1
|
Jia M, Wang J, Lin C, Zhang Q, Xue Y, Huang X, Ren Y, Chen C, Liu Y, Xu Y. Hydrogel Strategies for Female Reproduction Dysfunction. ACS NANO 2024; 18:30132-30152. [PMID: 39437800 DOI: 10.1021/acsnano.4c05634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Infertility is an important issue for human reproductive health, with over half of all cases of infertility associated with female factors. Dysfunction of the complex female reproductive system may cause infertility. In clinical practice, female infertility is often treated with oral medications and/or surgical procedures, and ultimately with assisted reproductive technologies. Owing to their excellent biocompatibility, low immunogenicity, and adjustable mechanical properties, hydrogels are emerging as valuable tools in the reconstruction of organ function, supplemented by tissue engineering techniques to increase their structure and functionality. Hydrogel-based female reproductive reconstruction strategies targeting the pathological mechanisms of female infertility may provide alternatives for the treatment of ovarian, endometrium/uterine, and fallopian tube dysfunction. In this review, we provide a general introduction to the basic physiology and pathology of the female reproductive system, the limitations of current infertility treatments, and the lack of translation from animal models to human reproductive physiology. We further provide an overview of the current and future potential applications of hydrogels in the treatment of female reproductive system dysfunction, highlighting the great prospects of hydrogel-based strategies in the field of translational medicine, along with the significant challenges to be overcome.
Collapse
Affiliation(s)
- Minxuan Jia
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- GBA National Institute for Nanotechnology Innovation, Guangzhou, Guangdong 510535, China
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Jiamin Wang
- Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- The Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong 510080, China
| | - Chubing Lin
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- GBA National Institute for Nanotechnology Innovation, Guangzhou, Guangdong 510535, China
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Qingyan Zhang
- Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- The Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong 510080, China
| | - Yueguang Xue
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- GBA National Institute for Nanotechnology Innovation, Guangzhou, Guangdong 510535, China
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Xin Huang
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- GBA National Institute for Nanotechnology Innovation, Guangzhou, Guangdong 510535, China
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Yan Ren
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Chunying Chen
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Ying Liu
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Yanwen Xu
- Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- The Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong 510080, China
| |
Collapse
|
2
|
Jang S, Lee JB, Yoo C, Kim HS, Choi K, Lee J, Lee DY. Biocompatible and nondegradable microcapsules using an ethylamine-bridged EGCG dimer for successful therapeutic cell transplantation. J Control Release 2024; 373:520-532. [PMID: 39059498 DOI: 10.1016/j.jconrel.2024.07.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Conventional alginate microcapsules are widely used for encapsulating therapeutic cells to reduce the host immune response. However, the exchange of monovalent cations with divalent cations for crosslinking can lead to a sol-gel phase transition, resulting in gradual degradation and swelling of the microcapsules in the body. To address this limitation, we present a biocompatible and nondegradable epigallocatechin-3-gallate (EGCG)-based microencapsulation with ethylamine-bridged EGCG dimers (EGCG(d)), denoted as 'Epi-Capsules'. These Epi-Capsules showed increased physical properties and Ca2+ chelating resistance compared to conventional alginate microcapsules. Horseradish peroxidase (HRP) treatment is very effective in increasing the stability of Epi-Capsule((+)HRP) due to the crosslinking between EGCG(d) molecules. Interestingly, the Epi-Capsules(oxi) using a pre-oxidized EGCG(d) can support long-term survival (>90 days) of xenotransplanted insulin-secreting islets in diabetic mice in vivo, which is attributed to its structural stability and reactive oxygen species (ROS) scavenging for lower fibrotic activity. Collectively, this EGCG-based microencapsulation can create Ca2+ chelating-resistance and anti-oxidant activity, which could be a promising strategy for cell therapies for diabetes and other diseases.
Collapse
Affiliation(s)
- Seonmi Jang
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul 04763, Republic of Korea
| | - Jae Bin Lee
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul 04763, Republic of Korea
| | - Chaerim Yoo
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyung Shik Kim
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul 04763, Republic of Korea
| | - Kimyung Choi
- Optipharm Co., Ltd., Cheongju 28158, Republic of Korea
| | - Joonseok Lee
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea.
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul 04763, Republic of Korea; Institute of Nano Science and Technology (INST), Hanyang University, Seoul 04763, Republic of Korea; Institute for Bioengineering and Biopharmaceutical Research (IBBR), Hanyang University, Seoul 04763, Republic of Korea; Elixir Pharmatech Inc., Seoul 04763, Republic of Korea.
| |
Collapse
|
3
|
Duman BÖ, Yazir Y, Halbutoğullari ZS, Mert S, Öztürk A, Gacar G, Duruksu G. Production of alginate macrocapsule device for long-term normoglycaemia in the treatment of type 1 diabetes mellitus with pancreatic cell sheet engineering. Biomed Mater 2024; 19:025008. [PMID: 38194706 DOI: 10.1088/1748-605x/ad1c9b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/09/2024] [Indexed: 01/11/2024]
Abstract
Type 1 diabetes-mellitus (T1DM) is characterized by damage of beta cells in pancreatic islets. Cell-sheet engineering, one of the newest therapeutic approaches, has also been used to create functional islet systems by creating islet/beta cell-sheets and transferring these systems to areas that require minimally invasive intervention, such as extrahepatic areas. Since islets, beta cells, and pancreas transplants are allogeneic, immune problems such as tissue rejection occur after treatment, and patients become insulin dependent again. In this study, we aimed to design the most suitable cell-sheet treatment method and macrocapsule-device that could provide long-term normoglycemia in rats. Firstly, mesenchymal stem cells (MSCs) and beta cells were co-cultured in a temperature-responsive culture dish to obtain a cell-sheet and then the cell-sheets macroencapsulated using different concentrations of alginate. The mechanical properties and pore sizes of the macrocapsule-device were characterized. The viability and activity of cell-sheets in the macrocapsule were evaluatedin vitroandin vivo. Fasting blood glucose levels, body weight, and serum insulin & C-peptide levels were evaluated after transplantation in diabetic-rats. After the transplantation, the blood glucose level at 225 mg dl-1on the 10th day dropped to 168 mg dl-1on the 15th day, and remained at the normoglycemic level for 210 days. In this study, an alginate macrocapsule-device was successfully developed to protect cell-sheets from immune attacks after transplantation. The results of our study provide the basis for future animal and human studies in which this method can be used to provide long-term cellular therapy in T1DM patients.
Collapse
Affiliation(s)
- Büşra Öncel Duman
- European Vocational School, Medical Laboratory Techniques Program, Kocaeli Health and Technology University, 41030 Kocaeli, Turkey
| | - Yusufhan Yazir
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University (KOGEM), TR41001 Izmit, Kocaeli, Turkey
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Zehra Seda Halbutoğullari
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University (KOGEM), TR41001 Izmit, Kocaeli, Turkey
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey
- Department of Medical Biology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Serap Mert
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University (KOGEM), TR41001 Izmit, Kocaeli, Turkey
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey
- Department of Chemistry and Chemical Processing Technology, Kocaeli University, Kocaeli, Turkey
- Department of Polymer Science and Technology, Kocaeli University, Kocaeli, Turkey
| | - Ahmet Öztürk
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University (KOGEM), TR41001 Izmit, Kocaeli, Turkey
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Gülçin Gacar
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University (KOGEM), TR41001 Izmit, Kocaeli, Turkey
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey
| | - Gökhan Duruksu
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University (KOGEM), TR41001 Izmit, Kocaeli, Turkey
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
4
|
Carvalho BG, Vit FF, Carvalho HF, Han SW, de la Torre LG. Layer-by-Layer Biomimetic Microgels for 3D Cell Culture and Nonviral Gene Delivery. Biomacromolecules 2021; 23:1545-1556. [PMID: 34890507 DOI: 10.1021/acs.biomac.1c01130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Localized release of nucleic acid therapeutics is essential for many biomedical applications, including gene therapy, tissue engineering, and medical implant coatings. We applied the substrate-mediated transfection and layer-by-layer (LbL) technique to achieve an efficient local gene delivery. In the experiments presented herein, we embeded lipoplexes containing plasmid DNA encoding for enhanced green fluorescent protein (pEGFP) within polyelectrolyte alginate-based microgels composed of poly(allylamine hydrochloride) (PAH), chondroitin sulfate (CS), and poly-l-lysine (PLL) with diameters between 70 and 90 μm. Droplet-based microfluidics was used as the main process to produce the alginate (ALG)-based microgels with discrete size, shape, and low coefficient of variation. The physicochemical and morphological properties of the polyelectrolyte microgels were characterized via optical microscopy, scanning electron microscopy (SEM), and zeta potential analysis. We found that polyelectrolyte microgels provide low cytotoxicity and cell-material interactions (adhesion, spreading, and proliferation). In addition, the microsystem showed the ability to load lipoplexes and a loading efficiency equal to 83%, and it enabled in vitro surface-based transfection of MCF-7 cells. This approach provides a new suitable route for cell adhesion and local gene delivery.
Collapse
Affiliation(s)
- Bruna G Carvalho
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas 13083-852, Brazil
| | - Franciele F Vit
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas 13083-852, Brazil
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-865, Brazil
| | - Sang W Han
- Department of Biophysics, Federal University of São Paulo (UNIFESP), São Paulo 04044-010, Brazil
| | - Lucimara G de la Torre
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas 13083-852, Brazil
| |
Collapse
|
5
|
Adrian E, Treľová D, Filová E, Kumorek M, Lobaz V, Poreba R, Janoušková O, Pop-Georgievski O, Lacík I, Kubies D. Complexation of CXCL12, FGF-2 and VEGF with Heparin Modulates the Protein Release from Alginate Microbeads. Int J Mol Sci 2021; 22:11666. [PMID: 34769095 PMCID: PMC8583835 DOI: 10.3390/ijms222111666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/19/2022] Open
Abstract
Long-term delivery of growth factors and immunomodulatory agents is highly required to support the integrity of tissue in engineering constructs, e.g., formation of vasculature, and to minimize immune response in a recipient. However, for proteins with a net positive charge at the physiological pH, controlled delivery from negatively charged alginate (Alg) platforms is challenging due to electrostatic interactions that can hamper the protein release. In order to regulate such interactions between proteins and the Alg matrix, we propose to complex proteins of interest in this study - CXCL12, FGF-2, VEGF - with polyanionic heparin prior to their encapsulation into Alg microbeads of high content of α-L-guluronic acid units (high-G). This strategy effectively reduced protein interactions with Alg (as shown by model ITC and SPR experiments) and, depending on the protein type, afforded control over the protein release for at least one month. The released proteins retained their in vitro bioactivity: CXCL12 stimulated the migration of Jurkat cells, and FGF-2 and VEGF induced proliferation and maturation of HUVECs. The presence of heparin also intensified protein biological efficiency. The proposed approach for encapsulation of proteins with a positive net charge into high-G Alg hydrogels is promising for controlled long-term protein delivery under in vivo conditions.
Collapse
Affiliation(s)
- Edyta Adrian
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq.2, 162 06 Prague, Czech Republic; (E.A.); (M.K.); (V.L.); (R.P.); (O.J.); (O.P.-G.)
- Department of Chemical Engineering, University of Chemistry and Technology, Technicka 5, 166 28 Prague, Czech Republic
| | - Dušana Treľová
- Polymer Institute of the Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava, Slovakia; (D.T.); (I.L.)
| | - Elena Filová
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic;
| | - Marta Kumorek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq.2, 162 06 Prague, Czech Republic; (E.A.); (M.K.); (V.L.); (R.P.); (O.J.); (O.P.-G.)
| | - Volodymyr Lobaz
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq.2, 162 06 Prague, Czech Republic; (E.A.); (M.K.); (V.L.); (R.P.); (O.J.); (O.P.-G.)
| | - Rafal Poreba
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq.2, 162 06 Prague, Czech Republic; (E.A.); (M.K.); (V.L.); (R.P.); (O.J.); (O.P.-G.)
| | - Olga Janoušková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq.2, 162 06 Prague, Czech Republic; (E.A.); (M.K.); (V.L.); (R.P.); (O.J.); (O.P.-G.)
| | - Ognen Pop-Georgievski
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq.2, 162 06 Prague, Czech Republic; (E.A.); (M.K.); (V.L.); (R.P.); (O.J.); (O.P.-G.)
| | - Igor Lacík
- Polymer Institute of the Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava, Slovakia; (D.T.); (I.L.)
- Centre for Advanced Materials Application of the Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava, Slovakia
| | - Dana Kubies
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq.2, 162 06 Prague, Czech Republic; (E.A.); (M.K.); (V.L.); (R.P.); (O.J.); (O.P.-G.)
| |
Collapse
|
6
|
Warren D, Tomaskovic-Crook E, Wallace GG, Crook JM. Engineering in vitro human neural tissue analogs by 3D bioprinting and electrostimulation. APL Bioeng 2021; 5:020901. [PMID: 33834152 PMCID: PMC8019355 DOI: 10.1063/5.0032196] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/19/2021] [Indexed: 02/06/2023] Open
Abstract
There is a fundamental need for clinically relevant, reproducible, and standardized in vitro human neural tissue models, not least of all to study heterogenic and complex human-specific neurological (such as neuropsychiatric) disorders. Construction of three-dimensional (3D) bioprinted neural tissues from native human-derived stem cells (e.g., neural stem cells) and human pluripotent stem cells (e.g., induced pluripotent) in particular is appreciably impacting research and conceivably clinical translation. Given the ability to artificially and favorably regulate a cell's survival and behavior by manipulating its biophysical environment, careful consideration of the printing technique, supporting biomaterial and specific exogenously delivered stimuli, is both required and advantageous. By doing so, there exists an opportunity, more than ever before, to engineer advanced and precise tissue analogs that closely recapitulate the morphological and functional elements of natural tissues (healthy or diseased). Importantly, the application of electrical stimulation as a method of enhancing printed tissue development in vitro, including neuritogenesis, synaptogenesis, and cellular maturation, has the added advantage of modeling both traditional and new stimulation platforms, toward improved understanding of efficacy and innovative electroceutical development and application.
Collapse
Affiliation(s)
- Danielle Warren
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Fairy Meadow, NSW 2519 Australia
| | | | - Gordon G. Wallace
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Fairy Meadow, NSW 2519 Australia
| | - Jeremy M. Crook
- Author to whom correspondence should be addressed:. Tel.: +61 2 4221 3011
| |
Collapse
|
7
|
Encapsulation Strategies for Pancreatic Islet Transplantation without Immune Suppression. CURRENT STEM CELL REPORTS 2021. [DOI: 10.1007/s40778-021-00190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Huamani-Palomino RG, Córdova BM, Pichilingue L. ER, Venâncio T, Valderrama AC. Functionalization of an Alginate-Based Material by Oxidation and Reductive Amination. Polymers (Basel) 2021; 13:polym13020255. [PMID: 33466684 PMCID: PMC7828833 DOI: 10.3390/polym13020255] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 01/28/2023] Open
Abstract
This research focused on the synthesis of a functional alginate-based material via chemical modification processes with two steps: oxidation and reductive amination. In previous alginate functionalization with a target molecule such as cysteine, the starting material was purified and characterized by UV-Vis, 1H-NMR and HSQC. Additionally, the application of FT-IR techniques during each step of alginate functionalization was very useful, since new bands and spiked signals around the pyranose ring (1200–1000 cm−1) and anomeric region (1000–750 cm−1) region were identified by a second derivative. Additionally, the presence of C1-H1 of β-D-mannuronic acid residue as well as C1-H1 of α-L-guluronic acid residue was observed in the FT-IR spectra, including a band at 858 cm−1 with characteristics of the N-H moiety from cysteine. The possibility of attaching cysteine molecules to an alginate backbone by oxidation and post-reductive amination processes was confirmed through 13C-NMR in solid state; a new peak at 99.2 ppm was observed, owing to a hemiacetal group formed in oxidation alginate. Further, the peak at 31.2 ppm demonstrates the presence of carbon -CH2-SH in functionalized alginate—clear evidence that cysteine was successfully attached to the alginate backbone, with 185 μmol of thiol groups per gram polymer estimated in alginate-based material by UV-Visible. Finally, it was observed that guluronic acid residue of alginate are preferentially more affected than mannuronic acid residue in the functionalization.
Collapse
Affiliation(s)
- Ronny G. Huamani-Palomino
- Laboratorio de Investigación en Biopolímeros y Metalofármacos, Facultad de Ciencias, Escuela Profesional de Química, Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Lima 15333, Peru;
- Correspondence: (R.G.H.-P.); (A.C.V.)
| | - Bryan M. Córdova
- Laboratorio de Investigación en Biopolímeros y Metalofármacos, Facultad de Ciencias, Escuela Profesional de Química, Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Lima 15333, Peru;
| | - Elvis Renzo Pichilingue L.
- Facultad de Ciencias, Escuela de Química, Universidad Nacional de Ingeniería. Av. Túpac Amaru 210, Lima 15333, Peru;
| | - Tiago Venâncio
- Laboratório de Ressonância Magnética Nuclear, Departamento de Química, Universidade Federal de Sao Carlos, São Carlos 13565-905, São Paulo, Brazil;
| | - Ana C. Valderrama
- Laboratorio de Investigación en Biopolímeros y Metalofármacos, Facultad de Ciencias, Escuela Profesional de Química, Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Lima 15333, Peru;
- Correspondence: (R.G.H.-P.); (A.C.V.)
| |
Collapse
|
9
|
Hajifathaliha F, Mahboubi A, Bolourchian N, Mohit E, Nematollahi L. Multilayer Alginate Microcapsules For Live Cell Microencapsulation; Is There Any Preference For Selecting Cationic Polymers? IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:173-182. [PMID: 34567154 PMCID: PMC8457712 DOI: 10.22037/ijpr.2020.114096.14660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Since 1980 after introducing the concept of live cell encapsulation by Lim et al., this technology has received enormous attention. Several studies have been conducted to improve this technique; different polymers, either natural or synthetic, have been used as microcapsules` making materials and different substances as coating layers. Literature review leads us to the conclusion that alginate (Alg) multilayer microcapsules and, in particular, alginate-poly l-lysine (PLL)-alginate (APA) are the most used structures for live cell encapsulation. Although, disadvantages of PLL (e.g., weak mechanical strength and low biocompatibility) made researchers work on other cationic polymers to find an alternative. This review aims to discuss more popularly suggested cationic polymers such as poly l-ornithine (PLO), chitosan, etc. As alternatives for PLL and, more importantly, we want to take a closer look to see which one of these systems are closer to clinical applications.
Collapse
Affiliation(s)
- Fariba Hajifathaliha
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Arash Mahboubi
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Noushin Bolourchian
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Elham Mohit
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Leila Nematollahi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
10
|
Somo SI, Brown JM, Brey EM. Dual Crosslinking of Alginate Outer Layer Increases Stability of Encapsulation System. Front Chem 2020; 8:575278. [PMID: 33282827 PMCID: PMC7688585 DOI: 10.3389/fchem.2020.575278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/21/2020] [Indexed: 01/17/2023] Open
Abstract
The current standard treatment for Type 1 diabetes is the administration of exogenous insulin to manage blood glucose levels. Cellular therapies are in development to address this dependency and allow patients to produce their own insulin. Studies have shown that viable, functional allogenic islets can be encapsulated inside alginate-based materials as a potential treatment for Type 1 diabetes. The capability of these grafts is limited by several factors, among which is the stability and longevity of the encapsulating material in vivo. Previous studies have shown that multilayer Alginate-Poly-L-Ornithine-Alginate (A-PLO-A) microbeads are effective in maintaining cellular function in vivo. This study expands upon the existing encapsulation material by investigating whether covalent crosslinking of the outer alginate layer increases stability. The alginate comprising the outer layer was methacrylated, allowing it to be covalently crosslinked. Microbeads with a crosslinked outer layer exhibited a consistent outer layer thickness and increased stability when exposed to chelating agents in vitro. The outer layer was maintained in vivo even in the presence of a robust inflammatory response. The results demonstrate a technique for generating A-PLO-A with a covalently crosslinked outer layer.
Collapse
Affiliation(s)
- Sami I. Somo
- Biomedical Engineering Department, Illinois Institute of Technology, Chicago, IL, United States
| | - Jacob M. Brown
- Biomedical Engineering Department, University of Texas at San Antonio, San Antonio, TX, United States
| | - Eric M. Brey
- Biomedical Engineering Department, University of Texas at San Antonio, San Antonio, TX, United States
- *Correspondence: Eric M. Brey
| |
Collapse
|
11
|
Fang X, Zhao X, Yu G, Zhang L, Feng Y, Zhou Y, Liu Y, Li J. Effect of molecular weight and pH on the self-assembly microstructural and emulsification of amphiphilic sodium alginate colloid particles. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105593] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
X-ray CT in Phase Contrast Enhancement Geometry of Alginate Microbeads in a Whole-Animal Model. Ann Biomed Eng 2020; 48:1016-1024. [DOI: 10.1007/s10439-019-02291-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/15/2019] [Indexed: 10/26/2022]
|
13
|
Li W, Zhao K, Chen X, Li Y. Dielectric Analysis of Microcapsule-Immobilized Composite Capsules Suspension: Substances Release. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:966-971. [PMID: 31941280 DOI: 10.1021/acs.langmuir.9b03539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dielectric spectroscopy has unique advantages in monitoring drug release. In this work, a dielectric measurement was carried out on the release of the substances of microcapsule-immobilized composite capsules, which were fabricated by encapsulating the Perinereis aibuhitensis extract-loaded gum Arabic/gelatin microcapsules (PaE: GA/GE-MCs) in calcium alginate hydrogel (PaE: CA/GA/GE-CCs). We established the dielectric model of PaE: CA/GA/GE-CCs and got in-depth information on the systems. There are two relaxations in the dielectric spectroscopy, both of which are caused by interfacial polarization. The relaxation mechanisms correspond to the interfacial polarization of the PaE-loading core/calcium alginate shell interface and the calcium alginate shell/solution interface, respectively. Besides, the swelling of composite capsules and substance migration in the composite capsules were observed by analyzing phase parameters. Finally, the characteristic release of calcium alginate composite capsules was confirmed, and the substance release mechanism of composite capsules, namely, the swelling-diffusion mechanism, was obtained.
Collapse
Affiliation(s)
- Wantong Li
- College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Kongshuang Zhao
- College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Xiguang Chen
- Biochemistry and Biomaterial Key Laboratory of Shandong Colleges and Universities, College of Marine Life Science , Ocean University of China , Yushan Road , Qingdao , Shandong 266003 , China
| | - Yang Li
- Biochemistry and Biomaterial Key Laboratory of Shandong Colleges and Universities, College of Marine Life Science , Ocean University of China , Yushan Road , Qingdao , Shandong 266003 , China
| |
Collapse
|
14
|
Salg GA, Giese NA, Schenk M, Hüttner FJ, Felix K, Probst P, Diener MK, Hackert T, Kenngott HG. The emerging field of pancreatic tissue engineering: A systematic review and evidence map of scaffold materials and scaffolding techniques for insulin-secreting cells. J Tissue Eng 2019; 10:2041731419884708. [PMID: 31700597 PMCID: PMC6823987 DOI: 10.1177/2041731419884708] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/04/2019] [Indexed: 12/18/2022] Open
Abstract
A bioartificial endocrine pancreas is proposed as a future alternative to current treatment options. Patients with insulin-secretion deficiency might benefit. This is the first systematic review that provides an overview of scaffold materials and techniques for insulin-secreting cells or cells to be differentiated into insulin-secreting cells. An electronic literature survey was conducted in PubMed/MEDLINE and Web of Science, limited to the past 10 years. A total of 197 articles investigating 60 different materials met the inclusion criteria. The extracted data on materials, cell types, study design, and transplantation sites were plotted into two evidence gap maps. Integral parts of the tissue engineering network such as fabrication technique, extracellular matrix, vascularization, immunoprotection, suitable transplantation sites, and the use of stem cells are highlighted. This systematic review provides an evidence-based structure for future studies. Accumulating evidence shows that scaffold-based tissue engineering can enhance the viability and function or differentiation of insulin-secreting cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Gabriel Alexander Salg
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Nathalia A Giese
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Miriam Schenk
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix J Hüttner
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Klaus Felix
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Pascal Probst
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus K Diener
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Thilo Hackert
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Hannes Götz Kenngott
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
15
|
Kopan C, Tucker T, Alexander M, Mohammadi MR, Pone EJ, Lakey JRT. Approaches in Immunotherapy, Regenerative Medicine, and Bioengineering for Type 1 Diabetes. Front Immunol 2018; 9:1354. [PMID: 29963051 PMCID: PMC6011033 DOI: 10.3389/fimmu.2018.01354] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/31/2018] [Indexed: 12/12/2022] Open
Abstract
Recent advances on using immune and stem cells as two-pronged approaches for type 1 diabetes mellitus (T1DM) treatment show promise for advancement into clinical practice. As T1DM is thought to arise from autoimmune attack destroying pancreatic β-cells, increasing treatments that use biologics and cells to manipulate the immune system are achieving better results in pre-clinical and clinical studies. Increasingly, focus has shifted from small molecule drugs that suppress the immune system nonspecifically to more complex biologics that show enhanced efficacy due to their selectivity for specific types of immune cells. Approaches that seek to inhibit only autoreactive effector T cells or enhance the suppressive regulatory T cell subset are showing remarkable promise. These modern immune interventions are also enabling the transplantation of pancreatic islets or β-like cells derived from stem cells. While complete immune tolerance and body acceptance of grafted islets and cells is still challenging, bioengineering approaches that shield the implanted cells are also advancing. Integrating immunotherapy, stem cell-mediated β-cell or islet production and bioengineering to interface with the patient is expected to lead to a durable cure or pave the way for a clinical solution for T1DM.
Collapse
Affiliation(s)
- Christopher Kopan
- Department of Surgery, University of California Irvine, Irvine, CA, United States
| | - Tori Tucker
- Department of Cell and Molecular Biosciences, University of California Irvine, Irvine, CA, United States
| | - Michael Alexander
- Department of Surgery, University of California Irvine, Irvine, CA, United States
| | - M. Rezaa Mohammadi
- Department of Chemical Engineering and Materials Science, University of California Irvine, Irvine, CA, United States
| | - Egest J. Pone
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, United States
| | - Jonathan Robert Todd Lakey
- Department of Surgery, University of California Irvine, Irvine, CA, United States
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, United States
| |
Collapse
|
16
|
Ramos PE, Silva P, Alario MM, Pastrana LM, Teixeira JA, Cerqueira MA, Vicente AA. Effect of alginate molecular weight and M/G ratio in beads properties foreseeing the protection of probiotics. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.08.031] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
17
|
Alginate Processing Routes to Fabricate Bioinspired Platforms for Tissue Engineering and Drug Delivery. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2018. [DOI: 10.1007/978-981-10-6910-9_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Abstract
The principle of immunoisolation of cells is based on encapsulation of cells in immunoprotective but semipermeable membranes that protect cells from hazardous effects of the host immune system but allows ingress of nutrients and outgress of therapeutic molecules. The technology was introduced in 1933 but has only received its deserved attention for its therapeutic application for three decades now.In the past decade important advances have been made in creating capsules that provoke minimal or no inflammatory responses. There are however new emerging challenges. These challenges relate to optimal nutrition and oxygen supply as well as standardization and documentation of capsule properties.It is concluded that the proof of principle of applicability of encapsulated grafts for treatment of human disease has been demonstrated and merits optimism about its clinical potential. Further innovation requires a much more systematic approach in identifying crucial properties of capsules and cellular grafts to allow sound interpretations of the results.
Collapse
Affiliation(s)
- Paul de Vos
- Division of Immuno-Endocrinology, Departments of Pathology and Laboratory Medicine, University of Groningen, Groningen, Groningen, The Netherlands.
| |
Collapse
|
19
|
|
20
|
Abstract
Alginate hydrogels have been used for a broad variety of medical applications. The ability to assemble alginate gels at neutral pH and mild temperatures makes alginate a promising choice for the encapsulation and delivery of cells and proteins. This chapter covers the basics of cell encapsulation and protein delivery using two different variations of alginate microbeads, single layered and multilayer systems. The first section describes a method for encapsulating cells within alginate microbeads coated with a permselective polymer layer. The second section describes a multilayer alginate microbead system that allows simultaneous encapsulation of cells and delivery of growth factors. The primary goal of the systems described is for encapsulation of islets as a treatment for type I diabetes. However, these microbeads can be used for a broad variety of applications in tissue engineering, cell encapsulation, and regenerative medicine.
Collapse
Affiliation(s)
- Sami I Somo
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 South Dearborn St, Chicago, IL, 60616, USA
- Research Service, Hines Veterans Administration Hospital, Hines, IL, USA
| | - Omaditya Khanna
- Chicago Medical School at Rosalind Franklin, University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL, 60064, USA
| | - Eric M Brey
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 South Dearborn St, Chicago, IL, 60616, USA.
- Research Service, Hines Veterans Administration Hospital, Hines, IL, USA.
| |
Collapse
|
21
|
Abstract
The goal of this chapter is to provide an overview of the different purposes for which the cell microencapsulation technology can be used. These include immunoisolation of non-autologous cells used for cell therapy; immobilization of cells for localized (targeted) delivery of therapeutic products to ablate, repair, or regenerate tissue; simultaneous delivery of multiple therapeutic agents in cell therapy; spatial compartmentalization of cells in complex tissue engineering; expansion of cells in culture; and production of different probiotics and metabolites for industrial applications. For each of these applications, specific examples are provided to illustrate how the microencapsulation technology can be utilized to achieve the purpose. However, successful use of the cell microencapsulation technology for whatever purpose will ultimately depend upon careful consideration for the choice of the encapsulating polymers, the method of fabrication (cross-linking) of the microbeads, which affects the permselectivity, the biocompatibility and the mechanical strength of the microbeads as well as environmental parameters such as temperature, humidity, osmotic pressure, and storage solutions.The various applications discussed in this chapter are illustrated in the different chapters of this book and where appropriate relevant images of the microencapsulation products are provided. It is hoped that this outline of the different applications of cell microencapsulation would provide a good platform for tissue engineers, scientists, and clinicians to design novel tissue constructs and products for therapeutic and industrial applications.
Collapse
Affiliation(s)
- Emmanuel C Opara
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA. .,Virginia Tech-Wake Forest School of Biomedical Engineering & Sciences (SBES), Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
22
|
Ramos PE, Cerqueira MA, Cook MT, Bourbon AI, Khutoryanskiy VV, Charalampoulos D, Teixeira JA, Vicente AA. Development of an immobilization system for in situ micronutrients release. Food Res Int 2016; 90:121-132. [DOI: 10.1016/j.foodres.2016.10.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/27/2016] [Accepted: 10/29/2016] [Indexed: 01/08/2023]
|
23
|
Ge H, Yu A, Chen J, Yuan J, Yin Y, Duanmu W, Tan L, Yang Y, Lan C, Chen W, Feng H, Hu R. Poly-L-ornithine enhances migration of neural stem/progenitor cells via promoting α-Actinin 4 binding to actin filaments. Sci Rep 2016; 6:37681. [PMID: 27874083 PMCID: PMC5118728 DOI: 10.1038/srep37681] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 11/01/2016] [Indexed: 12/21/2022] Open
Abstract
The recruitment of neural stem/progenitor cells (NSPCs) for brain restoration after injury is a promising regenerative therapeutic strategy. This strategy involves enhancing proliferation, migration and neuronal differentation of NSPCs. To date, the lack of biomaterials, which facilitate these processes to enhance neural regeneration, is an obstacle for the cell replacement therapies. Our previous study has shown that NSPCs grown on poly-L-ornithine (PO) could proliferate more vigorously and differentiate into more neurons than that on Poly-L-Lysine (PLL) and Fibronectin (FN). Here, we demonstrate that PO could promote migration of NSPCs in vitro, and the underlying mechanism is PO activates α-Actinins 4 (ACTN4), which is firstly certified to be expessed in NSPCs, to promote filopodia formation and therefore enhances NSPCs migration. Taken together, PO might serve as a better candidate for transplanted biomaterials in the regenerative therapeutic strategy, compared with PLL and FN.
Collapse
Affiliation(s)
- Hongfei Ge
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Anyong Yu
- Department of Emergency, The First Affiliated Hospital of Zunyi Medical College, Guizhou 563003, China
| | - Jingyu Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jichao Yuan
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yi Yin
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Wangsheng Duanmu
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Liang Tan
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yang Yang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Chuan Lan
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Weixiang Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Hua Feng
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Rong Hu
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
24
|
Appel AA, Ibarra V, Somo SI, Larson JC, Garson AB, Guan H, McQuilling JP, Zhong Z, Anastasio MA, Opara EC, Brey EM. Imaging of Hydrogel Microsphere Structure and Foreign Body Response Based on Endogenous X-Ray Phase Contrast. Tissue Eng Part C Methods 2016; 22:1038-1048. [PMID: 27796159 PMCID: PMC5116683 DOI: 10.1089/ten.tec.2016.0253] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/28/2016] [Indexed: 12/22/2022] Open
Abstract
Transplantation of functional islets encapsulated in stable biomaterials has the potential to cure Type I diabetes. However, the success of these materials requires the ability to quantitatively evaluate their stability. Imaging techniques that enable monitoring of biomaterial performance are critical to further development in the field. X-ray phase-contrast (XPC) imaging is an emerging class of X-ray techniques that have shown significant promise for imaging biomaterial and soft tissue structures. In this study, XPC imaging techniques are shown to enable three dimensional (3D) imaging and evaluation of islet volume, alginate hydrogel structure, and local soft tissue features ex vivo. Rat islets were encapsulated in sterile ultrapurified alginate systems produced using a high-throughput microfluidic system. The encapsulated islets were implanted in omentum pouches created in a rodent model of type 1 diabetes. Microbeads were imaged with XPC imaging before implantation and as whole tissue samples after explantation from the animals. XPC microcomputed tomography (μCT) was performed with systems using tube-based and synchrotron X-ray sources. Islets could be identified within alginate beads and the islet volume was quantified in the synchrotron-based μCT volumes. Omental adipose tissue could be distinguished from inflammatory regions resulting from implanted beads in harvested samples with both XPC imaging techniques. Individual beads and the local encapsulation response were observed and quantified using quantitative measurements, which showed good agreement with histology. The 3D structure of the microbeads could be characterized with XPC imaging and failed beads could also be identified. These results point to the substantial potential of XPC imaging as a tool for imaging biomaterials in small animal models and deliver a critical step toward in vivo imaging.
Collapse
Affiliation(s)
- Alyssa A. Appel
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
- Research Services, Edward Hines Jr. VA Hospital, Chicago, Illinois
| | - Veronica Ibarra
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Sami I. Somo
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Jeffery C. Larson
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
- Research Services, Edward Hines Jr. VA Hospital, Chicago, Illinois
| | - Alfred B. Garson
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Huifeng Guan
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | | | - Zhong Zhong
- National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York
| | - Mark A. Anastasio
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Emmanuel C. Opara
- Wake Forest Institute of Regenerative Medicine, Winston-Salem, North Carolina
| | - Eric M. Brey
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
- Research Services, Edward Hines Jr. VA Hospital, Chicago, Illinois
| |
Collapse
|
25
|
Yang Y, Opara EC, Liu Y, Atala A, Zhao W. Microencapsulation of porcine thyroid cell organoids within a polymer microcapsule construct. Exp Biol Med (Maywood) 2016; 242:286-296. [PMID: 27708182 DOI: 10.1177/1535370216673746] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Hypothyroidism is a common condition of hormone deficiency, and oral administration of thyroid hormones is currently the only available treatment option. However, there are some disadvantages with this treatment modality including compliance challenges to patients. Therefore, a physiologically based alternative therapy for hypothyroidism with little or no side-effects is needed. In this study, we have developed a method for microencapsulating porcine thyroid cells as a thyroid hormone replacement approach. The hybrid wall of the polymer microcapsules permits thyroid hormone release while preventing immunoglobulin antibodies from entry. This strategy could potentially enable implantation of the microcapsule organoids containing allogeneic or xenogeneic thyroid cells to secret hormones over time without the need for immunosuppression of recipients. Porcine thyroid cells were isolated and encapsulated in alginate-poly-L-ornithine-alginate microcapsules using a microfluidic device. The porcine thyroid cells formed three-dimensional follicular spheres in the microcapsules with decent cell viability and proliferation. Thyroxine release from the encapsulated cells was higher than from unencapsulated cells ( P < 0.05) and was maintained during the entire duration of experiment (>28 days). These results suggest that the microencapsulated thyroid cell organoids may have the potential to be used for therapy and/or drug screening.
Collapse
Affiliation(s)
- Yipeng Yang
- 1 General Surgery Department and Laboratory of General Surgery, Xinhua Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.,2 Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston Salem, NC 27157, USA
| | - Emmanuel C Opara
- 2 Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston Salem, NC 27157, USA
| | - Yingbin Liu
- 1 General Surgery Department and Laboratory of General Surgery, Xinhua Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Anthony Atala
- 2 Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston Salem, NC 27157, USA
| | - Weixin Zhao
- 2 Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston Salem, NC 27157, USA.,3 Co-Innovation Center of Neuro-regeneration, Nantong University, Nantong 226001, China
| |
Collapse
|
26
|
Ibarra V, Appel AA, Anastasio MA, Opara EC, Brey EM. This paper is a winner in the Undergraduate category for the SFB awards: Evaluation of the tissue response to alginate encapsulated islets in an omentum pouch model. J Biomed Mater Res A 2016; 104:1581-90. [PMID: 27144389 PMCID: PMC5897127 DOI: 10.1002/jbm.a.35769] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/02/2016] [Accepted: 04/29/2016] [Indexed: 12/21/2022]
Abstract
Islet transplantation is currently in clinical use as a treatment for type I diabetes, but donor shortages and long-term immunosuppression limit broad application. Alginate microcapsules coated with poly-l-ornithine can be used to encapsulate islets in an environment that allows diffusion of glucose, insulin, nutrients, and waste products while inhibiting cells and antibodies. While clinical trials are ongoing using islets encapsulated in alginate microbeads, there are concerns in regards to long-term stability. Evaluation of the local tissue response following implantation provides insight into the underlying mechanisms contributing to biomaterial failure, which can be used to the design of new material strategies. Macrophages play an important role in driving the response. In this study, the stability of alginate microbeads coated with PLO containing islets transplanted in the omentum pouch model was investigated. Biomaterial structure and the inflammatory response were characterized by X-ray phase contrast (XPC) μCT imaging, histology, and immunostaining. XPC allowed evaluation of microbead 3D structure and identification of failed and stable microbeads. A robust inflammatory response characterized by high cell density and the presence of pro-inflammatory macrophages was found around the failed grafts. The results obtained provide insight into the local tissue response and possible failure mechanisms for alginate microbeads. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1581-1590, 2016.
Collapse
Affiliation(s)
- Veronica Ibarra
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Alyssa A Appel
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Mark A Anastasio
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Emmanuel C Opara
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, Illinois
| | - Eric M Brey
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
- Research Services, Edward Hines Jr. VA Hospital, Ines, IL
| |
Collapse
|
27
|
Song S, Roy S. Progress and challenges in macroencapsulation approaches for type 1 diabetes (T1D) treatment: Cells, biomaterials, and devices. Biotechnol Bioeng 2016; 113:1381-402. [PMID: 26615050 DOI: 10.1002/bit.25895] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/30/2015] [Accepted: 11/24/2015] [Indexed: 12/15/2022]
Abstract
Macroencapsulation technology has been an attractive topic in the field of treatment for Type 1 diabetes due to mechanical stability, versatility, and retrievability of the macro-capsule design. Macro-capsules can be categorized into extravascular and intravascular devices, in which solute transport relies either on diffusion or convection, respectively. Failure of macroencapsulation strategies can be due to limited regenerative capacity of the encased insulin-producing cells, sub-optimal performance of encapsulation biomaterials, insufficient immunoisolation, excessive blood thrombosis for vascular perfusion devices, and inadequate modes of mass transfer to support cell viability and function. However, significant technical advancements have been achieved in macroencapsulation technology, namely reducing diffusion distance for oxygen and nutrients, using pro-angiogenic factors to increase vascularization for islet engraftment, and optimizing membrane permeability and selectivity to prevent immune attacks from host's body. This review presents an overview of existing macroencapsulation devices and discusses the advances based on tissue-engineering approaches that will stimulate future research and development of macroencapsulation technology. Biotechnol. Bioeng. 2016;113: 1381-1402. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shang Song
- Department of Bioengineering and Therapeutic Sciences, University of California-San Francisco, San Francisco, California 94158
| | - Shuvo Roy
- Department of Bioengineering and Therapeutic Sciences, University of California-San Francisco, San Francisco, California 94158.
| |
Collapse
|
28
|
Li T, Li Z, Nan F, Dong J, Deng Y, Yu Q, Zhang T. Construction of a novel inducing system with multi-layered alginate microcapsules to regulate differentiation of neural precursor cells from bone mesenchymal stem cells. Med Hypotheses 2015; 85:910-3. [PMID: 26386487 DOI: 10.1016/j.mehy.2015.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/09/2015] [Indexed: 01/08/2023]
Abstract
Neural precursor cells (NPCs) are a promising cell source for the treatment of nervous system diseases; however, they are limited in their applications due to source-related ethical considerations or legislations. Therefore, a novel approach is necessary to obtain sufficient NPCs. Recently, the usage of bone marrow-derived mesenchymal stem cells (BMSCs) differentiated into neural cells has become a potential method to obtain NPCs. Moreover, growth factors (GFs) are emerging as inducers to evoke the differentiation of BMSCs into NPCs. For example, GFs may activate various signaling pathways related to neural differentiation, such as phosphatidylinositol 3 kinase/protein kinase B, cyclic adenosine monophosphate/protein kinase A, and Janus kinase/signal transducer activator of transcription. However, the utilization of growth factors still has some limitations such as high costs and low rates of neural differentiation. Neuroblastoma cells have been characterized as a potential pool for growth factors. Additionally, basic fibroblast growth factor (bFGF), a type of growth factor, has been demonstrated to be able to increase the differentiation and survival rate of NPCs. For better use of neuroblastoma cells and bFGF, we established a novel system involving multi-layered alginate-polylysine-alginate (APA) microcapsules to encapsulate neuroblastoma cells and bFGF, which may not only provide sufficient growth factors in a sustained manner but also avoid the carcinogenicity caused by neuroblastoma cells. Above all, we hypothesized that neuroblastoma cells and bFGF encapsulated in multilayered alginate microcapsules may efficiently induce the differentiation of BMSCs into NPCs.
Collapse
Affiliation(s)
- Tao Li
- Department of Orthopedics, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, District Shahekou, Dalian 116023, PR China
| | - Zhengwei Li
- Department of Orthopedics, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, District Shahekou, Dalian 116023, PR China
| | - Feng Nan
- Department of Orthopedics, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, District Shahekou, Dalian 116023, PR China.
| | - Jianli Dong
- Department of Orthopedics, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, District Shahekou, Dalian 116023, PR China
| | - Yushuang Deng
- Department of Orthopedics, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, District Shahekou, Dalian 116023, PR China
| | - Qing Yu
- Department of Orthopedics, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, District Shahekou, Dalian 116023, PR China
| | - Teng Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, District Shahekou, Dalian 116023, PR China
| |
Collapse
|
29
|
Akar B, Jiang B, Somo SI, Appel AA, Larson JC, Tichauer KM, Brey EM. Biomaterials with persistent growth factor gradients in vivo accelerate vascularized tissue formation. Biomaterials 2015; 72:61-73. [PMID: 26344364 DOI: 10.1016/j.biomaterials.2015.08.049] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/25/2015] [Accepted: 08/27/2015] [Indexed: 12/22/2022]
Abstract
Gradients of soluble factors play an important role in many biological processes, including blood vessel assembly. Gradients can be studied in detail in vitro, but methods that enable the study of spatially distributed soluble factors and multi-cellular processes in vivo are limited. Here, we report on a method for the generation of persistent in vivo gradients of growth factors in a three-dimensional (3D) biomaterial system. Fibrin loaded porous poly (ethylene glycol) (PEG) scaffolds were generated using a particulate leaching method. Platelet derived growth factor BB (PDGF-BB) was encapsulated into poly (lactic-co-glycolic acid) (PLGA) microspheres which were placed distal to the tissue-material interface. PLGA provides sustained release of PDGF-BB and its diffusion through the porous structure results in gradient formation. Gradients within the scaffold were confirmed in vivo using near-infrared fluorescence imaging and gradients were present for more than 3 weeks. The diffusion of PDGF-BB was modeled and verified with in vivo imaging findings. The depth of tissue invasion and density of blood vessels formed in response to the biomaterial increased with magnitude of the gradient. This biomaterial system allows for generation of sustained growth factor gradients for the study of tissue response to gradients in vivo.
Collapse
Affiliation(s)
- Banu Akar
- Department of Biomedical Engineering, Illinois Institute of Technology, United States; Research Service, Hines Veterans Administration Hospital, Hines, IL, United States
| | - Bin Jiang
- Department of Biomedical Engineering, Illinois Institute of Technology, United States; Research Service, Hines Veterans Administration Hospital, Hines, IL, United States
| | - Sami I Somo
- Department of Biomedical Engineering, Illinois Institute of Technology, United States; Research Service, Hines Veterans Administration Hospital, Hines, IL, United States
| | - Alyssa A Appel
- Department of Biomedical Engineering, Illinois Institute of Technology, United States; Research Service, Hines Veterans Administration Hospital, Hines, IL, United States
| | - Jeffery C Larson
- Department of Biomedical Engineering, Illinois Institute of Technology, United States; Research Service, Hines Veterans Administration Hospital, Hines, IL, United States
| | - Kenneth M Tichauer
- Department of Biomedical Engineering, Illinois Institute of Technology, United States
| | - Eric M Brey
- Department of Biomedical Engineering, Illinois Institute of Technology, United States; Research Service, Hines Veterans Administration Hospital, Hines, IL, United States.
| |
Collapse
|
30
|
Somo SI, Akar B, Bayrak ES, Larson JC, Appel AA, Mehdizadeh H, Cinar A, Brey EM. Pore Interconnectivity Influences Growth Factor-Mediated Vascularization in Sphere-Templated Hydrogels. Tissue Eng Part C Methods 2015; 21:773-85. [PMID: 25603533 DOI: 10.1089/ten.tec.2014.0454] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Rapid and controlled vascularization within biomaterials is essential for many applications in regenerative medicine. The extent of vascularization is influenced by a number of factors, including scaffold architecture. While properties such as pore size and total porosity have been studied extensively, the importance of controlling the interconnectivity of pores has received less attention. A sintering method was used to generate hydrogel scaffolds with controlled pore interconnectivity. Poly(methyl methacrylate) microspheres were used as a sacrificial agent to generate porous poly(ethylene glycol) diacrylate hydrogels with interconnectivity varying based on microsphere sintering conditions. Interconnectivity levels increased with sintering time and temperature with resultant hydrogel structure showing agreement with template structure. Porous hydrogels with a narrow pore size distribution (130-150 μm) and varying interconnectivity were investigated for their ability to influence vascularization in response to gradients of platelet-derived growth factor-BB (PDGF-BB). A rodent subcutaneous model was used to evaluate vascularized tissue formation in the hydrogels in vivo. Vascularized tissue invasion varied with interconnectivity. At week 3, higher interconnectivity hydrogels had completely vascularized with twice as much invasion. Interconnectivity also influenced PDGF-BB transport within the scaffolds. An agent-based model was used to explore the relative roles of steric and transport effects on the observed results. In conclusion, a technique for the preparation of hydrogels with controlled pore interconnectivity has been developed and evaluated. This method has been used to show that pore interconnectivity can independently influence vascularization of biomaterials.
Collapse
Affiliation(s)
- Sami I Somo
- 1 Department of Biomedical Engineering, Illinois Institute of Technology , Chicago, Illinois.,2 Research Service, Hines Veterans Administration Hospital , Hines, Illinois
| | - Banu Akar
- 1 Department of Biomedical Engineering, Illinois Institute of Technology , Chicago, Illinois.,2 Research Service, Hines Veterans Administration Hospital , Hines, Illinois
| | - Elif S Bayrak
- 3 Department of Chemical and Biological Engineering, Illinois Institute of Technology , Chicago, Illinois
| | - Jeffery C Larson
- 1 Department of Biomedical Engineering, Illinois Institute of Technology , Chicago, Illinois.,2 Research Service, Hines Veterans Administration Hospital , Hines, Illinois
| | - Alyssa A Appel
- 1 Department of Biomedical Engineering, Illinois Institute of Technology , Chicago, Illinois.,2 Research Service, Hines Veterans Administration Hospital , Hines, Illinois
| | - Hamidreza Mehdizadeh
- 3 Department of Chemical and Biological Engineering, Illinois Institute of Technology , Chicago, Illinois
| | - Ali Cinar
- 1 Department of Biomedical Engineering, Illinois Institute of Technology , Chicago, Illinois.,3 Department of Chemical and Biological Engineering, Illinois Institute of Technology , Chicago, Illinois
| | - Eric M Brey
- 1 Department of Biomedical Engineering, Illinois Institute of Technology , Chicago, Illinois.,2 Research Service, Hines Veterans Administration Hospital , Hines, Illinois
| |
Collapse
|
31
|
Ren X, Feng Y, Guo J, Wang H, Li Q, Yang J, Hao X, Lv J, Ma N, Li W. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications. Chem Soc Rev 2015; 44:5680-742. [DOI: 10.1039/c4cs00483c] [Citation(s) in RCA: 359] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review highlights the recent developments of surface modification and endothelialization of biomaterials in vascular tissue engineering applications.
Collapse
Affiliation(s)
- Xiangkui Ren
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Yakai Feng
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Jintang Guo
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Haixia Wang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Qian Li
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Jing Yang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xuefang Hao
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Juan Lv
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Nan Ma
- Institute of Chemistry and Biochemistry
- Free University of Berlin
- D-14195 Berlin
- Germany
| | - Wenzhong Li
- Department of Cardiac Surgery
- University of Rostock
- D-18057 Rostock
- Germany
| |
Collapse
|
32
|
An D, Ji Y, Chiu A, Lu YC, Song W, Zhai L, Qi L, Luo D, Ma M. Developing robust, hydrogel-based, nanofiber-enabled encapsulation devices (NEEDs) for cell therapies. Biomaterials 2014; 37:40-8. [PMID: 25453936 DOI: 10.1016/j.biomaterials.2014.10.032] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 10/02/2014] [Indexed: 12/28/2022]
Abstract
Cell encapsulation holds enormous potential to treat a number of hormone deficient diseases and endocrine disorders. We report a simple and universal approach to fabricate robust, hydrogel-based, nanofiber-enabled encapsulation devices (NEEDs) with macroscopic dimensions. In this design, we take advantage of the well-known capillary action that holds wetting liquid in porous media. By impregnating the highly porous electrospun nanofiber membranes of pre-made tubular or planar devices with hydrogel precursor solutions and subsequent crosslinking, we obtained various nanofiber-enabled hydrogel devices. This approach is broadly applicable and does not alter the water content or the intrinsic chemistry of the hydrogels. The devices retained the properties of both the hydrogel (e.g. the biocompatibility) and the nanofibers (e.g. the mechanical robustness). The facile mass transfer was confirmed by encapsulation and culture of different types of cells. Additional compartmentalization of the devices enabled paracrine cell co-cultures in single implantable devices. Lastly, we provided a proof-of-concept study on potential therapeutic applications of the devices by encapsulating and delivering rat pancreatic islets into chemically-induced diabetic mice. The diabetes was corrected for the duration of the experiment (8 weeks) before the implants were retrieved. The retrieved devices showed minimal fibrosis and as expected, live and functional islets were observed within the devices. This study suggests that the design concept of NEEDs may potentially help to overcome some of the challenges in the cell encapsulation field and therefore contribute to the development of cell therapies in future.
Collapse
Affiliation(s)
- Duo An
- Department of Biological and Environmental Engineering, Cornell University Ithaca, NY 14853, USA
| | - Yewei Ji
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Alan Chiu
- Department of Biological and Environmental Engineering, Cornell University Ithaca, NY 14853, USA
| | - Yen-Chun Lu
- Department of Biological and Environmental Engineering, Cornell University Ithaca, NY 14853, USA
| | - Wei Song
- Department of Biological and Environmental Engineering, Cornell University Ithaca, NY 14853, USA
| | - Lei Zhai
- Department of Chemistry, University of Central Florida, Orlando, FL 32826, USA
| | - Ling Qi
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Dan Luo
- Department of Biological and Environmental Engineering, Cornell University Ithaca, NY 14853, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University Ithaca, NY 14853, USA.
| |
Collapse
|
33
|
New alginate microcapsule system for angiogenic protein delivery and immunoisolation of islets for transplantation in the rat omentum pouch. Transplant Proc 2014; 43:3262-4. [PMID: 22099771 DOI: 10.1016/j.transproceed.2011.10.030] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Severe hypoxia caused by a lack of vascular supply and an inability to retrieve encapsulated islets transplanted in the peritoneal cavity for biopsy and subsequent evaluation are obstacles to clinical application of encapsulation strategies for islet transplantation. We recently proposed an omentum pouch model as an alternative site of encapsulated islet transplantation and have also described a multi-layer microcapsule system suitable for coencapsulation of islets with angiogenic protein in which the latter could be encapsulated in an external layer to induce vascularization of the encapsulated islet graft. The purpose of the present study was to determine the angiogenic efficacy of fibroblast growth factor (FGF-1) released from the external layer of the new capsule system in the omentum pouch graft. We prepared 2 groups of alginate microspheres, each measuring ∼600 μm in diameter with a semipermeable poly-L-ornithine (PLO) membrane separating 2 alginate layers. While one group of microcapsules contained no protein (control), FGF-1 (1.794 μg/100 microcapsules) was encapsulated in the external layer of the other (test) group. From each of the 2 groups, 100 microcapsules were transplanted separately in an omentum pouch created in each normal Lewis rat and were retrieved after 14 days for analysis of vessel density using the technique of serial sample sections stained for CD31 with quantitative three-dimensional imaging. We found that FGF-1 released from the external layer of the test microcapsules induced a mean ± SD vessel density (mm(2)) of 198.8 ± 59.2 compared with a density of 128.9 ± 10.9 in pouches measured in control capsule implants (P = .03; n = 5 animals/group). We concluded that the external layer of our new alginate microcapsule system is an effective drug delivery device for enhancement of graft neovascularization in a retrievable omentum pouch.
Collapse
|
34
|
Tendulkar S, McQuilling JP, Childers C, Pareta R, Opara EC, Ramasubramanian MK. A scalable microfluidic device for the mass production of microencapsulated islets. Transplant Proc 2014; 43:3184-7. [PMID: 22099752 DOI: 10.1016/j.transproceed.2011.10.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The objective of this research was to test the viability and function of islets microencapsulated using a scalable microfluidic device that is suitable for the mass production of encapsulated islets for transplantation. A 3-D microfluidic device consisting of eight outlets with an inner fluid inlet and an outer concentric inlet to the device has been designed and fabricated using the stereolithography rapid prototyping technique. Islets were isolated from normal Wistar-Furth rat pancreas using the procedure of collagenase digestion of pancreatic tissue. Following purification, islet suspensions in 1.5% sodium alginate were pumped into the fluid inlet of the microfluidic device, which distributed the flow equally to all the eight channels according to the design. The air plenum distributed compressed air uniformly through the eight concurrent outlets, and with one fluid pump and air source, the device produced eight microencapsulations simultaneously. After encapsulation, the islets were tested for functionality using the dynamic perifusion procedure with low- and high-glucose concentrations. The device is capable of producing eight channels of steady stream of monodisperse microencapsulations of a range of diameters depending on the design and process parameters. Using this prototype device, encapsulated islets were shown to be viable in the functional tests that we performed. Thus, the mean ± standard deviation rate of insulin secretion increased from a basal rate of 0.165 ± 0.059 ng/10 islets/min to a stimulated rate of 0.422 ± 0.095 ng/10 islets/min (P < .05, n = 3), when the glucose concentration was changed from 5.5 mmol/L to 27.5 mmol/L, and this glucose stimulation index was not different from that observed with unencapsulated islets under same conditions. In summary, the high-throughput prototype device that we have designed can produce encapsulated islets that are viable and suitable for transplantation studies.
Collapse
Affiliation(s)
- S Tendulkar
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695-7910, USA
| | | | | | | | | | | |
Collapse
|
35
|
Gao W, Li T, Yu M, Hu X, Duan D, Lin T. Preparation of sustained-release composite coating formed by dexamethasone and oxidated sodium alginate. Int J Clin Exp Med 2014; 7:3053-3061. [PMID: 25356181 PMCID: PMC4211831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 08/26/2014] [Indexed: 06/04/2023]
Abstract
Inflammatory reaction and thrombosis are the unsolved main problems of non-coated biomaterials applied in cardiac surgery. In the present study, a series of sustained composite coating was prepared and characterized, such as in the chemical modification of polyvinyl chloride (PVC) for applications in cardiac surgery and the assessment of the biological property of modified PVC. The composite coatings were mainly formed by dexamethasone (DXM) and oxidated sodium alginate (OSA) through ionic and covalent bond methods. The biocompatibility and hemocompatibility of the coating surface were evaluated. Scanning electron microscopy analysis of the surface morphologies of the thrombus and platelets revealed that DXM-OSA coating improved the antithrombogenicity and biocompatibility of PVC circuits, which were essential for cardiac pulmonary bypass surgery. Evaluation of in vitro release revealed that the DXM on group PPC was gradually released in 8 h. Thus, DXM that covalently combined on the PVC surface showed sustained release. By contrast, DXM on groups PPI and PPD was quickly or shortly released, suggesting that groups PPI and PPD did not have sustained-release property. Overall, results indicated that the DXM-OSA composite coating may be a promising coating for the sustained delivery of DXM.
Collapse
Affiliation(s)
- Wenqing Gao
- Department of Heart Center, The Third Central HospitalTianjin, China
| | - Tong Li
- Department of Heart Center, The Third Central HospitalTianjin, China
| | - Meili Yu
- Key Laboratory of Artificial Cells, The Third Central HospitalTianjin, China
| | - Xiaomin Hu
- Department of Heart Center, The Third Central HospitalTianjin, China
| | - Dawei Duan
- Department of Heart Center, The Third Central HospitalTianjin, China
| | - Tingting Lin
- Tianjin Medical University Eye HospitalTianjin, China
| |
Collapse
|
36
|
Krishnan R, Alexander M, Robles L, Foster CE, Lakey JRT. Islet and stem cell encapsulation for clinical transplantation. Rev Diabet Stud 2014; 11:84-101. [PMID: 25148368 DOI: 10.1900/rds.2014.11.84] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Over the last decade, improvements in islet isolation techniques have made islet transplantation an option for a certain subset of patients with long-standing diabetes. Although islet transplants have shown improved graft function, adequate function beyond the second year has not yet been demonstrated, and patients still require immunosuppression to prevent rejection. Since allogeneic islet transplants have experienced some success, the next step is to improve graft function while eliminating the need for systemic immunosuppressive therapy. Biomaterial encapsulation offers a strategy to avoid the need for toxic immunosuppression while increasing the chances of graft function and survival. Encapsulation entails coating cells or tissue in a semipermeable biocompatible material that allows for the passage of nutrients, oxygen, and hormones while blocking immune cells and regulatory substances from recognizing and destroying the cell, thus avoiding the need for systemic immunosuppressive therapy. Despite advances in encapsulation technology, these developments have not yet been meaningfully translated into clinical islet transplantation, for which several factors are to blame, including graft hypoxia, host inflammatory response, fibrosis, improper choice of biomaterial type, lack of standard guidelines, and post-transplantation device failure. Several new approaches, such as the use of porcine islets, stem cells, development of prevascularized implants, islet nanocoating, and multilayer encapsulation, continue to generate intense scientific interest in this rapidly expanding field. This review provides a comprehensive update on islet and stem cell encapsulation as a treatment modality in type 1 diabetes, including a historical outlook as well as current and future research avenues.
Collapse
Affiliation(s)
- Rahul Krishnan
- Department of Surgery, University of California Irvine, Orange, CA 92868, USA
| | - Michael Alexander
- Department of Surgery, University of California Irvine, Orange, CA 92868, USA
| | - Lourdes Robles
- Department of Surgery, University of California Irvine, Orange, CA 92868, USA
| | - Clarence E Foster
- Department of Surgery, University of California Irvine, Orange, CA 92868, USA
| | - Jonathan R T Lakey
- Department of Surgery, University of California Irvine, Orange, CA 92868, USA
| |
Collapse
|
37
|
Pareta R, McQuilling JP, Sittadjody S, Jenkins R, Bowden S, Orlando G, Farney AC, Brey EM, Opara EC. Long-term function of islets encapsulated in a redesigned alginate microcapsule construct in omentum pouches of immune-competent diabetic rats. Pancreas 2014; 43:605-13. [PMID: 24681880 PMCID: PMC3981909 DOI: 10.1097/mpa.0000000000000107] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Our study aim was to determine encapsulated islet graft viability in an omentum pouch and the effect of fibroblast growth factor 1 (FGF-1) released from our redesigned alginate microcapsules on the function of the graft. METHODS Isolated rat islets were encapsulated in an inner core made with 1.5% low-viscosity-high-mannuronic-acid alginate followed by an external layer made with 1.25% low-viscosity high-guluronic acid alginate with or without FGF-1, in microcapsules measuring 300 to 400 µm in diameter. The 2 alginate layers were separated by a perm-selective membrane made with 0.1% poly-L-ornithine, and the inner low-viscosity-high-mannuronic-acid core was partially chelated using 55 mM sodium citrate for 2 minutes. RESULTS A marginal mass of encapsulated islet allografts (∼2000 islets/kg) in streptozotocin-diabetic Lewis rats caused significant reduction in blood glucose levels similar to the effect observed with encapsulated islet isografts. Transplantation of alloislets coencapsulated with FGF-1 did not result in better glycemic control, but induced greater body weight maintenance in transplant recipients compared with those that received only alloislets. Histological examination of the retrieved tissue demonstrated morphologically and functionally intact islets in the microcapsules, with no signs of fibrosis. CONCLUSIONS We conclude that the omentum is a viable site for encapsulated islet transplantation.
Collapse
Affiliation(s)
- Rajesh Pareta
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - John P McQuilling
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Virginia Tech-Wake Forest University School of Biomedical Engineering & Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Sivanandane Sittadjody
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Randy Jenkins
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Stephen Bowden
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Giuseppe Orlando
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Alan C Farney
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Eric M Brey
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
- Research Service, Hines Veterans Administration Hospital, Hines, IL, USA
| | - Emmanuel C Opara
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Virginia Tech-Wake Forest University School of Biomedical Engineering & Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
38
|
Abstract
Emerging understanding about interactions between stem cells, scaffolds, and morphogenic factors has accelerated translational research in the field of dental pulp tissue engineering. Dental pulp stem cells constitute a subpopulation of cells endowed with self-renewal and multipotency. Dental pulp stem cells seeded in biodegradable scaffolds and exposed to dentin-derived morphogenic factors give rise to a pulplike tissue capable of generating new dentin. Notably, dentin-derived proteins are sufficient to induce dental pulp stem cell differentiation into odontoblasts. Ongoing work is focused on developing ways of mobilizing dentin-derived proteins and disinfecting the root canal of necrotic teeth without compromising the morphogenic potential of these signaling molecules. On the other hand, dentin by itself does not appear to be capable of inducing endothelial differentiation of dental pulp stem cells despite the well-known presence of angiogenic factors in dentin. This is particularly relevant in the context of dental pulp tissue engineering in full root canals in which access to blood supply is limited to the apical foramina. To address this challenge, scientists are looking at ways to use the scaffold as a controlled-release device for angiogenic factors. The aim of this article was to present and discuss current strategies to functionalize injectable scaffolds and customize them for dental pulp tissue engineering. The long-term goal of this work is to develop stem cell-based therapies that enable the engineering of functional dental pulps capable of generating new tubular dentin in humans.
Collapse
Affiliation(s)
- Evandro Piva
- Department of Operative Dentistry, School of Dentistry, Federal University of Pelotas, Pelotas, RS, Brazil; Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan
| | - Adriana F Silva
- Department of Operative Dentistry, School of Dentistry, Federal University of Pelotas, Pelotas, RS, Brazil; Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan
| | - Jacques E Nör
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan; Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, Michigan; Department of Otolaryngology, University of Michigan School of Medicine, Ann Arbor, Michigan.
| |
Collapse
|
39
|
Colton CK. Oxygen supply to encapsulated therapeutic cells. Adv Drug Deliv Rev 2014; 67-68:93-110. [PMID: 24582600 DOI: 10.1016/j.addr.2014.02.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 01/06/2014] [Accepted: 02/19/2014] [Indexed: 02/07/2023]
Abstract
Therapeutic cells encapsulated in immunobarrier devices have promise for treatment of a variety of human diseases without immunosuppression. The absence of sufficient oxygen supply to maintain viability and function of encapsulated tissue has been the most critical impediment to progress. Within the framework of oxygen supply limitations, we review the major issues related to development of these devices, primarily in the context of encapsulated islets of Langerhans for treating diabetes, including device designs and materials, supply of tissue, protection from immune rejection, and maintenance of cell viability and function. We describe various defensive measures investigated to enhance survival of transplanted tissue, and we review the diverse approaches to enhancement of oxygen transport to encapsulated tissue, including manipulation of diffusion distances and oxygen permeability of materials, induction of neovascularization with angiogenic factors and vascularizing membranes, and methods for increasing the oxygen concentration adjacent to encapsulated tissue so as to exceed that in the microvasculature. Recent developments, particularly in this latter area, suggest that the field is ready for clinical trials of encapsulated therapeutic cells to treat diabetes.
Collapse
|
40
|
Rokstad AMA, Lacík I, de Vos P, Strand BL. Advances in biocompatibility and physico-chemical characterization of microspheres for cell encapsulation. Adv Drug Deliv Rev 2014; 67-68:111-30. [PMID: 23876549 DOI: 10.1016/j.addr.2013.07.010] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/28/2013] [Accepted: 07/12/2013] [Indexed: 02/06/2023]
Abstract
Cell encapsulation has already shown its high potential and holds the promise for future cell therapies to enter the clinics as a large scale treatment option for various types of diseases. The advancement in cell biology towards this goal has to be complemented with functional biomaterials suitable for cell encapsulation. This cannot be achieved without understanding the close correlation between cell performance and properties of microspheres. The ongoing challenges in the field of cell encapsulation require a critical view on techniques and approaches currently utilized to characterize microspheres. This review deals with both principal subjects of microspheres characterization in the cell encapsulation field: physico-chemical characterization and biocompatibility. The up-to-day knowledge is summarized and discussed with the focus to identify missing knowledge and uncertainties, and to propose the mandatory next steps in characterization of microspheres for cell encapsulation. The primary conclusion of this review is that further success in development of microspheres for cell therapies cannot be accomplished without careful selection of characterization techniques, which are employed in conjunction with biological tests.
Collapse
Affiliation(s)
- Anne Mari A Rokstad
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Prinsesse Kristinasgt. 1, N-7491 Trondheim, Norway; The Central Norway Health Authority (RHA), Trondheim, Norway.
| | - Igor Lacík
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava, Slovakia.
| | - Paul de Vos
- Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA11, 9700 RB Groningen, The Netherlands.
| | - Berit L Strand
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Prinsesse Kristinasgt. 1, N-7491 Trondheim, Norway; Department of Biotechnology, NTNU, Sem Saelandsvei 6/8, N-7491 Trondheim, Norway; The Central Norway Health Authority (RHA), Trondheim, Norway.
| |
Collapse
|
41
|
Jiang B, Akar B, Waller T, Larson J, Appel A, Brey E. Design of a composite biomaterial system for tissue engineering applications. Acta Biomater 2014; 10:1177-86. [PMID: 24321351 DOI: 10.1016/j.actbio.2013.11.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 11/10/2013] [Accepted: 11/29/2013] [Indexed: 01/01/2023]
Abstract
Biomaterials that regulate vascularized tissue formation have the potential to contribute to new methods of tissue replacement and reconstruction. The goal of this study was to develop a porous, degradable tissue engineering scaffold that could deliver multiple growth factors and regulate vessel assembly within the porous structure of the material. Porous hydrogels of poly(ethylene glycol)-co-(L-lactic acid) (PEG-PLLA) were prepared via salt leaching. The degradation time of the hydrogels could be controlled between 1 and 7 weeks, based on hydrogel composition. Fibrin was incorporated into the interconnected pores of the hydrogels to promote neovascularization and as a reservoir for rapid (<5 days) growth factor delivery. Poly(lactic-co-glycolic acid) (PLGA) microspheres were incorporated into the degradable polymeric hydrogel scaffold to allow sustained (>30 days) growth factor delivery. Fibroblast growth factor-1 (FGF-1) and platelet-derived growth factor-BB (PDGF-BB) were delivered from the system owing to their roles in the promotion of angiogenesis and vascular stabilization, respectively. Hydrogels tested in vivo with a subcutaneous implantation model were selected based on the results from in vitro degradation and growth factor release kinetics. Dual growth factor delivery promoted significantly more tissue ingrowth in the scaffold compared with blank or single growth factor delivery. The sequential delivery of FGF-1 following PDGF-BB promoted more persistent and mature blood vessels. In conclusion, a biomaterials system was developed to provide structural support for tissue regeneration, as well as delivery of growth factors that stimulate neovascularization within the structure prior to complete degradation.
Collapse
|
42
|
Buder B, Alexander M, Krishnan R, Chapman DW, Lakey JR. Encapsulated islet transplantation: strategies and clinical trials. Immune Netw 2013; 13:235-9. [PMID: 24385941 PMCID: PMC3875781 DOI: 10.4110/in.2013.13.6.235] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 11/26/2013] [Accepted: 11/26/2013] [Indexed: 12/01/2022] Open
Abstract
Encapsulation of tissue has been an area of intense research with a myriad number of therapeutic applications as diverse as cancer, tissue regeneration, and diabetes. In the case of diabetes, transplantation of pancreatic islets of Langerhans containing insulin-producing beta cells has shown promise toward a cure. However, anti-rejection therapy that is needed to sustain the transplanted tissue has numerous adverse effects, and the islets might still be damaged by immune processes. Furthermore, the profound scarcity of healthy human donor organs restricts the availability of islets for transplant. Islet encapsulation allows the protection of this tissue without the use of toxic medications, while also expanding the donor pool to include animal sources. Before the widespread application of this therapy, there are still issues that need to be resolved. There are many materials that can be used, differing shapes and sizes of capsules, and varied sources of islets to name a few variables that need to be considered. In this review, the current options for capsule generation, past animal and human studies, and future directions in this area of research are discussed.
Collapse
Affiliation(s)
- Brian Buder
- Department of Surgery, University of California Irvine, CA 92868, USA
| | - Michael Alexander
- Department of Surgery, University of California Irvine, CA 92868, USA
| | - Rahul Krishnan
- Department of Surgery, University of California Irvine, CA 92868, USA
| | - David W Chapman
- Department of Surgery, University of California Irvine, CA 92868, USA
| | - Jonathan Rt Lakey
- Department of Surgery, University of California Irvine, CA 92868, USA. ; Department of Biomedical Engineering, University of California Irvine, CA 92868, USA
| |
Collapse
|
43
|
Fang X, Sittadjody S, Gyabaah K, Opara EC, Balaji KC. Novel 3D co-culture model for epithelial-stromal cells interaction in prostate cancer. PLoS One 2013; 8:e75187. [PMID: 24073251 PMCID: PMC3779160 DOI: 10.1371/journal.pone.0075187] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 08/11/2013] [Indexed: 11/19/2022] Open
Abstract
Paracrine function is a major mechanism of cell-cell communication within tissue microenvironment in normal development and disease. In vitro cell culture models simulating tissue or tumor microenvironment are necessary tools to delineate epithelial-stromal interactions including paracrine function, yet an ideal three-dimensional (3D) tumor model specifically studying paracrine function is currently lacking. In order to fill this void we developed a novel 3D co-culture model in double-layered alginate hydrogel microspheres, incorporating prostate cancer epithelial and stromal cells in separate compartments of the microspheres. The cells remained confined and viable within their respective spheres for over 30 days. As a proof of principle regarding paracrine function of the model, we measured shedded component of E-cadherin (sE-cad) in the conditioned media, a major membrane bound cell adhesive molecule that is highly dysregulated in cancers including prostate cancer. In addition to demonstrating that sE-cad can be reliably quantified in the conditioned media, the time course experiments also demonstrated that the amount of sE-cad is influenced by epithelial-stromal interaction. In conclusion, the study establishes a novel 3D in vitro co-culture model that can be used to study cell-cell paracrine interaction.
Collapse
Affiliation(s)
- Xiaolan Fang
- Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
- Department of Cancer Biology, Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
| | - Sivanandane Sittadjody
- Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
| | - Kenneth Gyabaah
- Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
- Department of Cancer Biology, Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
| | - Emmanuel C. Opara
- Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
| | - Kethandapatti C. Balaji
- Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
- Department of Cancer Biology, Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
- Department of Urology, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
44
|
Khanna O, Huang JJ, Moya ML, Wu CW, Cheng MH, Opara EC, Brey EM. FGF-1 delivery from multilayer alginate microbeads stimulates a rapid and persistent increase in vascular density. Microvasc Res 2013; 90:23-9. [PMID: 23978335 DOI: 10.1016/j.mvr.2013.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 08/13/2013] [Accepted: 08/14/2013] [Indexed: 10/26/2022]
Abstract
In recent years, great advances have been made in the use of islet transplantation as a treatment for type I diabetes. Indeed, it is possible that stimulation of local neovascularization upon transplantation could improve functional graft outcomes. In the present study, we investigate the use of multilayered alginate microbeads to provide a sustained delivery of FGF-1, and whether this results in increased neovascularization in vivo. Multilayered alginate microbeads, loaded with either 150ng or 600ng of FGF-1 in the outer layer, were surgically implanted into rats using an omentum pouch model and compared to empty microbead implants. Rats were sacrificed at 4days, 1week, and 6weeks. Staining for CD31 showed that both conditions of FGF-1 loaded microbeads resulted in a significantly higher vessel density at all time points studied. Moreover, at 6weeks, alginate microbeads containing 600ng FGF-1 provided a greater vascular density compared to both the control group and the microbeads loaded with 150ng FGF-1. Omenta analyzed via staining for smooth muscle alpha actin showed no variation in mural cell density at either 4days or 1week. At 6weeks, however, omenta exposed to microbeads loaded with 600ng FGF-1 showed an increase in mural cell staining compared to controls. These results suggest that the sustained delivery of FGF-1 from multilayered alginate microbeads results in a rapid and persistent vascular response. An increase in the local blood supply could reduce the number of islets required for transplantation in order to achieve clinical efficacy.
Collapse
Affiliation(s)
- Omaditya Khanna
- Department of Chemical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Crosstalk between Fibroblast Growth Factor (FGF) Receptor and Integrin through Direct Integrin Binding to FGF and Resulting Integrin-FGF-FGFR Ternary Complex Formation. Med Sci (Basel) 2013. [DOI: 10.3390/medsci1010020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
46
|
Robles L, Storrs R, Lamb M, Alexander M, Lakey JRT. Current status of islet encapsulation. Cell Transplant 2013; 23:1321-48. [PMID: 23880554 DOI: 10.3727/096368913x670949] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cell encapsulation is a method of encasing cells in a semipermeable matrix that provides a permeable gradient for the passage of oxygen and nutrients, but effectively blocks immune-regulating cells from reaching the graft, preventing rejection. This concept has been described as early as the 1930s, but it has exhibited substantial achievements over the last decade. Several advances in encapsulation engineering, chemical purification, applications, and cell viability promise to make this a revolutionary technology. Several obstacles still need to be overcome before this process becomes a reality, including developing a reliable source of islets or insulin-producing cells, determining the ideal biomaterial to promote graft function, reducing the host response to the encapsulation device, and ultimately a streamlined, scaled-up process for industry to be able to efficiently and safely produce encapsulated cells for clinical use. This article provides a comprehensive review of cell encapsulation of islets for the treatment of type 1 diabetes, including a historical perspective, current research findings, and future studies.
Collapse
Affiliation(s)
- Lourdes Robles
- Department of Surgery, University of California Irvine, Irvine, CA, USA
| | | | | | | | | |
Collapse
|
47
|
An ovarian cell microcapsule system simulating follicle structure for providing endogenous female hormones. Int J Pharm 2013; 455:312-9. [PMID: 23867984 DOI: 10.1016/j.ijpharm.2013.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/13/2013] [Accepted: 07/02/2013] [Indexed: 11/21/2022]
Abstract
The aim of this study was to create a microcapsule system simulating native follicle structure by introducing microcarrier culture to microencapsulation for providing endogenous female hormones. Granulosa and theca cells of rat follicles were isolated. Granulosa cells were grown on microcarriers and enclosed together with theca cells in alginate-chitosan-alginate microcapsules. The cell viability and female hormone secretion were investigated in vitro. The microcapsules were transplanted to ovariectomized rats and the serum levels of estradiol and progesterone were measured for 60 days. The microencapsulated granulosa cells growing on microcarriers exhibited enhanced viability and promoted secreting ability of estradiol and progesterone compared with those without the microcarriers. Co-microencapsulation of granulosa cells and theca cells markedly elevated estradiol secretion in vitro. Transplantation of co-microencapsulated granulosa cells on microcarriers and theca cells maintained serum estradiol and progesterone at normal levels for 60 days. Microcarrier cell culture has been proved to be an effective method to enhance the viability of granulosa cells in microcapsules. Moreover, the transplantation of microcapsules enclosing granulosa cells on microcarriers and theca cells may be promising to provide endogenous female hormones for menopausal syndrome treatment.
Collapse
|
48
|
Abstract
Islet transplantation has been shown to be a viable treatment option for patients afflicted with type 1 diabetes. However, the lack of availablity of human pancreases and the need to use risky immunosuppressive drugs to prevent transplant rejection remain two major obstacles to the routine use of islet transplantation in diabetic patients. Successful development of a bioartificial pancreas using the approach of microencapsulation with perm-selective coating of islets in hydrogels for graft immunoisolation holds tremendous promise for diabetic patients because it has great potential to overcome these two barriers. In this review article, we will discuss the need for a bioartificial pancreas, provide a detailed description of the microencapsulation process, and review the status of the technology in clinical development. We will also critically review the various factors that will need to be taken into consideration in order to achieve the ultimate goal of routine clinical application.
Collapse
Affiliation(s)
- Rajesh A Pareta
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Alan C Farney
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Emmanuel C Opara
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
49
|
Francis NL, Hunger PM, Donius AE, Riblett BW, Zavaliangos A, Wegst UGK, Wheatley MA. An ice-templated, linearly aligned chitosan-alginate scaffold for neural tissue engineering. J Biomed Mater Res A 2013; 101:3493-503. [PMID: 23596011 DOI: 10.1002/jbm.a.34668] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 02/12/2013] [Accepted: 02/13/2013] [Indexed: 11/06/2022]
Abstract
Several strategies have been investigated to enhance axonal regeneration after spinal cord injury, however, the resulting growth can be random and disorganized. Bioengineered scaffolds provide a physical substrate for guidance of regenerating axons towards their targets, and can be produced by freeze casting. This technique involves the controlled directional solidification of an aqueous solution or suspension, resulting in a linearly aligned porous structure caused by ice templating. In this study, freeze casting was used to fabricate porous chitosan-alginate (C/A) scaffolds with longitudinally oriented channels. Chick dorsal root ganglia explants adhered to and extended neurites through the scaffold in parallel alignment with the channel direction. Surface adsorption of a polycation and laminin promoted significantly longer neurite growth than the uncoated scaffold (poly-L-ornithine + Laminin = 793.2 ± 187.2 μm; poly-L-lysine + Laminin = 768.7 ± 241.2 μm; uncoated scaffold = 22.52 ± 50.14 μm) (P < 0.001). The elastic modulus of the hydrated scaffold was determined to be 5.08 ± 0.61 kPa, comparable to reported spinal cord values. The present data suggested that this C/A scaffold is a promising candidate for use as a nerve guidance scaffold, because of its ability to support neuronal attachment and the linearly aligned growth of DRG neurites.
Collapse
Affiliation(s)
- Nicola L Francis
- Department of Biomedical Engineering, Science, and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia
| | | | | | | | | | | | | |
Collapse
|
50
|
Gao W, Lin T, Li T, Yu M, Hu X, Duan D. Sodium alginate/heparin composites on PVC surfaces inhibit the thrombosis and platelet adhesion: applications in cardiac surgery. Int J Clin Exp Med 2013; 6:259-268. [PMID: 23641302 PMCID: PMC3631550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 03/28/2013] [Indexed: 06/02/2023]
Abstract
Thrombosis and hemocyte damage are the main problems of applied non-coated biomaterials to cardiac surgery that remain unsolved. The present study is aimed at the chemical modification of polyvinyl chloride (PVC) for applications in cardiac surgery and the biological property assessment of modified PVC. Sodium alginate (SA)/heparin (HEP) composites were covalently immobilized onto the surface of the PVC pipeline. The surface grafting density and protein adsorption were determined by ultraviolet spectrophotometry. The surface contact angles were evaluated by contact-angle measurement, whereas the surface characteristics were evaluated by Fouriertransform infrared spectroscopy. Blood coagulation time and platelet adhesion were measured using an automated blood coagulation analyzer and a hemocytometer, respectively. Surface morphologies of the thrombus and platelets were evaluated by scanning electron microscopy. The immobilization of SA/HEP reduced the contact angles of the coated surface. Protein adsorption was reduced by the immobilization of SA. The activated partial thrombin time and thrombin time of the coated PVC were significantly prolonged as compared with the non-coated PVC. Platelet adhesion and thrombus formation were all reduced by the immobilization of HEP. The results revealed that the SA/HEP coating can improve the antithrombogenicity of the PVC pipeline, as well as improve its biocompatibility and hemocompatibility, which are essential for cardiac pulmonary bypass surgery.
Collapse
Affiliation(s)
- Wenqing Gao
- Tianjin Medical UniversityTianjin, China
- Department of Heart Center, The Third Central HospitalTianjin, China
| | | | - Tong Li
- Department of Heart Center, The Third Central HospitalTianjin, China
| | - Meili Yu
- Key Laboratory of Artificial Cells, The Third Central HospitalTianjin, China
| | - Xiaomin Hu
- Department of Heart Center, The Third Central HospitalTianjin, China
| | - Dawei Duan
- Department of Heart Center, The Third Central HospitalTianjin, China
| |
Collapse
|