1
|
Salimi E, Asim MH, Abidin MNZ. Investigating the in-vitro bioactivity, biodegradability and drug release behavior of the newly developed PES/HA/WS biocompatible nanocomposites as bone graft substitute. Sci Rep 2024; 14:10798. [PMID: 38734777 PMCID: PMC11088656 DOI: 10.1038/s41598-024-61586-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 05/07/2024] [Indexed: 05/13/2024] Open
Abstract
The nucleation of carbonate-containing apatite on the biomaterials surface is regarded as a significant stage in bone healing process. In this regard, composites contained hydroxyapatite (Ca10(PO4)6(OH)2, HA), wollastonite (CaSiO3, WS) and polyethersulfone (PES) were synthesized via a simple solvent casting technique. The in-vitro bioactivity of the prepared composite films with different weight ratios of HA and WS was studied by placing the samples in the simulated body fluid (SBF) for 21 days. The results indicated that the the surface of composites containing 2 wt% HA and 4 wt% WS was completely covered by a thick bone-like apatite layer, which was characterized by Grazing incidence X-ray diffraction, attenuated total reflectance-Fourier transform infrared spectrometer, field emission electron microscopy and energy dispersive X-ray analyzer (EDX). The degradation study of the samples showed that the concentration of inorganic particles could not influence the degradability of the polymeric matrix, where all samples expressed similar dexamethasone (DEX) release behavior. Moreover, the in-vitro cytotoxicity results indicated the significant cyto-compatibility of all specimens. Therefore, these findings revealed that the prepared composite films composed of PES, HA, WS and DEX could be regarded as promising bioactive candidates with low degradation rate for bone tissue engineering applications.
Collapse
Affiliation(s)
- Esmaeil Salimi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, 3619995161, Iran.
| | | | - Muhammad Nidzhom Zainol Abidin
- Department of Chemistry, Faculty of Science, Universiti Malaya, Jalan Profesor Diraja Ungku Aziz, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Ali M, Farwa U, Park SS, Kim YS, Lee BT. Physico-biological and in vivo evaluation of irisin loaded 45S5 porous bioglass granules for bone regeneration. BIOMATERIALS ADVANCES 2023; 147:213326. [PMID: 36758281 DOI: 10.1016/j.bioadv.2023.213326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/18/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
In this study, we investigated the physico-biological and in-vivo evaluation of irisin loaded 45S5 bioglass bone graft for enhancing osteoblastic differentiation and bone regeneration in rat femur head defect model. Highly porous structure was obtained in the bioglass by burn-out process with varying the concentration of poly (methyl methacrylate) (PMMA) spheres. 10 % polyvinyl alcohol (PVA) was used as a binder for the sustain releasing of irisin on porous bioglass. Different concentrations of irisin were loaded on the selected bioglass samples and these were further evaluated for the biocompatibility and osteoblastic differentiation properties. The in vitro results demonstrated not only its biocompatibility but also that it stimulated pre-osteoblast differentiation. The in vivo data showed new bone formation as well as expression of osteogenic proteins like alkaline phosphatase (ALP), Runt-related transcription factor 2 (Runx-2), osteopontin (OPN), and collagen-1 (Col-1). Our results support the use of irisin loaded bioglass for the use of early bone regeneration.
Collapse
Affiliation(s)
- Maqsood Ali
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Ume Farwa
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, South Korea
| | - Seong-Su Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Yong-Sik Kim
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, South Korea; Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea; Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, South Korea.
| |
Collapse
|
3
|
Alidadi Shamsabadi Z, Mahdavi H, Shojaei S, Salehi H, Valiani A. Physicomechanical and cellular behavior of
3D
printed polycaprolactone/poly(lactic‐co‐glycolic acid) scaffold containing polyhedral oligomeric silsesquioxane and extracellular matrix nanoparticles for cartilage tissue engineering. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Hamid Mahdavi
- Department of Novel Drug Delivery Systems Iran Polymer and Petrochemical Institute Tehran Iran
| | - Shahrokh Shojaei
- Department of Biomedical Engineering Islamic Azad University Tehran Iran
| | - Hossien Salehi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine Isfahan University of Medical Sciences Isfahan Iran
| | - Ali Valiani
- Department of Anatomical Sciences and Molecular Biology, School of Medicine Isfahan University of Medical Sciences Isfahan Iran
| |
Collapse
|
4
|
Effect of Ce-doped bioactive glass/collagen/chitosan nanocomposite scaffolds on the cell morphology and proliferation of rabbit’s bone marrow mesenchymal stem cells-derived osteogenic cells. J Genet Eng Biotechnol 2022; 20:33. [PMID: 35192077 PMCID: PMC8864049 DOI: 10.1186/s43141-022-00302-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/15/2022] [Indexed: 12/17/2022]
Abstract
Background Cerium-containing materials have wide applications in the biomedical field, because of the mimetic catalytic activities of cerium. The study aims to deeply estimate the biocompatibility of different scaffolds based on Ce-doped nanobioactive glass, collagen, and chitosan using the first passage of rabbit bone marrow mesenchymal stem cells (BM-MSCs) directed to osteogenic lineage by direct and indirect approach. One percentage of glass filler was used (30 wt. %) in the scaffold, while the percentage of CeO2 in the glass was ranged from 0 to 10 mol. %. Cytotoxicity was evaluated by monitoring of cell morphological changes and reduction in cell proliferation activity of BMMSCs maintained under osteogenic condition using proliferation assays, MTT assay for the direct contact of cells/scaffolds twice in a week, trypan blue and hemocytometer cell counting for indirect contact of cells/scaffolds extracts at day 7. Cell behaviors growth, morphology characteristics were monitored daily under a microscope and cell counting were conducted after 1 week of the incubation of the cells with the extracts of the four composite scaffolds in the osteogenic medium at the end of the week. Results Showed that at 24 h after direct contact with composite scaffold, all scaffolds showed proliferation of cells > 50% and increased in cell density on day 7. The scaffold of the highest percentage of CeO2 in bioactive glass nanoparticles (sample CL/CH/C10) showed the lowest inhibition of cell proliferation (< 25%) at day 7. Moreover, the indirect cell viability test showed that all extracts from the four composite scaffolds did not demonstrate a toxic effect on the cells (inhibition value < 25%). Conclusion The addition of CeO2 to the glass composition improved the biocompatibility of the composite scaffold for the proliferation of rabbit bone marrow mesenchymal stem cells directed to osteogenic lineage. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-022-00302-x.
Collapse
|
5
|
Sadeghian A, Kharaziha M, Khoroushi M. Osteoconductive visible light-crosslinkable nanocomposite for hard tissue engineering. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Boffito M, Servello L, Arango-Ospina M, Miglietta S, Tortorici M, Sartori S, Ciardelli G, Boccaccini AR. Custom-Made Poly(urethane) Coatings Improve the Mechanical Properties of Bioactive Glass Scaffolds Designed for Bone Tissue Engineering. Polymers (Basel) 2021; 14:151. [PMID: 35012176 PMCID: PMC8747464 DOI: 10.3390/polym14010151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 12/03/2022] Open
Abstract
The replication method is a widely used technique to produce bioactive glass (BG) scaffolds mimicking trabecular bone. However, these scaffolds usually exhibit poor mechanical reliability and fast degradation, which can be improved by coating them with a polymer. In this work, we proposed the use of custom-made poly(urethane)s (PURs) as coating materials for 45S5 Bioglass®-based scaffolds. In detail, BG scaffolds were dip-coated with two PURs differing in their soft segment (poly(ε-caprolactone) or poly(ε-caprolactone)/poly(ethylene glycol) 70/30 w/w) (PCL-PUR and PCL/PEG-PUR) or PCL (control). PUR-coated scaffolds exhibited biocompatibility, high porosity (ca. 91%), and improved mechanical properties compared to BG scaffolds (2-3 fold higher compressive strength). Interestingly, in the case of PCL-PUR, compressive strength significantly increased by coating BG scaffolds with an amount of polymer approx. 40% lower compared to PCL/PEG-PUR- and PCL-coated scaffolds. On the other hand, PEG presence within PCL/PEG-PUR resulted in a fast decrease in mechanical reliability in an aqueous environment. PURs represent promising coating materials for BG scaffolds, with the additional pros of being ad-hoc customized in their physico-chemical properties. Moreover, PUR-based coatings exhibited high adherence to the BG surface, probably because of the formation of hydrogen bonds between PUR N-H groups and BG surface functionalities, which were not formed when PCL was used.
Collapse
Affiliation(s)
- Monica Boffito
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (L.S.); (S.M.); (M.T.); (S.S.); (G.C.)
| | - Lucia Servello
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (L.S.); (S.M.); (M.T.); (S.S.); (G.C.)
| | - Marcela Arango-Ospina
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany;
| | - Serena Miglietta
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (L.S.); (S.M.); (M.T.); (S.S.); (G.C.)
| | - Martina Tortorici
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (L.S.); (S.M.); (M.T.); (S.S.); (G.C.)
- Julius Wolff Institut, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Susanna Sartori
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (L.S.); (S.M.); (M.T.); (S.S.); (G.C.)
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (L.S.); (S.M.); (M.T.); (S.S.); (G.C.)
| | - Aldo R. Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany;
| |
Collapse
|
7
|
Sonatkar J, Kandasubramanian B. Bioactive glass with biocompatible polymers for bone applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110801] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
8
|
Shape fidelity, mechanical and biological performance of 3D printed polycaprolactone-bioactive glass composite scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 134:112540. [DOI: 10.1016/j.msec.2021.112540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/19/2022]
|
9
|
|
10
|
Im SB, Tripathi G, Le TTT, Lee BT. Early-stage bone regeneration of hyaluronic acid supplemented with porous 45s5 bioglass-derived granules: an injectable system. Biomed Mater 2021; 16. [PMID: 34038893 DOI: 10.1088/1748-605x/ac058f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/26/2021] [Indexed: 11/12/2022]
Abstract
In the present study, an injectable bone substitute system which utilized porous bioglass (BG)-derived granules supplemented with hyaluronic acid (Hya), was evaluated. Hya plays ultimate role in wound healing, promoting cell motility. The BG were synthesized by a simple and low sintering temperature process without any foreign phase incorporation. Furthermore, the physical properties in the porous scaffold were optimized to investigate thein vitroandin vivoperformance. The porous BG60 scaffolds system showed excellent bioactivity in anin vitrosimulated body fluid test in which the ions dissolved from the composite materials influenced apatite growth, countered the acidic pH, and increased material degradation. In anin vitrostudy with pre-osteoblasts cells (MC3T3-E1), the porous scaffold supported cell adhesion and proliferation. A post-implantation study conducted in femoral defects showed implant degradation and surprisingly fast bone formation just after 2 weeks of implantation. Initialin vivodegradation of Hya promotes releasing ions which regulates the bone forming cells, clues to tissue repair, and regeneration. On the other hand it also prevent the scattering of BG granule after grafting at implant site. The faster dissolution of the porous BG scaffold increased the resorption of the composite material and hence, facilitated bone tissue regeneration. Our findings suggest that the porous BG scaffold could potentially be used as an injectable bone substitute for fast, early bone regeneration applications.
Collapse
Affiliation(s)
- Soo Bin Im
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Bucheon Hospital, Bucheon, Republic of Korea.,Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Garima Tripathi
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Thi Thao Thanh Le
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Byong Taek Lee
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea.,Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| |
Collapse
|
11
|
Gouveia PF, Mesquita-Guimarães J, Galárraga-Vinueza ME, Souza JCM, Silva FS, Fredel MC, Boccaccini AR, Detsch R, Henriques B. In-vitro mechanical and biological evaluation of novel zirconia reinforced bioglass scaffolds for bone repair. J Mech Behav Biomed Mater 2020; 114:104164. [PMID: 33243695 DOI: 10.1016/j.jmbbm.2020.104164] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 01/22/2023]
Abstract
Bone defects resulting from infections, tumors, or traumas represent a major health care issue. Tissue engineering has been working togehter with medicine to develop techniques to repair bone damage and increase patient's life quality. In that context, scaffolds composed of bioactive ceramics have been explored, although their poor mechanical properties restrain their clinical applications as highly porous structures. As an alternative solution, this study aimed to evaluate the mechanical properties and biological response of novel zirconia reinforced bioactive glass scaffolds (ZRBG) manufactured by the replica method. The microstructure, chemical composition, compressive strength, density, in-vitro bioactivity, and cell viability were analyzed and compared to scaffolds made of monolithic zirconia of similar architecture (45, 60 and 85 ppi). The microstructure of ZRGB scaffolds consisted of a bioactive glass matrix with dispersed zirconia particles (~33% glassy phase) and the compressive strength values (ZRBG scaffolds: 0.33 ± 0.11, 0.41 ± 0.20 and 0.48 ± 0.6 MPa; ZRBG scaffolds with extra BG coating: 0.38 ± 0.13, 0.45 ± 0.11 and 0.50 ± 0.14 MPa for 45, 60 and 80 ppi, respectively) were not statistically different from those of zirconia scaffolds (0.25 ± 0.14 MPa for 45 ppi, 0.32 ± 0.11 MPa for 60 ppi and 0.44 ± 0.07 MPa for 80 ppi). No bioactivity was exhibited by monolithic zirconia scaffolds while significant bioactive response was found for ZRBG scaffolds. The cell viability of ZRBG scaffolds in osteogenic medium was improved up to 171% over zirconia scaffolds. This work provides promosing results for further exploring this technique for implant dentistry.
Collapse
Affiliation(s)
- Paula F Gouveia
- Ceramic and Composite Materials Research Group (CERMAT), Federal University of Santa Catarina (UFSC), Campus Trindade, Florianópolis, SC, Brazil; School of Dentistry (DODT), Postgraduate Program in Dentistry (PPGO), Federal University of Santa Catarina, Campus Trindade, 88040-900, Florianópolis, SC, Brazil
| | - Joana Mesquita-Guimarães
- Center for MicroElectroMechanical Systems (CMEMS-UMINHO), University of Minho, Campus de Azurém, 4800-058, Guimarães, Braga, Portugal
| | - María E Galárraga-Vinueza
- School of Dentistry (DODT), Postgraduate Program in Dentistry (PPGO), Federal University of Santa Catarina, Campus Trindade, 88040-900, Florianópolis, SC, Brazil; School of Dentistry, Universidad de las Américas (UDLA), Quito, Ecuador
| | - Júlio C M Souza
- Center for MicroElectroMechanical Systems (CMEMS-UMINHO), University of Minho, Campus de Azurém, 4800-058, Guimarães, Braga, Portugal; School of Dentistry, University Institute of Health Sciences (IUCS), CESPU, 4585-116, Gandra PRD, Portugal
| | - Filipe S Silva
- Center for MicroElectroMechanical Systems (CMEMS-UMINHO), University of Minho, Campus de Azurém, 4800-058, Guimarães, Braga, Portugal
| | - Márcio C Fredel
- Ceramic and Composite Materials Research Group (CERMAT), Federal University of Santa Catarina (UFSC), Campus Trindade, Florianópolis, SC, Brazil
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Rainer Detsch
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Bruno Henriques
- Ceramic and Composite Materials Research Group (CERMAT), Federal University of Santa Catarina (UFSC), Campus Trindade, Florianópolis, SC, Brazil; Center for MicroElectroMechanical Systems (CMEMS-UMINHO), University of Minho, Campus de Azurém, 4800-058, Guimarães, Braga, Portugal; School of Dentistry (DODT), Postgraduate Program in Dentistry (PPGO), Federal University of Santa Catarina, Campus Trindade, 88040-900, Florianópolis, SC, Brazil.
| |
Collapse
|
12
|
Parvizifard M, Karbasi S. Physical, mechanical and biological performance of PHB-Chitosan/MWCNTs nanocomposite coating deposited on bioglass based scaffold: Potential application in bone tissue engineering. Int J Biol Macromol 2020; 152:645-662. [DOI: 10.1016/j.ijbiomac.2020.02.266] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 10/24/2022]
|
13
|
Hasan ML, Kim B, Padalhin AR, Faruq O, Sultana T, Lee BT. In vitro and in vivo evaluation of bioglass microspheres incorporated brushite cement for bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109775. [DOI: 10.1016/j.msec.2019.109775] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 05/04/2019] [Accepted: 05/17/2019] [Indexed: 01/15/2023]
|
14
|
Rodrigues C, Naasani LIS, Zanatelli C, Paim TC, Azevedo JG, de Lima JC, da Cruz Fernandes M, Buchner S, Wink MR. Bioglass 45S5: Structural characterization of short range order and analysis of biocompatibility with adipose-derived mesenchymal stromal cells in vitro and in vivo. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109781. [DOI: 10.1016/j.msec.2019.109781] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 05/12/2019] [Accepted: 05/20/2019] [Indexed: 12/11/2022]
|
15
|
Aging of Bioactive Glass-Based Foams: Effects on Structure, Properties, and Bioactivity. MATERIALS 2019; 12:ma12091485. [PMID: 31067821 PMCID: PMC6539992 DOI: 10.3390/ma12091485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/02/2019] [Accepted: 05/04/2019] [Indexed: 12/28/2022]
Abstract
Bioactive glasses (BG) possess significant bone-bonding and osteogenic properties that support their use for bone defects repair in orthopaedic and dental procedures. Recent advancement enables the manufacturing of BG-based scaffolds providing structural support during bone regeneration. Despite the wide number of studies on BG and BG-based materials, little information on their aging mechanisms and shelf life is available in the literature. In this study, the evolution of chemical species on BG-based foams was investigated via accelerated tests in the presence of CO2 and humidity. The aging process led to the formation of carbonates (Na2CO3 and CaCO3) and hydrocarbonates (NaHCO3). The amount and composition of nucleated species evolved with time, affecting the structure, properties, and bioactivity of the scaffolds. This study provides a first structured report of aging effects on the structure and chemico-physical properties of bioactive glass-based scaffolds, offering an insight about the importance of their storage and packaging.
Collapse
|
16
|
Effect of pre-treatment of crystallized bioactive glass with cell culture media on structure, degradability, and biocompatibility. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:188-197. [DOI: 10.1016/j.msec.2018.12.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/18/2018] [Accepted: 12/10/2018] [Indexed: 12/23/2022]
|
17
|
Anindyajati A, Boughton P, Ruys AJ. Mechanical and Cytocompatibility Evaluation of UHMWPE/PCL/Bioglass ® Fibrous Composite for Acetabular Labrum Implant. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E916. [PMID: 30893909 PMCID: PMC6470684 DOI: 10.3390/ma12060916] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/26/2019] [Accepted: 03/08/2019] [Indexed: 11/16/2022]
Abstract
In this study, a fibrous composite was developed as synthetic graft for labral reconstruction treatment, comprised of ultra-high molecular weight polyethylene (UHMWPE) fabric, ultrafine fibre of polycaprolactone (PCL), and 45S5 Bioglass®. This experiment aimed to examine the mechanical performance and cytocompatibility of the composite. Electrospinning and a slurry dipping technique were applied for composite fabrication. To assess the mechanical performance of UHMWPE, tensile cyclic loading test was carried out. Meanwhile, cytocompatibility of the composite on fibroblastic cells was examined through a viability assay, as well as SEM images to observe cell attachment and proliferation. The mechanical test showed that the UHMWPE fabric had a mean displacement of 1.038 mm after 600 cycles, approximately 4.5 times greater resistance compared to that of natural labrum, based on data obtained from literature. A viability assay demonstrated the predominant occupation of live cells on the material surface, suggesting that the composite was able to provide a viable environment for cell growth. Meanwhile, SEM images exhibited cell adhesion and the formation of cell colonies on the material surface. These results indicated that the UHMWPE/PCL/Bioglass® composite could be a promising material for labrum implants.
Collapse
Affiliation(s)
- Adhi Anindyajati
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006, Australia.
| | - Philip Boughton
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006, Australia.
| | - Andrew J Ruys
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
18
|
Jiang Q, Ismail J, Zaïri F, Qu Z, Liu X, Zaïri F. Damage mechanisms in bioactive glass matrix composites under uniaxial compression. J Mech Behav Biomed Mater 2018; 79:264-272. [PMID: 29335193 DOI: 10.1016/j.jmbbm.2017.12.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 10/18/2022]
Abstract
The damage and crack resistance improvement of bioactive glass is of prime importance, particularly when applied to the repair of load-bearing bones. The present contribution is focused on the prediction of damage mechanisms and crack resistance under uniaxial compression of bioactive glass matrix composites reinforced with a particulate phase. In order to characterize the effects of voids and particles on the damage mechanisms and the macro-response, a two-step homogenization is performed by considering the two phases existing at two different scales: micro/meso through the homogenization of the porous matrix and then meso/macro through the periodic micro-field approach. The damage in the bioactive glass matrix is computed via an anisotropic stress-based damage model, implemented into a finite element program. Failure resulting of excessive damage accumulation in the bioactive glass matrix is predicted by a critical damage criterion combined with a vanishing element technique. The implication of particles in the toughening mechanism as well as the damage and crack resistance improvement in this class of porous biomaterials is highlighted via a parametric study using the proposed numerical model.
Collapse
Affiliation(s)
- Qifeng Jiang
- Xihua University, Key Laboratory of Fluid and Power Machinery, 610039 Sichuan, China
| | - Jewan Ismail
- Univ. Lille, FRE 3723 - LML - Laboratoire de Mécanique de Lille, F-59000 Lille, France
| | - Fahmi Zaïri
- Univ. Lille, FRE 3723 - LML - Laboratoire de Mécanique de Lille, F-59000 Lille, France.
| | - Zhengwei Qu
- Univ. Lille, FRE 3723 - LML - Laboratoire de Mécanique de Lille, F-59000 Lille, France
| | - Xiaobing Liu
- Xihua University, Key Laboratory of Fluid and Power Machinery, 610039 Sichuan, China
| | - Fahed Zaïri
- CHRU Lille, Département de Neurochirurgie, Hôpital Roger Salengro, F-59000 Lille, France
| |
Collapse
|
19
|
Synergic effect of chitosan and dicalcium phosphate on tricalcium silicate-based nanocomposite for root-end dental application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 80:631-641. [DOI: 10.1016/j.msec.2017.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/08/2017] [Accepted: 07/10/2017] [Indexed: 11/23/2022]
|
20
|
Le TDH, Liaudanskaya V, Bonani W, Migliaresi C, Motta A. Enhancing bioactive properties of silk fibroin with diatom particles for bone tissue engineering applications. J Tissue Eng Regen Med 2017; 12:89-97. [DOI: 10.1002/term.2373] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 10/01/2016] [Accepted: 11/26/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Thi Duy Hanh Le
- BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Department of Industrial Engineering; University of Trento; Trento Italy
| | - Volha Liaudanskaya
- BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Department of Industrial Engineering; University of Trento; Trento Italy
- Department of Biomedical Engineering; Tufts University; Medford MA USA
| | - Walter Bonani
- BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Department of Industrial Engineering; University of Trento; Trento Italy
- INSTM, Trento Research Unit; Interuniversity Consortium for Science and Technology of Materials; Trento Italy
| | - Claudio Migliaresi
- BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Department of Industrial Engineering; University of Trento; Trento Italy
- INSTM, Trento Research Unit; Interuniversity Consortium for Science and Technology of Materials; Trento Italy
| | - Antonella Motta
- BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Department of Industrial Engineering; University of Trento; Trento Italy
- INSTM, Trento Research Unit; Interuniversity Consortium for Science and Technology of Materials; Trento Italy
| |
Collapse
|
21
|
Macías-Andrés VI, Li W, Aguilar-Reyes EA, Ding Y, Roether JA, Harhaus L, León-Patiño CA, Boccaccini AR. Preparation and characterization of 45S5 bioactive glass-based scaffolds loaded with PHBV microspheres with daidzein release function. J Biomed Mater Res A 2017; 105:1765-1774. [PMID: 28241393 DOI: 10.1002/jbm.a.36046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 02/17/2017] [Accepted: 02/22/2017] [Indexed: 12/21/2022]
Abstract
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) microsphere loaded 45S5 bioactive glass (BG) based scaffolds with drug releasing capability have been developed. PHBV microspheres with a mean particle size 4 ± 2 μm loaded with daidzein were obtained by oil-in-water single emulsion solvent evaporation method and applied to the surface of BG scaffolds by dip coating technique. The morphology, in vitro bioactivity in simulated body fluid (SBF), mechanical properties and drug release kinetics of microsphere loaded scaffolds were studied. The microspheres were shown to be homogeneously dispersed on the scaffold surfaces. It was confirmed that hydroxyapatite crystals homogeneously grew not only on the surface of the scaffold but also on the surface of the microspheres within 3 days of immersion in SBF. The daidzein release from the microsphere loaded scaffolds lasted almost 1 month and was determined to be diffusion controlled. The microsphere loaded BG scaffolds with daidzein releasing capability obtained in this study are a candidate for bone tissue engineering. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1765-1774, 2017.
Collapse
Affiliation(s)
- Víctor I Macías-Andrés
- Instituto de Investigación en Metalúrgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, 58030, México
| | - Wei Li
- Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Institute of Biomaterials, Erlangen, 91058, Germany
| | - Ena A Aguilar-Reyes
- Instituto de Investigación en Metalúrgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, 58030, México
| | - Yaping Ding
- Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Institute of Polymer Materials, Erlangen, 91058, Germany
| | - Judith A Roether
- Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Institute of Polymer Materials, Erlangen, 91058, Germany
| | - Leila Harhaus
- Department of Hand-, Plastic and Reconstructive Surgery, Burn Center, Department of Hand- and Plastic Surgery of Heidelberg University, BG Trauma Center Ludwigshafen, Germany.,Department of Plastic Surgery of Heidelberg University, BG Trauma Center Ludwigshafen, Ludwigshafen, 67071, Germany
| | - Carlos A León-Patiño
- Instituto de Investigación en Metalúrgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, 58030, México
| | - Aldo R Boccaccini
- Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Institute of Biomaterials, Erlangen, 91058, Germany
| |
Collapse
|
22
|
Denry I, Goudouri OM, Harless J, Holloway JA. Rapid vacuum sintering: A novel technique for fabricating fluorapatite ceramic scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater 2017; 106:291-299. [PMID: 28135032 DOI: 10.1002/jbm.b.33825] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/17/2016] [Accepted: 11/22/2016] [Indexed: 11/07/2022]
Abstract
Macroporous bioceramic scaffolds are often fabricated via the foam replica technique, based on polymeric foam impregnation with a glass slurry, followed by slow heat treatment to allow for drying, polymeric burnout, and sintering of the glass particles. As a consequence, the process is time consuming and complicated by concurrent crystallization of the glass, often leading to incomplete sintering. Our goal was to investigate the effect of heating rate on sintering behavior, architecture, and mechanical properties of fluorapatite-based glass and glass-ceramic scaffolds. Glass scaffolds were prepared and sintered by rapid vacuum sintering (RVS) at 785°C under vacuum at a fast heating rate (55°C/min.) or without vacuum at a slow heating rate (2°C/min.). Two additional groups were further crystallized at 775°C/1 h. XRD confirmed the presence of fluorapatite for crystallized scaffolds. All groups presented interconnected porosity with a pore size in the 500 μm range. Scaffolds produced by RVS exhibited an excellent degree of sintering while scaffolds produced by slow sintering were incompletely sintered. The mean compressive strength was significantly higher for the RVS groups (1.52 ± 0.55 and 1.72 ± 0.61 MPa) compared to the slow-sintered groups (0.54 ± 0.30 and 0.45 ± 0.26 MPa). Meanwhile, the total production time was reduced by more than 12 h by using the RVS technique. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 291-299, 2018.
Collapse
Affiliation(s)
- Isabelle Denry
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, Iowa
- Department of Prosthodontics, University of Iowa College of Dentistry, Iowa City, Iowa
| | - Ourania-Menti Goudouri
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, Iowa
| | - Jeffrey Harless
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, Iowa
| | - Julie A Holloway
- Department of Prosthodontics, University of Iowa College of Dentistry, Iowa City, Iowa
| |
Collapse
|
23
|
Schacht K, Vogt J, Scheibel T. Foams Made of Engineered Recombinant Spider Silk Proteins as 3D Scaffolds for Cell Growth. ACS Biomater Sci Eng 2016; 2:517-525. [PMID: 33465855 DOI: 10.1021/acsbiomaterials.5b00483] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Materials for tissue engineering have to be biocompatible and have to support cell adhesion, proliferation and differentiation. Additionally, in case of soft tissue engineering the mechanical properties have to accommodate that of the tissue with mechanical integrity until the artificial scaffold is replaced by natural extracellular matrix. In case of artificial 3D scaffolds, it is of critical importance to be able to tune the mechanical properties, the inner free volume (i.e., pore size) and degradation behavior of the employed biomaterial. Here, the potential of recombinant spider silk proteins was evaluated concerning their processing into and application as 3D scaffolds for soft tissue engineering. Highly porous foams made of the recombinant spider silk protein eADF4(C16) and a variant containing an RGD motif were fabricated by salt leaching yielding mechanically robust scaffolds. In contrast to other salt-leached silk scaffolds, the swelling behavior of these scaffolds was low, and the mechanical properties in the range of soft tissues. The pore size and porosity of the foams could be adjusted by the salt crystal size. Fibroblasts adhered and proliferated well in foams made of the spider silk RGD variant but not in the foams of the nonmodified one.
Collapse
Affiliation(s)
- Kristin Schacht
- Lehrstuhl Biomaterialien, ⊥Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG),
- Institut für Bio-Makromoleküle (bio-mac), #Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), and △Bayreuther Materialzentrum (BayMAT), Universität Bayreuth, Universitätsstraße 30, D-95447 Bayreuth, Germany
| | - Jessica Vogt
- Lehrstuhl Biomaterialien, Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG),
- Institut für Bio-Makromoleküle (bio-mac), #Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), and △Bayreuther Materialzentrum (BayMAT), Universität Bayreuth, Universitätsstraße 30, D-95447 Bayreuth, Germany
| | - Thomas Scheibel
- Lehrstuhl Biomaterialien, Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Institut für Bio-Makromoleküle (bio-mac), #Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), and △Bayreuther Materialzentrum (BayMAT), Universität Bayreuth, Universitätsstraße 30, D-95447 Bayreuth, Germany
| |
Collapse
|
24
|
Montazerian M, Dutra Zanotto E. History and trends of bioactive glass-ceramics. J Biomed Mater Res A 2016; 104:1231-49. [DOI: 10.1002/jbm.a.35639] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/27/2015] [Accepted: 12/22/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Maziar Montazerian
- Department of Materials Engineering (DEMa); Center for Research, Technology and Education in Vitreous Materials (CeRTEV), Federal University of São Carlos (UFSCar); São Carlos SP 13.565-905 Brazil
| | - Edgar Dutra Zanotto
- Department of Materials Engineering (DEMa); Center for Research, Technology and Education in Vitreous Materials (CeRTEV), Federal University of São Carlos (UFSCar); São Carlos SP 13.565-905 Brazil
| |
Collapse
|
25
|
Lakhkar NJ, M Day R, Kim HW, Ludka K, Mordan NJ, Salih V, Knowles JC. Titanium phosphate glass microcarriers induce enhanced osteogenic cell proliferation and human mesenchymal stem cell protein expression. J Tissue Eng 2015; 6:2041731415617741. [PMID: 26668711 PMCID: PMC4674021 DOI: 10.1177/2041731415617741] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 10/22/2015] [Indexed: 12/13/2022] Open
Abstract
In this study, we have developed 50- to 100-µm-sized titanium phosphate glass microcarriers (denoted as Ti5) that show enhanced proliferation of human mesenchymal stem cells and MG63 osteosarcoma cells, as well as enhanced human mesenchymal stem cell expression of bone differentiation markers, in comparison with commercially available glass microspheres at all time points. We also demonstrate that these microcarriers provide superior human mesenchymal stem cell proliferation with conventional Dulbecco’s Modified Eagle medium than with a specially developed commercial stem cell medium. The microcarrier proliferative capacity is revealed by a 24-fold increase in MG63 cell numbers in spinner flask bioreactor studies performed over a 7-day period, versus only a 6-fold increase in control microspheres under the same conditions; the corresponding values of Ti5 and control microspheres under static culture are 8-fold and 7-fold, respectively. The capability of guided osteogenic differentiation is confirmed by ELISAs for bone morphogenetic protein-2 and osteopontin, which reveal significantly greater expression of these markers, especially osteopontin, by human mesenchymal stem cells on the Ti5 microspheres than on the control. Scanning electron microscopy and confocal laser scanning microscopy images reveal favorable MG63 and human mesenchymal stem cell adhesion on the Ti5 microsphere surfaces. Thus, the results demonstrate the suitability of the developed microspheres for use as microcarriers in bone tissue engineering applications.
Collapse
Affiliation(s)
- Nilay J Lakhkar
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| | - Richard M Day
- UCL Division of Medicine, University College London, London, UK
| | - Hae-Won Kim
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea ; Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea ; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea
| | | | - Nicola J Mordan
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| | - Vehid Salih
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK ; Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, UK
| | - Jonathan C Knowles
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK ; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
26
|
Porwal H, Estili M, Grünewald A, Grasso S, Detsch R, Hu C, Sakka Y, Boccaccini AR, Reece MJ. 45S5 Bioglass(®)-MWCNT composite: processing and bioactivity. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:199. [PMID: 26109452 DOI: 10.1007/s10856-015-5529-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 06/10/2015] [Indexed: 06/04/2023]
Abstract
Multi-walled carbon nanotube (MWCNT)-Bioglass (BG) matrix composite was fabricated using a facile and scalable aqueous colloidal processing method without using any surfactants followed by spark plasma sintering (SPS) consolidation. The individual MWCNTs were initially uniformly dispersed in water and then entirely immobilized on the BG particles during the colloidal processing, avoiding their common re-agglomeration during the water-removal and drying step, which guaranteed their uniform dispersion within the dense BG matrix after the consolidation process. SPS was used as a fast sintering technique to minimise any damage to the MWCNT structure during the high-temperature consolidation process. The electrical conductivity of BG increased by 8 orders of magnitude with the addition of 6.35 wt% of MWCNTs compared to pure BG. Short-duration tests were used in the present study as a preliminary evaluation to understand the effect of incorporating MWCNTs on osteoblast-like cells. The analysed cell proliferation, viability and phenotype expression of MG-63 cells showed inhibition on 45S5 Bioglass(®)-MWCNT composite surfaces.
Collapse
Affiliation(s)
- Harshit Porwal
- School of Engineering and Material Science, Queen Mary University of London, London, E1 4NS, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Fan X, Ren H, Liu P, Wang P, Li H, Yan Y, Lv G. Effects of the surface modification of poly(amino acid)/hydroxyapatite/calcium sulfate biocomposites on the adhesion and proliferation of osteoblast-like cells. J Appl Polym Sci 2015. [DOI: 10.1002/app.42427] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaoxia Fan
- College of Physical Science and Technology; Sichuan University; Chengdu 610064 China
| | - Haohao Ren
- College of Physical Science and Technology; Sichuan University; Chengdu 610064 China
| | - Pengzheng Liu
- Sichuan National Nano Technology Company; Chengdu 610041 China
| | - Peng Wang
- College of Physical Science and Technology; Sichuan University; Chengdu 610064 China
| | - Hong Li
- College of Physical Science and Technology; Sichuan University; Chengdu 610064 China
| | - Yonggang Yan
- College of Physical Science and Technology; Sichuan University; Chengdu 610064 China
| | - Guoyu Lv
- College of Physical Science and Technology; Sichuan University; Chengdu 610064 China
| |
Collapse
|
28
|
Goudouri OM, Vogel C, Grünewald A, Detsch R, Kontonasaki E, Boccaccini AR. Sol–gel processing of novel bioactive Mg-containing silicate scaffolds for alveolar bone regeneration. J Biomater Appl 2015; 30:740-9. [DOI: 10.1177/0885328215584887] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Periodontal tissue regeneration is an important application area of biomaterials, given the large proportion of the population affected by periodontal diseases like periodontitis. The aim of this study was the synthesis of a novel porous bioceramic scaffold in the SiO2–CaO–MgO system with specific properties targeted for alveolar bone tissue regeneration using a modification of the traditional foam replica technique. Since bioceramic scaffolds are considered brittle, scaffolds were also coated with gelatin in order to increase their mechanical stability. Gelatin was chosen for its biocompatibility, biodegradability, low-cost, and low immunogenicity. However, gelatin degrades very fast in water solutions. For this reason, two different cross-linking agents were evaluated. Genipin, a non-toxic gardenia extract and the chemical compound 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) in combination with N-hydroxysuccinimide (NHS), which is also considered non-toxic. The results of the investigation indicated that all scaffolds presented an open, interconnected porosity and pores' sizes in the range of 300–600 μm, fast apatite-forming ability, biocompatibility, and suitable mechanical stability.
Collapse
Affiliation(s)
| | - Caroline Vogel
- Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Alina Grünewald
- Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Rainer Detsch
- Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Eleana Kontonasaki
- Department of Fixed Prosthodontics, School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
29
|
Nezafati N, Hafezi M, Zamanian A, Naserirad M. Effect of adding nano-titanium dioxide on the microstructure, mechanical properties and in vitro bioactivity of a freeze cast merwinite scaffold. Biotechnol Prog 2015; 31:550-6. [DOI: 10.1002/btpr.2042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 10/21/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Nader Nezafati
- Nanotechnology and Advanced Materials Dept; Materials and Energy Research Center; Karaj Alborz Iran
| | - Masoud Hafezi
- Nanotechnology and Advanced Materials Dept; Materials and Energy Research Center; Karaj Alborz Iran
| | - Ali Zamanian
- Nanotechnology and Advanced Materials Dept; Materials and Energy Research Center; Karaj Alborz Iran
| | - Mandana Naserirad
- Dept. of Biomaterials, Science and Research Branch; Islamic Azad University; Yazd Iran
| |
Collapse
|
30
|
Li W, Wang H, Ding Y, Scheithauer EC, Goudouri OM, Grünewald A, Detsch R, Agarwal S, Boccaccini AR. Antibacterial 45S5 Bioglass®-based scaffolds reinforced with genipin cross-linked gelatin for bone tissue engineering. J Mater Chem B 2015; 3:3367-3378. [DOI: 10.1039/c5tb00044k] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
45S5 Bioglass® (BG) scaffolds with high porosity (>90%) were coated with genipin cross-linked gelatin (GCG) and further incorporated with poly(p-xylyleneguanidine) hydrochloride (PPXG).
Collapse
Affiliation(s)
- Wei Li
- Institute of Biomaterials
- Department of Materials Science and Engineering
- University of Erlangen-Nuremberg
- 91058 Erlangen
- Germany
| | - Hui Wang
- University of Bayreuth
- Macromolecular Chemistry II and Bayreuth Center for Colloids and Interfaces
- 95440 Bayreuth
- Germany
| | - Yaping Ding
- Institute of Polymer Materials
- Department of Materials Science and Engineering, University of Erlangen-Nuremberg
- 91058 Erlangen
- Germany
| | - Ellen C. Scheithauer
- Institute of Biomaterials
- Department of Materials Science and Engineering
- University of Erlangen-Nuremberg
- 91058 Erlangen
- Germany
| | - Ourania-Menti Goudouri
- Institute of Biomaterials
- Department of Materials Science and Engineering
- University of Erlangen-Nuremberg
- 91058 Erlangen
- Germany
| | - Alina Grünewald
- Institute of Biomaterials
- Department of Materials Science and Engineering
- University of Erlangen-Nuremberg
- 91058 Erlangen
- Germany
| | - Rainer Detsch
- Institute of Biomaterials
- Department of Materials Science and Engineering
- University of Erlangen-Nuremberg
- 91058 Erlangen
- Germany
| | - Seema Agarwal
- University of Bayreuth
- Macromolecular Chemistry II and Bayreuth Center for Colloids and Interfaces
- 95440 Bayreuth
- Germany
| | - Aldo R. Boccaccini
- Institute of Biomaterials
- Department of Materials Science and Engineering
- University of Erlangen-Nuremberg
- 91058 Erlangen
- Germany
| |
Collapse
|
31
|
Kim M, Kim G. Physical and biological activities of newly designed, macro-pore-structure-controlled 3D fibrous poly(ε-caprolactone)/hydroxyapatite composite scaffolds. RSC Adv 2015. [DOI: 10.1039/c5ra00915d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A 3D fibrous scaffold using an electrohydrodynamic jet process supplemented with in vitro mineralization to obtain a hydroxyapatite layer in simulated body fluid was fabricated.
Collapse
Affiliation(s)
- Minseong Kim
- Department of Bio-Mechatronic Engineering
- College of Biotechnology and Bioengineering
- Sungkyunkwan University
- Suwon
- South Korea
| | - GeunHyung Kim
- Department of Bio-Mechatronic Engineering
- College of Biotechnology and Bioengineering
- Sungkyunkwan University
- Suwon
- South Korea
| |
Collapse
|
32
|
Rismanchian M, Nosouhian S, Razavi SM, Davoudi A, Sadeghiyan H. Comparing three different three-dimensional scaffolds for bone tissue engineering: an in vivo study. J Contemp Dent Pract 2015; 16:25-30. [PMID: 25876946 DOI: 10.5005/jp-journals-10024-1630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
INTRODUCTION Three-dimensional Scaffold structure of synthetic biomaterials with their interconnected spaces seem to be a safe and effective option in supporting bone regeneration. The aim of this animal study was to compare the effectiveness of three different biocompatible scaffolds: bioglass (BG), demineralized bone matrix (DBM) and forstrite (FR). MATERIALS AND METHODS Four healthy dogs were anesthetized and the first to fourth premolars were extracted atraumatically in each quadrant. After healing, linear incision was prepared from molar to anterior segment and 4 defects in each quadrant (16 defects in each dog) were prepared. Scaffold blocks of BG, DBM and FR were resized according to size of defects and placed in the 12 defects randomly, 4 defects remained as control group. The dogs were sacrificed in 4 time intervals (15, 30, 45 and 60 days after) and the percentage of different types of regenerated bones (lamellar and woven) and connective tissue were recorded in histological process. The data were analyzed by one-way ANOVA and post hoc using SPSS software Ver. 15 at significant level of 0.05. RESULTS In day 30th, although the amount of regenerated lamellar bone in control, DBM and BG Scaffold (22.37±3.44; 21.46±1.96; 21.21±0.96) were near to each, the FR Scaffold provided the highest amount of lamellar (29.71±7. 94) and woven bone (18.28±2.35). Also, FRS caffold showed significant difference with BG (p=0.026) and DBM Scaffolds (p=0.032) in regenerated lamellar bone. CONCLUSION We recommend paying more attention to FR Scaffold as a biomaterial, but it is better to be compared with other nano biomaterials in future studies.
Collapse
Affiliation(s)
- Mansour Rismanchian
- Department of Prosthodontics, Dental Implant Research Centre, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeid Nosouhian
- Assistant Professor, Department of Prosthodontics, Dental Implant Research Centre, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran, e-mail:
| | - Sayed Mohammad Razavi
- Department of Oral and Maxillofacial Pathology, Dental Implant Research Centre, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amin Davoudi
- Department of Dentistry, Dental Students Research Centre School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamidreza Sadeghiyan
- Department of Medicine, Medician Student Research Centre School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
33
|
Bellucci D, Sola A, Cacciotti I, Bartoli C, Gazzarri M, Bianco A, Chiellini F, Cannillo V. Mg- and/or Sr-doped tricalcium phosphate/bioactive glass composites: Synthesis, microstructure and biological responsiveness. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 42:312-24. [DOI: 10.1016/j.msec.2014.05.047] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 05/18/2014] [Indexed: 10/25/2022]
|
34
|
Park SA, Lee JB, Kim YE, Kim JE, Lee JH, Shin JW, Kwon IK, Kim W. Fabrication of biomimetic PCL scaffold using rapid prototyping for bone tissue engineering. Macromol Res 2014. [DOI: 10.1007/s13233-014-2119-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
35
|
Thavornyutikarn B, Chantarapanich N, Sitthiseripratip K, Thouas GA, Chen Q. Bone tissue engineering scaffolding: computer-aided scaffolding techniques. Prog Biomater 2014; 3:61-102. [PMID: 26798575 PMCID: PMC4709372 DOI: 10.1007/s40204-014-0026-7] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 06/20/2014] [Indexed: 12/15/2022] Open
Abstract
Tissue engineering is essentially a technique for imitating nature. Natural tissues consist of three components: cells, signalling systems (e.g. growth factors) and extracellular matrix (ECM). The ECM forms a scaffold for its cells. Hence, the engineered tissue construct is an artificial scaffold populated with living cells and signalling molecules. A huge effort has been invested in bone tissue engineering, in which a highly porous scaffold plays a critical role in guiding bone and vascular tissue growth and regeneration in three dimensions. In the last two decades, numerous scaffolding techniques have been developed to fabricate highly interconnective, porous scaffolds for bone tissue engineering applications. This review provides an update on the progress of foaming technology of biomaterials, with a special attention being focused on computer-aided manufacturing (Andrade et al. 2002) techniques. This article starts with a brief introduction of tissue engineering (Bone tissue engineering and scaffolds) and scaffolding materials (Biomaterials used in bone tissue engineering). After a brief reviews on conventional scaffolding techniques (Conventional scaffolding techniques), a number of CAM techniques are reviewed in great detail. For each technique, the structure and mechanical integrity of fabricated scaffolds are discussed in detail. Finally, the advantaged and disadvantage of these techniques are compared (Comparison of scaffolding techniques) and summarised (Summary).
Collapse
Affiliation(s)
| | - Nattapon Chantarapanich
- Department of Mechanical Engineering, Faculty of Engineering at Si Racha, Kasetsart University, 199 Sukhumvit Road, Si Racha, Chonburi 20230 Thailand
| | - Kriskrai Sitthiseripratip
- National Metal and Materials Technology Center (MTEC), 114 Thailand Science Park, Phahonyothin Road, Klong Luang, Pathumthani 12120 Thailand
| | - George A. Thouas
- Department of Materials Engineering, Monash University, Clayton, VIC 3800 Australia
| | - Qizhi Chen
- Department of Materials Engineering, Monash University, Clayton, VIC 3800 Australia
| |
Collapse
|
36
|
Yao Q, Nooeaid P, Detsch R, Roether JA, Dong Y, Goudouri OM, Schubert DW, Boccaccini AR. Bioglass®/chitosan-polycaprolactone bilayered composite scaffolds intended for osteochondral tissue engineering. J Biomed Mater Res A 2014; 102:4510-8. [PMID: 24677705 DOI: 10.1002/jbm.a.35125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/29/2014] [Accepted: 02/10/2014] [Indexed: 11/07/2022]
Abstract
Polymer-coated 45S5 Bioglass(®) (BG)/chitosan-polycaprolactone (BG/CS-PCL) bilayered composite scaffolds were prepared via foam replication and freeze-drying techniques for application in osteochondral tissue engineering. The CS-PCL coated and uncoated BG scaffolds were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The mechanical properties of the coated scaffolds were significantly improved in comparison to uncoated scaffolds. The bioactivity and biodegradation behavior of scaffolds were studied in simulated body fluid (SBF) for up to 28 days. The interface between the BG scaffold and the polymer coating layer was observed by SEM and a suitable interpenetration of the polymer into the scaffold struts was found. The effects of coated and uncoated BG scaffolds on MG-63 osteoblast-like cells were evaluated by cell viability, adhesion and proliferation.
Collapse
Affiliation(s)
- Qingqing Yao
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology & Optometry, Wenzhou Medical College, Wenzhou, Zhejiang, 325027, China; Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen, 91058, Germany; Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Hesaraki S, Nezafati N. In vitro biocompatibility of chitosan/hyaluronic acid-containing calcium phosphate bone cements. Bioprocess Biosyst Eng 2014; 37:1507-16. [DOI: 10.1007/s00449-013-1122-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 12/24/2013] [Indexed: 12/20/2022]
|
38
|
Li W, Garmendia N, Pérez de Larraya U, Ding Y, Detsch R, Grünewald A, Roether JA, Schubert DW, Boccaccini AR. 45S5 bioactive glass-based scaffolds coated with cellulose nanowhiskers for bone tissue engineering. RSC Adv 2014. [DOI: 10.1039/c4ra07740g] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
39
|
Meng D, Francis L, Thompson ID, Mierke C, Huebner H, Amtmann A, Roy I, Boccaccini AR. Tetracycline-encapsulated P(3HB) microsphere-coated 45S5 Bioglass(®)-based scaffolds for bone tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:2809-2817. [PMID: 23892485 DOI: 10.1007/s10856-013-5012-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 07/16/2013] [Indexed: 06/02/2023]
Abstract
Bioglass(®)-based scaffolds for bone tissue engineering have been developed, which can also serve as carriers for drug delivery. For this, P(3HB) microspheres (PMSs) loaded with tetracycline were fabricated and immobilised on the scaffold surfaces by a modified slurry dipping technique. The sustained drug delivery ability in simulated body fluid was confirmed by using UV-Vis absorption spectroscopy measurements. The MTT assay using mouse fibroblast cells provided evidence that the tetracycline loaded microspheres produced in this study show limited cytotoxicity. The scaffolds developed in this work provide mechanical support, adequate 3D surface roughness, bioactivity and controlled drug delivery function, and are thus interesting candidates for bone tissue engineering applications.
Collapse
Affiliation(s)
- D Meng
- Department of Materials, Imperial College London, London, SW7 2BP, UK
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Fu Q, Saiz E, Rahaman MN, Tomsia AP. Toward Strong and Tough Glass and Ceramic Scaffolds for Bone Repair. ADVANCED FUNCTIONAL MATERIALS 2013; 23:5461-5476. [PMID: 29527148 PMCID: PMC5844579 DOI: 10.1002/adfm.201301121] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The need for implants to repair large bone defects is driving the development of porous synthetic scaffolds with the requisite mechanical strength and toughness in vivo. Recent developments in the use of design principles and novel fabrication technologies are paving the way to create synthetic scaffolds with promising potential for reconstituting bone in load-bearing sites. This article reviews the state of the art in the design and fabrication of bioactive glass and ceramic scaffolds that have improved mechanical properties for structural bone repair. Scaffolds with anisotropic and periodic structures can be prepared with compressive strengths comparable to human cortical bone (100-150 MPa), while scaffolds with an isotropic structure typically have strengths in the range of trabecular bone (2-12 MPa). However, the mechanical response of bioactive glass and ceramic scaffolds in multiple loading modes such as flexure and torsion - as well as their mechanical reliability, fracture toughness, and fatigue resistance - has received little attention. Inspired by the designs of natural materials such as cortical bone and nacre, glass-ceramic and inorganic/polymer composite scaffolds created with extrinsic toughening mechanisms are showing potential for both high strength and mechanical reliability. Future research should include improved designs that provide strong scaffolds with microstructures conducive to bone ingrowth, and evaluation of these scaffolds in large animal models for eventual translation into clinical applications.
Collapse
Affiliation(s)
- Qiang Fu
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (USA)
| | - Eduardo Saiz
- Centre for Advanced Structural Materials, Department of Materials, Imperial College London, London, UK
| | - Mohamed N Rahaman
- Department of Materials Science and Engineering, and Center for Bone and Tissue Repair and Regeneration, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Antoni P Tomsia
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (USA)
| |
Collapse
|
41
|
Abou Neel EA, Chrzanowski W, Knowles JC. Biological performance of titania containing phosphate-based glasses for bone tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 35:307-13. [PMID: 24411382 DOI: 10.1016/j.msec.2013.10.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/22/2013] [Accepted: 10/29/2013] [Indexed: 11/26/2022]
Abstract
The interplay between glass chemistry, structure, degradation kinetics, and biological activity provides flexibility for the development of scaffolds with highly specific cellular response. The aim of this study was therefore to investigate the role of titania inclusion into the phosphate-based glass on its ability to stimulate osteoblast-like human osteosarcoma (HOS) cells to adhere, proliferate and differentiate. In depth morphological and biochemical characterisation was performed on HOS cells cultured on the surface of glass discs. Cell proliferation was also studied in the presence of the glass extract. Cell differentiation, through osteoblast phenotype genes, alkaline phosphatase (ALP) activity and osteocalcin production, was carried out using normal or osteogenic media. Both Thermanox® and titania free glass were used as controls. The data demonstrated that titania inclusion provides desired cytocompatible surface that supported initial cell attachment, sustained viability, and increased cell proliferation similar or significantly higher than Thermanox®. The modified glasses regulated osteoblastic cell differentiation as detected by osteoblast phenotype gene transcription and upregulated ALP and osteocalcin expression. Using osteogenic media had no significant effect on ALP activity and osteocalcin expression. Therefore, titania modified phosphate glasses may have future use as bone tissue engineering scaffolds.
Collapse
Affiliation(s)
- Ensanya Ali Abou Neel
- Division of Biomaterials, Conservative Dental Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia; Biomaterials Department, Faculty of Dentistry, Tanta University, Tanta, Egypt; Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 256 Gray's Inn Road, London WC1X 8LD, United Kingdom.
| | - Wojciech Chrzanowski
- The University of Sydney, Faculty of Pharmacy, Pharmacy and Bank Building, NSW2006, Australia; Department of Nanobiomedical Science & BK21 Plus NBM Global Reserch Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea
| | - Jonathan Campbell Knowles
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 256 Gray's Inn Road, London WC1X 8LD, United Kingdom; Department of Nanobiomedical Science & BK21 Plus NBM Global Reserch Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea.
| |
Collapse
|
42
|
Palza H, Escobar B, Bejarano J, Bravo D, Diaz-Dosque M, Perez J. Designing antimicrobial bioactive glass materials with embedded metal ions synthesized by the sol–gel method. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:3795-801. [DOI: 10.1016/j.msec.2013.05.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/22/2013] [Accepted: 05/06/2013] [Indexed: 01/05/2023]
|
43
|
Handel M, Hammer TR, Nooeaid P, Boccaccini AR, Hoefer D. 45S5-Bioglass(®)-based 3D-scaffolds seeded with human adipose tissue-derived stem cells induce in vivo vascularization in the CAM angiogenesis assay. Tissue Eng Part A 2013; 19:2703-12. [PMID: 23837884 DOI: 10.1089/ten.tea.2012.0707] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Poor vascularization is the key limitation for long-term acceptance of large three-dimensional (3D) tissue engineering constructs in regenerative medicine. 45S5 Bioglass(®) was investigated given its potential for applications in bone engineering. Since native Bioglass(®) shows insufficient angiogenic properties, we used a collagen coating, to seed human adipose tissue-derived stem cells (hASC) confluently onto 3D 45S5 Bioglass(®)-based scaffolds. To investigate vascularization by semiquantitative analyses, these biofunctionalized scaffolds were then subjected to in vitro human umbilical vein endothelial cells formation assays, and were also investigated in the chorioallantoic membrane (CAM) angiogenesis model, an in vivo angiogenesis assay, which uses the CAM of the hen's egg. In their native, nonbiofunctionalized state, neither Bioglass(®)-based nor biologically inert fibrous polypropylene control scaffolds showed angiogenic properties. However, significant vascularization was induced by hASC-seeded scaffolds (Bioglass(®) and polypropylene) in the CAM angiogenesis assay. Biofunctionalized scaffolds also showed enhanced tube lengths, compared to unmodified scaffolds or constructs seeded with fibroblasts. In case of biologically inert hernia meshes, the quantification of vascular endothelial growth factor secretion as the key angiogenic stimulus strongly correlated to the tube lengths and vessel numbers in all models. This correlation proved the CAM angiogenesis assay to be a suitable semiquantitative tool to characterize angiogenic effects of larger 3D implants. In addition, our results suggest that combinations of suitable scaffold materials, such as 45S5 Bioglass(®), with hASC could be a promising approach for future tissue engineering applications.
Collapse
Affiliation(s)
- Marina Handel
- 1 Department of Hygiene, Environment and Medicine, Hohenstein Institutes , Boennigheim, Germany
| | | | | | | | | |
Collapse
|
44
|
Fu S, Yang L, Fan J, Wen Q, Lin S, Wang B, Chen L, Meng X, Chen Y, Wu J. In vitro mineralization of hydroxyapatite on electrospun poly(ɛ-caprolactone)–poly(ethylene glycol)–poly(ɛ-caprolactone) fibrous scaffolds for tissue engineering application. Colloids Surf B Biointerfaces 2013; 107:167-73. [DOI: 10.1016/j.colsurfb.2013.01.068] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 01/30/2013] [Accepted: 01/31/2013] [Indexed: 10/27/2022]
|
45
|
Roohani-Esfahani SI, Dunstan CR, Li JJ, Lu Z, Davies B, Pearce S, Field J, Williams R, Zreiqat H. Unique microstructural design of ceramic scaffolds for bone regeneration under load. Acta Biomater 2013; 9:7014-24. [PMID: 23467040 DOI: 10.1016/j.actbio.2013.02.039] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 01/23/2013] [Accepted: 02/22/2013] [Indexed: 11/28/2022]
Abstract
During the past two decades, research on ceramic scaffolds for bone regeneration has progressed rapidly; however, currently available porous scaffolds remain unsuitable for load-bearing applications. The key to success is to apply microstructural design strategies to develop ceramic scaffolds with mechanical properties approaching those of bone. Here we report on the development of a unique microstructurally designed ceramic scaffold, strontium-hardystonite-gahnite (Sr-HT-gahnite), with 85% porosity, 500μm pore size, a competitive compressive strength of 4.1±0.3MPa and a compressive modulus of 170±20MPa. The in vitro biocompatibility of the scaffolds was studied using primary human bone-derived cells. The ability of Sr-HT-gahnite scaffolds to repair critical-sized bone defects was also investigated in a rabbit radius under normal load, with β-tricalcium phosphate/hydroxyapatite scaffolds used in the control group. Studies with primary human osteoblast cultures confirmed the bioactivity of these scaffolds, and regeneration of rabbit radial critical defects demonstrated that this material induces new bone defect bridging, with clear evidence of regeneration of original radial architecture and bone marrow environment.
Collapse
Affiliation(s)
- S I Roohani-Esfahani
- Biomaterials and Tissue Engineering Research Unit, School of AMME, The University of Sydney, Sydney 2006, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Yu L, Li Y, Zhao K, Tang Y, Cheng Z, Chen J, Zang Y, Wu J, Kong L, Liu S, Lei W, Wu Z. A novel injectable calcium phosphate cement-bioactive glass composite for bone regeneration. PLoS One 2013; 8:e62570. [PMID: 23638115 PMCID: PMC3636220 DOI: 10.1371/journal.pone.0062570] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 03/22/2013] [Indexed: 02/01/2023] Open
Abstract
Background Calcium phosphate cement (CPC) can be molded or injected to form a scaffold in situ, which intimately conforms to complex bone defects. Bioactive glass (BG) is known for its unique ability to bond to living bone and promote bone growth. However, it was not until recently that literature was available regarding CPC-BG applied as an injectable graft. In this paper, we reported a novel injectable CPC-BG composite with improved properties caused by the incorporation of BG into CPC. Materials and Methods The novel injectable bioactive cement was evaluated to determine its composition, microstructure, setting time, injectability, compressive strength and behavior in a simulated body fluid (SBF). The in vitro cellular responses of osteoblasts and in vivo tissue responses after the implantation of CPC-BG in femoral condyle defects of rabbits were also investigated. Results CPC-BG possessed a retarded setting time and markedly better injectability and mechanical properties than CPC. Moreover, a new Ca-deficient apatite layer was deposited on the composite surface after immersing immersion in SBF for 7 days. CPC-BG samples showed significantly improved degradability and bioactivity compared to CPC in simulated body fluid (SBF). In addition, the degrees of cell attachment, proliferation and differentiation on CPC-BG were higher than those on CPC. Macroscopic evaluation, histological evaluation, and micro-computed tomography (micro-CT) analysis showed that CPC-BG enhanced the efficiency of new bone formation in comparison with CPC. Conclusions A novel CPC-BG composite has been synthesized with improved properties exhibiting promising prospects for bone regeneration.
Collapse
Affiliation(s)
- Long Yu
- Institute of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi Province, People’s Republic of China
| | - Yang Li
- Institute of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi Province, People’s Republic of China
| | - Kang Zhao
- School of Materials and Engineering, Xi’an University of Technology, Xi’an, Shaanxi Province, People’s Republic of China
| | - Yufei Tang
- School of Materials and Engineering, Xi’an University of Technology, Xi’an, Shaanxi Province, People’s Republic of China
| | - Zhe Cheng
- School of Materials and Engineering, Xi’an University of Technology, Xi’an, Shaanxi Province, People’s Republic of China
| | - Jun Chen
- Institute of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi Province, People’s Republic of China
| | - Yuan Zang
- Institute of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi Province, People’s Republic of China
| | - Jianwei Wu
- Institute of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi Province, People’s Republic of China
| | - Liang Kong
- Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi Province, People’s Republic of China
| | - Shuai Liu
- Institute of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi Province, People’s Republic of China
| | - Wei Lei
- Institute of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi Province, People’s Republic of China
- * E-mail: (WL); (ZW)
| | - Zixiang Wu
- Institute of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi Province, People’s Republic of China
- * E-mail: (WL); (ZW)
| |
Collapse
|
47
|
Bellucci D, Sola A, Gazzarri M, Chiellini F, Cannillo V. A new hydroxyapatite-based biocomposite for bone replacement. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:1091-101. [DOI: 10.1016/j.msec.2012.11.038] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 10/15/2012] [Accepted: 11/29/2012] [Indexed: 02/02/2023]
|
48
|
Midha S, van den Bergh W, Kim TB, Lee PD, Jones JR, Mitchell CA. Bioactive glass foam scaffolds are remodelled by osteoclasts and support the formation of mineralized matrix and vascular networks in vitro. Adv Healthc Mater 2013. [PMID: 23184651 DOI: 10.1002/adhm.201200140] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Remodelling of scaffolds and new bone formation is critical for effective bone regeneration. Herein is reported the first demonstration of resorption pits due to osteoclast activity on the surface of sol-gel bioactive glass foam scaffolds. Bioactive glass foam scaffolds are known to have osteogenic potential and suitable pore networks for bone regeneration. Degradation of the scaffolds is known to be initially solution mediated, but for effective bone regeneration, remodelling of the scaffold by osteoclasts and vascularisation of the scaffold is necessary. The culture of C7 macrophages on a bioactive glass scaffold induces the cells to differentiate into (TRAP(+ve) ) osteoclasts. They then form distinctive resorption pits within 3 weeks, while MC3T3-E1 pre-osteoblasts deposit mineralized osteoid on their surfaces in co-culture. The scaffolds are of the 70S30C (70 mol% SiO2 , 30 mol% CaO) composition, with modal pore and interconnect diameters of 373 μm and 172 μm respectively (quantified by X-ray micro-tomography and 3D image analysis). The release of soluble silica and calcium ions from 70S30C scaffolds induces an increase in osteoblast numbers as determined via the MTT assay. Scaffolds also support growth of endothelial cells on their surface and tube formation (characteristic of functional microvasculature) following 4 days in culture. This data supports the hypothesis that 70S30C bioactive glass scaffolds promote the differentiation of the 3 main cell types involved in vascularized bone regeneration.
Collapse
Affiliation(s)
- Swati Midha
- Centre for Molecular Biosciences, University of Ulster at Coleraine, BT52 1SA, UK
| | | | | | | | | | | |
Collapse
|
49
|
Arkudas A, Balzer A, Buehrer G, Arnold I, Hoppe A, Detsch R, Newby P, Fey T, Greil P, Horch RE, Boccaccini AR, Kneser U. Evaluation of angiogenesis of bioactive glass in the arteriovenous loop model. Tissue Eng Part C Methods 2013. [PMID: 23189952 DOI: 10.1089/ten.tec.2012.0572] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this study, the angiogenetic effect of sintered 45S5 Bioglass® was quantitatively assessed for the first time in the arteriovenous loop (AVL) model. An AVL was created by interposition of a venous graft from the contralateral side between the femoral artery and vein in the medial thigh of eight rats. The loop was placed in a Teflon isolation chamber and was embedded in a sintered 45S5 Bioglass® granula matrix filled with fibrin gel. Specimens were investigated 3 weeks postoperatively by means of microcomputed tomography, histological, and morphometrical techniques. All animals tolerated the operations well. At 3 weeks, both microcomputed tomography and histology demonstrated a dense network of newly formed vessels originating from the AVL. All constructs were filled with cell-rich, highly vascularized connective tissue around the vascular axis. Analysis of vessel diameter revealed constant small vessel diameters, indicating immature new vessel sprouts. This study shows for the first time axial vascularization of a sintered 45S5 Bioglass® granula matrix. After 3 weeks, the newly generated vascular network already interfused most parts of the scaffolds and showed signs of immaturity. The intrinsic type of vascularization allows transplantation of the entire construct using the AVL pedicle.
Collapse
Affiliation(s)
- Andreas Arkudas
- Department of Plastic and Hand Surgery, University of Erlangen Medical Center, Erlangen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lakhkar NJ, Park JH, Mordan NJ, Salih V, Wall IB, Kim HW, King SP, Hanna JV, Martin RA, Addison O, Mosselmans JFW, Knowles JC. Titanium phosphate glass microspheres for bone tissue engineering. Acta Biomater 2012; 8:4181-90. [PMID: 22835676 DOI: 10.1016/j.actbio.2012.07.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/15/2012] [Accepted: 07/18/2012] [Indexed: 01/09/2023]
Abstract
We have demonstrated the successful production of titanium phosphate glass microspheres in the size range of ∼10-200 μm using an inexpensive, efficient, easily scalable process and assessed their use in bone tissue engineering applications. Glasses of the following compositions were prepared by melt-quench techniques: 0.5P₂O₅-0.4CaO-(0.1-x)Na₂O-xTiO₂, where x=0.03, 0.05 and 0.07 mol fraction (denoted as Ti3, Ti5 and Ti7 respectively). Several characterization studies such as differential thermal analysis, degradation (performed using a novel time lapse imaging technique) and pH and ion release measurements revealed significant densification of the glass structure with increased incorporation of TiO₂ in the glass from 3 to 5 mol.%, although further TiO₂ incorporation up to 7 mol.% did not affect the glass structure to the same extent. Cell culture studies performed using MG63 cells over a 7-day period clearly showed the ability of the microspheres to provide a stable surface for cell attachment, growth and proliferation. Taken together, the results confirm that 5 mol.% TiO₂ glass microspheres, on account of their relative ease of preparation and favourable biocompatibility, are worthy candidates for use as substrate materials in bone tissue engineering applications.
Collapse
|