1
|
Mullis AS, Kaplan DL. Functional bioengineered tissue models of neurodegenerative diseases. Biomaterials 2023; 298:122143. [PMID: 37146365 PMCID: PMC10209845 DOI: 10.1016/j.biomaterials.2023.122143] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/07/2023]
Abstract
Aging-associated neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases remain poorly understood and no disease-modifying treatments exist despite decades of investigation. Predominant in vitro (e.g., 2D cell culture, organoids) and in vivo (e.g., mouse) models of these diseases are insufficient mimics of human brain tissue structure and function and of human neurodegenerative pathobiology, and have thus contributed to this collective translational failure. This has been a longstanding challenge in the field, and new strategies are required to address both fundamental and translational needs. Bioengineered tissue culture models constitute a class of promising alternatives, as they can overcome the low cell density, poor nutrient exchange, and long term culturability limitations of existing in vitro models. Further, they can reconstruct the structural, mechanical, and biochemical cues of native brain tissue, providing a better mimic of human brain tissues for in vitro pathobiological investigation and drug development. We discuss bioengineering techniques for the generation of these neurodegenerative tissue models, including biomaterials-, organoid-, and microfluidics-based approaches, and design considerations for their construction. To aid the development of the next generation of functional neurodegenerative disease models, we discuss approaches to incorporate greater cellular diversity and simulate aging processes within bioengineered brain tissues.
Collapse
Affiliation(s)
- Adam S Mullis
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA; Allen Discovery Center, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
2
|
Tissue Adhesives in Reconstructive and Aesthetic Surgery—Application of Silk Fibroin-Based Biomaterials. Int J Mol Sci 2022; 23:ijms23147687. [PMID: 35887050 PMCID: PMC9320471 DOI: 10.3390/ijms23147687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 02/04/2023] Open
Abstract
Tissue adhesives have been successfully used in various kind of surgeries such as oral and maxillofacial surgery for some time. They serve as a substitute for suturing of tissues and shorten treatment time. Besides synthetic-based adhesives, a number of biological-based formulations are finding their way into research and clinical application. In natural adhesives, proteins play a crucial role, mediating adhesion and cohesion at the same time. Silk fibroin, as a natural biomaterial, represents an interesting alternative to conventional medical adhesives. Here, the most commonly used bioadhesives as well as the potential of silk fibroin as natural adhesives will be discussed.
Collapse
|
3
|
El-Husseiny HM, Mady EA, Hamabe L, Abugomaa A, Shimada K, Yoshida T, Tanaka T, Yokoi A, Elbadawy M, Tanaka R. Smart/stimuli-responsive hydrogels: Cutting-edge platforms for tissue engineering and other biomedical applications. Mater Today Bio 2022; 13:100186. [PMID: 34917924 PMCID: PMC8669385 DOI: 10.1016/j.mtbio.2021.100186] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/14/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023] Open
Abstract
Recently, biomedicine and tissue regeneration have emerged as great advances that impacted the spectrum of healthcare. This left the door open for further improvement of their applications to revitalize the impaired tissues. Hence, restoring their functions. The implementation of therapeutic protocols that merge biomimetic scaffolds, bioactive molecules, and cells plays a pivotal role in this track. Smart/stimuli-responsive hydrogels are remarkable three-dimensional (3D) bioscaffolds intended for tissue engineering and other biomedical purposes. They can simulate the physicochemical, mechanical, and biological characters of the innate tissues. Also, they provide the aqueous conditions for cell growth, support 3D conformation, provide mechanical stability for the cells, and serve as potent delivery matrices for bioactive molecules. Many natural and artificial polymers were broadly utilized to design these intelligent platforms with novel advanced characteristics and tailored functionalities that fit such applications. In the present review, we highlighted the different types of smart/stimuli-responsive hydrogels with emphasis on their synthesis scheme. Besides, the mechanisms of their responsiveness to different stimuli were elaborated. Their potential for tissue engineering applications was discussed. Furthermore, their exploitation in other biomedical applications as targeted drug delivery, smart biosensors, actuators, 3D and 4D printing, and 3D cell culture were outlined. In addition, we threw light on smart self-healing hydrogels and their applications in biomedicine. Eventually, we presented their future perceptions in biomedical and tissue regeneration applications. Conclusively, current progress in the design of smart/stimuli-responsive hydrogels enhances their prospective to function as intelligent, and sophisticated systems in different biomedical applications.
Collapse
Affiliation(s)
- Hussein M. El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
| | - Eman A. Mady
- Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
| | - Lina Hamabe
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| | - Amira Abugomaa
- Faculty of Veterinary Medicine, Mansoura University, Mansoura, Dakahliya, 35516, Egypt
| | - Kazumi Shimada
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
- Division of Research Animal Laboratory and Translational Medicine, Research and Development Center, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Tomohiko Yoshida
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| | - Takashi Tanaka
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| | - Aimi Yokoi
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| | - Mohamed Elbadawy
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
| | - Ryou Tanaka
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| |
Collapse
|
4
|
Zastosowanie fibryny w inżynierii tkankowej. Osiągnięcia i perspektywy. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstrakt
W ostatnich latach istotnym obszarem zastosowania fibryny stała się inżynieria tkankowa, w której wykorzystuje się naturalne właściwości biostatyczne i bioaktywne fibryny, a także możliwość pułapkowania i wiązania w jej strukturze czynników wzrostu. Fibryna jest najczęściej stosowana w postaci żeli i dysków. Jednak każda postać wskutek pochłaniania wody docelowo przyjmuje postać żelu. Białko to w warunkach in vivo spełnia rolę rusztowania dla komórek, a także może być aplikowane w miejsca trudno dostępne – może wypełniać ubytki tkanek i podtrzymywać tkanki okalające, zapobiegając ich zapadaniu się. Ponadto fibryna hamuje krwawienie i inicjuje proces odnowy, jak również pełni rolę stymulatora wzrostu komórek. Przez modyfikacje struktury fibryny cząsteczkami adhezyjnymi, można przyspieszyć odbudowę prawidłowej struktury tkanek. Jej właściwości strukturalne mogą być także wykorzystywane jako rezerwuar czynników wzrostu i system ich przedłużonego uwalniania. Fibryna jest materiałem biodegradowalnym, umożliwiając skorelowanie ubytku matrycy fibrynowej z odbudową tkanek własnych pacjenta. Wprowadzenie metod druku 3D i elektroprzędzenia umożliwia formulację dopasowanych do uszkodzeń kształtek oraz włóknin bez utraty bioaktywnych funkcji fibryny. Metody te umożliwiają także poprawę właściwości mechanicznych przez otrzymywanie m.in. włóknin fibryny z innymi polimerami, co jest szczególnie uzasadnione w przypadku materiałów stosowanych w odbudowie takich struktur jak ścięgna czy kości. Biotechnologiczna synteza fibrynogenu może w przyszłości uniezależnić pozyskiwanie go z krwi i zwiększyć popularność wyrobów medycznych otrzymywanych z fibryny.
Collapse
|
5
|
Vernerey FJ, Lalitha Sridhar S, Muralidharan A, Bryant SJ. Mechanics of 3D Cell-Hydrogel Interactions: Experiments, Models, and Mechanisms. Chem Rev 2021; 121:11085-11148. [PMID: 34473466 DOI: 10.1021/acs.chemrev.1c00046] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hydrogels are highly water-swollen molecular networks that are ideal platforms to create tissue mimetics owing to their vast and tunable properties. As such, hydrogels are promising cell-delivery vehicles for applications in tissue engineering and have also emerged as an important base for ex vivo models to study healthy and pathophysiological events in a carefully controlled three-dimensional environment. Cells are readily encapsulated in hydrogels resulting in a plethora of biochemical and mechanical communication mechanisms, which recapitulates the natural cell and extracellular matrix interaction in tissues. These interactions are complex, with multiple events that are invariably coupled and spanning multiple length and time scales. To study and identify the underlying mechanisms involved, an integrated experimental and computational approach is ideally needed. This review discusses the state of our knowledge on cell-hydrogel interactions, with a focus on mechanics and transport, and in this context, highlights recent advancements in experiments, mathematical and computational modeling. The review begins with a background on the thermodynamics and physics fundamentals that govern hydrogel mechanics and transport. The review focuses on two main classes of hydrogels, described as semiflexible polymer networks that represent physically cross-linked fibrous hydrogels and flexible polymer networks representing the chemically cross-linked synthetic and natural hydrogels. In this review, we highlight five main cell-hydrogel interactions that involve key cellular functions related to communication, mechanosensing, migration, growth, and tissue deposition and elaboration. For each of these cellular functions, recent experiments and the most up to date modeling strategies are discussed and then followed by a summary of how to tune hydrogel properties to achieve a desired functional cellular outcome. We conclude with a summary linking these advancements and make the case for the need to integrate experiments and modeling to advance our fundamental understanding of cell-matrix interactions that will ultimately help identify new therapeutic approaches and enable successful tissue engineering.
Collapse
Affiliation(s)
- Franck J Vernerey
- Department of Mechanical Engineering, University of Colorado at Boulder, 1111 Engineering Drive, Boulder, Colorado 80309-0428, United States.,Materials Science and Engineering Program, University of Colorado at Boulder, 4001 Discovery Drive, Boulder, Colorado 80309-613, United States
| | - Shankar Lalitha Sridhar
- Department of Mechanical Engineering, University of Colorado at Boulder, 1111 Engineering Drive, Boulder, Colorado 80309-0428, United States
| | - Archish Muralidharan
- Materials Science and Engineering Program, University of Colorado at Boulder, 4001 Discovery Drive, Boulder, Colorado 80309-613, United States
| | - Stephanie J Bryant
- Materials Science and Engineering Program, University of Colorado at Boulder, 4001 Discovery Drive, Boulder, Colorado 80309-613, United States.,Department of Chemical and Biological Engineering, University of Colorado at Boulder, 3415 Colorado Avenue, Boulder, Colorado 80309-0596, United States.,BioFrontiers Institute, University of Colorado at Boulder, 3415 Colorado Avenue, Boulder, Colorado 80309-0596, United States
| |
Collapse
|
6
|
Spiller S, Clauder F, Bellmann-Sickert K, Beck-Sickinger AG. Improvement of wound healing by the development of ECM-inspired biomaterial coatings and controlled protein release. Biol Chem 2021; 402:1271-1288. [PMID: 34392636 DOI: 10.1515/hsz-2021-0144] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/19/2021] [Indexed: 12/22/2022]
Abstract
Implant design has evolved from biochemically inert substrates, minimizing cell and protein interaction, towards sophisticated bioactive substrates, modulating the host response and supporting the regeneration of the injured tissue. Important aspects to consider are the control of cell adhesion, the discrimination of bacteria and non-local cells from the desired tissue cell type, and the stimulation of implant integration and wound healing. Here, the extracellular matrix acts as a role model providing us with inspiration for sophisticated designs. Within this scope, small bioactive peptides have proven to be miscellaneously deployable for the mediation of surface, cell and matrix interactions. Combinations of adhesion ligands, proteoglycans, and modulatory proteins should guide multiple aspects of the regeneration process and cooperativity between the different extracellular matrix components, which bears the chance to maximize the therapeutic efficiency and simultaneously lower the doses. Hence, efforts to include multiple of these factors in biomaterial design are well worth. In the following, multifunctional implant coatings based on bioactive peptides are reviewed and concepts to implement strong surface anchoring for stable cell adhesion and a dynamic delivery of modulator proteins are discussed.
Collapse
Affiliation(s)
- Sabrina Spiller
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, D-04103Leipzig, Germany
| | - Franziska Clauder
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, D-04103Leipzig, Germany
| | - Kathrin Bellmann-Sickert
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, D-04103Leipzig, Germany
| | - Annette G Beck-Sickinger
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, D-04103Leipzig, Germany
| |
Collapse
|
7
|
Min Q, Parkinson DB, Dun XP. Migrating Schwann cells direct axon regeneration within the peripheral nerve bridge. Glia 2020; 69:235-254. [PMID: 32697392 DOI: 10.1002/glia.23892] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/03/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022]
Abstract
Schwann cells within the peripheral nervous system possess a remarkable regenerative potential. Current research shows that peripheral nerve-associated Schwann cells possess the capacity to promote repair of multiple tissues including peripheral nerve gap bridging, skin wound healing, digit tip repair as well as tooth regeneration. One of the key features of the specialized repair Schwann cells is that they become highly motile. They not only migrate into the area of damaged tissue and become a key component of regenerating tissue but also secrete signaling molecules to attract macrophages, support neuronal survival, promote axonal regrowth, activate local mesenchymal stem cells, and interact with other cell types. Currently, the importance of migratory Schwann cells in tissue regeneration is most evident in the case of a peripheral nerve transection injury. Following nerve transection, Schwann cells from both proximal and distal nerve stumps migrate into the nerve bridge and form Schwann cell cords to guide axon regeneration. The formation of Schwann cell cords in the nerve bridge is key to successful peripheral nerve repair following transection injury. In this review, we first examine nerve bridge formation and the behavior of Schwann cell migration in the nerve bridge, and then discuss how migrating Schwann cells direct regenerating axons into the distal nerve. We also review the current understanding of signals that could activate Schwann cell migration and signals that Schwann cells utilize to direct axon regeneration. Understanding the molecular mechanism of Schwann cell migration could potentially offer new therapeutic strategies for peripheral nerve repair.
Collapse
Affiliation(s)
- Qing Min
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei Province, People's Republic of China
| | - David B Parkinson
- Peninsula Medical School, Faculty of Health, Plymouth University, Plymouth, Devon, UK
| | - Xin-Peng Dun
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei Province, People's Republic of China
- Peninsula Medical School, Faculty of Health, Plymouth University, Plymouth, Devon, UK
- The Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, People's Republic of China
| |
Collapse
|
8
|
Madhusudanan P, Raju G, Shankarappa S. Hydrogel systems and their role in neural tissue engineering. J R Soc Interface 2020; 17:20190505. [PMID: 31910776 PMCID: PMC7014813 DOI: 10.1098/rsif.2019.0505] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/02/2019] [Indexed: 12/27/2022] Open
Abstract
Neural tissue engineering (NTE) is a rapidly progressing field that promises to address several serious neurological conditions that are currently difficult to treat. Selecting the right scaffolding material to promote neural and non-neural cell differentiation as well as axonal growth is essential for the overall design strategy for NTE. Among the varieties of scaffolds, hydrogels have proved to be excellent candidates for culturing and differentiating cells of neural origin. Considering the intrinsic resistance of the nervous system against regeneration, hydrogels have been abundantly used in applications that involve the release of neurotrophic factors, antagonists of neural growth inhibitors and other neural growth-promoting agents. Recent developments in the field include the utilization of encapsulating hydrogels in neural cell therapy for providing localized trophic support and shielding neural cells from immune activity. In this review, we categorize and discuss the various hydrogel-based strategies that have been examined for neural-specific applications and also highlight their strengths and weaknesses. We also discuss future prospects and challenges ahead for the utilization of hydrogels in NTE.
Collapse
Affiliation(s)
| | | | - Sahadev Shankarappa
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| |
Collapse
|
9
|
Patel NP, Lyon KA, Huang JH. An update-tissue engineered nerve grafts for the repair of peripheral nerve injuries. Neural Regen Res 2018; 13:764-774. [PMID: 29862995 PMCID: PMC5998615 DOI: 10.4103/1673-5374.232458] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2018] [Indexed: 01/04/2023] Open
Abstract
Peripheral nerve injuries (PNI) are caused by a range of etiologies and result in a broad spectrum of disability. While nerve autografts are the current gold standard for the reconstruction of extensive nerve damage, the limited supply of autologous nerve and complications associated with harvesting nerve from a second surgical site has driven groups from multiple disciplines, including biomedical engineering, neurosurgery, plastic surgery, and orthopedic surgery, to develop a suitable or superior alternative to autografting. Over the last couple of decades, various types of scaffolds, such as acellular nerve grafts (ANGs), nerve guidance conduits, and non-nervous tissues, have been filled with Schwann cells, stem cells, and/or neurotrophic factors to develop tissue engineered nerve grafts (TENGs). Although these have shown promising effects on peripheral nerve regeneration in experimental models, the autograft has remained the gold standard for large nerve gaps. This review provides a discussion of recent advances in the development of TENGs and their efficacy in experimental models. Specifically, TENGs have been enhanced via incorporation of genetically engineered cells, methods to improve stem cell survival and differentiation, optimized delivery of neurotrophic factors via drug delivery systems (DDS), co-administration of platelet-rich plasma (PRP), and pretreatment with chondroitinase ABC (Ch-ABC). Other notable advancements include conduits that have been bioengineered to mimic native nerve structure via cell-derived extracellular matrix (ECM) deposition, and the development of transplantable living nervous tissue constructs from rat and human dorsal root ganglia (DRG) neurons. Grafts composed of non-nervous tissues, such as vein, artery, and muscle, will be briefly discussed.
Collapse
Affiliation(s)
| | - Kristopher A. Lyon
- Texas A&M College of Medicine, Temple, TX, USA
- Department of Neurosurgery, Baylor Scott & White Healthcare, Temple, TX, USA
| | - Jason H. Huang
- Texas A&M College of Medicine, Temple, TX, USA
- Department of Neurosurgery, Baylor Scott & White Healthcare, Temple, TX, USA
| |
Collapse
|
10
|
Heher P, Mühleder S, Mittermayr R, Redl H, Slezak P. Fibrin-based delivery strategies for acute and chronic wound healing. Adv Drug Deliv Rev 2018; 129:134-147. [PMID: 29247766 DOI: 10.1016/j.addr.2017.12.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/24/2017] [Accepted: 12/09/2017] [Indexed: 12/17/2022]
Abstract
Fibrin, a natural hydrogel, is the end product of the physiological blood coagulation cascade and naturally involved in wound healing. Beyond its role in hemostasis, it acts as a local reservoir for growth factors and as a provisional matrix for invading cells that drive the regenerative process. Its unique intrinsic features do not only promote wound healing directly via modulation of cell behavior but it can also be fine-tuned to evolve into a delivery system for sustained release of therapeutic biomolecules, cells and gene vectors. To further augment tissue regeneration potential, current strategies exploit and modify the chemical and physical characteristics of fibrin to employ combined incorporation of several factors and their timed release. In this work we show advanced therapeutic approaches employing fibrin matrices in wound healing and cover the many possibilities fibrin offers to the field of regenerative medicine.
Collapse
|
11
|
Tellier LE, Treviño EA, Brimeyer AL, Reece DS, Willett NJ, Guldberg RE, Temenoff JS. Intra-articular TSG-6 delivery from heparin-based microparticles reduces cartilage damage in a rat model of osteoarthritis. Biomater Sci 2018; 6:1159-1167. [DOI: 10.1039/c8bm00010g] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a potential treatment for osteoarthritis (OA), we have developed hydrolytically degradable heparin-based biomaterials for the intra-articular delivery of tumor necrosis factor-alpha stimulated gene-6 (TSG-6).
Collapse
Affiliation(s)
- Liane E. Tellier
- W. H. Coulter Department of Biomedical Engineering
- Georgia Institute of Technology and Emory University
- Atlanta
- USA
| | - Elda A. Treviño
- W. H. Coulter Department of Biomedical Engineering
- Georgia Institute of Technology and Emory University
- Atlanta
- USA
| | - Alexandra L. Brimeyer
- W. H. Coulter Department of Biomedical Engineering
- Georgia Institute of Technology and Emory University
- Atlanta
- USA
| | - David S. Reece
- W. H. Coulter Department of Biomedical Engineering
- Georgia Institute of Technology and Emory University
- Atlanta
- USA
| | - Nick J. Willett
- W. H. Coulter Department of Biomedical Engineering
- Georgia Institute of Technology and Emory University
- Atlanta
- USA
- Department of Orthopedics
| | - Robert E. Guldberg
- Petit Institute for Bioengineering and Bioscience
- Georgia Institute of Technology
- Atlanta
- USA
- Department of Mechanical Engineering
| | - Johnna S. Temenoff
- W. H. Coulter Department of Biomedical Engineering
- Georgia Institute of Technology and Emory University
- Atlanta
- USA
- Petit Institute for Bioengineering and Bioscience
| |
Collapse
|
12
|
Huang J, Patel N, Lyon K. An update–tissue engineered nerve grafts for the repair of peripheral nerve injuries. Neural Regen Res 2018. [DOI: 10.4103/1673-5374.232458
expr 973353844 + 912195704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
|
13
|
|
14
|
Marquardt LM, Ee X, Iyer N, Hunter D, Mackinnon SE, Wood MD, Sakiyama-Elbert SE. Finely Tuned Temporal and Spatial Delivery of GDNF Promotes Enhanced Nerve Regeneration in a Long Nerve Defect Model. Tissue Eng Part A 2016; 21:2852-64. [PMID: 26466815 DOI: 10.1089/ten.tea.2015.0311] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The use of growth factors, such as glial cell line-derived neurotrophic factor (GDNF), for the treatment of peripheral nerve injury has been useful in promoting axon survival and regeneration. Unfortunately, finding a method that delivers the appropriate spatial and temporal release profile to promote functional recovery has proven difficult. Some release methods result in burst release profiles too short to remain effective over the regeneration period; however, prolonged exposure to GDNF can result in axonal entrapment at the site of release. Thus, GDNF was delivered in both a spatially and temporally controlled manner using a two-phase system comprised of an affinity-based release system and conditional lentiviral GDNF overexpression from Schwann cells (SCs). Briefly, SCs were transduced with a tetracycline-inducible (Tet-On) GDNF overexpressing lentivirus before transplantation. Three-centimeter acellular nerve allografts (ANAs) were modified by injection of a GDNF-releasing fibrin scaffold under the epineurium and then used to bridge a 3 cm sciatic nerve defect. To encourage growth past the ANA, GDNF-SCs were transplanted into the distal nerve and doxycycline was administered for 4, 6, or 8 weeks to determine the optimal duration of GDNF expression in the distal nerve. Live imaging and histomorphometric analysis determined that 6 weeks of doxycycline treatment resulted in enhanced regeneration compared to 4 or 8 weeks. This enhanced regeneration resulted in increased gastrocnemius and tibialis anterior muscle mass for animals receiving doxycycline for 6 weeks. The results of this study demonstrate that strategies providing spatial and temporal control of delivery can improve axonal regeneration and functional muscle reinnervation.
Collapse
Affiliation(s)
- Laura M Marquardt
- 1 Department of Biomedical Engineering, Washington University in St. Louis , St. Louis, Missouri
| | - Xueping Ee
- 2 Divison of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine , St. Louis, Missouri
| | - Nisha Iyer
- 1 Department of Biomedical Engineering, Washington University in St. Louis , St. Louis, Missouri
| | - Daniel Hunter
- 2 Divison of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine , St. Louis, Missouri
| | - Susan E Mackinnon
- 2 Divison of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine , St. Louis, Missouri
| | - Matthew D Wood
- 2 Divison of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine , St. Louis, Missouri
| | - Shelly E Sakiyama-Elbert
- 1 Department of Biomedical Engineering, Washington University in St. Louis , St. Louis, Missouri.,2 Divison of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine , St. Louis, Missouri
| |
Collapse
|
15
|
Gordon T. Electrical Stimulation to Enhance Axon Regeneration After Peripheral Nerve Injuries in Animal Models and Humans. Neurotherapeutics 2016; 13:295-310. [PMID: 26754579 PMCID: PMC4824030 DOI: 10.1007/s13311-015-0415-1] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Injured peripheral nerves regenerate their lost axons but functional recovery in humans is frequently disappointing. This is so particularly when injuries require regeneration over long distances and/or over long time periods. Fat replacement of chronically denervated muscles, a commonly accepted explanation, does not account for poor functional recovery. Rather, the basis for the poor nerve regeneration is the transient expression of growth-associated genes that accounts for declining regenerative capacity of neurons and the regenerative support of Schwann cells over time. Brief low-frequency electrical stimulation accelerates motor and sensory axon outgrowth across injury sites that, even after delayed surgical repair of injured nerves in animal models and patients, enhances nerve regeneration and target reinnervation. The stimulation elevates neuronal cyclic adenosine monophosphate and, in turn, the expression of neurotrophic factors and other growth-associated genes, including cytoskeletal proteins. Electrical stimulation of denervated muscles immediately after nerve transection and surgical repair also accelerates muscle reinnervation but, at this time, how the daily requirement of long-duration electrical pulses can be delivered to muscles remains a practical issue prior to translation to patients. Finally, the technique of inserting autologous nerve grafts that bridge between a donor nerve and an adjacent recipient denervated nerve stump significantly improves nerve regeneration after delayed nerve repair, the donor nerves sustaining the capacity of the denervated Schwann cells to support nerve regeneration. These reviewed methods to promote nerve regeneration and, in turn, to enhance functional recovery after nerve injury and surgical repair are sufficiently promising for early translation to the clinic.
Collapse
Affiliation(s)
- Tessa Gordon
- Department of Surgery, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada.
| |
Collapse
|
16
|
Tajdaran K, Gordon T, Wood MD, Shoichet MS, Borschel GH. An engineered biocompatible drug delivery system enhances nerve regeneration after delayed repair. J Biomed Mater Res A 2015; 104:367-76. [DOI: 10.1002/jbm.a.35572] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/21/2015] [Accepted: 09/21/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Kasra Tajdaran
- Division of Plastic and Reconstructive Surgery; the Hospital for Sick Children; 555 University Ave Toronto Ontario M5G1X8 Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto; Toronto Ontario Canada
| | - Tessa Gordon
- Division of Plastic and Reconstructive Surgery; the Hospital for Sick Children; 555 University Ave Toronto Ontario M5G1X8 Canada
- Division of Plastic and Reconstructive Surgery, Department of Surgery; University of Toronto; Toronto Ontario Canada
- Program in Neuroscience, the Hospital for Sick Children Research Institute; Toronto Ontario Canada
| | - Mathew D. Wood
- Division of Plastic and Reconstructive Surgery; Washington University School of Medicine; St. Louis Missouri
| | - Molly S. Shoichet
- Institute of Biomaterials and Biomedical Engineering, University of Toronto; Toronto Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto Ontario Canada
| | - Gregory H. Borschel
- Division of Plastic and Reconstructive Surgery; the Hospital for Sick Children; 555 University Ave Toronto Ontario M5G1X8 Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto; Toronto Ontario Canada
- Division of Plastic and Reconstructive Surgery, Department of Surgery; University of Toronto; Toronto Ontario Canada
- Program in Neuroscience, the Hospital for Sick Children Research Institute; Toronto Ontario Canada
| |
Collapse
|
17
|
Dutta D, Fauer C, Mulleneux HL, Stabenfeldt SE. Tunable Controlled Release of Bioactive SDF-1α via Protein Specific Interactions within Fibrin/Nanoparticle Composites. J Mater Chem B 2015; 3:7963-7973. [PMID: 26660666 DOI: 10.1039/c5tb00935a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The chemokine, stromal cell-derived factor 1α (SDF-1α), is a key regulator of the endogenous neural progenitor/stem cell-mediated regenerative response after neural injury. Increased and sustained bioavailability of SDF-1α in the peri-injury region is hypothesized to modulate this endogenous repair response. Here, we describe poly(lactic-co-glycolic) acid (PLGA) nanoparticles capable of releasing bioactive SDF-1α in a sustained manner over 60days after a burst of 23%. Moreover, we report a biphasic cellular response to SDF-1α concentrations thus the large initial burst release in an in vivo setting may result in supratherapeutic concentrations of SDF-1α. Specific protein-protein interactions between SDF-1α and fibrin (as well as its monomer, fibrinogen) were exploited to control the magnitude of the burst release. Nanoparticles embedded in fibrin significantly reduced the amount of SDF-1α released after 72 hrs as a function of fibrin density. Therefore, the nanoparticle/fibrin composites represented a means to independently tune the magnitude of the burst phase release from the nanoparticles while perserving a bioactive depot of SDF-1α for release over 60days.
Collapse
Affiliation(s)
- D Dutta
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - C Fauer
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - H L Mulleneux
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - S E Stabenfeldt
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
18
|
Marquardt LM, Sakiyama-Elbert SE. GDNF preconditioning can overcome Schwann cell phenotypic memory. Exp Neurol 2014; 265:1-7. [PMID: 25496841 DOI: 10.1016/j.expneurol.2014.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 11/25/2014] [Accepted: 12/03/2014] [Indexed: 01/26/2023]
Abstract
While it is known that Schwann cells (SCs) provide cues to enhance regeneration following peripheral nerve injury, the effect of SC phenotypic memory (muscle or cutaneous nerve-derived) on enhancing axonal regeneration and functional recovery has been unclear in the literature. In particular, differences between muscle and cutaneous nerve-derived SC may encourage specific motor or sensory axonal guidance in cell/tissue transplantation therapies. Thus, the goal of this study was to determine whether phenotypically matched combinations of neurons and SCs stimulate greater axonal extension compared to mismatched combinations (i.e. motor neurons/muscle nerve-derived SCs vs. motor neurons/cutaneous nerve-derived SCs). Additionally, the effect of glial cell line-derived neurotrophic factor (GDNF) treatment on SC-neuron interaction was also evaluated. In order to examine these interactions, microfluidic devices were used to assess the effects of soluble factors secreted from SCs on neurons. Unlike traditional co-culture methods, the devices allow for easier quantification of single neurite extension over long periods of time, as well as easy cell and media sampling of pure populations for biochemical analyses. Results demonstrated longer neurite growth when neurons are cultured with phenotype matched SCs, suggesting that SCs are capable of retaining phenotypic memory despite a prolonged absence of axonal contact. Furthermore, the negative effect of mismatched cultures can be overcome when mismatched SCs are preconditioned with GDNF. These results suggest that treatment of SCs with GDNF could enhance their ability to promote regeneration through mismatched grafts frequently used in clinical settings.
Collapse
Affiliation(s)
- Laura M Marquardt
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Shelly E Sakiyama-Elbert
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA; Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
19
|
Vulic K, Pakulska MM, Sonthalia R, Ramachandran A, Shoichet MS. Mathematical model accurately predicts protein release from an affinity-based delivery system. J Control Release 2014; 197:69-77. [PMID: 25449806 DOI: 10.1016/j.jconrel.2014.10.032] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 10/31/2014] [Indexed: 11/26/2022]
Abstract
Affinity-based controlled release modulates the delivery of protein or small molecule therapeutics through transient dissociation/association. To understand which parameters can be used to tune release, we used a mathematical model based on simple binding kinetics. A comprehensive asymptotic analysis revealed three characteristic regimes for therapeutic release from affinity-based systems. These regimes can be controlled by diffusion or unbinding kinetics, and can exhibit release over either a single stage or two stages. This analysis fundamentally changes the way we think of controlling release from affinity-based systems and thereby explains some of the discrepancies in the literature on which parameters influence affinity-based release. The rate of protein release from affinity-based systems is determined by the balance of diffusion of the therapeutic agent through the hydrogel and the dissociation kinetics of the affinity pair. Equations for tuning protein release rate by altering the strength (KD) of the affinity interaction, the concentration of binding ligand in the system, the rate of dissociation (koff) of the complex, and the hydrogel size and geometry, are provided. We validated our model by collapsing the model simulations and the experimental data from a recently described affinity release system, to a single master curve. Importantly, this mathematical analysis can be applied to any single species affinity-based system to determine the parameters required for a desired release profile.
Collapse
Affiliation(s)
- Katarina Vulic
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3E1, Canada; The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Malgosia M Pakulska
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E1, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3E1, Canada; The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Rohit Sonthalia
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Arun Ramachandran
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E1, Canada.
| | - Molly S Shoichet
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3E1, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E1, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3E1, Canada; The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada.
| |
Collapse
|
20
|
Vulic K, Shoichet MS. Affinity-Based Drug Delivery Systems for Tissue Repair and Regeneration. Biomacromolecules 2014; 15:3867-80. [DOI: 10.1021/bm501084u] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Katarina Vulic
- Department of Chemistry, ‡Department of Chemical
Engineering and Applied Chemistry, §Institute of Biomaterials
and Biomedical Engineering, Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario M5S3E1, Canada
| | - Molly S. Shoichet
- Department of Chemistry, ‡Department of Chemical
Engineering and Applied Chemistry, §Institute of Biomaterials
and Biomedical Engineering, Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario M5S3E1, Canada
| |
Collapse
|
21
|
Nguyen MK, Alsberg E. Bioactive factor delivery strategies from engineered polymer hydrogels for therapeutic medicine. Prog Polym Sci 2014; 39:1236-1265. [PMID: 25242831 PMCID: PMC4167348 DOI: 10.1016/j.progpolymsci.2013.12.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Polymer hydrogels have been widely explored as therapeutic delivery matrices because of their ability to present sustained, localized and controlled release of bioactive factors. Bioactive factor delivery from injectable biopolymer hydrogels provides a versatile approach to treat a wide variety of diseases, to direct cell function and to enhance tissue regeneration. The innovative development and modification of both natural-(e.g., alginate (ALG), chitosan, hyaluronic acid (HA), gelatin, heparin (HEP), etc.) and synthetic-(e.g., polyesters, polyethyleneimine (PEI), etc.) based polymers has resulted in a variety of approaches to design drug delivery hydrogel systems from which loaded therapeutics are released. This review presents the state-of-the-art in a wide range of hydrogels that are formed though self-assembly of polymers and peptides, chemical crosslinking, ionic crosslinking and biomolecule recognition. Hydrogel design for bioactive factor delivery is the focus of the first section. The second section then thoroughly discusses release strategies of payloads from hydrogels for therapeutic medicine, such as physical incorporation, covalent tethering, affinity interactions, on demand release and/or use of hybrid polymer scaffolds, with an emphasis on the last 5 years.
Collapse
Affiliation(s)
- Minh Khanh Nguyen
- Department of Biomedical Engineering, Case Western Reserve University, 204 Wickenden, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Eben Alsberg
- Department of Biomedical Engineering, Case Western Reserve University, 204 Wickenden, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Department of Orthopaedic Surgery, Case Western Reserve University, 204 Wickenden, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| |
Collapse
|
22
|
Controlled release and gradient formation of human glial-cell derived neurotrophic factor from heparinated poly(ethylene glycol) microsphere-based scaffolds. Biomaterials 2014; 35:6473-81. [PMID: 24816282 DOI: 10.1016/j.biomaterials.2014.04.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/08/2014] [Indexed: 11/21/2022]
Abstract
Introduction of spatial patterning of proteins, while retaining activity and releasability, is critical for the field of regenerative medicine. Reversible binding to heparin, which many biological molecules exhibit, is one potential pathway to achieve this goal. We have covalently bound heparin to poly(ethylene glycol) (PEG) microspheres to create useful spatial patterns of glial-cell derived human neurotrophic factor (GDNF) in scaffolds to promote peripheral nerve regeneration. Labeled GDNF was incubated with heparinated microspheres that were subsequently centrifuged into cylindrical scaffolds in distinct layers containing different concentrations of GDNF. The GDNF was then allowed to diffuse out of the scaffold, and release was tracked via fluorescent scanning confocal microscopy. The measured release profile was compared to predicted Fickian models. Solutions of reaction-diffusion equations suggested the concentrations of GDNF in each discrete layer that would result in a nearly linear concentration gradient over much of the length of the scaffold. The agreement between the predicted and measured GDNF concentration gradients was high. Multilayer scaffolds with different amounts of heparin and GDNF and different crosslinking densities allow the design of a wide variety of gradients and release kinetics. Additionally, fabrication is much simpler and more robust than typical gradient-forming systems due to the low viscosity of the microsphere solutions compared to gelating solutions, which can easily result in premature gelation or the trapping of air bubbles with a nerve guidance conduit. The microsphere-based method provides a framework for producing specific growth factor gradients in conduits designed to enhance nerve regeneration.
Collapse
|
23
|
Wu-Fienberg Y, Moore AM, Marquardt LM, Newton P, Johnson PJ, Mackinnon SE, Sakiyama-Elbert SE, Wood MD. Viral transduction of primary Schwann cells using a Cre-lox system to regulate GDNF expression. Biotechnol Bioeng 2014; 111:1886-94. [PMID: 24728940 DOI: 10.1002/bit.25247] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 02/21/2014] [Accepted: 03/24/2014] [Indexed: 11/06/2022]
Abstract
Glial cell-line-derived neurotrophic factor (GDNF) is a potent neurotrophic factor known to enhance motor nerve regeneration following its delivery. However, recent studies have determined that extended GDNF delivery to regenerating axons can entrap motor axons at the site of GDNF delivery. This entrapment leads to reduced motor axons available to reinnervate muscle. To address this issue, we designed a cell-based GDNF expression system that can temporally regulate protein expression using an inducible gene excision mechanism to prevent entrapment at the site of expression. To design this system for regulation of GDNF expression, we transduced two lentiviral vectors, one containing a constitutively active GDNF transgene flanked by two loxP sites, and the other containing a tetracycline-inducible cre transgene along with its constitutively active transactivator, into Schwann cells (SCs). These SCs over-express GDNF, but expression can be suppressed through the administration of tetracycline family antibiotics, such as doxycycline. The engineered SCs produced significantly more GDNF as compared to untransduced controls, as measured by enzyme-linked immunosorbent assay (ELISA). Following doxycycline treatment, these SCs produced significantly lower levels of GDNF and induced less neurite extension as compared to untreated SCs. Engineered SCs treated with doxycycline showed a marked increase in Cre recombinase expression, as visualized by immunohistochemistry (IHC), providing evidence of a mechanism for the observed changes in GDNF expression levels and biological activity. This cell-based GDNF expression system could have potential for future in vivo studies to provide a temporally controlled GDNF source to promote axon growth.
Collapse
Affiliation(s)
- Yuewei Wu-Fienberg
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, Campus Box 8238, 660 South Euclid Avenue, St. Louis, Missouri, 63110
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Butterfield KC, Conovaloff AW, Panitch A. Development of affinity-based delivery of NGF from a chondroitin sulfate biomaterial. BIOMATTER 2014; 1:174-81. [PMID: 23507746 PMCID: PMC3549888 DOI: 10.4161/biom.18791] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chondroitin sulfate is a major component of the extracellular matrix in both the central and peripheral nervous systems. Chondroitin sulfate is upregulated at injury, thus methods to promote neurite extension through chondroitin sulfate-rich matrices and synthetic scaffolds are needed. We describe the use of both chondroitin sulfate and a novel chondroitin sulfate-binding peptide to control the release of nerve growth factor. Interestingly, the novel chondroitin sulfate-binding peptide enhances the controlled release properties of the chondroitin sulfate gels. While introduction of chondroitin sulfate into a scaffold inhibits primary cortical outgrowth, the combination of chondroitin sulfate, chondroitin sulfate-binding peptide and nerve growth factor promotes primary cortical neurite outgrowth in chondroitin sulfate gels.
Collapse
|
25
|
Marquardt LM, Sakiyama-Elbert SE. Engineering peripheral nerve repair. Curr Opin Biotechnol 2013; 24:887-92. [PMID: 23790730 DOI: 10.1016/j.copbio.2013.05.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 05/24/2013] [Accepted: 05/27/2013] [Indexed: 01/13/2023]
Abstract
Current approaches for treating peripheral nerve injury have resulted in promising, yet insufficient functional recovery compared to the clinical standard of care, autologous nerve grafts. In order to design a construct that can match the regenerative potential of the autograft, all facets of nerve tissue must be incorporated in a combinatorial therapy. Engineered biomaterial scaffolds in the future will have to promote enhanced regeneration and appropriate reinnervation by targeting the highly sensitive response of regenerating nerves to their surrounding microenvironment.
Collapse
Affiliation(s)
- Laura M Marquardt
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA
| | | |
Collapse
|
26
|
Johnson PJ, Wood MD, Moore AM, Mackinnon SE. Tissue engineered constructs for peripheral nerve surgery. Eur Surg 2013; 45. [PMID: 24385980 DOI: 10.1007/s10353-013-0205-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Tissue engineering has been defined as "an interdisciplinary field that applies the principles of engineering and life sciences toward the development of biological substitutes that restore, maintain, or improve tissue function or a whole organ". Traumatic peripheral nerve injury resulting in significant tissue loss at the zone of injury necessitates the need for a bridge or scaffold for regenerating axons from the proximal stump to reach the distal stump. METHODS A review of the literature was used to provide information on the components necessary for the development of a tissue engineered peripheral nerve substitute. Then, a comprehensive review of the literature is presented composed of the studies devoted to this goal. RESULTS Extensive research has been directed toward the development of a tissue engineered peripheral nerve substitute to act as a bridge for regenerating axons from the proximal nerve stump seeking the distal nerve. Ideally this nerve substitute would consist of a scaffold component that mimics the extracellular matrix of the peripheral nerve and a cellular component that serves to stimulate and support regenerating peripheral nerve axons. CONCLUSIONS The field of tissue engineering should consider its challenge to not only meet the autograft "gold standard" but also to understand what drives and inhibits nerve regeneration in order to surpass the results of an autograft.
Collapse
Affiliation(s)
- P J Johnson
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, 660 South Euclid, 8238, Saint Louis, MO 63110, USA
| | - M D Wood
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, 660 South Euclid, 8238, Saint Louis, MO 63110, USA
| | - A M Moore
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, 660 South Euclid, 8238, Saint Louis, MO 63110, USA
| | - S E Mackinnon
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, 660 South Euclid, 8238, Saint Louis, MO 63110, USA
| |
Collapse
|
27
|
Mohtaram NK, Montgomery A, Willerth SM. Biomaterial-based drug delivery systems for the controlled release of neurotrophic factors. Biomed Mater 2013; 8:022001. [DOI: 10.1088/1748-6041/8/2/022001] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Wood MD, Kim H, Bilbily A, Kemp SWP, Lafontaine C, Gordon T, Shoichet MS, Borschel GH. GDNF released from microspheres enhances nerve regeneration after delayed repair. Muscle Nerve 2012; 46:122-4. [PMID: 22692999 DOI: 10.1002/mus.23295] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Delays in surgical repair following nerve transection produce progressively inferior motor nerve regeneration. Regeneration can be improved with delivery of exogenous growth factor. We developed a delivery system that could be applied at the nerve repair site to deliver growth factors locally to regenerating nerve. METHODS Poly(lactic-co-glycolic acid) microspheres containing glial-derived neurotrophic factor (GDNF) suspended within fibrin were developed into a delivery system for local application surrounding nerve at a repair site in an experimental rat model. RESULTS The system containing GDNF remained at the injury site for up to 2 weeks and improved motor nerve regeneration following chronic axotomy and denervation. CONCLUSIONS Based on the positive outcome of the delivery system, we plan to study the delivery system over longer time courses of release and nerve regeneration.
Collapse
Affiliation(s)
- Matthew D Wood
- Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada, M5G 1X8.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Therapeutic angiogenesis aims at treating ischemic diseases by generating new blood vessels from existing vasculature. It relies on delivery of exogenous factors to stimulate neovasculature formation. Current strategies using genes, proteins and cells have demonstrated efficacy in animal models. However, clinical translation of any of the three approaches has proved to be challenging for various reasons. Administration of angiogenic factors is generally considered safe, according to accumulated trials, and offers off-the-shelf availability. However, many hurdles must be overcome before therapeutic angiogenesis can become a true human therapy. This article will highlight protein-based therapeutic angiogenesis, concisely review recent progress and examine critical challenges. We will discuss growth factors that have been widely utilized in promoting angiogenesis and compare their targets and functions. Lastly, since bolus injection of free proteins usually result in poor outcomes, we will focus on controlled release of proteins.
Collapse
|
30
|
Censi R, Di Martino P, Vermonden T, Hennink WE. Hydrogels for protein delivery in tissue engineering. J Control Release 2012; 161:680-92. [PMID: 22421425 DOI: 10.1016/j.jconrel.2012.03.002] [Citation(s) in RCA: 235] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 02/29/2012] [Accepted: 03/02/2012] [Indexed: 12/17/2022]
Abstract
Tissue defects caused by diseases or trauma present enormous challenges in regenerative medicine. Recently, a better understanding of the biological processes underlying tissue repair led to the establishment of new approaches in tissue engineering which comprise the combination of biodegradable scaffolds and appropriate cells together with specific environmental cues, such as growth or adhesive factors. These factors (in fact proteins) have to be loaded and sustainably released from the scaffolds in time. This review provides an overview of the various hydrogel technologies that have been proposed to control the release of bioactive molecules of interest for tissue engineering applications. In particular, after a brief introduction on bioactive protein drugs that have remarkable relevance for tissue engineering, this review will discuss their release mechanisms from hydrogels, their encapsulation and immobilization methods and will overview the main classes of hydrogel forming biomaterials used in vitro and in vivo to release them. Finally, an outlook on future directions and a glimpse into the current clinical developments are provided.
Collapse
Affiliation(s)
- Roberta Censi
- School of Pharmacy, University of Camerino, via S. Agostino 1, 62032, Camerino (MC), Italy.
| | | | | | | |
Collapse
|
31
|
Vulic K, Shoichet MS. Tunable growth factor delivery from injectable hydrogels for tissue engineering. J Am Chem Soc 2011; 134:882-5. [PMID: 22201513 PMCID: PMC3260740 DOI: 10.1021/ja210638x] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Current sustained delivery strategies of protein therapeutics are limited by the fragility of the protein, resulting in minimal quantities of bioactive protein delivered. In order to achieve prolonged release of bioactive protein, an affinity-based approach was designed which exploits the specific binding of the Src homology 3 (SH3) domain with short proline-rich peptides. Specifically, methyl cellulose was modified with SH3-binding peptides (MC-peptide) with either a weak affinity or strong affinity for SH3. The release profile of SH3-rhFGF2 fusion protein from hyaluronan MC-SH3 peptide (HAMC-peptide) hydrogels was investigated and compared to unmodified controls. SH3-rhFGF2 release from HAMC-peptide was extended to 10 days using peptides with different binding affinities compared to the 48 h release from unmodified HAMC. This system is capable of delivering additional proteins with tunable rates of release, while maintaining bioactivity, and thus is broadly applicable.
Collapse
Affiliation(s)
- Katarina Vulic
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada M5S 3H6
| | | |
Collapse
|
32
|
Wu J, Liao C, Wang Z, Cheng W, Zhou N, Wang S, Wan Y. Chitosan–polycaprolactone microspheres as carriers for delivering glial cell line-derived neurotrophic factor. REACT FUNCT POLYM 2011. [DOI: 10.1016/j.reactfunctpolym.2011.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Hudalla GA, Murphy WL. Biomaterials that regulate growth factor activity via bioinspired interactions. ADVANCED FUNCTIONAL MATERIALS 2011; 21:1754-1768. [PMID: 21921999 PMCID: PMC3171147 DOI: 10.1002/adfm.201002468] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Growth factor activity is localized within the natural extracellular matrix (ECM) by specific non-covalent interactions with core ECM biomolecules, such as proteins and proteoglycans. Recently, these interactions have inspired us and others to develop synthetic biomaterials that can non-covalently regulate growth factor activity for tissue engineering applications. For example, biomaterials covalently or non-covalently modified with heparin glycosaminoglycans can augment growth factor release strategies. In addition, recent studies demonstrate that biomaterials modified with heparin-binding peptides can sequester cell-secreted heparin proteoglycans and, in turn, sequester growth factors and regulate stem cell behavior. Another set of studies show that modular versions of growth factor molecules can be designed to interact with specific components of natural and synthetic ECMs, including collagen and hydroxyapatite. In addition, layer-by-layer assemblies of GAGs and other natural polyelectrolytes retain growth factors at a cell-material interface via specific non-covalent interactions. This review will detail the various bioinspired strategies being used to non-covalently localize growth factor activity within biomaterials, and will highlight in vivo examples of the efficacy of these materials to promote tissue regeneration.
Collapse
Affiliation(s)
- Gregory A. Hudalla
- Department of Biomedical Engineering, University of Wisconsin, 5009 Wisconsin Institutes of Medical Research, 1111 Highland Ave. Madison, WI 53705 (USA)
| | - William L. Murphy
- Department of Biomedical Engineering, University of Wisconsin, 5009 Wisconsin Institutes of Medical Research, 1111 Highland Ave. Madison, WI 53705 (USA)
- Department of Pharmacology, University of Wisconsin, 5009 Wisconsin Institutes of Medical Research, 1111 Highland Ave. Madison, WI 53705 (USA)
- Department of Orthopedics and Rehabilitation, University of Wisconsin, 5009 Wisconsin Institutes of Medical Research, 1111 Highland Ave. Madison, WI 53705 (USA)
| |
Collapse
|
34
|
Chu H, Johnson NR, Mason NS, Wang Y. A [polycation:heparin] complex releases growth factors with enhanced bioactivity. J Control Release 2011; 150:157-63. [DOI: 10.1016/j.jconrel.2010.11.025] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 11/17/2010] [Accepted: 11/21/2010] [Indexed: 01/14/2023]
|
35
|
Controlled delivery of glial cell line-derived neurotrophic factor enhances motor nerve regeneration. J Hand Surg Am 2010; 35:2008-17. [PMID: 21035963 DOI: 10.1016/j.jhsa.2010.08.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 08/13/2010] [Accepted: 08/18/2010] [Indexed: 02/02/2023]
Abstract
PURPOSE To determine the effect of a motor-specific neurotrophic factor, glial-derived neurotrophic factor (GDNF) on motor nerve regeneration. METHODS We used a nerve conduit filled with a fibrin-based delivery system that provided controlled release of GDNF during nerve regeneration. The motor branch of the rat femoral nerve was used to assess motor nerve regeneration across a 5-mm gap. Four experimental groups (n = 4 to n = 8) were evaluated. These included GDNF with the fibrin-based delivery system (GDNF-DS), fibrin alone, empty conduit (negative control), and nerve isograft (positive control). Nerves were harvested at 5 weeks for analysis by histomorphometry and electron microscopy. RESULTS At 5 mm distal to the conduit or isografts, the GDNF-DS group was not significantly different from the nerve isograft group in the following histomorphometric measures: total nerve fibers, percentage of neural tissue, and nerve density. Both the GDNF-DS and isograft groups had significantly more fibers and a higher percentage of neural tissue than fibrin alone and empty conduit groups. There were no differences in fiber width among all groups. By electron microscopy, the GDNF-DS and isograft groups also demonstrated more organized nerve architecture than the fibrin alone and empty conduit groups. CONCLUSIONS The delivery of GDNF from the fibrin-based delivery system promotes motor nerve regeneration at a level similar to an isograft in the femoral motor nerve model. This study gives insight into the potential beneficial role of GDNF in the treatment of motor nerve injuries.
Collapse
|
36
|
Wang NX, von Recum HA. Affinity-Based Drug Delivery. Macromol Biosci 2010; 11:321-32. [DOI: 10.1002/mabi.201000206] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 09/17/2010] [Indexed: 11/06/2022]
|
37
|
Wood MD, MacEwan MR, French AR, Moore AM, Hunter DA, Mackinnon SE, Moran DW, Borschel GH, Sakiyama-Elbert SE. Fibrin matrices with affinity-based delivery systems and neurotrophic factors promote functional nerve regeneration. Biotechnol Bioeng 2010; 106:970-9. [PMID: 20589674 DOI: 10.1002/bit.22766] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Glial-derived neurotrophic factor (GDNF) and nerve growth factor (NGF) have both been shown to enhance peripheral nerve regeneration following injury and target different neuronal populations. The delivery of either growth factor at the site of injury may, therefore, result in quantitative differences in motor nerve regeneration and functional recovery. In this study we evaluated the effect of affinity-based delivery of GDNF or NGF from fibrin-filled nerve guidance conduits (NGCs) on motor nerve regeneration and functional recovery in a 13 mm rat sciatic nerve defect. Seven experimental groups were evaluated consisting of GDNF or NGF and the affinity-based delivery system (DS) within NGCs, control groups excluding the DS and/or growth factor, and nerve isografts. Groups with growth factor in the conduit demonstrated equivalent or superior performance in behavioral tests and relative muscle mass measurements compared to isografts at 12 weeks. Additionally, groups with GDNF demonstrated greater specific twitch and tetanic force production in extensor digitorum longus (EDL) muscle than the isograft control, while groups with NGF produced demonstrated similar force production compared to the isograft control. Assessment of motor axon regeneration by retrograde labeling further revealed that the number of ventral horn neurons regenerating across NGCs containing GDNF and NGF DS was similar to the isograft group and these counts were greater than the groups without growth factor. Overall, the GDNF DS group demonstrated superior functional recovery and equivalent motor nerve regeneration compared to the isograft control, suggesting it has potential as a treatment for motor nerve injury.
Collapse
Affiliation(s)
- Matthew D Wood
- Department of Biomedical Engineering, Washington University, Campus Box 1097, One Brookings Drive, St. Louis, Missouri 63130, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Spicer PP, Mikos AG. Fibrin glue as a drug delivery system. J Control Release 2010; 148:49-55. [PMID: 20637815 DOI: 10.1016/j.jconrel.2010.06.025] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 06/20/2010] [Accepted: 06/29/2010] [Indexed: 11/17/2022]
Abstract
Fibrin glue has been used surgically for decades for hemostasis as well as a sealant. It has also been researched as both a gel for cell delivery and a vehicle for drug delivery. The drug delivery applications for fibrin glue span tissue engineering to chemotherapy and involve several mechanisms for drug matrix interactions and control of release kinetics. Additionally, drugs or factors can be loaded in the gel via impregnation and tethering to the gel through covalent linkages or affinity-based systems. This review highlights recent research of fibrin glue as a drug delivery vehicle.
Collapse
Affiliation(s)
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
39
|
Tissue Adhesives as Active Implants. ACTIVE IMPLANTS AND SCAFFOLDS FOR TISSUE REGENERATION 2010. [DOI: 10.1007/8415_2010_48] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
40
|
Bertram JP, Rauch MF, Chang K, Lavik EB. Using polymer chemistry to modulate the delivery of neurotrophic factors from degradable microspheres: delivery of BDNF. Pharm Res 2009; 27:82-91. [PMID: 19921405 DOI: 10.1007/s11095-009-0009-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 11/02/2009] [Indexed: 12/22/2022]
Abstract
PURPOSE Brain-derived neurotrophic factor (BDNF) plays an important role in neuroprotection and repair, but long-term delivery from polymer systems has been challenging. We investigated the role the chemistry of the polymer played in loading and delivery of BDNF via microspheres, which are suitable for minimally invasive administration. METHODS We synthesized polymers based on PLGA and PEG to determine what components augmented loading and delivery. We characterized microspheres fabricated from these polymers using a battery of tests, including sizing, in vitro release, and bioactivity of the BDNF using PC12 cells engineered to express the trkB receptor. RESULTS We found that a triblock polymer of PLGA, PLL, and PEG led to the delivery of BDNF for periods of time greater than 60 days and that the BDNF delivered was bioactive. The microsphere size was amendable to injection via a 30 gauge needle, allowing minimally invasive delivery. CONCLUSIONS PLGA-PLL-PEG leads to greater loading and longer-term delivery of BDNF than PLGA or a blend of the polymers. We hypothesize that the introduction of an amphiphilic PLGA-based polymer increases the interaction of the BDNF with the polymer and leads to release that more closely correlates with the degradation of the polymer.
Collapse
Affiliation(s)
- James P Bertram
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, Malone Engineering Center, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
41
|
Wood MD, Moore AM, Hunter DA, Tuffaha S, Borschel GH, Mackinnon SE, Sakiyama-Elbert SE. Affinity-based release of glial-derived neurotrophic factor from fibrin matrices enhances sciatic nerve regeneration. Acta Biomater 2009; 5:959-68. [PMID: 19103514 PMCID: PMC2678870 DOI: 10.1016/j.actbio.2008.11.008] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 10/20/2008] [Accepted: 11/19/2008] [Indexed: 12/13/2022]
Abstract
Glial-derived neurotrophic factor (GDNF) promotes both sensory and motor neuron survival. The delivery of GDNF to the peripheral nervous system has been shown to enhance regeneration following injury. In this study, we evaluated the effect of affinity-based delivery of GDNF from a fibrin matrix in a nerve guidance conduit on nerve regeneration in a 13 mm rat sciatic nerve defect. Seven experimental groups were evaluated which received GDNF or nerve growth factor (NGF) with the delivery system within the conduit, control groups excluding one or more components of the delivery system, and nerve isografts. Nerves were harvested 6 weeks after treatment for analysis by histomorphometry and electron microscopy. The use of the delivery system (DS) with either GDNF or NGF resulted in a higher frequency of nerve regeneration vs. control groups, as evidenced by a neural structure spanning the 13 mm gap. The GDNF DS and NGF DS groups were also similar to the nerve isograft group in measures of nerve fiber density, percent neural tissue and myelinated area measurements, but not in terms of total fiber counts. In addition, both groups contained a significantly greater percentage of larger diameter fibers, with GDNF DS having the largest in comparison to all groups, suggesting more mature neural content. The delivery of GDNF via the affinity-based delivery system can enhance peripheral nerve regeneration through a silicone conduit across a critical nerve gap and offers insight into potential future alternatives to the treatment of peripheral nerve injuries.
Collapse
Affiliation(s)
- Matthew D. Wood
- Department of Biomedical Engineering, Washington University, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130, USA
| | - Amy M. Moore
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, Campus Box 8238, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Daniel A. Hunter
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, Campus Box 8238, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Sami Tuffaha
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, Campus Box 8238, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Gregory H. Borschel
- Department of Biomedical Engineering, Washington University, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130, USA
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, Campus Box 8238, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Susan E. Mackinnon
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, Campus Box 8238, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Shelly E. Sakiyama-Elbert
- Department of Biomedical Engineering, Washington University, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130, USA
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, Campus Box 8238, 660 South Euclid Avenue, St. Louis, MO 63110, USA
- Center for Materials Innovation, Washington University, Campus Box 1105, One Brookings Drive, St. Louis, MO 63130, USA
| |
Collapse
|