1
|
Mutgan AC, Radic N, Valzano F, Crnkovic S, El-Merhie N, Evermann M, Hoetzenecker K, Foris V, Brcic L, Marsh LM, Tran-Lundmark K, Jandl K, Kwapiszewska G. A comprehensive map of proteoglycan expression and deposition in the pulmonary arterial wall in health and pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2024; 327:L173-L188. [PMID: 38771138 DOI: 10.1152/ajplung.00022.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
Changes in the extracellular matrix of pulmonary arteries (PAs) are a key aspect of vascular remodeling in pulmonary hypertension (PH). Yet, our understanding of the alterations affecting the proteoglycan (PG) family remains limited. We sought to investigate the expression and spatial distribution of major vascular PGs in PAs from healthy individuals and various PH groups (chronic obstructive pulmonary disease: PH-COPD, pulmonary fibrosis: PH-PF, idiopathic: IPAH). PG regulation, deposition, and synthesis were notably heightened in IPAH, followed by PH-PF, with minor alterations in PH-COPD. Single-cell analysis unveiled cell-type and disease-specific PG regulation. Agrin expression, a basement membrane PG, was increased in IPAH, with PA endothelial cells (PAECs) identified as a major source. PA smooth muscle cells (PASMCs) mainly produced large-PGs, aggrecan and versican, and small-leucine-like proteoglycan (SLRP) biglycan, whereas the major PGs produced by adventitial fibroblasts were SLRP decorin and lumican. In IPAH and PF-PH, the neointima-forming PASMC population increased the expression of all investigated large-PGs and SLRPs, except fibroblast-predominant decorin (DCN). Expression of lumican, versican, and biglycan also positively correlated with collagen 1α1/1α2 expression in PASMCs in patients with IPAH and PH-PF. We demonstrated that transforming growth factor-beta (TGF-β) regulates versican and biglycan expression, indicating their contribution to vessel fibrosis in IPAH and PF-PH. We furthermore show that certain circulating PG levels display a disease-dependent pattern, with increased decorin and lumican across all patient groups, while versican was elevated in PH-COPD and IPAH and biglycan reduced in IPAH. These findings suggest unique compartment-specific PG regulation in different forms of PH, indicating distinct pathological processes.NEW & NOTEWORTHY Idiopathic pulmonary arterial hypertension (IPAH) pulmonary arteries (PAs) displayed the greatest proteoglycan (PG) changes, with PH associated with pulmonary fibrosis (PH-PF) and PH associated with chronic obstructive pulmonary disease (PH-COPD) following. Agrin, an endothelial cell-specific PG, was solely upregulated in IPAH. Among all cells, neo-intima-forming smooth muscle cells (SMCs) displayed the most significant PG increase. Increased levels of circulating decorin, lumican, and versican, mainly derived from SMCs, and adventitial fibroblasts, may serve as systemic indicators of pulmonary remodeling, reflecting perivascular fibrosis and neointima formation.
Collapse
MESH Headings
- Humans
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Proteoglycans/metabolism
- Male
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Female
- Middle Aged
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Vascular Remodeling
- Pulmonary Disease, Chronic Obstructive/metabolism
- Pulmonary Disease, Chronic Obstructive/pathology
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Aged
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Biglycan/metabolism
- Decorin/metabolism
- Adult
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Pulmonary Fibrosis/metabolism
- Pulmonary Fibrosis/pathology
- Lumican/metabolism
- Extracellular Matrix/metabolism
- Extracellular Matrix/pathology
Collapse
Affiliation(s)
- Ayse Ceren Mutgan
- Division of Physiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Nemanja Radic
- Division of Physiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Francesco Valzano
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Slaven Crnkovic
- Division of Physiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Institute for Lung Health, Cardiopulmonary Institute, Member of the German Lung Center (DZL), Giessen, Germany
| | - Natalia El-Merhie
- Institute for Lung Health, Cardiopulmonary Institute, Member of the German Lung Center (DZL), Giessen, Germany
| | - Matthias Evermann
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Vasile Foris
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Luka Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Leigh M Marsh
- Division of Physiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Karin Tran-Lundmark
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- The Pediatric Heart Center, Skåne University Hospital, Lund, Sweden
| | - Katharina Jandl
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Grazyna Kwapiszewska
- Division of Physiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Institute for Lung Health, Cardiopulmonary Institute, Member of the German Lung Center (DZL), Giessen, Germany
| |
Collapse
|
2
|
Celik B, Leal AF, Tomatsu S. Potential Targeting Mechanisms for Bone-Directed Therapies. Int J Mol Sci 2024; 25:8339. [PMID: 39125906 PMCID: PMC11312506 DOI: 10.3390/ijms25158339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Bone development is characterized by complex regulation mechanisms, including signal transduction and transcription factor-related pathways, glycobiological processes, cellular interactions, transportation mechanisms, and, importantly, chemical formation resulting from hydroxyapatite. Any abnormal regulation in the bone development processes causes skeletal system-related problems. To some extent, the avascularity of cartilage and bone makes drug delivery more challenging than that of soft tissues. Recent studies have implemented many novel bone-targeting approaches to overcome drawbacks. However, none of these strategies fully corrects skeletal dysfunction, particularly in growth plate-related ones. Although direct recombinant enzymes (e.g., Vimizim for Morquio, Cerezyme for Gaucher, Elaprase for Hunter, Mepsevii for Sly diseases) or hormone infusions (estrogen for osteoporosis and osteoarthritis), traditional gene delivery (e.g., direct infusion of viral or non-viral vectors with no modifications on capsid, envelope, or nanoparticles), and cell therapy strategies (healthy bone marrow or hematopoietic stem cell transplantation) partially improve bone lesions, novel delivery methods must be addressed regarding target specificity, less immunogenicity, and duration in circulation. In addition to improvements in bone delivery, potential regulation of bone development mechanisms involving receptor-regulated pathways has also been utilized. Targeted drug delivery using organic and inorganic compounds is a promising approach in mostly preclinical settings and future clinical translation. This review comprehensively summarizes the current bone-targeting strategies based on bone structure and remodeling concepts while emphasizing potential approaches for future bone-targeting systems.
Collapse
Affiliation(s)
- Betul Celik
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA;
| | - Andrés Felipe Leal
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA;
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Shunji Tomatsu
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA;
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1193, Japan
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19144, USA
| |
Collapse
|
3
|
Le Pennec J, Picart C, Vivès RR, Migliorini E. Sweet but Challenging: Tackling the Complexity of GAGs with Engineered Tailor-Made Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312154. [PMID: 38011916 DOI: 10.1002/adma.202312154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Indexed: 11/29/2023]
Abstract
Glycosaminoglycans (GAGs) play a crucial role in tissue homeostasis by regulating the activity and diffusion of bioactive molecules. Incorporating GAGs into biomaterials has emerged as a widely adopted strategy in medical applications, owing to their biocompatibility and ability to control the release of bioactive molecules. Nevertheless, immobilized GAGs on biomaterials can elicit distinct cellular responses compared to their soluble forms, underscoring the need to understand the interactions between GAG and bioactive molecules within engineered functional biomaterials. By controlling critical parameters such as GAG type, density, and sulfation, it becomes possible to precisely delineate GAG functions within a biomaterial context and to better mimic specific tissue properties, enabling tailored design of GAG-based biomaterials for specific medical applications. However, this requires access to pure and well-characterized GAG compounds, which remains challenging. This review focuses on different strategies for producing well-defined GAGs and explores high-throughput approaches employed to investigate GAG-growth factor interactions and to quantify cellular responses on GAG-based biomaterials. These automated methods hold considerable promise for improving the understanding of the diverse functions of GAGs. In perspective, the scientific community is encouraged to adopt a rational approach in designing GAG-based biomaterials, taking into account the in vivo properties of the targeted tissue for medical applications.
Collapse
Affiliation(s)
- Jean Le Pennec
- U1292 Biosanté, INSERM, CEA, Univ. Grenoble Alpes, CNRS EMR 5000 Biomimetism and Regenerative Medicine, Grenoble, F-38054, France
| | - Catherine Picart
- U1292 Biosanté, INSERM, CEA, Univ. Grenoble Alpes, CNRS EMR 5000 Biomimetism and Regenerative Medicine, Grenoble, F-38054, France
| | | | - Elisa Migliorini
- U1292 Biosanté, INSERM, CEA, Univ. Grenoble Alpes, CNRS EMR 5000 Biomimetism and Regenerative Medicine, Grenoble, F-38054, France
| |
Collapse
|
4
|
Regulation of biomineralization by proteoglycans: From mechanisms to application. Carbohydr Polym 2022; 294:119773. [DOI: 10.1016/j.carbpol.2022.119773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022]
|
5
|
Heparin Enriched-WPI Coating on Ti6Al4V Increases Hydrophilicity and Improves Proliferation and Differentiation of Human Bone Marrow Stromal Cells. Int J Mol Sci 2021; 23:ijms23010139. [PMID: 35008562 PMCID: PMC8745389 DOI: 10.3390/ijms23010139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 12/28/2022] Open
Abstract
Titanium alloy (Ti6Al4V) is one of the most prominent biomaterials for bone contact because of its ability to bear mechanical loading and resist corrosion. The success of Ti6Al4V implants depends on bone formation on the implant surface. Hence, implant coatings which promote adhesion, proliferation and differentiation of bone-forming cells are desirable. One coating strategy is by adsorption of biomacromolecules. In this study, Ti6Al4V substrates produced by additive manufacturing (AM) were coated with whey protein isolate (WPI) fibrils, obtained at pH 2, and heparin or tinzaparin (a low molecular weight heparin LMWH) in order to improve the proliferation and differentiation of bone-forming cells. WPI fibrils proved to be an excellent support for the growth of human bone marrow stromal cells (hBMSC). Indeed, WPI fibrils were resistant to sterilization and were stable during storage. This WPI-heparin-enriched coating, especially the LMWH, enhanced the differentiation of hBMSC by increasing tissue non-specific alkaline phosphatase (TNAP) activity. Finally, the coating increased the hydrophilicity of the material. The results confirmed that WPI fibrils are an excellent biomaterial which can be used for biomedical coatings, as they are easily modifiable and resistant to heat treatments. Indeed, the already known positive effect on osteogenic integration of WPI-only coated substrates has been further enhanced by a simple adsorption procedure.
Collapse
|
6
|
Rabe R, Hempel U, Martocq L, Keppler JK, Aveyard J, Douglas TEL. Dairy-Inspired Coatings for Bone Implants from Whey Protein Isolate-Derived Self-Assembled Fibrils. Int J Mol Sci 2020; 21:E5544. [PMID: 32756331 PMCID: PMC7432503 DOI: 10.3390/ijms21155544] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
To improve the integration of a biomaterial with surrounding tissue, its surface properties may be modified by adsorption of biomacromolecules, e.g., fibrils. Whey protein isolate (WPI), a dairy industry by-product, supports osteoblastic cell growth. WPI's main component, β-lactoglobulin, forms fibrils in acidic solutions. In this study, aiming to develop coatings for biomaterials for bone contact, substrates were coated with WPI fibrils obtained at pH 2 or 3.5. Importantly, WPI fibrils coatings withstood autoclave sterilization and appeared to promote spreading and differentiation of human bone marrow stromal cells (hBMSC). In the future, WPI fibrils coatings could facilitate immobilization of biomolecules with growth stimulating or antimicrobial properties.
Collapse
Affiliation(s)
- Rebecca Rabe
- Division of Food Technology, Kiel University, 24118 Kiel, Germany; (R.R.); (J.K.K.)
| | - Ute Hempel
- Institute of Physiological Chemistry, Technische Universität Dresden, 01069 Dresden, Germany;
| | - Laurine Martocq
- Engineering Department, Lancaster University, Lancaster LA1 4YW, UK;
| | - Julia K. Keppler
- Division of Food Technology, Kiel University, 24118 Kiel, Germany; (R.R.); (J.K.K.)
- Laboratory of Food Process Engineering, Wageningen University & Research AFSG, 6708 PB Wageningen, The Netherlands
| | - Jenny Aveyard
- School of Engineering, University of Liverpool, Liverpool L69 3BX, UK;
| | - Timothy E. L. Douglas
- Engineering Department, Lancaster University, Lancaster LA1 4YW, UK;
- Materials Science Institute (MSI), Lancaster University, Lancaster LA1 4YW, UK
| |
Collapse
|
7
|
Kram V, Shainer R, Jani P, Meester JAN, Loeys B, Young MF. Biglycan in the Skeleton. J Histochem Cytochem 2020; 68:747-762. [PMID: 32623936 DOI: 10.1369/0022155420937371] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Small leucine rich proteoglycans (SLRPs), including Biglycan, have key roles in many organ and tissue systems. The goal of this article is to review the function of Biglycan and other related SLRPs in mineralizing tissues of the skeleton. The review is divided into sections that include Biglycan's role in structural biology, signaling, craniofacial and long bone homeostasis, remodeled skeletal tissues, and in human genetics. While many cell types in the skeleton are now known to be affected by Biglycan, there are still unanswered questions about its mechanism of action(s).
Collapse
Affiliation(s)
- Vardit Kram
- Molecular Biology of Bones and Teeth Section, National Institutes of Dental and Craniofacial Research, National Institutes of Health, U.S. Department of Health & Human Services, Bethesda, Maryland
| | - Reut Shainer
- Molecular Biology of Bones and Teeth Section, National Institutes of Dental and Craniofacial Research, National Institutes of Health, U.S. Department of Health & Human Services, Bethesda, Maryland
| | - Priyam Jani
- Molecular Biology of Bones and Teeth Section, National Institutes of Dental and Craniofacial Research, National Institutes of Health, U.S. Department of Health & Human Services, Bethesda, Maryland
| | - Josephina A N Meester
- Laboratory of Cardiogenetics, Center of Medical Genetics, University Hospital Antwerp, University of Antwerp, Antwerp, Belgium
| | - Bart Loeys
- Laboratory of Cardiogenetics, Center of Medical Genetics, University Hospital Antwerp, University of Antwerp, Antwerp, Belgium
| | - Marian F Young
- Molecular Biology of Bones and Teeth Section, National Institutes of Dental and Craniofacial Research, National Institutes of Health, U.S. Department of Health & Human Services, Bethesda, Maryland
| |
Collapse
|
8
|
Licini C, Vitale-Brovarone C, Mattioli-Belmonte M. Collagen and non-collagenous proteins molecular crosstalk in the pathophysiology of osteoporosis. Cytokine Growth Factor Rev 2019; 49:59-69. [PMID: 31543432 DOI: 10.1016/j.cytogfr.2019.09.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 01/07/2023]
Abstract
Collagenous and non-collagenous proteins (NCPs) in the extracellular matrix, as well as the coupling mechanisms between osteoclasts and osteoblasts, work together to ensure normal bone metabolism. Each protein plays one or more critical roles in bone metabolism, sometimes even contradictory, thus affecting the final mechanical, physical and chemical properties of bone tissue. Anomalies in the amount and structure of one or more of these proteins can cause abnormalities in bone formation and resorption, which consequently leads to malformations and defects, such as osteoporosis (OP). The connections between key proteins involved in matrix formation and resorption are far from being elucidated. In this review, we resume knowledge on the crosstalk between collagen type I and selected NCPs (Transforming Growth Factor-β, Insulin-like Growth Factor-1, Decorin, Osteonectin, Osteopontin, Bone Sialoprotein and Osteocalcin) of bone matrix, focusing on their possible involvement and role in OP. The different elements of this network can be pharmacologically targeted or used for the design/development of innovative regenerative strategies to modulate a feedback loop in bone remodelling.
Collapse
Affiliation(s)
- Caterina Licini
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy; Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Via Tronto 10/a, 60126, Ancona, Italy
| | - Chiara Vitale-Brovarone
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy.
| | - Monica Mattioli-Belmonte
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Via Tronto 10/a, 60126, Ancona, Italy
| |
Collapse
|
9
|
Lopes D, Martins-Cruz C, Oliveira MB, Mano JF. Bone physiology as inspiration for tissue regenerative therapies. Biomaterials 2018; 185:240-275. [PMID: 30261426 PMCID: PMC6445367 DOI: 10.1016/j.biomaterials.2018.09.028] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 12/14/2022]
Abstract
The development, maintenance of healthy bone and regeneration of injured tissue in the human body comprise a set of intricate and finely coordinated processes. However, an analysis of current bone regeneration strategies shows that only a small fraction of well-reported bone biology aspects has been used as inspiration and transposed into the development of therapeutic products. Specific topics that include inter-scale bone structural organization, developmental aspects of bone morphogenesis, bone repair mechanisms, role of specific cells and heterotypic cell contact in the bone niche (including vascularization networks and immune system cells), cell-cell direct and soluble-mediated contact, extracellular matrix composition (with particular focus on the non-soluble fraction of proteins), as well as mechanical aspects of native bone will be the main reviewed topics. In this Review we suggest a systematic parallelization of (i) fundamental well-established biology of bone, (ii) updated and recent advances on the understanding of biological phenomena occurring in native and injured tissue, and (iii) critical discussion of how those individual aspects have been translated into tissue regeneration strategies using biomaterials and other tissue engineering approaches. We aim at presenting a perspective on unexplored aspects of bone physiology and how they could be translated into innovative regeneration-driven concepts.
Collapse
Affiliation(s)
- Diana Lopes
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago,, 3810 193 Aveiro, Portugal
| | - Cláudia Martins-Cruz
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago,, 3810 193 Aveiro, Portugal
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago,, 3810 193 Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago,, 3810 193 Aveiro, Portugal.
| |
Collapse
|
10
|
Xu R, Shi G, Xu L, Gu Q, Fu Y, Zhang P, Cheng J, Jiang H. Simvastatin improves oral implant osseointegration via enhanced autophagy and osteogenesis of BMSCs and inhibited osteoclast activity. J Tissue Eng Regen Med 2018; 12:1209-1219. [PMID: 29498229 DOI: 10.1002/term.2652] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 02/07/2018] [Accepted: 02/17/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Rongyao Xu
- Jiangsu Key Laboratory of Oral Diseases; Nanjing Medical University; Nanjing Jiangsu Province China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology; Nanjing Medical University; Nanjing Jiangsu Province China
| | - Guanghui Shi
- Jiangsu Key Laboratory of Oral Diseases; Nanjing Medical University; Nanjing Jiangsu Province China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology; Nanjing Medical University; Nanjing Jiangsu Province China
| | - Ling Xu
- Jiangsu Key Laboratory of Oral Diseases; Nanjing Medical University; Nanjing Jiangsu Province China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology; Nanjing Medical University; Nanjing Jiangsu Province China
| | - Qinyi Gu
- Jiangsu Key Laboratory of Oral Diseases; Nanjing Medical University; Nanjing Jiangsu Province China
| | - Yu Fu
- Jiangsu Key Laboratory of Oral Diseases; Nanjing Medical University; Nanjing Jiangsu Province China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology; Nanjing Medical University; Nanjing Jiangsu Province China
| | - Ping Zhang
- Jiangsu Key Laboratory of Oral Diseases; Nanjing Medical University; Nanjing Jiangsu Province China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology; Nanjing Medical University; Nanjing Jiangsu Province China
| | - Jie Cheng
- Jiangsu Key Laboratory of Oral Diseases; Nanjing Medical University; Nanjing Jiangsu Province China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology; Nanjing Medical University; Nanjing Jiangsu Province China
| | - Hongbing Jiang
- Jiangsu Key Laboratory of Oral Diseases; Nanjing Medical University; Nanjing Jiangsu Province China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology; Nanjing Medical University; Nanjing Jiangsu Province China
| |
Collapse
|
11
|
Rnjak‐Kovacina J, Tang F, Whitelock JM, Lord MS. Glycosaminoglycan and Proteoglycan-Based Biomaterials: Current Trends and Future Perspectives. Adv Healthc Mater 2018; 7:e1701042. [PMID: 29210510 DOI: 10.1002/adhm.201701042] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/18/2017] [Indexed: 12/18/2022]
Abstract
Proteoglycans and their glycosaminoglycans (GAG) are essential for life as they are responsible for orchestrating many essential functions in development and tissue homeostasis, including biophysical properties and roles in cell signaling and extracellular matrix assembly. In an attempt to capture these biological functions, a range of biomaterials are designed to incorporate off-the-shelf GAGs, typically isolated from animal sources, for tissue engineering, drug delivery, and regenerative medicine applications. All GAGs, with the exception of hyaluronan, are present in the body covalently coupled to the protein core of proteoglycans, yet the incorporation of proteoglycans into biomaterials remains relatively unexplored. Proteoglycan-based biomaterials are more likely to recapitulate the unique, tissue-specific GAG profiles and native GAG presentation in human tissues. The protein core offers additional biological functionality, including cell, growth factor, and extracellular matrix binding domains, as well as sites for protein immobilization chemistries. Finally, proteoglycans can be recombinantly expressed in mammalian cells and thus offer genetic manipulation and metabolic engineering opportunities for control over the protein and GAG structures and functions. This Progress Report summarizes current developments in GAG-based biomaterials and presents emerging research and future opportunities for the development of biomaterials that incorporate GAGs presented in their native proteoglycan form.
Collapse
Affiliation(s)
| | - Fengying Tang
- Graduate School of Biomedical Engineering UNSW Sydney Sydney NSW 2052 Australia
| | - John M. Whitelock
- Graduate School of Biomedical Engineering UNSW Sydney Sydney NSW 2052 Australia
| | - Megan S. Lord
- Graduate School of Biomedical Engineering UNSW Sydney Sydney NSW 2052 Australia
| |
Collapse
|
12
|
He R, Lu Y, Ren J, Wang Z, Huang J, Zhu L, Wang K. Decreased fibrous encapsulation and enhanced osseointegration in vitro by decorin-modified titanium surface. Colloids Surf B Biointerfaces 2017; 155:17-24. [DOI: 10.1016/j.colsurfb.2017.03.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 03/21/2017] [Accepted: 03/30/2017] [Indexed: 01/01/2023]
|
13
|
Gubbiotti MA, Vallet SD, Ricard-Blum S, Iozzo RV. Decorin interacting network: A comprehensive analysis of decorin-binding partners and their versatile functions. Matrix Biol 2016; 55:7-21. [PMID: 27693454 DOI: 10.1016/j.matbio.2016.09.009] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Decorin, a prototype small leucine-rich proteoglycan, regulates a vast array of cellular processes including collagen fibrillogenesis, wound repair, angiostasis, tumor growth, and autophagy. This functional versatility arises from a wide array of decorin/protein interactions also including interactions with its single glycosaminoglycan side chain. The decorin-binding partners encompass numerous categories ranging from extracellular matrix molecules to cell surface receptors to growth factors and enzymes. Despite the diversity of the decorin interacting network, two main roles emerge as prominent themes in decorin function: maintenance of cellular structure and outside-in signaling, culminating in anti-tumorigenic effects. Here we present contemporary knowledge regarding the decorin interacting network and discuss in detail the biological relevance of these pleiotropic interactions, some of which could be targeted by therapeutic interventions.
Collapse
Affiliation(s)
- Maria A Gubbiotti
- Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Sylvain D Vallet
- Pericellular and Extracellular Supramolecular Assemblies, Institute of Molecular and Supramolecular Chemistry and Biochemistry, University Claude Bernard, Lyon, France
| | - Sylvie Ricard-Blum
- Pericellular and Extracellular Supramolecular Assemblies, Institute of Molecular and Supramolecular Chemistry and Biochemistry, University Claude Bernard, Lyon, France
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|
14
|
Jenny G, Jauernik J, Bierbaum S, Bigler M, Grätz KW, Rücker M, Stadlinger B. A systematic review and meta-analysis on the influence of biological implant surface coatings on periimplant bone formation. J Biomed Mater Res A 2016; 104:2898-910. [PMID: 27301790 DOI: 10.1002/jbm.a.35805] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/07/2016] [Indexed: 11/11/2022]
Abstract
This systematic review and meta-analysis evaluated the influence of biological implant surface coatings on periimplant bone formation in comparison to an uncoated titanium reference surface in experimental large animal models. The analysis was structured according to the PRISMA criteriae. Of the1077 studies, 30 studies met the inclusion criteriae. Nineteen studies examined the bone implant contact (BIC) and were included in the meta-analysis. Overall, the mean increase in BIC for the test surfaces compared to the reference surfaces was 3.7 percentage points (pp) (95% CI -3.9-11.2, p = 0.339). Analyzing the increase in BIC for specific coated surfaces in comparison to uncoated reference surfaces, inorganic surface coatings showed a significant mean increase in BIC of 14.7 pp (95% CI 10.6-18.9, p < 0.01), extracellular matrix (ECM) surface coatings showed an increase of 10.0 pp (95% CI 4.4-15.6, p < 0.001), and peptide coatings showed a statistical trend with 7.1 pp BIC increase (95% CI -0.8-15.0, p = 0.08). In this review, no statistically significant difference could be found for growth factor surface coatings (observed difference -3.3 pp, 95% CI -16.5-9.9, p = 0.6). All analyses are exploratory in nature. The results show a statistically significant effect of inorganic and ECM coatings on periimplant bone formation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2898-2910, 2016.
Collapse
Affiliation(s)
- Gregor Jenny
- Clinic of Cranio-Maxillofacial and Oral Surgery, University of Zurich, University Hospital Zurich, Plattenstr. 11, CH-8032 Zurich, Switzerland
| | - Johanna Jauernik
- Clinic of Cranio-Maxillofacial and Oral Surgery, University of Zurich, University Hospital Zurich, Plattenstr. 11, CH-8032 Zurich, Switzerland
| | - Susanne Bierbaum
- Max-Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Str. 27, D-01969 Dresden, Germany
| | - Martin Bigler
- SAKK Schweizerische Arbeitsgemeinschaft Für Klinische Krebsforschung, Bern, Effingerstr. 32, CH-3008 Bern, Switzerland
| | - Klaus W Grätz
- Clinic of Cranio-Maxillofacial and Oral Surgery, University of Zurich, University Hospital Zurich, Plattenstr. 11, CH-8032 Zurich, Switzerland
| | - Martin Rücker
- Clinic of Cranio-Maxillofacial and Oral Surgery, University of Zurich, University Hospital Zurich, Plattenstr. 11, CH-8032 Zurich, Switzerland
| | - Bernd Stadlinger
- Clinic of Cranio-Maxillofacial and Oral Surgery, University of Zurich, University Hospital Zurich, Plattenstr. 11, CH-8032 Zurich, Switzerland.
| |
Collapse
|
15
|
Förster Y, Hintze V, Rentsch C, Rentsch B, Bierbaum S, Wiesmann HP, Scharnweber D, Worch H, Rammelt S. Surface functionalization of biomaterials with tissue-inductive artificial extracellular matrices. ACTA ACUST UNITED AC 2013. [DOI: 10.1515/bnm-2013-0018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Salbach J, Kliemt S, Rauner M, Rachner TD, Goettsch C, Kalkhof S, von Bergen M, Möller S, Schnabelrauch M, Hintze V, Scharnweber D, Hofbauer LC. The effect of the degree of sulfation of glycosaminoglycans on osteoclast function and signaling pathways. Biomaterials 2012; 33:8418-29. [DOI: 10.1016/j.biomaterials.2012.08.028] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 08/13/2012] [Indexed: 01/11/2023]
|
17
|
Hintze V, Miron A, Möller S, Schnabelrauch M, Heinemann S, Worch H, Scharnweber D. Artificial extracellular matrices of collagen and sulphated hyaluronan enhance the differentiation of human mesenchymal stem cells in the presence of dexamethasone. J Tissue Eng Regen Med 2012; 8:314-24. [PMID: 22718572 DOI: 10.1002/term.1528] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 02/09/2012] [Accepted: 04/03/2012] [Indexed: 12/19/2022]
Abstract
In this study we investigated the potential of artificial extracellular matrix (aECM) coatings containing collagen II and two types of glycosaminoglycan (GAGs) with different degrees of sulphation to promote human bone formation in biomedical applications. To this end their impact on growth and osteogenic differentiation of human mesenchymal stem cells (hMSCs) was assessed. The cell proliferation was found to be significantly retarded in the first 14 days of culture on surfaces coated with collagen II and GAGs (coll-II/GAG) as compared to tissue culture polystyrol (TCPS) and those coated with collagen II. At later time points it only tended to be retarded on coll-II/sHya3.1. Heat-inactivation of the serum significantly reduced cell numbers on collagen II and coll-II/sHya3.1. Alkaline phosphatase (ALP) activity and calcium deposition, on the other hand, were higher for coatings containing sHya3.1 and were not significantly changed by heat-inactivation of the serum. Expression levels of the bone matrix proteins bone sialoprotein (BSP-II) and osteopontin (OP) were also increased on aECM coatings as compared to TCPS, which further validated the differentiation of hMSCs towards the osteogenic lineage. These observations reveal that aECM coatings, in particular those containing sHya3.1, are suitable to promote the osteogenic differentiation of hMSCs.
Collapse
Affiliation(s)
- V Hintze
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
English A, Azeem A, Gaspar DA, Keane K, Kumar P, Keeney M, Rooney N, Pandit A, Zeugolis DI. Preferential cell response to anisotropic electro-spun fibrous scaffolds under tension-free conditions. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:137-148. [PMID: 22105221 DOI: 10.1007/s10856-011-4471-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 10/24/2011] [Indexed: 05/31/2023]
Abstract
Anisotropic alignment of collagen fibres in musculoskeletal tissues is responsible for the resistance to mechanical loading, whilst in cornea is responsible for transparency. Herein, we evaluated the response of tenocytes, osteoblasts and corneal fibroblasts to the topographies created through electro-spinning and solvent casting. We also evaluated the influence of topography on mechanical properties. At day 14, human osteoblasts seeded on aligned orientated electro-spun mats exhibited the lowest metabolic activity (P < 0.001). At day 5 and at day 7, no significant difference was observed in metabolic activity of human corneal fibroblasts and bovine tenocytes respectively seeded on different scaffold conformations (P > 0.05). Osteoblasts and corneal fibroblasts aligned parallel to the direction of the aligned orientated electro-spun mats, whilst tenocytes aligned perpendicular to the aligned orientated electro-spun mats. Mechanical evaluation demonstrated that aligned orientated electro-spun fibres exhibited significant higher stress at break values than their random aligned counterparts (P < 0.006) and random orientated electro-spun fibres exhibited significant higher strain at break values than the aligned orientated scaffolds (P < 0.006). While maintaining fibre structure, we also developed a co-deposition method of spraying and electro-spinning, which enables the incorporation of microspheres within the three-dimensional structure of the scaffold.
Collapse
Affiliation(s)
- A English
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland Galway (NUI Galway), Galway, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Regenerative potential of glycosaminoglycans for skin and bone. J Mol Med (Berl) 2011; 90:625-35. [DOI: 10.1007/s00109-011-0843-2] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 11/30/2011] [Accepted: 12/01/2011] [Indexed: 11/30/2022]
|
20
|
Abstract
AbstractOf great interest in developing artificial bone is the incorporation of magnesium (Mg) ions into the ceramic lattice in order to improve the physico-chemical and structural properties of the material and to increase its morphological affinity towards newly formed osseous tissue. In the present study, we evaluated the morphological and biological properties of composite scaffolds fabricated by mixing a nanopowder of Mg-substituted beta-tricalcium phosphate with collagen type I in two dry weight ratios (variant I and II). We used biochemical methods, and electron and light microscopy to investigate their porosity, biodegradability and morphology. Osteoblast cell culture behavior in the presence of nanocomposite variants was also examined. Variant I scaffold presented a higher percentage of cross-links and a better resistance to collagenase degradation compared to variant II scaffold. Their porosity did not vary significantly. Osteoblasts cultivated in the presence of nanocomposite scaffolds for 72 h exhibited good cell viability and a normal morphology. When osteoblasts were injected into the scaffolds, a slightly higher proportion of adhered cells were observed for Mg-substituted samples after 7 days of cultivation. All these results showed that Mg-containing porous composite scaffolds had controlled degradation, allowed osteoblast proliferation and adhesion and are good candidates for bone repair.
Collapse
|
21
|
Davis HE, Leach JK. Designing bioactive delivery systems for tissue regeneration. Ann Biomed Eng 2010; 39:1-13. [PMID: 20676773 PMCID: PMC3010216 DOI: 10.1007/s10439-010-0135-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 07/20/2010] [Indexed: 11/29/2022]
Abstract
The direct infusion of macromolecules into defect sites generally does not impart adequate physiological responses. Without the protection of delivery systems, inductive molecules may likely redistribute away from their desired locale and are vulnerable to degradation. In order to achieve efficacy, large doses supplied at interval time periods are necessary, often at great expense and ensuing detrimental side effects. The selection of a delivery system plays an important role in the rate of re-growth and functionality of regenerating tissue: not only do the release kinetics of inductive molecules and their consequent bioactivities need to be considered, but also how the delivery system interacts and integrates with its surrounding host environment. In the current review, we describe the means of release of macromolecules from hydrogels, polymeric microspheres, and porous scaffolds along with the selection and utilization of bioactive delivery systems in a variety of tissue-engineering strategies.
Collapse
Affiliation(s)
- Hillary E Davis
- Department of Biomedical Engineering, University of California, Davis, 451 Health Sciences Drive, 2303 Genome and Biomedical Sciences Facility, Davis, CA, 95616, USA
| | | |
Collapse
|
22
|
Ferdous Z, Peterson SB, Tseng H, Anderson DK, Iozzo RV, Grande-Allen KJ. A role for decorin in controlling proliferation, adhesion, and migration of murine embryonic fibroblasts. J Biomed Mater Res A 2010; 93:419-28. [PMID: 19569212 DOI: 10.1002/jbm.a.32545] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The proteoglycan decorin putatively inhibits cell adhesion and cell migration on various extracellular matrix substrates through interactions with beta(1) integrins. This study, therefore, examined the adhesive, migration, and proliferative characteristics of decorin knockout (Dcn(-/-)) murine embryonic fibroblasts compared to wild-type controls on collagen-coated, fibronectin-coated, and uncoated tissue culture plates. The Dcn(-/-) cells showed significantly greater proliferation than wild-type controls on all substrates. The Dcn(-/-) cells also showed significantly greater adhesion to both collagen and fibronectin; both cell types showed greater adhesion to collagen. The addition of exogenous decorin had a differential effect on adhesion to collagen between cell types, but not on fibronectin. For collagen, blocking either alpha(2) or beta(1) integrin subunits significantly reduced adhesion for Dcn(-/-) cells; whereas for fibronectin, blocking either the alpha(5) or beta(1) integrin subunits reduced adhesion for both cell types. Decorin and the alpha(5)beta(1) integrin may have lesser roles in adhesion to fibronectin than previously presumed. Finally, compared to wild-type cells, Dcn(-/-) cells showed greater migration on both uncoated and collagen substrates. This study demonstrates that decorin affects the biology of various integrins that participate in cell proliferation, adhesion, and migration on various substrates.
Collapse
Affiliation(s)
- Z Ferdous
- Department of Bioengineering, Rice University, Houston, Texas 77005, USA
| | | | | | | | | | | |
Collapse
|
23
|
Rehn AP, Cerny R, Sugars RV, Kaukua N, Wendel M. Osteoadherin is upregulated by mature osteoblasts and enhances their in vitro differentiation and mineralization. Calcif Tissue Int 2008; 82:454-64. [PMID: 18496725 DOI: 10.1007/s00223-008-9138-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 04/22/2008] [Indexed: 12/01/2022]
Abstract
During the process of differentiation, osteoblasts commit through strictly controlled checkpoints under the influence of several growth factors, cytokines, and extracellular matrix (ECM) proteins. The mineralized tissue-specific ECM component osteoadherin (OSAD) belongs to the small leucine-rich repeat protein family of proteoglycans. Proteoglycans modulate cellular behavior either through the attached glycosaminoglycan chains or by direct protein-protein interactions via the core protein sequences. Leucine-rich repeats have been shown to directly interact with cell-surface receptors such as epidermal growth factor receptor, blocking its ability to bind its ligand. In the present study, we investigated the influence of OSAD on the behavior and maturation of MC3T3E1 osteoblasts. OSAD overexpression and repression clones were created by stably transfecting with plasmids coding for either mouse OSAD cDNA or small-hairpin RNA, targeted against mouse OSAD. Overexpression of OSAD resulted in an increase of osteoblast differentiation features, such as increased alkaline phosphatase (ALP) activity and increased in vitro mineralization, as well as reduced proliferation and migration. Bone sialoprotein (BSP) levels were unchanged, while upregulation of osteocalcin (OC) and osteoglycin (OGN) was observed. Conversely, repression of OSAD expression resulted in increased cell proliferation and migration. BSP and OC were unaffected, while OGN was downregulated. ALP activity was reduced, though no change in in vitro mineralization was observed. We conclude that OSAD overexpression enhanced the differentiation and maturation of osteoblasts in vitro.
Collapse
Affiliation(s)
- Anders P Rehn
- Center for Oral Biology, Karolinska Institutet, Huddinge 141 04, Sweden.
| | | | | | | | | |
Collapse
|