopy and confocal laser scanning microscopy (CLSM) analyses revealed stable interpolyelectrolyte complex layers within the parent microcapsule, hindering the access of higher molar weight PEs into the microcapsule core. All microcapsules showed negative surface zeta potential, indicating that the postmodification PEs get hidden within the microcapsule membrane, which agrees with CLSM data. Human whole blood assay revealed complex behavior of microcapsules regarding their inflammatory and coagulation potential. Importantly, most of the postmodification PEs, including polycations, were found to be benign toward the encapsulated model cells.
Collapse
Affiliation(s)
- Faeze Dorchei
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | - Abolfazl Heydari
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešt'any, Slovakia
| | - Zuzana Kroneková
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešt'any, Slovakia
| | - Juraj Kronek
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešt'any, Slovakia
| | - Michal Pelach
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | - Zuzana Cseriová
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | - Dušan Chorvát
- Department of Biophotonics, International Laser Centre, Slovak Centre of Scientific and Technical Information, Ilkovičova 3, 841 04 Bratislava, Slovakia
| | - Fernando Zúñiga-Navarrete
- Department of Proteomics, Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| | - Peter D Rios
- CellTrans, Inc., 2201 W. Campbell Park Dr., Chicago, Illinois 60612, United States
| | - James McGarrigle
- CellTrans, Inc., 2201 W. Campbell Park Dr., Chicago, Illinois 60612, United States
| | - Sofia Ghani
- CellTrans, Inc., 2201 W. Campbell Park Dr., Chicago, Illinois 60612, United States
| | - Douglas Isa
- CellTrans, Inc., 2201 W. Campbell Park Dr., Chicago, Illinois 60612, United States
| | - Ira Joshi
- CellTrans, Inc., 2201 W. Campbell Park Dr., Chicago, Illinois 60612, United States
| | - Kalaiyarasi Vasuthas
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Prinsesse Kristinas gt.1, NO-7491 Trondheim, Norway
| | - Anne Mari A Rokstad
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Prinsesse Kristinas gt.1, NO-7491 Trondheim, Norway
| | - José Oberholzer
- CellTrans, Inc., 2201 W. Campbell Park Dr., Chicago, Illinois 60612, United States
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Vladimír Raus
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Igor Lacík
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešt'any, Slovakia
| |
Collapse
|
2
|
Mooranian A, Jones M, Ionescu CM, Walker D, Wagle SR, Kovacevic B, Chester J, Foster T, Johnston E, Mikov M, Al-Salami H. Advancements in Assessments of Bio-Tissue Engineering and Viable Cell Delivery Matrices Using Bile Acid-Based Pharmacological Biotechnologies. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1861. [PMID: 34361247 PMCID: PMC8308343 DOI: 10.3390/nano11071861] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 12/18/2022]
Abstract
The utilisation of bioartificial organs is of significant interest to many due to their versatility in treating a wide range of disorders. Microencapsulation has a potentially significant role in such organs. In order to utilise microcapsules, accurate characterisation and analysis is required to assess their properties and suitability. Bioartificial organs or transplantable microdevices must also account for immunogenic considerations, which will be discussed in detail. One of the most characterized cases is the investigation into a bioartificial pancreas, including using microencapsulation of islets or other cells, and will be the focus subject of this review. Overall, this review will discuss the traditional and modern technologies which are necessary for the characterisation of properties for transplantable microdevices or organs, summarizing analysis of the microcapsule itself, cells and finally a working organ. Furthermore, immunogenic considerations of such organs are another important aspect which is addressed within this review. The various techniques, methodologies, advantages, and disadvantages will all be discussed. Hence, the purpose of this review is providing an updated examination of all processes for the analysis of a working, biocompatible artificial organ.
Collapse
Affiliation(s)
- Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Melissa Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Daniel Walker
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Jacqueline Chester
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Edan Johnston
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21101 Novi Sad, Serbia;
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| |
Collapse
|
3
|
Hajifathaliha F, Mahboubi A, Bolourchian N, Mohit E, Nematollahi L. Multilayer Alginate Microcapsules For Live Cell Microencapsulation; Is There Any Preference For Selecting Cationic Polymers? IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:173-182. [PMID: 34567154 PMCID: PMC8457712 DOI: 10.22037/ijpr.2020.114096.14660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Since 1980 after introducing the concept of live cell encapsulation by Lim et al., this technology has received enormous attention. Several studies have been conducted to improve this technique; different polymers, either natural or synthetic, have been used as microcapsules` making materials and different substances as coating layers. Literature review leads us to the conclusion that alginate (Alg) multilayer microcapsules and, in particular, alginate-poly l-lysine (PLL)-alginate (APA) are the most used structures for live cell encapsulation. Although, disadvantages of PLL (e.g., weak mechanical strength and low biocompatibility) made researchers work on other cationic polymers to find an alternative. This review aims to discuss more popularly suggested cationic polymers such as poly l-ornithine (PLO), chitosan, etc. As alternatives for PLL and, more importantly, we want to take a closer look to see which one of these systems are closer to clinical applications.
Collapse
Affiliation(s)
- Fariba Hajifathaliha
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Arash Mahboubi
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Noushin Bolourchian
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Elham Mohit
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Leila Nematollahi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
4
|
Lopez-Mendez TB, Santos-Vizcaino E, Pedraz JL, Hernandez RM, Orive G. Cell microencapsulation technologies for sustained drug delivery: Clinical trials and companies. Drug Discov Today 2020; 26:852-861. [PMID: 33242694 DOI: 10.1016/j.drudis.2020.11.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/03/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022]
Abstract
In recent years, cell microencapsulation technology has advanced, mainly driven by recent developments in the use of stem cells or the optimization of biomaterials. Old challenges have been addressed from new perspectives, and systems developed and improved for decades are now being transferred to the market by novel start-ups and consolidated companies. These products are mainly intended for the treatment of diabetes mellitus (DM), but also cancer, central nervous system (CNS) disorders or lysosomal diseases, among others. In this review, we analyze the results obtained in clinical trials to date and define the global key players that will lead the cell microencapsulation market to bring this technology to the clinic in the future.
Collapse
Affiliation(s)
- Tania B Lopez-Mendez
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Jose Luis Pedraz
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua); BTI Biotechnology Institute, Vitoria-Gasteiz, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore.
| |
Collapse
|
5
|
Hajifathaliha F, Mahboubi A, Nematollahi L, Mohit E, Bolourchian N. Comparison of different cationic polymers efficacy in fabrication of alginate multilayer microcapsules. Asian J Pharm Sci 2020; 15:95-103. [PMID: 32175021 PMCID: PMC7066046 DOI: 10.1016/j.ajps.2018.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/06/2018] [Accepted: 11/21/2018] [Indexed: 12/26/2022] Open
Abstract
In past decades, alginate-based multilayer microcapsules have been given important attention in various pharmaceutical investigations. Alginate-poly l lysine-alginate (APA) is studied the most. Due to the similarity between the structure of polyethyleneimine (PEI) and poly-L-lysine (PLL) and also lower price of PEI than PLL, this study was conducted to compare the efficacy of linear (LPEI) and branch (BPEI) forms of PEI with PLL as covering layers in fabrication of microcapsules. The microcapsules were fabricated using electrostatic bead generator and their shape/size, surface roughness, mechanical strength, and interlayer interactions were also investigated using optical microscopy, AFM, explosion test and FTIR, respectively. Furthermore, cytotoxicity was evaluated by comparing the two anionic final covering layers alginate (Alg) and sodium cellulose sulphate (NCS) using MTT test. BPEI was excluded from the rest of the study due to its less capacity to strengthen the microcapsules and also the aggregation of the resultant alginate-BPEI-alginate microcapsules, while LPEI showed properties similar to PLL. MTT test also showed that NCS has no superiority over Alg as final covering layer. Therefore, it is concluded that, LPEI could be considered as a more cost effective alternative to PLL and a promising subject for future studies.
Collapse
Affiliation(s)
- Fariba Hajifathaliha
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran
| | - Arash Mahboubi
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran
| | - Leila Nematollahi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Elham Mohit
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran
| | - Noushin Bolourchian
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran
| |
Collapse
|
6
|
Alinejad Y, Bitar CME, Martinez Villegas K, Perignon S, Hoesli CA, Lerouge S. Chitosan Microbeads Produced by One-Step Scalable Stirred Emulsification: A Promising Process for Cell Therapy Applications. ACS Biomater Sci Eng 2019; 6:288-297. [PMID: 33463194 DOI: 10.1021/acsbiomaterials.9b01638] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Cell microencapsulation is a promising approach to improve cell therapy outcomes by protecting injected cells from rapid dispersion and allowing bidirectional diffusion of nutrients, oxygen, and waste that promote cell survival in the target tissues. Here, we describe a simple and scalable emulsification method to encapsulate animal cells in chitosan microbeads using thermosensitive gel formulations without any chemical modification and cross-linker. The process consists of a water-in-oil emulsion where the aqueous phase droplets contain cells (L929 fibroblasts or human mesenchymal stromal cells), chitosan acidic solution and gelling agents (sodium hydrogen carbonate and phosphate buffer or beta-glycerophosphate). The oil temperature is maintained at 37 °C, allowing rapid physical gelation of the microbeads. Alginate beads prepared with the same method were used as a control. Microbeads with a diameter of 300-450 μm were successfully produced. Chitosan and alginate (2% w/v) microbeads presented similar rigidity in compression, but chitosan microbeads endured >80% strain without rupture, while alginate microbeads presented fragile breakage at <50% strain. High cell viability and metabolic activity were observed after up to 7 days in culture for encapsulated cells. Mesenchymal stromal cells encapsulated in chitosan microbeads released higher amounts of the vascular endothelial growth factor after 24 h compared to the cells encapsulated in manually cast macrogels. Moreover, microbeads were injectable through 23G needles without significant deformation or rupture. The emulsion-generated chitosan microbeads are a promising delivery vehicle for therapeutic cells because of their cytocompatibility, biodegradation, mechanical strength, and injectability. Clinical-scale encapsulation of therapeutic cells such as mesenchymal stromal cells in chitosan microbeads can readily be achieved using this simple and scalable emulsion-based process.
Collapse
Affiliation(s)
- Yasaman Alinejad
- Laboratory of Endovascular Biomaterials (LBeV), Centre de recherche du CHUM (CRCHUM), 900 Saint-Denis Street, Montreal, Quebec H2X 0A9, Canada.,Department of Mechanical Engineering, École de technologie supérieure (ETS), 1100 Notre-Dame West, Montreal, Quebec H3C 1K3, Canada
| | - Christina M E Bitar
- Department of Chemical Engineering, McGill University, Wong Building, 3610 University Street #3060, Montreal, Quebec H3A 0C5, Canada
| | - Karina Martinez Villegas
- Laboratory of Endovascular Biomaterials (LBeV), Centre de recherche du CHUM (CRCHUM), 900 Saint-Denis Street, Montreal, Quebec H2X 0A9, Canada.,Department of Mechanical Engineering, École de technologie supérieure (ETS), 1100 Notre-Dame West, Montreal, Quebec H3C 1K3, Canada
| | - Sarah Perignon
- Laboratory of Endovascular Biomaterials (LBeV), Centre de recherche du CHUM (CRCHUM), 900 Saint-Denis Street, Montreal, Quebec H2X 0A9, Canada.,Department of Mechanical Engineering, École de technologie supérieure (ETS), 1100 Notre-Dame West, Montreal, Quebec H3C 1K3, Canada
| | - Corinne A Hoesli
- Department of Chemical Engineering, McGill University, Wong Building, 3610 University Street #3060, Montreal, Quebec H3A 0C5, Canada
| | - Sophie Lerouge
- Laboratory of Endovascular Biomaterials (LBeV), Centre de recherche du CHUM (CRCHUM), 900 Saint-Denis Street, Montreal, Quebec H2X 0A9, Canada.,Department of Mechanical Engineering, École de technologie supérieure (ETS), 1100 Notre-Dame West, Montreal, Quebec H3C 1K3, Canada
| |
Collapse
|
7
|
Virumbrales-Muñoz M, Santos-Vizcaino E, Paz L, Gallardo-Moreno AM, Orive G, Hernandez RM, Doblaré M, Gonzalez-Martin ML, Fernández LJ, Pedraz JL, Ochoa I. Force spectroscopy-based simultaneous topographical and mechanical characterization to study polymer-to-polymer interactions in coated alginate microspheres. Sci Rep 2019; 9:20112. [PMID: 31882828 PMCID: PMC6934587 DOI: 10.1038/s41598-019-56547-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/04/2019] [Indexed: 12/12/2022] Open
Abstract
Cell-laden hydrogel microspheres have shown encouraging outcomes in the fields of drug delivery, tissue engineering or regenerative medicine. Beyond the classical single coating with polycations, many other different coating designs have been reported with the aim of improving mechanical properties and in vivo performance of the microspheres. Among the most common strategies are the inclusion of additional polycation coatings and the covalent bonding of the semi-permeable membranes with biocompatible crosslinkers such as genipin. However, it remains challenging to characterize the effects of the interactions between the polycations and the hydrogel microspheres over time in vitro. Here we use a force spectroscopy-based simultaneous topographical and mechanical characterization to study polymer-to-polymer interactions in alginate microspheres with different coating designs, maintaining the hydrogels in liquid. In addition to classical topography parameters, we explored, for the first time, the evolution of peak/valley features along the z axis via thresholding analysis and the cross-correlation between topography and stiffness profiles with resolution down to tens of nanometers. Thus, we demonstrated the importance of genipin crosslinking to avoid membrane detachment in alginate microspheres with double polycation coatings. Overall, this methodology could improve hydrogel design rationale and expedite in vitro characterization, therefore facilitating clinical translation of hydrogel-based technologies.
Collapse
Affiliation(s)
| | - Edorta Santos-Vizcaino
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Paz
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Applied Mechanics and Bioengineering Group (AMB), University of Zaragoza, Zaragoza, Spain
| | - Amparo Maria Gallardo-Moreno
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Applied Physics, University of Extremadura, Badajoz, Spain
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
- University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore
| | - Rosa Maria Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Doblaré
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Applied Mechanics and Bioengineering Group (AMB), University of Zaragoza, Zaragoza, Spain
| | - Maria Luisa Gonzalez-Martin
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Applied Physics, University of Extremadura, Badajoz, Spain
| | - Luis Jose Fernández
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain.
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.
- Applied Mechanics and Bioengineering Group (AMB), University of Zaragoza, Zaragoza, Spain.
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain.
| | - Ignacio Ochoa
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain.
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.
- Applied Mechanics and Bioengineering Group (AMB), University of Zaragoza, Zaragoza, Spain.
| |
Collapse
|
8
|
Bitar CM, Markwick KE, Treľová D, Kroneková Z, Pelach M, Selerier CM, Dietrich J, Lacík I, Hoesli CA. Development of a microchannel emulsification process for pancreatic beta cell encapsulation. Biotechnol Prog 2019; 35:e2851. [PMID: 31131558 PMCID: PMC9285764 DOI: 10.1002/btpr.2851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/30/2019] [Accepted: 05/20/2019] [Indexed: 12/27/2022]
Abstract
In this study, we developed a high‐throughput microchannel emulsification process to encapsulate pancreatic beta cells in monodisperse alginate beads. The process builds on a stirred emulsification and internal gelation method previously adapted to pancreatic cell encapsulation. Alginate bead production was achieved by flowing a 0.5–2.5% alginate solution with cells and CaCO3 across a 1‐mm thick polytetrafluoroethylene plate with 700 × 200 μm rectangular straight‐through channels. Alginate beads ranging from 1.5–3 mm in diameter were obtained at production rates exceeding 140 mL/hr per microchannel. Compared to the stirred emulsification process, the microchannel emulsification beads had a narrower size distribution and demonstrated enhanced compressive burst strength. Both microchannel and stirred emulsification beads exhibited homogeneous profiles of 0.7% alginate concentration using an initial alginate solution concentration of 1.5%. Encapsulated beta cell viability of 89 ± 2% based on live/dead staining was achieved by minimizing the bead residence time in the acidified organic phase fluid. Microchannel emulsification is a promising method for clinical‐scale pancreatic beta cell encapsulation as well as other applications in the pharmaceutical, food, and cosmetic industries.
Collapse
Affiliation(s)
| | - Karen E. Markwick
- Department of Chemical EngineeringMcGill University Montreal Quebec Canada
| | - Dušana Treľová
- Department for Biomaterials ResearchPolymer Institute of the Slovak Academy of Sciences Bratislava Slovakia
| | - Zuzana Kroneková
- Department for Biomaterials ResearchPolymer Institute of the Slovak Academy of Sciences Bratislava Slovakia
| | - Michal Pelach
- Department for Biomaterials ResearchPolymer Institute of the Slovak Academy of Sciences Bratislava Slovakia
| | | | - James Dietrich
- Advanced Radio Frequency Systems Laboratory, CMC MicrosystemsUniversity of Manitoba Winnipeg Manitoba Canada
| | - Igor Lacík
- Department for Biomaterials ResearchPolymer Institute of the Slovak Academy of Sciences Bratislava Slovakia
| | - Corinne A. Hoesli
- Department of Chemical EngineeringMcGill University Montreal Quebec Canada
| |
Collapse
|
9
|
Montanucci P, Pescara T, Alunno A, Bistoni O, Basta G, Calafiore R. Remission of hyperglycemia in spontaneously diabetic NOD mice upon transplant of microencapsulated human umbilical cord Wharton jelly‐derived mesenchymal stem cells (hUCMS). Xenotransplantation 2018; 26:e12476. [DOI: 10.1111/xen.12476] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/30/2018] [Accepted: 11/12/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Pia Montanucci
- Section of Cardiovascular, Endocrine and Metabolic Clinical Physiology, and Laboratory for Endocrine Cell Transplants and Biohybrid Organs, Department of Medicine University of Perugia Perugia Italy
| | - Teresa Pescara
- Section of Cardiovascular, Endocrine and Metabolic Clinical Physiology, and Laboratory for Endocrine Cell Transplants and Biohybrid Organs, Department of Medicine University of Perugia Perugia Italy
| | - Alessia Alunno
- Section of Rheumatology, Department of Medicine University of Perugia Perugia Italy
| | - Onelia Bistoni
- Section of Rheumatology, Department of Medicine University of Perugia Perugia Italy
| | - Giuseppe Basta
- Section of Cardiovascular, Endocrine and Metabolic Clinical Physiology, and Laboratory for Endocrine Cell Transplants and Biohybrid Organs, Department of Medicine University of Perugia Perugia Italy
| | - Riccardo Calafiore
- Section of Cardiovascular, Endocrine and Metabolic Clinical Physiology, and Laboratory for Endocrine Cell Transplants and Biohybrid Organs, Department of Medicine University of Perugia Perugia Italy
| |
Collapse
|
10
|
Smith KE, Johnson RC, Papas KK. Update on cellular encapsulation. Xenotransplantation 2018; 25:e12399. [DOI: 10.1111/xen.12399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 03/27/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Kate E. Smith
- Department of Physiological Sciences; University of Arizona; Tucson AZ USA
- Department of Surgery; University of Arizona; Tucson AZ USA
| | | | | |
Collapse
|
11
|
Abstract
The principle of immunoisolation of cells is based on encapsulation of cells in immunoprotective but semipermeable membranes that protect cells from hazardous effects of the host immune system but allows ingress of nutrients and outgress of therapeutic molecules. The technology was introduced in 1933 but has only received its deserved attention for its therapeutic application for three decades now.In the past decade important advances have been made in creating capsules that provoke minimal or no inflammatory responses. There are however new emerging challenges. These challenges relate to optimal nutrition and oxygen supply as well as standardization and documentation of capsule properties.It is concluded that the proof of principle of applicability of encapsulated grafts for treatment of human disease has been demonstrated and merits optimism about its clinical potential. Further innovation requires a much more systematic approach in identifying crucial properties of capsules and cellular grafts to allow sound interpretations of the results.
Collapse
Affiliation(s)
- Paul de Vos
- Division of Immuno-Endocrinology, Departments of Pathology and Laboratory Medicine, University of Groningen, Groningen, Groningen, The Netherlands.
| |
Collapse
|
12
|
Strand BL, Coron AE, Skjak‐Braek G. Current and Future Perspectives on Alginate Encapsulated Pancreatic Islet. Stem Cells Transl Med 2017; 6:1053-1058. [PMID: 28186705 PMCID: PMC5442831 DOI: 10.1002/sctm.16-0116] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 12/01/2016] [Indexed: 12/22/2022] Open
Abstract
Transplantation of pancreatic islets in immune protective capsules holds the promise as a functional cure for type 1 diabetes, also about 40 years after the first proof of principal study. The concept is simple in using semipermeable capsules that allow the ingress of oxygen and nutrients, but limit the access of the immune system. Encapsulated human islets have been evaluated in four small clinical trials where the procedure has been evaluated as safe, but lacking long-term efficacy. Host reactions toward the biomaterials used in the capsules may be one parameter limiting the long-term function of the graft in humans. The present article briefly discusses important capsule properties such as stability, permeability and biocompatibility, as well as possible strategies to overcome current challenges. Also, recent progress in capsule development as well as the production of insulin-producing cells from human stem cells that gives promising perspectives for the transplantation of encapsulated insulin-producing tissue is briefly discussed. Stem Cells Translational Medicine 2017;6:1053-1058.
Collapse
Affiliation(s)
- Berit L. Strand
- NOBIPOL, Department of BiotechnologyNTNU Norwegian University of Science and TechnologyTrondheimNorway
| | - Abba E. Coron
- NOBIPOL, Department of BiotechnologyNTNU Norwegian University of Science and TechnologyTrondheimNorway
| | - Gudmund Skjak‐Braek
- NOBIPOL, Department of BiotechnologyNTNU Norwegian University of Science and TechnologyTrondheimNorway
| |
Collapse
|
13
|
|
14
|
Wong FSY, Wong CCH, Chan BP, Lo ACY. Sustained Delivery of Bioactive GDNF from Collagen and Alginate-Based Cell-Encapsulating Gel Promoted Photoreceptor Survival in an Inherited Retinal Degeneration Model. PLoS One 2016; 11:e0159342. [PMID: 27441692 PMCID: PMC4956057 DOI: 10.1371/journal.pone.0159342] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/30/2016] [Indexed: 11/29/2022] Open
Abstract
Encapsulated-cell therapy (ECT) is an attractive approach for continuously delivering freshly synthesized therapeutics to treat sight-threatening posterior eye diseases, circumventing repeated invasive intravitreal injections and improving local drug availability clinically. Composite collagen-alginate (CAC) scaffold contains an interpenetrating network that integrates the physical and biological merits of its constituents, including biocompatibility, mild gelling properties and availability. However, CAC ECT properties and performance in the eye are not well-understood. Previously, we reported a cultured 3D CAC system that supported the growth of GDNF-secreting HEK293 cells with sustainable GDNF delivery. Here, the system was further developed into an intravitreally injectable gel with 1x104 or 2x105 cells encapsulated in 2mg/ml type I collagen and 1% alginate. Gels with lower alginate concentration yielded higher initial cell viability but faster spheroid formation while increasing initial cell density encouraged cell growth. Continuous GDNF delivery was detected in culture and in healthy rat eyes for at least 14 days. The gels were well-tolerated with no host tissue attachment and contained living cell colonies. Most importantly, gel-implanted in dystrophic Royal College of Surgeons rat eyes for 28 days retained photoreceptors while those containing higher initial cell number yielded better photoreceptor survival. CAC ECT gels offers flexible system design and is a potential treatment option for posterior eye diseases.
Collapse
Affiliation(s)
- Francisca S. Y. Wong
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Calvin C. H. Wong
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Barbara P. Chan
- Tissue Engineering Laboratory, Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong, China
| | - Amy C. Y. Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Research Centre of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- * E-mail:
| |
Collapse
|
15
|
Stucky EC, Schloss RS, Yarmush ML, Shreiber DI. Alginate micro-encapsulation of mesenchymal stromal cells enhances modulation of the neuro-inflammatory response. Cytotherapy 2015; 17:1353-64. [PMID: 26210574 PMCID: PMC5928499 DOI: 10.1016/j.jcyt.2015.05.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/29/2015] [Accepted: 05/11/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND AIMS Modulation of inflammation after brain trauma is a key therapeutic goal aimed at limiting the consequences of the subsequent injury cascade. Mesenchymal stromal cells (MSCs) have been demonstrated to dynamically regulate the inflammatory environment in several tissue systems, including the central nervous system. There has been limited success, however, with the use of direct implantation of cells in the brain caused by low viability and engraftment at the injury site. To circumvent this, we encapsulated MSCs in alginate microspheres and evaluated the ability of these encapsulated MSCs to attenuate inflammation in rat organotypic hippocampal slice cultures (OHSC). METHODS OHSC were administered lipopolysaccharide to induce inflammation and immediately co-cultured with encapsulated or monolayer human MSCs. After 24 h, culture media was assayed for the pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-α) produced by OHSC, as well as MSC-produced trophic mediators. RESULTS Encapsulated MSCs reduced TNF-α more effectively than did monolayer MSCs. Additionally, there was a strong correlation between increased prostaglandin E2 (PGE2) and reduction of TNF-α. In contrast to monolayer MSCs, inflammatory signals were not required to stimulate PGE2 production by encapsulated MSCs. Further encapsulation-stimulated changes were revealed in a multiplex panel analyzing 27 MSC-produced cytokines and growth factors, from which additional mediators with strong correlations to TNF-α levels were identified. CONCLUSIONS These results suggest that alginate encapsulation of MSCs may not only provide an improved delivery vehicle for transplantation but may also enhance MSC therapeutic benefit for treating neuro-inflammation.
Collapse
Affiliation(s)
- Elizabeth C Stucky
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Rene S Schloss
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Martin L Yarmush
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA; Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA; Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.
| | - David I Shreiber
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA.
| |
Collapse
|
16
|
Meier RPH, Navarro-Alvarez N, Morel P, Schuurman HJ, Strom S, Bühler LH. Current status of hepatocyte xenotransplantation. Int J Surg 2015; 23:273-279. [PMID: 26361861 DOI: 10.1016/j.ijsu.2015.08.077] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 07/29/2015] [Accepted: 08/05/2015] [Indexed: 12/14/2022]
Abstract
The treatment of acute liver failure, a condition with high mortality, comprises optimal clinical care, and in severe cases liver transplantation. However, there are limitations in availability of organ donors. Hepatocyte transplantation is a promising alternative that could fill the medical need, in particular as the bridge to liver transplantation. Encapsulated porcine hepatocytes represent an unlimited source that could function as a bioreactor requiring minimal immunosuppression. Besides patients with acute liver failure, patients with alcoholic hepatitis who are unresponsive to a short course of corticosteroids are a target for hepatocyte transplantation. In this review we present an overview of the innate immune barriers in hepatocyte xenotransplantation, including the role of complement and natural antibodies; the role of phagocytic cells and ligands like CD47 in the regulation of phagocytic cells; and the role of Natural Killer cells. We present also some illustrations of physiological species incompatibilities in hepatocyte xenotransplantation, such as incompatibilities in the coagulation system. An overview of the methodology for cell microencapsulation is presented, followed by proof-of-concept studies in rodent and nonhuman primate models of fulminant liver failure: these studies document the efficacy of microencapsulated porcine hepatocytes which warrants progress towards clinical application. Lastly, we present an outline of a provisional clinical trial, that upon completion of preclinical work could start within the upcoming 2-3 years.
Collapse
Affiliation(s)
- Raphael P H Meier
- Visceral and Transplantation Surgery, Department of Surgery, University Hospitals of Geneva and Faculty of Medicine, Geneva, Switzerland.
| | - Nalu Navarro-Alvarez
- Center for Transplantation Sciences (CTS), Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Philippe Morel
- Visceral and Transplantation Surgery, Department of Surgery, University Hospitals of Geneva and Faculty of Medicine, Geneva, Switzerland
| | - Henk-Jan Schuurman
- Visceral and Transplantation Surgery, Department of Surgery, University Hospitals of Geneva and Faculty of Medicine, Geneva, Switzerland
| | - Stephen Strom
- Cell Transplantation and Regenerative Medicine, Department of Laboratory Medicine, Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Leo H Bühler
- Visceral and Transplantation Surgery, Department of Surgery, University Hospitals of Geneva and Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
17
|
Abstract
INTRODUCTION Islet transplantation can treat the most severe cases of type 1 diabetes but it currently requires deceased donor pancreata as an islet source and chronic immunosuppression to prevent rejection and recurrence of autoimmunity. Stem cell-derived insulin-producing cells may address the shortage of organ donors, whereas cell encapsulation may reduce or eliminate the requirement for immunosuppression, minimizing the risks associated with the islet transplantation procedure, and potentially prolonging graft survival. AREAS COVERED This review focuses on the design principles for immunoisolation devices and on stem cell differentiation into insulin-producing cell products. The reader will gain understanding of the different types of immunoisolation devices and the key parameters that affect the outcome of the encapsulated graft. Progresses in stem cell differentiation towards mature endocrine islet cells, including the most recent clinical trials and the challenges associated with the application of immunoisolation devices designed for primary islets to stem-cell products, are also discussed. EXPERT OPINION Recent advancements in the field of stem cell-derived islet cell products and immunoisolation strategies hold great promise for type 1 diabetes. However, a combination product including both cells and an immunoisolation strategy still needs to be optimized and tested for safety and efficacy.
Collapse
Affiliation(s)
- Alice Anna Tomei
- University of Miami Miller School of Medicine, Diabetes Research Institute , 1450 NW 10th Avenue, Miami, FL 33136 , USA +1 305 243 3469 ;
| | | | | |
Collapse
|
18
|
Breger JC, Fisher B, Samy R, Pollack S, Wang NS, Isayeva I. Synthesis of “click” alginate hydrogel capsules and comparison of their stability, water swelling, and diffusion properties with that of Ca+2crosslinked alginate capsules. J Biomed Mater Res B Appl Biomater 2014; 103:1120-32. [DOI: 10.1002/jbm.b.33282] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 08/08/2014] [Accepted: 09/01/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Joyce C. Breger
- Center for Devices and Radiological Health/Office of Science and Engineering Laboratories/FDA; Silver Spring Maryland 20993-002
- Department of Chemical and Biomolecular Engineering; University of Maryland; Maryland 20742-2115
| | - Benjamin Fisher
- Center for Devices and Radiological Health/Office of Science and Engineering Laboratories/FDA; Silver Spring Maryland 20993-002
| | - Raghu Samy
- Center for Devices and Radiological Health/Office of Science and Engineering Laboratories/FDA; Silver Spring Maryland 20993-002
| | - Steven Pollack
- Center for Devices and Radiological Health/Office of Science and Engineering Laboratories/FDA; Silver Spring Maryland 20993-002
| | - Nam Sun Wang
- Department of Chemical and Biomolecular Engineering; University of Maryland; Maryland 20742-2115
| | - Irada Isayeva
- Center for Drug Evaluation and Research/Office of Pharmaceutical Science/Office of Generic Drugs/Division of Chemistry III/FDA; Silver Spring Maryland 20993-002
| |
Collapse
|
19
|
Mooranian A, Negrulj R, Arfuso F, Al-Salami H. Characterization of a novel bile acid-based delivery platform for microencapsulated pancreatic β-cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2014; 44:194-200. [PMID: 25014218 DOI: 10.3109/21691401.2014.934457] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION In a recent study, we confirmed good chemical and physical compatibility of microencapsulated pancreatic β-cells using a novel formulation of low viscosity sodium alginate (LVSA), Poly-L-Ornithine (PLO), and the tertiary bile acid, ursodeoxycholic acid (UDCA). This study aimed to investigate the effect of UDCA on the morphology, swelling, stability, and size of these new microcapsules. It also aimed to evaluate cell viability in the microcapsules following UDCA addition. MATERIALS AND METHODS Microencapsulation was carried out using a Büchi-based system. Two (LVSA-PLO, control and LVSA-PLO-UDCA, test) pancreatic β-cells microcapsules were prepared at a constant ratio of 10:1:3, respectively. The microcapsules' morphology, cell viability, swelling characteristics, stability, mechanical strength, Zeta potential, and size analysis were examined. The cell contents in each microcapsule and the microencapsulation efficiency were also examined. RESULTS The addition of UDCA did not affect the microcapsules' morphology, stability, size, or the microencapsulation efficiency. However, UDCA enhanced cell viability in the microcapsules 24 h after microencapsulation (p < 0.01), reduced swelling (p < 0.05), reduced Zeta potential (- 73 ± 2 to - 54 ± 2 mV, p < 0.01), and increased mechanical strength of the microcapsules (p < 0.05) at the end of the 24-h experimental period. DISCUSSION AND CONCLUSION UDCA increased β-cell viability in the microcapsules without affecting the microcapsules' size, morphology, or stability. It also increased the microcapsules' resistance to swelling and optimized their mechanical strength. Our findings suggest potential benefits of the bile acid UDCA in β-cell microencapsulation.
Collapse
Affiliation(s)
- Armin Mooranian
- a Biotechnology and Drug Development Research Laboratory, School of Pharmacy, CHIRI Biosciences Research Precinct, Curtin University , Perth , WA , Australia
| | - Rebecca Negrulj
- a Biotechnology and Drug Development Research Laboratory, School of Pharmacy, CHIRI Biosciences Research Precinct, Curtin University , Perth , WA , Australia
| | - Frank Arfuso
- b Curtin Health Innovation Research Institute, Biosciences Research Precinct, School of Biomedical Science, Curtin University , Perth , WA , Australia
| | - Hani Al-Salami
- a Biotechnology and Drug Development Research Laboratory, School of Pharmacy, CHIRI Biosciences Research Precinct, Curtin University , Perth , WA , Australia
| |
Collapse
|
20
|
Hillberg AL, Oudshoorn M, Lam JBB, Kathirgamanathan K. Encapsulation of porcine pancreatic islets within an immunoprotective capsule comprising methacrylated glycol chitosan and alginate. J Biomed Mater Res B Appl Biomater 2014; 103:503-18. [DOI: 10.1002/jbm.b.33185] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 03/25/2014] [Accepted: 04/05/2014] [Indexed: 12/30/2022]
|
21
|
Clinical application of microencapsulated islets: actual prospectives on progress and challenges. Adv Drug Deliv Rev 2014; 67-68:84-92. [PMID: 24184490 DOI: 10.1016/j.addr.2013.09.020] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 07/08/2013] [Accepted: 09/25/2013] [Indexed: 11/21/2022]
Abstract
After 25 years of intense pre-clinical work on microencapsulated intraperitoneal islet grafts into non-immunosuppressed diabetic recipients, the application of this procedure to patients with type 1 diabetes mellitus has been a significant step forward. This result, achieved in a few centers worldwide, underlies the safety of biopolymers used for microencapsulation. Without this advance, no permission for human application of microcapsules would have ever been obtained after years of purification technologies applied to the raw alginates. To improve safety of the encapsulated islet graft system, renewed efforts on the capsules' bioengineering, as well as on insulin-producing cells within the capsular membranes, are in progress. It is hoped that advances in these two critical aspects of the cell encapsulation technology will result in wider human application of this system.
Collapse
|
22
|
Rokstad AMA, Lacík I, de Vos P, Strand BL. Advances in biocompatibility and physico-chemical characterization of microspheres for cell encapsulation. Adv Drug Deliv Rev 2014; 67-68:111-30. [PMID: 23876549 DOI: 10.1016/j.addr.2013.07.010] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/28/2013] [Accepted: 07/12/2013] [Indexed: 02/06/2023]
Abstract
Cell encapsulation has already shown its high potential and holds the promise for future cell therapies to enter the clinics as a large scale treatment option for various types of diseases. The advancement in cell biology towards this goal has to be complemented with functional biomaterials suitable for cell encapsulation. This cannot be achieved without understanding the close correlation between cell performance and properties of microspheres. The ongoing challenges in the field of cell encapsulation require a critical view on techniques and approaches currently utilized to characterize microspheres. This review deals with both principal subjects of microspheres characterization in the cell encapsulation field: physico-chemical characterization and biocompatibility. The up-to-day knowledge is summarized and discussed with the focus to identify missing knowledge and uncertainties, and to propose the mandatory next steps in characterization of microspheres for cell encapsulation. The primary conclusion of this review is that further success in development of microspheres for cell therapies cannot be accomplished without careful selection of characterization techniques, which are employed in conjunction with biological tests.
Collapse
Affiliation(s)
- Anne Mari A Rokstad
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Prinsesse Kristinasgt. 1, N-7491 Trondheim, Norway; The Central Norway Health Authority (RHA), Trondheim, Norway.
| | - Igor Lacík
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava, Slovakia.
| | - Paul de Vos
- Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA11, 9700 RB Groningen, The Netherlands.
| | - Berit L Strand
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Prinsesse Kristinasgt. 1, N-7491 Trondheim, Norway; Department of Biotechnology, NTNU, Sem Saelandsvei 6/8, N-7491 Trondheim, Norway; The Central Norway Health Authority (RHA), Trondheim, Norway.
| |
Collapse
|
23
|
Schweicher J, Nyitray C, Desai TA. Membranes to achieve immunoprotection of transplanted islets. FRONT BIOSCI-LANDMRK 2014; 19:49-76. [PMID: 24389172 PMCID: PMC4230297 DOI: 10.2741/4195] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Transplantation of islet or beta cells is seen as the cure for type 1 diabetes since it allows physiological regulation of blood glucose levels without requiring any compliance from the patients. In order to circumvent the use of immunosuppressive drugs (and their side effects), semipermeable membranes have been developed to encapsulate and immunoprotect transplanted cells. This review presents the historical developments of immunoisolation and provides an update on the current research in this field. A particular emphasis is laid on the fabrication, characterization and performance of membranes developed for immunoisolation applications.
Collapse
Affiliation(s)
- Julien Schweicher
- Therapeutic Micro and Nanotechnology Laboratory, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), 1700 4 Street, Box 2520, San Francisco, CA, 94158, USA
| | - Crystal Nyitray
- Therapeutic Micro and Nanotechnology Laboratory, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), 1700 4 Street, Box 2520, San Francisco, CA, 94158, USA
| | - Tejal A. Desai
- Therapeutic Micro and Nanotechnology Laboratory, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), 1700 4 Street, Box 2520, San Francisco, CA, 94158, USA
| |
Collapse
|
24
|
Abstract
The design of new technologies for treatment of human disorders is a complex and difficult task. The aim of this article is to explore state of art discussion of various techniques and materials involve in cell encapsulations. Encapsulation of cells within semi-permeable polymer shells or beads is a potentially powerful tool, and has long been explored as a promising approach for the treatment of several human diseases such as lysosomal storage disease (LSD), neurological disorders, Parkinsons disease, dwarfism, hemophilia, cancer and diabetes using immune-isolation gene therapy.
Collapse
|
25
|
Abstract
Islet transplantation has been shown to be a viable treatment option for patients afflicted with type 1 diabetes. However, the lack of availablity of human pancreases and the need to use risky immunosuppressive drugs to prevent transplant rejection remain two major obstacles to the routine use of islet transplantation in diabetic patients. Successful development of a bioartificial pancreas using the approach of microencapsulation with perm-selective coating of islets in hydrogels for graft immunoisolation holds tremendous promise for diabetic patients because it has great potential to overcome these two barriers. In this review article, we will discuss the need for a bioartificial pancreas, provide a detailed description of the microencapsulation process, and review the status of the technology in clinical development. We will also critically review the various factors that will need to be taken into consideration in order to achieve the ultimate goal of routine clinical application.
Collapse
Affiliation(s)
- Rajesh A Pareta
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Alan C Farney
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Emmanuel C Opara
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
26
|
Hillberg AL, Kathirgamanathan K, Lam JBB, Law LY, Garkavenko O, Elliott RB. Improving alginate-poly-L-ornithine-alginate capsule biocompatibility through genipin crosslinking. J Biomed Mater Res B Appl Biomater 2012; 101:258-68. [DOI: 10.1002/jbm.b.32835] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 09/11/2012] [Indexed: 12/11/2022]
|
27
|
Kitzmann JP, Law L, Shome A, Muzina M, Elliott RB, Mueller KR, Schuurman HJ, Papas KK. Real-time assessment of encapsulated neonatal porcine islets prior to clinical xenotransplantation. Xenotransplantation 2012; 19:333-6. [DOI: 10.1111/xen.12005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Gardner CM, Burke NAD, Chu T, Shen F, Potter MA, Stöver HDH. Poly(methyl vinyl ether-alt-maleic acid) Polymers for Cell Encapsulation. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 22:2127-45. [DOI: 10.1163/092050610x535149] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Casandra M. Gardner
- a Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON, Canada L8S 4M1
| | - Nicholas A. D. Burke
- b Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON, Canada L8S 4M1
| | - Terry Chu
- c Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON, Canada L8S 4M1
| | - Feng Shen
- d Department of Pathology and Molecular Medicine, McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada L8N 3Z5
| | - Murray A. Potter
- e Department of Pathology and Molecular Medicine, McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada L8N 3Z5
| | - Harald D. H. Stöver
- f Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON, Canada L8S 4M1
| |
Collapse
|
29
|
Hoesli CA, Kiang RLJ, Mocinecová D, Speck M, Mošková DJ, Donald-Hague C, Lacík I, Kieffer TJ, Piret JM. Reversal of diabetes by βTC3 cells encapsulated in alginate beads generated by emulsion and internal gelation. J Biomed Mater Res B Appl Biomater 2012; 100:1017-28. [DOI: 10.1002/jbm.b.32667] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 11/24/2011] [Accepted: 12/10/2011] [Indexed: 11/10/2022]
|
30
|
Montanucci P, Pennoni I, Pescara T, Blasi P, Bistoni G, Basta G, Calafiore R. The functional performance of microencapsulated human pancreatic islet-derived precursor cells. Biomaterials 2011; 32:9254-62. [DOI: 10.1016/j.biomaterials.2011.08.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 08/16/2011] [Indexed: 11/16/2022]
|
31
|
Basta G, Montanucci P, Luca G, Boselli C, Noya G, Barbaro B, Qi M, Kinzer KP, Oberholzer J, Calafiore R. Long-term metabolic and immunological follow-up of nonimmunosuppressed patients with type 1 diabetes treated with microencapsulated islet allografts: four cases. Diabetes Care 2011; 34:2406-9. [PMID: 21926290 PMCID: PMC3198271 DOI: 10.2337/dc11-0731] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To assess long-term metabolic and immunological follow-up of microencapsulated human islet allografts in nonimmunosuppressed patients with type 1 diabetes (T1DM). RESEARCH DESIGN AND METHODS Four nonimmunosuppressed patients, with long-standing T1DM, received intraperitoneal transplant (TX) of microencapsulated human islets. Anti-major histocompatibility complex (MHC) class I-II, GAD65, and islet cell antibodies were measured before and long term after TX. RESULTS All patients turned positive for serum C-peptide response, both in basal and after stimulation, throughout 3 years of posttransplant follow-up. Daily mean blood glucose, as well as HbA(1c) levels, significantly improved after TX, with daily exogenous insulin consumption declining in all cases and being discontinued, just transiently, only in patient 4. Anti-MHC class I-II and GAD65 antibodies all tested negative at 3 years after TX. CONCLUSIONS The grafts did not elicit any immune response, even in the cases where more than one preparation was transplanted, as a unique finding, compatible with encapsulation-driven "bioinvisibility" of the grafted islets. This result had never been achieved with the recipient's general immunosuppression.
Collapse
Affiliation(s)
- Giuseppe Basta
- Department of Internal Medicine, Laboratory for the Study and Transplant of Pancreatic Islets, University of Perugia, Perugia, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Basta G, Calafiore R. Immunoisolation of pancreatic islet grafts with no recipient's immunosuppression: actual and future perspectives. Curr Diab Rep 2011; 11:384-91. [PMID: 21826429 DOI: 10.1007/s11892-011-0219-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In spite of steady and remarkable progress, islet transplantation in patients with type 1 diabetes mellitus (T1DM) continues to face two major bottlenecks: inadequate availability of human pancreatic donors and necessity to totally immunosuppress the graft recipients lifelong. Microencapsulation of the islet grafts within highly biocompatible and selective permeable biomembranes could obviate use of the immunosuppressants, while potentially offering the opportunity to use a wide array of insulin-producing cells, in active development, including xenogeneic pig islets. Although macrodevices and microcapsules, which essentially differ by size/configuration, and both serve for immunoisolation devices, have been used for many years with initial human applications, new products on development in both areas might open new perspectives for more focused use in patients with T1DM. Physical-chemical properties and material engineering of these devices are critically reviewed to assess where we actually stand and where the future expansion of these technologies may go.
Collapse
Affiliation(s)
- Giuseppe Basta
- Department of Internal Medicine, Section of Internal Medicine and Endocrine and Metabolic Sciences, University of Perugia, via Enrico dal Pozzo, snc, Perugia, Italy.
| | | |
Collapse
|
33
|
Brun-Graeppi AKAS, Richard C, Bessodes M, Scherman D, Merten OW. Cell microcarriers and microcapsules of stimuli-responsive polymers. J Control Release 2011; 149:209-24. [DOI: 10.1016/j.jconrel.2010.09.023] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 09/21/2010] [Indexed: 12/22/2022]
|
34
|
Hoesli CA, Raghuram K, Kiang RL, Mocinecová D, Hu X, Johnson JD, Lacík I, Kieffer TJ, Piret JM. Pancreatic cell immobilization in alginate beads produced by emulsion and internal gelation. Biotechnol Bioeng 2010; 108:424-34. [DOI: 10.1002/bit.22959] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Trouche E, Girod Fullana S, Mias C, Ceccaldi C, Tortosa F, Seguelas MH, Calise D, Parini A, Cussac D, Sallerin B. Evaluation of alginate microspheres for mesenchymal stem cell engraftment on solid organ. Cell Transplant 2010; 19:1623-33. [PMID: 20719065 DOI: 10.3727/096368910x514297] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Mesenchymal stem cells (MSCs) may be used as a cell source for cell therapy of solid organs due to their differentiation potential and paracrine effect. Nevertheless, optimization of MSC-based therapy needs to develop alternative strategies to improve cell administration and efficiency. One option is the use of alginate microencapsulation, which presents an excellent biocompatibility and an in vivo stability. As MSCs are hypoimmunogenic, it was conceivable to produce microparticles with [alginate-poly-L-lysine-alginate (APA) microcapsules] or without (alginate microspheres) a surrounding protective membrane. Therefore, the aim of this study was to determine the most suitable microparticles to encapsulate MSCs for engraftment on solid organ. First, we compared the two types of microparticles with 4 × 10(6) MSCs/ml of alginate. Results showed that each microparticle has distinct morphology and mechanical resistance but both remained stable over time. However, as MSCs exhibited a better viability in microspheres than in microcapsules, the study was pursued with microspheres. We demonstrated that viable MSCs were still able to produce the paracrine factor bFGF and did not present any chondrogenic or osteogenic differentiation, processes sometimes reported with the use of polymers. We then proved that microspheres could be implanted under the renal capsule without degradation with time or inducing impairment of renal function. In conclusion, these microspheres behave as an implantable scaffold whose biological and functional properties could be adapted to fit with clinical applications.
Collapse
Affiliation(s)
- E Trouche
- INSERM U858, CHU Rangueil, Toulouse Cedex 4, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Santos E, Zarate J, Orive G, Hernández RM, Pedraz JL. Biomaterials in Cell Microencapsulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 670:5-21. [DOI: 10.1007/978-1-4419-5786-3_2] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Giovagnoli S, Blasi P, Luca G, Fallarino F, Calvitti M, Mancuso F, Ricci M, Basta G, Becchetti E, Rossi C, Calafiore R. Bioactive long-term release from biodegradable microspheres preserves implanted ALG-PLO-ALG microcapsules from in vivo response to purified alginate. Pharm Res 2009; 27:285-95. [PMID: 20043193 DOI: 10.1007/s11095-009-0017-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 11/24/2009] [Indexed: 12/24/2022]
Abstract
PURPOSE To assess whether prevention of unexpected in vivo adverse inflammatory and immune responses to biohybrid organ grafts for the treatment of Type I Diabetes Mellitus (T1DM) is possible by superoxide dismutase and ketoprofen controlled release. METHODS Superoxide dismutase and ketoprofen-loaded polyester microspheres were prepared by W/O/W and O/W methods, embodied into purified alginate-poly-L-ornithine-alginate microcapsules and intraperitoneally implanted into CD1 mice. The microspheres were characterized for morphology, size, encapsulation efficiency, enzyme activity and in vitro release. Purified alginate contaminants were assayed, and the obtained microcapsules were investigated for size and morphology before and after implantation over 30 days. Cell pericapsular overgrowth and expression were evaluated by optical microscopy and flow cytometry. RESULTS Superoxide dismutase and ketoprofen sustained release reduced cell pericapsular overgrowth in comparison to the control. Superoxide dismutase release allowed preserving the microcapsules over 30 days. Ketoprofen-loaded microspheres showed some effect in the immediate post-grafting period. A higher macrophage and T-cell expression was observed for the control group. CONCLUSIONS Microspheres containing superoxide dismutase and ketoprofen may represent novel tools to limit or prevent unpredictable adverse in vivo response to alginate, thus contributing to improve cell transplantation success rates in T1DM treatment.
Collapse
Affiliation(s)
- Stefano Giovagnoli
- Dipartimento di Chimica e Tecnologia del Farmaco, Faculty of Pharmacy, University of Perugia, Via del Liceo 1, Perugia, 06123, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
de Guzman RC, Ereifej ES, Broadrick KM, Rogers RA, VandeVord PJ. Alginate-matrigel microencapsulated schwann cells for inducible secretion of glial cell line derived neurotrophic factor. J Microencapsul 2009; 25:487-98. [PMID: 19238724 DOI: 10.1080/02652040802054745] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Controlled expression of glial cell line derived neurotrophic factor (Gdnf) can be integrated in the development of a system for repair of injured peripheral nerves. This delivery strategy was demonstrated via inducible Gdnf from microencapsulated cells in barium alginate. The Schwann cell line RT4-D6P2T was initially modified utilizing an ecdysone-based stable transfection system to produce RT4-Gdnf cells. During construct preparation, it was found that C6 cells (where Gdnf cDNA was isolated) make three Gdnf transcript variants. Additionally, the importance of 5' untranslated region to drive biologically-functional Gdnf synthesis was shown. Encapsulation of RT4-Gdnf in 1% alginate was then performed. It was determined that cells were able to survive at least 1 month in vitro using starting densities of 20, 200 and 2000 cells/capsule and barium ion concentrations of 10, 50, 100 and 200 mM. Most importantly, encapsulated cells secreted exogenous Gdnf upon ponasterone A induction. Mixture of basement membrane extract Matrigel to alginate promoted increased proliferation, cell spreading and Gdnf release. Finally, compression tests showed that cell-loaded microcapsules fractured at 75% diameter compression with 38 kPa of stress. Regulated Gdnf release from these microcapsules in vivo may potentially aid in the regeneration of damaged nerves.
Collapse
Affiliation(s)
- Roche C de Guzman
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA.
| | | | | | | | | |
Collapse
|
40
|
Thanos CG, Elliott RB. Encapsulated porcine islet transplantation: an evolving therapy for the treatment of type I diabetes. Expert Opin Biol Ther 2009; 9:29-44. [PMID: 19063691 DOI: 10.1517/14712590802630666] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Allogeneic tissue-based therapies for Type I diabetes have demonstrated efficacy but are limited due to tissue-sourcing constraints, as the number of patients exceeds that of tissue donors. Porcine islets derived from designated pathogen-free sources could be an alternative, particularly if delivered in a way that evades the host immune system's rejection. METHODS This review focuses on approaches designed to protect xenogeneic islets from immune rejection by provision of perm-selective barriers. RESULTS Designated pathogen-free herds could provide a supply of wild-type porcine islets that are well tolerated when administered in a suitable protective delivery vehicle. Such barrier systems have enabled amelioration of diabetes in a variety of animal models and preliminary evidence suggests that similar results could be attained in humans. CONCLUSION With advances in biomaterial design, source tissue selection, and the evolution of critical cell processing techniques, contemporary encapsulated porcine islet therapies offer a new level of clinical promise.
Collapse
Affiliation(s)
- C G Thanos
- Brown University, Department of Molecular Pharmacology, Physiology and Biotechnology, Providence, RI 02912, USA.
| | | |
Collapse
|
41
|
Murua A, Portero A, Orive G, Hernández RM, de Castro M, Pedraz JL. Cell microencapsulation technology: towards clinical application. J Control Release 2008; 132:76-83. [PMID: 18789985 DOI: 10.1016/j.jconrel.2008.08.010] [Citation(s) in RCA: 268] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 08/06/2008] [Indexed: 12/12/2022]
Abstract
The pharmacokinetic properties of a drug can be significantly improved by the delivery process. Scientists have understood that developing suitable drug delivery systems that release the therapeutically active molecule at the level and dose it is needed and during the optimal time represents a major advance in the field. Cell microencapsulation is an alternative approach for the sustained delivery of therapeutic agents. This technology is based on the immobilization of different types of cells within a polymeric matrix surrounded by a semipermeable membrane for the long-term release of therapeutics. As a result, encapsulated cells are isolated from the host immune system while allowing exchange of nutrients and waste and release of the therapeutic agents. The versatility of this approach has stimulated its use in the treatment of numerous medical diseases including diabetes, cancer, central nervous system diseases and endocrinological disorders among others. The aim of this review article is to give an overview on the current state of the art of the use of cell encapsulation technology as a controlled drug delivery system. The most important advantages of this type of "living" drug release strategy are highlighted, but also its limitations pointed out, and the major challenges to be addressed in the forthcoming years are described.
Collapse
Affiliation(s)
- Ainhoa Murua
- Faculty of Pharmacy, Laboratory of Pharmacy and Pharmaceutical Technology, University of the Basque Country, Vitoria-Gasteiz, Spain
| | | | | | | | | | | |
Collapse
|