1
|
Chen X, Wu T, Bu Y, Yan H, Lin Q. Fabrication and Biomedical Application of Alginate Composite Hydrogels in Bone Tissue Engineering: A Review. Int J Mol Sci 2024; 25:7810. [PMID: 39063052 PMCID: PMC11277200 DOI: 10.3390/ijms25147810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Nowadays, as a result of the frequent occurrence of accidental injuries and traumas such as bone damage, the number of people causing bone injuries or fractures is increasing around the world. The design and fabrication of ideal bone tissue engineering (BTE) materials have become a research hotspot in the scientific community, and thus provide a novel path for the treatment of bone diseases. Among the materials used to construct scaffolds in BTE, including metals, bioceramics, bioglasses, biomacromolecules, synthetic organic polymers, etc., natural biopolymers have more advantages against them because they can interact with cells well, causing natural polymers to be widely studied and applied in the field of BTE. In particular, alginate has the advantages of excellent biocompatibility, good biodegradability, non-immunogenicity, non-toxicity, wide sources, low price, and easy gelation, enabling itself to be widely used as a biomaterial. However, pure alginate hydrogel as a BTE scaffold material still has many shortcomings, such as insufficient mechanical properties, easy disintegration of materials in physiological environments, and lack of cell-specific recognition sites, which severely limits its clinical application in BTE. In order to overcome the defects of single alginate hydrogels, researchers prepared alginate composite hydrogels by adding one or more materials to the alginate matrix in a certain proportion to improve their bioapplicability. For this reason, this review will introduce in detail the methods for constructing alginate composite hydrogels, including alginate/polymer composite hydrogels, alginate/bioprotein or polypeptide composite hydrogels, alginate/bioceramic composite hydrogels, alginate/bioceramic composite hydrogels, and alginate/nanoclay composite hydrogels, as well as their biological application trends in BTE scaffold materials, and look forward to their future research direction. These alginate composite hydrogel scaffolds exhibit both unexceptionable mechanical and biochemical properties, which exhibit their high application value in bone tissue repair and regeneration, thus providing a theoretical basis for the development and sustainable application of alginate-based functional biomedical materials.
Collapse
Affiliation(s)
- Xiuqiong Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.C.); (T.W.); (Y.B.); (Q.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Ting Wu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.C.); (T.W.); (Y.B.); (Q.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Yanan Bu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.C.); (T.W.); (Y.B.); (Q.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Huiqiong Yan
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.C.); (T.W.); (Y.B.); (Q.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Qiang Lin
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.C.); (T.W.); (Y.B.); (Q.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
2
|
Badekila AK, Pai V, Vijayan V, Kini S. Engineering alginate/carboxymethylcellulose scaffolds to establish liver cancer spheroids: Evaluation of molecular variances between 2D and 3D models. Int J Biol Macromol 2024; 254:128058. [PMID: 37956801 DOI: 10.1016/j.ijbiomac.2023.128058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/15/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023]
Abstract
Natural polymeric hydrogels represent an optimal framework for 3D culture development. This study demonstrates a freeze-thaw-based ionic crosslinking technique for fabricating alginate/carboxymethylcellulose scaffold for culturing human hepatocellular carcinoma, Huh-7 cells to generate 3D spheroids. Consolidating morphological and biomechanical characterization of Alg/CMC scaffolds shows the formation of uniform hydrogels with significant crosslinking (ATR-FTIR), multiscale pores (FE-SEM), swelling/water absorbance, softer texture, viscoelasticity (rheology), spreading nature (contact angle), and degradation rate optimal for 3D culture establishment. The influence of cell seeding density and time with spheroid formation reveals a maximal size of 250-300 μm on day 7. Calcein AM and Propidium iodide staining confirm that a culmination of viable and dead cells generates spheroidal heterogeneity. RT-qPCR in 3D culture against RPL-13 and 2D culture controls indicate an upregulation of E-cadherin, N-cadherin, fibronectin, and integrin α9/β6. Further, western blotting and immunofluorescence confirm the collective display of cellular interactions in 3D spheroids. Thus, the expression profile signifies the role of key genes during the assembly and formation of 3D spheroids in 1%Alg/1%CMC scaffolds with a profound epithelial characteristic. In the future, this study will bring a 3D spheroid model in a platter for elucidating epithelial to mesenchymal transition of cells during in vitro disease modeling.
Collapse
Affiliation(s)
- Anjana Kaveri Badekila
- Nitte (Deemed to be University), Department of Bio & Nano Technology, Nitte University Centre for Science Education and Research, Mangalore 575018, Karnataka, India
| | - Vishruta Pai
- Nitte (Deemed to be University), Department of Bio & Nano Technology, Nitte University Centre for Science Education and Research, Mangalore 575018, Karnataka, India
| | - Vijeesh Vijayan
- Nitte (Deemed to be University), Department of Mechanical Engineering, NMAM Institute of Technology (NMAMIT), Nitte 574110, India
| | - Sudarshan Kini
- Nitte (Deemed to be University), Department of Bio & Nano Technology, Nitte University Centre for Science Education and Research, Mangalore 575018, Karnataka, India.
| |
Collapse
|
3
|
Kang J, Zajforoushan Moghaddam S, Thormann E. Self-Cross-Linkable Chitosan-Alginate Complexes Inspired by Mussel Glue Chemistry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15499-15506. [PMID: 37870990 DOI: 10.1021/acs.langmuir.3c01750] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
In this study, mussel-inspired chemistry, based on catechol-amine reactions, was adopted to develop self-cross-linkable chitosan-alginate (Chi-Alg) complexes. To do so, the biopolymers were each substituted with ∼20% catechol groups (ChiC and AlgC), and then four complex combinations (Chi-Alg, ChiC-Alg, Chi-AlgC, ChiC-AlgC) were prepared at the surface and in bulk solution. Based on QCM-D and lap shear adhesion tests, the complex with catechol only on Chi (ChiC-Alg) did not show a significant variation from the control complex (Chi-Alg). Conversely, the complexes with catechol on alginate (Chi-AlgC and ChiC-AlgC) rendered a self-cross-linking property and enhanced cohesive properties.
Collapse
Affiliation(s)
- Junjie Kang
- Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | | | - Esben Thormann
- Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
4
|
Badekila AK, Pai V, Vijayan V, Kini S. Engineering alginate/carboxymethylcellulose scaffolds to establish liver cancer spheroids: Evaluation of molecular variances between 2D and 3D models. Int J Biol Macromol 2023:128058. [DOI: https:/doi.org/10.1016/j.ijbiomac.2023.128058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
|
5
|
Yu L, Cavelier S, Hannon B, Wei M. Recent development in multizonal scaffolds for osteochondral regeneration. Bioact Mater 2023; 25:122-159. [PMID: 36817819 PMCID: PMC9931622 DOI: 10.1016/j.bioactmat.2023.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/30/2022] [Accepted: 01/14/2023] [Indexed: 02/05/2023] Open
Abstract
Osteochondral (OC) repair is an extremely challenging topic due to the complex biphasic structure and poor intrinsic regenerative capability of natural osteochondral tissue. In contrast to the current surgical approaches which yield only short-term relief of symptoms, tissue engineering strategy has been shown more promising outcomes in treating OC defects since its emergence in the 1990s. In particular, the use of multizonal scaffolds (MZSs) that mimic the gradient transitions, from cartilage surface to the subchondral bone with either continuous or discontinuous compositions, structures, and properties of natural OC tissue, has been gaining momentum in recent years. Scrutinizing the latest developments in the field, this review offers a comprehensive summary of recent advances, current hurdles, and future perspectives of OC repair, particularly the use of MZSs including bilayered, trilayered, multilayered, and gradient scaffolds, by bringing together onerous demands of architecture designs, material selections, manufacturing techniques as well as the choices of growth factors and cells, each of which possesses its unique challenges and opportunities.
Collapse
Affiliation(s)
- Le Yu
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, 45701, USA
| | - Sacha Cavelier
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, 45701, USA
| | - Brett Hannon
- Biomedical Engineering Program, Ohio University, Athens, OH, 45701, USA
| | - Mei Wei
- Biomedical Engineering Program, Ohio University, Athens, OH, 45701, USA
- Department of Mechanical Engineering, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
6
|
Chitosan, chondroitin sulfate, and hyaluronic acid based in-situ forming scaffold for efficient cell grafting. Int J Biol Macromol 2023; 225:938-951. [PMID: 36410536 DOI: 10.1016/j.ijbiomac.2022.11.157] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/26/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022]
Abstract
Current cell grafting techniques are majorly dependent on seeding cells on a pre-formed scaffold. However, cells grow in a 2-dimensional (2D) space in such constructs, not mimicking the tissue's 3-dimensional (3D) architecture. The present study evaluated a unique poly-electrolyte complexation (PEC) based strategy for the 3D engraftment of cells in a porous polymeric scaffold. The scaffold was synthesized using a positively charged polysaccharide chitosan (CH) and negatively charged glycosaminoglycans chondroitin sulfate (CS) and hyaluronic acid (HA). Two different scaffolds were synthesized, one using CH and CS [CH-CS] and another using CH and CS + HA [CH-(CS-HA)]. The physicochemical characterization of both the PECs confirmed electrostatic interactions, leading to a porous and viscoelastic PEC formation. Fibroblast cells were grafted and seeded in both scaffolds to evaluate the effect of different scaffold compositions and the difference between seeded and grafted cells. Imaging studies confirmed that grafting of the fibroblast cells supports cellular proliferation. The qPCR studies demonstrated increased expression of functional markers TGF-β, α-SMA, collagen-I, and fibronectin in the CH-(CS-HA) grafted cells. In summary, it was demonstrated that an in-situ forming PEC of CH, CS, and HA had good physicochemical properties for cell grafting and supported grafted cells with improved function.
Collapse
|
7
|
Alginates Combined with Natural Polymers as Valuable Drug Delivery Platforms. Mar Drugs 2022; 21:md21010011. [PMID: 36662184 PMCID: PMC9861938 DOI: 10.3390/md21010011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Alginates (ALG) have been used in biomedical and pharmaceutical technologies for decades. ALG are natural polymers occurring in brown algae and feature multiple advantages, including biocompatibility, low toxicity and mucoadhesiveness. Moreover, ALG demonstrate biological activities per se, including anti-hyperlipidemic, antimicrobial, anti-reflux, immunomodulatory or anti-inflammatory activities. ALG are characterized by gelling ability, one of the most frequently utilized properties in the drug form design. ALG have numerous applications in pharmaceutical technology that include micro- and nanoparticles, tablets, mucoadhesive dosage forms, wound dressings and films. However, there are some shortcomings, which impede the development of modified-release dosage forms or formulations with adequate mechanical strength based on pure ALG. Other natural polymers combined with ALG create great potential as drug carriers, improving limitations of ALG matrices. Therefore, in this paper, ALG blends with pectins, chitosan, gelatin, and carrageenans were critically reviewed.
Collapse
|
8
|
Revia RA, Wagner B, James M, Zhang M. High-Throughput Dispensing of Viscous Solutions for Biomedical Applications. MICROMACHINES 2022; 13:1730. [PMID: 36296083 PMCID: PMC9609595 DOI: 10.3390/mi13101730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Cells cultured in three-dimensional scaffolds express a phenotype closer to in vivo cells than cells cultured in two-dimensional containers. Natural polymers are suitable materials to make three-dimensional scaffolds to develop disease models for high-throughput drug screening owing to their excellent biocompatibility. However, natural polymer solutions have a range of viscosities, and none of the currently available liquid dispensers are capable of dispensing highly viscous polymer solutions. Here, we report the development of an automated scaffold dispensing system for rapid, reliable, and homogeneous creation of scaffolds in well-plate formats. We employ computer-controlled solenoid valves to regulate air pressure impinging upon a syringe barrel filled with scaffold solution to be dispensed. Automated dispensing of scaffold solution is achieved via a programmable software interface that coordinates solution extrusion and the movement of a dispensing head. We show that our pneumatically actuated dispensing system can evenly distribute high-viscosity, chitosan-based polymer solutions into 96- and 384-well plates to yield highly uniform three-dimensional scaffolds after lyophilization. We provide a proof-of-concept demonstration of high-throughput drug screening by culturing glioblastoma cells in scaffolds and exposing them to temozolomide. This work introduces a device that can hasten the creation of three-dimensional cell scaffolds and their application to high-throughput testing.
Collapse
Affiliation(s)
- Richard A. Revia
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Brandon Wagner
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Matthew James
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
9
|
In vitro probing of oxidized inulin cross-linked collagen-ZrO2 hybrid scaffolds for tissue engineering applications. Carbohydr Polym 2022; 289:119458. [DOI: 10.1016/j.carbpol.2022.119458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/20/2022]
|
10
|
Application of mathematical modelling to alginate chitosan polyelectrolyte complexes for the prediction of system behavior with Venlafaxine HCl as a model charged drug. Saudi Pharm J 2022; 30:1507-1520. [DOI: 10.1016/j.jsps.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/23/2022] [Indexed: 11/18/2022] Open
|
11
|
Shanmugam BK, Rangaraj S, Subramani K, Srinivasan S, Kandhasamy N, Arumugam K, Periyasamy M, Aicher WK, Venkatachalam R. Biomimetic development of chitosan and sodium alginate-based nanocomposites contains zirconia for tissue engineering applications. J Biomed Mater Res B Appl Biomater 2022; 110:1942-1955. [PMID: 35289080 DOI: 10.1002/jbm.b.35052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 01/13/2023]
Abstract
Nanostructured materials possess unique structural and functional properties that play a crucial position in tissue engineering applications. Present investigation is aimed to synthesize chitosan-sodium alginate (CS) nanocomposite using hydrothermally prepared zirconia nanoparticles. In this, three different weight percentages of (0.5, 1, and 1.5) zirconia nanoparticles are utilized for the preparation of biomimetic nanocomposite scaffolds (CSZ) employing 4 wt% of CS by a solvent casting technique. Physico-chemical and thermal behavior of the prepared nanoparticles and their CSZ scaffolds are comprehensively characterized. Bioactivity of the prepared zirconia nanoparticles and CSZ scaffolds are explored in terms of in vitro biocompatibility, protein absorption in simulated body fluid (SBF), and phosphate buffered saline (PBS). Agar disc diffusion method is employed to identify the antibacterial property against Staphylococcus aureus and Escherichia coli. In vitro cytotoxicity of zirconia nanoparticles and CSZ scaffolds is identified against human urothelial carcinoma (UC6) and osteosarcoma (MG-63) cells. These studies explore that zirconia nanoparticles are suitable for biomedical applications while it is interacted with chitosan and sodium alginate (CS) due to their promising biocompatibility. Biomimetically obtained chitosan/sodium alginate scaffold contain 1 wt% zirconia nanoparticles show higher biocompatibility amenable for tissue engineering applications.
Collapse
Affiliation(s)
| | - Suriyaprabha Rangaraj
- Department of Biotechnology, Sona College of Arts and Science, Salem, Tamil Nadu, India
| | - Karthik Subramani
- Department of Biotechnology, Vivekanandha Arts & Science College for Women, Salem, Tamil Nadu, India
| | - Surendhiran Srinivasan
- Centre for Nano Science and Technology, K. S. Rangasamy College of Technology, Tiruchengode, Tamil Nadu, India
| | - Narthana Kandhasamy
- Centre for Nano Science and Technology, K. S. Rangasamy College of Technology, Tiruchengode, Tamil Nadu, India.,Centre for Nanoscience and Technology, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai, Tamil Nadu, India
| | - Karthik Arumugam
- Centre for Nano Science and Technology, K. S. Rangasamy College of Technology, Tiruchengode, Tamil Nadu, India
| | - Manojkumar Periyasamy
- Centre for Nano Science and Technology, K. S. Rangasamy College of Technology, Tiruchengode, Tamil Nadu, India
| | - Wilhelm K Aicher
- Department of Urology, University of Tübingen Hospital, Tübingen, Germany
| | - Rajendran Venkatachalam
- Centre for Nano Science and Technology, K. S. Rangasamy College of Technology, Tiruchengode, Tamil Nadu, India.,Department of Physics, Dr. N. G. P. Arts and Science College, Coimbatore, Tamil Nadu, India
| |
Collapse
|
12
|
Kolathupalayam Shanmugam B, Murugan V, Karthik A, Rangaraj S, Subramani K, Srinivasan S, Kandhasamy N, Aicher WK, Rajendran V. Silica incorporated chitosan-sodium alginate nanocomposite scaffolds for tissue engineering applications. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2032703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Vinoth Murugan
- Department of Electrical and Electronics Engineering, Selvam College of Technology, Namakkal, India
| | - Arumugam Karthik
- Centre for Nano Science and Technology, K. S. Rangasamy College of Technology, Tiruchengode, India
| | | | - Karthik Subramani
- Department of Biotechnology, Vivekanandha Arts and Science College for Women, Salem, India
| | - Surendhiran Srinivasan
- Centre for Nano Science and Technology, K. S. Rangasamy College of Technology, Tiruchengode, India
| | - Narthana Kandhasamy
- Centre for Nano Science and Technology, K. S. Rangasamy College of Technology, Tiruchengode, India
- Centre for Nanoscience and Technology, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai, India
| | - Wilhelm K. Aicher
- Department of Urology, University of Tübingen Hospital, Tübingen, Germany
| | - Venkatachalam Rajendran
- Centre for Nano Science and Technology, K. S. Rangasamy College of Technology, Tiruchengode, India
- Department of Physics, Dr. N. G. P. Arts and Science College, Coimbatore, India
| |
Collapse
|
13
|
Sivashankari PR, Krishna Kumar K, Devendiran M, Prabaharan M. Graphene oxide-reinforced pectin/chitosan polyelectrolyte complex scaffolds. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:2246-2266. [PMID: 34347566 DOI: 10.1080/09205063.2021.1963931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Three-dimensional (3D) porous scaffolds based on graphene oxide (GO) incorporated pectin/chitosan polyelectrolyte complex (PCGO) were prepared by the freeze-drying technique. The chemical composition and microstructure of the prepared PCGO scaffolds were studied by FTIR and XRD analysis. The presence of GO and its uniform distribution within the polymer matrix was confirmed by Raman spectroscopy and confocal Raman mapping analysis, respectively. TGA analysis revealed that the addition of GO improves the thermal stability of the pectin/chitosan complex. SEM analysis confirmed the uniform pore distribution of PCGO scaffolds. Moreover, it showed that the pore size of the scaffolds was decreased with the increase in GO content. Among the developed PCGO scaffolds, the scaffolds with 1 wt.% of GO presented the improved hydrophilicity by exhibiting the water swelling degree of 2004%, water retention capacity of 1101% and water contact angle (WCA) of 21°. In addition, these scaffolds presented better compressive strength (∼283 kPa) and resistance towards lysozyme-mediated degradation. The PCGO scaffolds presented an acceptable level of bio-and hemocompatibility and GO concentration-dependent cell attachment ability. These results demonstrate the suitability of PCGO scaffolds for tissue engineering.
Collapse
Affiliation(s)
- P R Sivashankari
- Department of Chemistry, Hindustan Institute of Technology and Science, Chennai, India
| | - K Krishna Kumar
- Department of Analytical Chemistry, School of Chemical Science, University of Madras, Chennai, India
| | - M Devendiran
- Central Instrumentation Laboratory, Vels Institute of Science, Technology & Advanced Studies (VISTAS), Chennai, India
| | - M Prabaharan
- Department of Chemistry, Hindustan Institute of Technology and Science, Chennai, India
| |
Collapse
|
14
|
Self-assembled chitosan-sodium alginate composite material for electrochemical recognition of tyrosine isomers. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115525] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Raghav S, Jain P, Kumar D. Alginates: Properties and Applications. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
16
|
Seidi F, Khodadadi Yazdi M, Jouyandeh M, Dominic M, Naeim H, Nezhad MN, Bagheri B, Habibzadeh S, Zarrintaj P, Saeb MR, Mozafari M. Chitosan-based blends for biomedical applications. Int J Biol Macromol 2021; 183:1818-1850. [PMID: 33971230 DOI: 10.1016/j.ijbiomac.2021.05.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 10/21/2022]
Abstract
Polysaccharides are the most abundant naturally available carbohydrate polymers; composed of monosaccharide units covalently connected together. Chitosan is the most widely used polysaccharides because of its exceptional biocompatibility, mucoadhesion, and chemical versatility. However, it suffers from a few drawbacks, e.g. poor mechanical properties and antibacterial activity for biomedical applications. Blending chitosan with natural or synthetic polymers may not merely improve its physicochemical and mechanical properties, but may also improve its bioactivity-induced properties. This review paper summarizes progress in chitosan blends with biodegradable polymers and polysaccharides and their biomedical applications. Blends of chitosan with alginate, starch, cellulose, pectin and dextran and their applications were particularly addressed. The critical and challenging aspects as well as the future ahead of the use of chitosan-based blends were eventually enlightened.
Collapse
Affiliation(s)
- Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | | | - Maryam Jouyandeh
- Center of Excellence in Electrochemistry, University of Tehran, Tehran, Iran
| | - Midhun Dominic
- Department of Chemistry, Sacred Heart College (Autonomous), Kochi, Kerala 682013, India
| | - Haleh Naeim
- Faculty of Chemical Engineering, Urmia University of Technology, Urmia, Iran
| | | | - Babak Bagheri
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Sajjad Habibzadeh
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, USA
| | - Mohammad Reza Saeb
- Center of Excellence in Electrochemistry, University of Tehran, Tehran, Iran.
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Ahmad Raus R, Wan Nawawi WMF, Nasaruddin RR. Alginate and alginate composites for biomedical applications. Asian J Pharm Sci 2021; 16:280-306. [PMID: 34276819 PMCID: PMC8261255 DOI: 10.1016/j.ajps.2020.10.001] [Citation(s) in RCA: 199] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/26/2020] [Accepted: 10/07/2020] [Indexed: 12/22/2022] Open
Abstract
Alginate is an edible heteropolysaccharide that abundantly available in the brown seaweed and the capsule of bacteria such as Azotobacter sp. and Pseudomonas sp. Owing to alginate gel forming capability, it is widely used in food, textile and paper industries; and to a lesser extent in biomedical applications as biomaterial to promote wound healing and tissue regeneration. This is evident from the rising use of alginate-based dressing for heavily exuding wound and their mass availability in the market nowadays. However, alginate also has limitation. When in contact with physiological environment, alginate could gelate into softer structure, consequently limits its potential in the soft tissue regeneration and becomes inappropriate for the usage related to load bearing body parts. To cater this problem, wide range of materials have been added to alginate structure, producing sturdy composite materials. For instance, the incorporation of adhesive peptide and natural polymer or synthetic polymer to alginate moieties creates an improved composite material, which not only possesses better mechanical properties compared to native alginate, but also grants additional healing capability and promote better tissue regeneration. In addition, drug release kinetic and cell viability can be further improved when alginate composite is used as encapsulating agent. In this review, preparation of alginate and alginate composite in various forms (fibre, bead, hydrogel, and 3D-printed matrices) used for biomedical application is described first, followed by the discussion of latest trend related to alginate composite utilization in wound dressing, drug delivery, and tissue engineering applications.
Collapse
Affiliation(s)
- Raha Ahmad Raus
- Department of Biotechnology Engineering, International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia
| | - Wan Mohd Fazli Wan Nawawi
- Department of Biotechnology Engineering, International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia
- Nanoscience and Nanotechnology Research Group (NanoRG), International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia
| | - Ricca Rahman Nasaruddin
- Department of Biotechnology Engineering, International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia
- Nanoscience and Nanotechnology Research Group (NanoRG), International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia
| |
Collapse
|
18
|
Le MCN, Xu K, Wang Z, Beverung S, Steward RL, Florczyk SJ. Evaluation of the effect of 3D porous Chitosan-alginate scaffold stiffness on breast cancer proliferation and migration. J Biomed Mater Res A 2021; 109:1990-2000. [PMID: 33811775 DOI: 10.1002/jbm.a.37191] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/09/2021] [Accepted: 03/24/2021] [Indexed: 11/11/2022]
Abstract
Breast cancer (BCa) is one of the most common cancers for women and metastatic BCa causes the majority of deaths. The extracellular matrix (ECM) stiffens during cancer progression and provides biophysical signals to modulate proliferation, morphology, and metastasis. Cells utilize mechanotransduction and integrins to sense and respond to ECM stiffness. Chitosan-alginate (CA) scaffolds have been used for 3D culture, but lack integrin binding ligands, resulting in round cell morphology and limited cell-material interaction. In this study, 2, 4, and 6 wt% CA scaffolds were produced to mimic the stages of BCa progression and evaluate the BCa response to CA scaffold stiffness. All three CA scaffold compositions highly porous with interconnected pores and scaffold stiffness increased with increasing polymer concentration. MDA-MB-231 (231) cells were cultured in CA scaffolds and 2D cultures for 7 d. All CA scaffold cultures had similar cell numbers at 7 d and the 231 cells formed clusters that increased in size during the culture. The 2 wt% CA had the largest clusters throughout the 7 d culture compared with the 4 and 6 wt% CA. The 231 cell migration was evaluated on 2D surfaces after 7 d culture. The 6 wt% CA cultured cells had the greatest migration speed, followed by 4 wt% CA, 2D cultures, and 2 wt% CA. These results suggest that 231 cells sensed the stiffness of CA scaffolds without the presence of focal adhesions. This indicates that a non-integrin-based mechanism may explain the observed mechanotransduction response.
Collapse
Affiliation(s)
- Minh-Chau N Le
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA.,Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida, USA
| | - Kailei Xu
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Zi Wang
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Sean Beverung
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida, USA
| | - Robert L Steward
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida, USA.,Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Stephanie J Florczyk
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA.,Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
19
|
Khan YA, Ozaltin K, Bernal-Ballen A, Di Martino A. Chitosan-alginate hydrogels for simultaneous and sustained releases of ciprofloxacin, amoxicillin and vancomycin for combination therapy. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Advanced Multi-Dimensional Cellular Models as Emerging Reality to Reproduce In Vitro the Human Body Complexity. Int J Mol Sci 2021; 22:ijms22031195. [PMID: 33530487 PMCID: PMC7865724 DOI: 10.3390/ijms22031195] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
A hot topic in biomedical science is the implementation of more predictive in vitro models of human tissues to significantly improve the knowledge of physiological or pathological process, drugs discovery and screening. Bidimensional (2D) culture systems still represent good high-throughput options for basic research. Unfortunately, these systems are not able to recapitulate the in vivo three-dimensional (3D) environment of native tissues, resulting in a poor in vitro–in vivo translation. In addition, intra-species differences limited the use of animal data for predicting human responses, increasing in vivo preclinical failures and ethical concerns. Dealing with these challenges, in vitro 3D technological approaches were recently bioengineered as promising platforms able to closely capture the complexity of in vivo normal/pathological tissues. Potentially, such systems could resemble tissue-specific extracellular matrix (ECM), cell–cell and cell–ECM interactions and specific cell biological responses to mechanical and physical/chemical properties of the matrix. In this context, this review presents the state of the art of the most advanced progresses of the last years. A special attention to the emerging technologies for the development of human 3D disease-relevant and physiological models, varying from cell self-assembly (i.e., multicellular spheroids and organoids) to the use of biomaterials and microfluidic devices has been given.
Collapse
|
21
|
Cesar PHS, Natarelli CVL, Oliveira JED, Andrade PA, Santos TL, Marcussi S. Development and characterization of a poly (vinyl alcohol) and sodium alginate blend foam for wound dressing loaded with propolis and
all‐
trans retinoic acid. J Appl Polym Sci 2021. [DOI: 10.1002/app.50480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | - Juliano Elvis de Oliveira
- Department of Engineering, Laboratory of Materials and Biosystems (LAMAB) Universidade Federal de Lavras (UFLA) Lavras Brazil
| | - Paula Ariane Andrade
- Department of Materials Science and Engineering Universidade Federal de São Carlos (UFSCar) São Paulo Brazil
| | - Tamara Leite Santos
- Phytopathology department, Laboratory of electron microscopy and ultrastructural analysis Universidade Federal de Lavras (UFLA) Lavras Brazil
| | - Silvana Marcussi
- Department of Chemistry, Biochemistry Laboratory Universidade Federal de Lavras (UFLA) Lavras Brazil
| |
Collapse
|
22
|
Zhang Y, Wu D, Zhao X, Pakvasa M, Tucker AB, Luo H, Qin KH, Hu DA, Wang EJ, Li AJ, Zhang M, Mao Y, Sabharwal M, He F, Niu C, Wang H, Huang L, Shi D, Liu Q, Ni N, Fu K, Chen C, Wagstaff W, Reid RR, Athiviraham A, Ho S, Lee MJ, Hynes K, Strelzow J, He TC, El Dafrawy M. Stem Cell-Friendly Scaffold Biomaterials: Applications for Bone Tissue Engineering and Regenerative Medicine. Front Bioeng Biotechnol 2020; 8:598607. [PMID: 33381499 PMCID: PMC7767872 DOI: 10.3389/fbioe.2020.598607] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
Bone is a dynamic organ with high regenerative potential and provides essential biological functions in the body, such as providing body mobility and protection of internal organs, regulating hematopoietic cell homeostasis, and serving as important mineral reservoir. Bone defects, which can be caused by trauma, cancer and bone disorders, pose formidable public health burdens. Even though autologous bone grafts, allografts, or xenografts have been used clinically, repairing large bone defects remains as a significant clinical challenge. Bone tissue engineering (BTE) emerged as a promising solution to overcome the limitations of autografts and allografts. Ideal bone tissue engineering is to induce bone regeneration through the synergistic integration of biomaterial scaffolds, bone progenitor cells, and bone-forming factors. Successful stem cell-based BTE requires a combination of abundant mesenchymal progenitors with osteogenic potential, suitable biofactors to drive osteogenic differentiation, and cell-friendly scaffold biomaterials. Thus, the crux of BTE lies within the use of cell-friendly biomaterials as scaffolds to overcome extensive bone defects. In this review, we focus on the biocompatibility and cell-friendly features of commonly used scaffold materials, including inorganic compound-based ceramics, natural polymers, synthetic polymers, decellularized extracellular matrix, and in many cases, composite scaffolds using the above existing biomaterials. It is conceivable that combinations of bioactive materials, progenitor cells, growth factors, functionalization techniques, and biomimetic scaffold designs, along with 3D bioprinting technology, will unleash a new era of complex BTE scaffolds tailored to patient-specific applications.
Collapse
Affiliation(s)
- Yongtao Zhang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Di Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine, The School of Laboratory Medicine and the Affiliated Hospitals, Chongqing Medical University, Chongqing, China
| | - Xia Zhao
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Mikhail Pakvasa
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Andrew Blake Tucker
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Huaxiu Luo
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Kevin H. Qin
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Daniel A. Hu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Eric J. Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Alexander J. Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Meng Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yukun Mao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Departments of Orthopaedic Surgery and Neurosurgery, The Affiliated Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Maya Sabharwal
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Fang He
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Changchun Niu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Laboratory Diagnostic Medicine, The Affiliated Hospital of the University of Chinese Academy of Sciences, Chongqing General Hospital, Chongqing, China
| | - Hao Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine, The School of Laboratory Medicine and the Affiliated Hospitals, Chongqing Medical University, Chongqing, China
| | - Linjuan Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine, The School of Laboratory Medicine and the Affiliated Hospitals, Chongqing Medical University, Chongqing, China
| | - Deyao Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Orthopaedic Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Spine Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Na Ni
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine, The School of Laboratory Medicine and the Affiliated Hospitals, Chongqing Medical University, Chongqing, China
| | - Kai Fu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Departments of Orthopaedic Surgery and Neurosurgery, The Affiliated Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Surgery Section of Plastic and Reconstructive Surgery, The University of Chicago Medical Center, Chicago, IL, United States
| | - Aravind Athiviraham
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Sherwin Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Kelly Hynes
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Mostafa El Dafrawy
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| |
Collapse
|
23
|
Chitosan Composite Biomaterials for Bone Tissue Engineering—a Review. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020. [DOI: 10.1007/s40883-020-00187-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Preparation of Hybrid Alginate-Chitosan Aerogel as Potential Carriers for Pulmonary Drug Delivery. Polymers (Basel) 2020; 12:polym12102223. [PMID: 32992662 PMCID: PMC7601040 DOI: 10.3390/polym12102223] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
This study aims to prepare hybrid chitosan-alginate aerogel microparticles without using additional ionic crosslinker as a possible pulmonary drug delivery system. The microparticles were prepared using the emulsion gelation method. The effect of the mixing order of the biopolymer within the emulsion and the surfactant used on final particle properties were investigated. Physicochemical characterizations were performed to evaluate particle size, density, morphology, surface area, surface charge, and the crystallinity of the preparation. The developed preparation was evaluated for its acute toxicity in adult male Sprague-Dawley rats. Measurements of zeta potential suggest that the surface charge depends mainly on the surfactant type while the order of biopolymer mixing has less impact on the surface charge. Chitosan amphiphilic properties changed the hydrophilic-lipophilic balance (HLB) of the emulsifying agents. The specific surface area of the prepared microparticles was in the range of (29.36-86.20) m2/g with a mesoporous pore size of (12.48-13.38) nm and pore volume of (0.09-0.29) cm3/g. The calculated aerodynamic diameter of the prepared particles was in the range of (0.17-2.29 µm). Toxicity studies showed that alginate-chitosan carrier developed herein caused mild lung inflammation with some renal and hepatic toxicities.
Collapse
|
25
|
Biomimetic TiO 2-chitosan/sodium alginate blended nanocomposite scaffolds for tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110710. [PMID: 32204022 DOI: 10.1016/j.msec.2020.110710] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 01/03/2023]
Abstract
The study is aimed to synthesize potent metal oxide based biomimetic nanocomposites to overcome the risk associated with artificial bone tissue engineering. High purity TiO2 nanoparticles are synthesized via hydrothermal route. A biomimetic nanocomposite scaffolds containing chitosan-sodium alginate (4: 4) blended with three different (0.5, 1, and 1.5 wt%) concentrations of hydrothermally synthesized TiO2 nanoparticles are obtained by solvent casting technique. The physico-chemical and thermal degradation properties of as-synthesized TiO2 nanoparticles and their nanocomposite scaffolds are analyzed. In-vitro cytotoxicity and biocompatibility of the prepared TiO2 nanoparticles and nanocomposites are tested against human bladder tumor (UC6) and osteosarcoma (MG-63) cell lines. Antibacterial property is tested against Escherichia coli and Staphylococcus aureus. These studies reveal that TiO2 nanoparticles and polymeric nanocomposites contain good physico-chemical and mechanical properties for enhanced in-vitro biocompatibility suitable for biomedical applications. Biomimetically prepared chitosan-sodium alginate scaffold containing TiO2 nanoparticles (1 wt%) is found to exhibit superior biocompatibility for bone tissue engineering applications.
Collapse
|
26
|
Bushkalova R, Farno M, Tenailleau C, Duployer B, Cussac D, Parini A, Sallerin B, Girod Fullana S. Alginate-chitosan PEC scaffolds: A useful tool for soft tissues cell therapy. Int J Pharm 2019; 571:118692. [DOI: 10.1016/j.ijpharm.2019.118692] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 08/13/2019] [Accepted: 09/09/2019] [Indexed: 12/28/2022]
|
27
|
Effect of Mold Geometry on Pore Size in Freeze-Cast Chitosan-Alginate Scaffolds for Tissue Engineering. Ann Biomed Eng 2019; 48:1090-1102. [PMID: 31654152 DOI: 10.1007/s10439-019-02381-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/09/2019] [Indexed: 02/06/2023]
Abstract
Freeze-casting is a popular method to produce biomaterial scaffolds with highly porous structures. The pore structure of freeze-cast biomaterial scaffolds is influenced by processing parameters but has mostly been controlled experimentally. A mathematical model integrating Computational Fluid Dynamics with Population Balance Model was developed to predict average pore size (APS) of 3D porous chitosan-alginate scaffolds and to assess the influence of the geometrical parameters of mold on scaffold pore structure. The model predicted the crystallization pattern and APS for scaffolds cast in different diameter molds and filled to different heights. The predictions demonstrated that the temperature gradient and solidification pattern affect ice crystal nucleation and growth, subsequently influencing APS homogeneity. The predicted APS compared favorably with APS measurements from a corresponding experimental dataset, validating the model. Sensitivity analysis was performed to assess the response of the APS to the three geometrical parameters of the mold: well radius; solution fill height; and spacing between wells. The pore size was most sensitive to the distance between the wells and least sensitive to solution height. This validated model demonstrates a method for optimizing the APS of freeze-cast biomaterial scaffolds that could be applied to other compositions or applications.
Collapse
|
28
|
Preparation and Characterization of Chitosan–Alginate Polyelectrolyte Complexes Loaded with Antibacterial Thyme Oil Nanoemulsions. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9183933] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Biomedical industries are attempting to utilize natural materials, as they are bio-compatible, non-toxic, and show bioactive properties, like antimicrobial activity. In this study, natural polyelectrolyte complexed chitosan/alginate films (PECs) were prepared via a casting/solvent evaporation technique, and their characteristics and drug release properties were investigated. PEC films made with two different overall polymer contents, 0.4 and 1 w/v%, were loaded with thyme oil nanoemulsion as drug carrier. The structure of the films was studied by FTIR and optical and scanning electron microscopy. Prepared PEC films had good mechanical and water vapor permeability properties. Release of the thyme oil from the pH-sensitive PEC films (TM-PEC) was detected and followed by UV spectroscopy. The results indicated that the drug release rate of TM-PEC films was the fastest when the chitosan content was 1 %w/v, and various mathematical models were analyzed for investigating the drug release mechanism. Antibacterial tests were performed by counting the number of surviving gram-negative and gram-positive bacteria. The in vitro test indicated the limitation Escherichia coli (E. coli) and Staphylococcus aureus (S.aureus) growth in the presence of TM-PEC films. The MTT test showed more cell viability of the TM-PEC film in comparison with that of the PEC film without TM. Based on the measured physical and antibacterial properties, the chitosan–alginate PEC films loaded with antibacterial essential oils can be considered for biomedical applications, such as wound dressings or controlled release systems.
Collapse
|
29
|
Xu K, Ganapathy K, Andl T, Wang Z, Copland JA, Chakrabarti R, Florczyk SJ. 3D porous chitosan-alginate scaffold stiffness promotes differential responses in prostate cancer cell lines. Biomaterials 2019; 217:119311. [PMID: 31279100 DOI: 10.1016/j.biomaterials.2019.119311] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/25/2019] [Indexed: 01/06/2023]
Abstract
Prostate cancer (PCa) is a leading cause of death for men worldwide. Most PCa patients die from metastasis and bone is the most common metastatic site. Three dimensional (3D) porous chitosan-alginate (CA) scaffolds were developed for bone tissue engineering and demonstrated for culture of cancer cells and enrichment of cancer stem cells. However, only a single scaffold composition was studied. Three compositions of 3D porous CA scaffolds (2, 4, and 6 wt%) were used to investigate the effect of scaffold stiffness on PCa cell response with PC-3, C4-2B, and 22Rv1 cell lines. The PC-3 cells formed cell clusters while the C4-2B and 22Rv1 cells formed multicellular spheroids. The three cell lines demonstrated stiffness independent cell growth and expressed phenotypic PCa biomarkers. The osteoblastic PCa lines C4-2B and 22Rv1 mineralized in basal media, while the osteolytic PC-3 line did not, demonstrating that CA scaffold cultures revealed differences in PCa phenotypes. The CA scaffolds are a 3D culture platform that supports PCa growth and phenotypic expression with adjustable scaffold stiffness to mimic stages of metastatic progression. Further investigation of the scaffolds for co-culture of PCa cells with fibroblasts and primary PCa cell culture should be conducted to develop a platform for screening chemotherapies.
Collapse
Affiliation(s)
- Kailei Xu
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, 32816-2455, USA
| | - Kavya Ganapathy
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Thomas Andl
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Zi Wang
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, 32816-2455, USA
| | - John A Copland
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Ratna Chakrabarti
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Stephen J Florczyk
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, 32816-2455, USA; Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA.
| |
Collapse
|
30
|
Erickson AE, Sun J, Lan Levengood SK, Swanson S, Chang FC, Tsao CT, Zhang M. Chitosan-based composite bilayer scaffold as an in vitro osteochondral defect regeneration model. Biomed Microdevices 2019; 21:34. [PMID: 30906951 DOI: 10.1007/s10544-019-0373-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Prolonged osteochondral tissue damage can result in osteoarthritis and decreased quality of life. Multiphasic scaffolds, where different layers model different microenvironments, are a promising treatment approach, yet stable joining between layers during fabrication remains challenging. Here, a bilayer scaffold for osteochondral tissue regeneration was fabricated using thermally-induced phase separation (TIPS). Two distinct polymer solutions were layered before TIPS, and the resulting porous, bilayer scaffold was characterized by seamless interfacial integration and a mechanical stiffness gradient reflecting the native osteochondral microenvironment. Chitosan is a critical component of both scaffold layers to facilitate cell attachment and the formation of polyelectrolyte complexes with other biologically relevant natural polymers. The articular cartilage region was optimized for hyaluronic acid content and stiffness, while the subchondral bone region was defined by higher stiffness and osteoconductive hydroxyapatite content. Following co-culture with chondrocyte-like (SW-1353 or mesenchymal stem cells) and osteoblast-like cells (MG63), cell proliferation and migration to the interface along with increased gene expression associated with relevant markers of osteogenesis and chondrogenesis indicates the potential of this bilayer scaffold for osteochondral tissue regeneration.
Collapse
Affiliation(s)
- Ariane E Erickson
- Department of Materials Science & Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Jialu Sun
- Department of Materials Science & Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Sheeny K Lan Levengood
- Department of Materials Science & Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Shawn Swanson
- Department of Materials Science & Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Fei-Chien Chang
- Department of Materials Science & Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Ching T Tsao
- Department of Materials Science & Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Miqin Zhang
- Department of Materials Science & Engineering, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
31
|
Past, Present, and Future of Regeneration Therapy in Oral and Periodontal Tissue: A Review. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9061046] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chronic periodontitis is the most common disease which induces oral tissue destruction. The goal of periodontal treatment is to reduce inflammation and regenerate the defects. As the structure of periodontium is composed of four types of different tissue (cementum, alveolar bone periodontal ligament, and gingiva), the regeneration should allow different cell proliferation in the separated spaces. Guided tissue regeneration (GTR) and guided bone regeneration (GBR) were introduced to prevent epithelial growth into the alveolar bone space. In the past, non-absorbable membranes with basic functions such as space maintenance were used with bone graft materials. Due to several limitations of the non-absorbable membranes, membranes of the second and third generation equipped with controlled absorbability, and a functional layer releasing growth factors or antimicrobials were introduced. Moreover, tissue engineering using biomaterials enabled faster and more stable tissue regeneration. The scaffold with three-dimensional structures manufactured by computer-aided design and manufacturing (CAD/CAM) showed high biocompatibility, and promoted cell infiltration and revascularization. In the future, using the cell sheath, pre-vascularizing and bioprinting techniques will be applied to the membrane to mimic the original tissue itself. The aim of the review was not only to understand the past and the present trends of GTR and GBR, but also to be used as a guide for a proper future of regeneration therapy in the oral region.
Collapse
|
32
|
Erickson AE, Levengood SKL, Sun J, Chang FC, Zhang M. Fabrication and Characterization of Chitosan-Hyaluronic Acid Scaffolds with Varying Stiffness for Glioblastoma Cell Culture. Adv Healthc Mater 2018; 7:e1800295. [PMID: 29893067 PMCID: PMC6116517 DOI: 10.1002/adhm.201800295] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/05/2018] [Indexed: 12/19/2022]
Abstract
The invasive and recurrent nature of glioblastoma multiforme (GBM) is linked to a small subpopulation of cancer cells, which are self-renewing, resistant to standard treatment regimens, and induce formation of new tumors. Matrix stiffness is implicated in the regulation of cell proliferation, drug resistance, and reversion to a more invasive phenotype. Therefore, understanding the relationship between matrix stiffness and tumor cell behavior is vital to develop appropriate in vitro tumor models. Here, chitosan-hyaluronic acid (CHA) polyelectrolyte complex scaffolds are fabricated with statistically significant stiffness variances to characterize the effect of scaffold stiffness on morphology, proliferation, drug resistance, and gene expression in human glioblastoma cells (U-87 MG). All scaffolds support GBM proliferation over a 12-day culture period, yet larger spheroids are observed in scaffolds with higher stiffness. Additionally, GBM cells cultured in stiffer CHA scaffolds prove significantly more resistant to the common chemotherapeutic temozolomide. Moreover, the stiffer 8% CHA scaffolds exhibit an increase in expression of drug resistance and invasion related genes compared to 2D culture. CHA scaffolds present a tunable microenvironment for enhanced tumor cell malignancy and may provide a valuable in vitro microenvironment for studying tumor progression and screening anticancer therapies.
Collapse
Affiliation(s)
- Ariane E. Erickson
- Department of Materials Science & Engineering, University of Washington, Seattle, Washington 98195, USA,
| | - Sheeny K. Lan Levengood
- Department of Materials Science & Engineering, University of Washington, Seattle, Washington 98195, USA,
| | - Jialu Sun
- Department of Materials Science & Engineering, University of Washington, Seattle, Washington 98195, USA,
| | - Fei-Chien Chang
- Department of Materials Science & Engineering, University of Washington, Seattle, Washington 98195, USA,
| | - Miqin Zhang
- Department of Materials Science & Engineering, University of Washington, Seattle, Washington 98195, USA,
| |
Collapse
|
33
|
Zhang W, Zhao Q, Yuan J. Porous Polyelectrolytes: The Interplay of Charge and Pores for New Functionalities. Angew Chem Int Ed Engl 2018; 57:6754-6773. [PMID: 29124842 PMCID: PMC6001701 DOI: 10.1002/anie.201710272] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Indexed: 01/27/2023]
Abstract
The past decade has witnessed rapid advances in porous polyelectrolytes and there is tremendous interest in their synthesis as well as their applications in environmental, energy, biomedicine, and catalysis technologies. Research on porous polyelectrolytes is motivated by the flexible choice of functional organic groups and processing technologies as well as the synergy of the charge and pores spanning length scales from individual polyelectrolyte backbones to their nano-/micro-superstructures. This Review surveys recent progress in porous polyelectrolytes including membranes, particles, scaffolds, and high surface area powders/resins as well as their derivatives. The focus is the interplay between surface chemistry, Columbic interaction, and pore confinement that defines new chemistry and physics in such materials for applications in energy conversion, molecular separation, water purification, sensing/actuation, catalysis, tissue engineering, and nanomedicine.
Collapse
Affiliation(s)
- Weiyi Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
- Department of Chemistry & Biomolecular Science, Center for Advanced Materials ProcessingClarkson UniversityPotsdamNY13699-5814USA
| | - Qiang Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Jiayin Yuan
- Department of Chemistry & Biomolecular Science, Center for Advanced Materials ProcessingClarkson UniversityPotsdamNY13699-5814USA
- Department of Materials and Environmental Chemistry (MMK)Stockholm University10691StockholmSweden
| |
Collapse
|
34
|
Zhang W, Zhao Q, Yuan J. Poröse Polyelektrolyte: Zusammenspiel zwischen Poren und Ladung für neue Funktionen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201710272] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Weiyi Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage; Ministry of Education; School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Wuhan 430074 China
- Department of Chemistry & Biomolecular Science, Center for Advanced Materials Processing; Clarkson University; Potsdam NY 13699-5814 USA
| | - Qiang Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage; Ministry of Education; School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Wuhan 430074 China
| | - Jiayin Yuan
- Department of Chemistry & Biomolecular Science, Center for Advanced Materials Processing; Clarkson University; Potsdam NY 13699-5814 USA
- Department of Materials and Environmental Chemistry (MMK); Stockholm University; 10691 Stockholm Schweden
| |
Collapse
|
35
|
Ren H, Cui Y, Li A, Qiu D. Bioactive glass sol as a dual function additive for chitosan-alginate hybrid scaffold. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.01.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
36
|
Zhang L, Fang H, Zhang K, Yin J. Homologous Sodium Alginate/Chitosan-Based Scaffolds, but Contrasting Effect on Stem Cell Shape and Osteogenesis. ACS APPLIED MATERIALS & INTERFACES 2018; 10:6930-6941. [PMID: 29392929 DOI: 10.1021/acsami.7b18859] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Stem cell shape appears to be involved in the regulation of osteogenesis, which has been confirmed in two-dimensional surfaces and three-dimensional hydrogels. The present study evaluated the effect of matrix-controlled cellular shape on osteogenesis in three-dimensional porous scaffolds based on sodium alginate (ALG) and chitosan (CS). Three ALG/CS scaffolds, especially including a stiff one, were fabricated from different precursor matrices. Soft scaffold A was fabricated from the ALG/CS polyelectrolyte and further cross-linked by Ca2+ and glutaraldehyde to achieve soft scaffold B with alternative hydrophilicity. Stiff scaffold C with "hard-to-deform" feature was fabricated from "ALG/CS preformed gel", which was an ALG gel network expanded by swelling force of the dissolving CS, and fixed using Ca2+ and glutaraldehyde. Scanning electron microscopy and F-actins staining showed rounded mesenchymal stem cells (MSCs) on the inner surfaces inside scaffold A with high swelling behavior, but spindlelike MSCs in scaffold B. Stiff scaffold C forced MSCs to adhere to polygonal shape. Fibronectin adsorption was found to be weakened in scaffold A. Integrin α5β1 expression, as well as osteogenesis-related genes (ALP, OCN) expression, was detected to be higher in the stiff scaffold C. Thus, the present study illustrated that the stiff scaffold C responded to cells with hard-to-deform information, leading to the amplification of focal adhesions and induction of high tension of cells, consequently enhancement of osteogenesis.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Polymer Materials, Shanghai University , 99 Shangda Road, Shanghai 200444, P. R. China
| | - Haowei Fang
- Department of Polymer Materials, Shanghai University , 99 Shangda Road, Shanghai 200444, P. R. China
| | - Kunxi Zhang
- Department of Polymer Materials, Shanghai University , 99 Shangda Road, Shanghai 200444, P. R. China
| | - Jingbo Yin
- Department of Polymer Materials, Shanghai University , 99 Shangda Road, Shanghai 200444, P. R. China
| |
Collapse
|
37
|
Liu H, Wang C, Li C, Qin Y, Wang Z, Yang F, Li Z, Wang J. A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Adv 2018; 8:7533-7549. [PMID: 35539132 PMCID: PMC9078458 DOI: 10.1039/c7ra13510f] [Citation(s) in RCA: 476] [Impact Index Per Article: 79.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/12/2018] [Indexed: 12/18/2022] Open
Abstract
Functional active wound dressings are expected to provide a moist wound environment, offer protection from secondary infections, remove wound exudate and accelerate tissue regeneration, as well as to improve the efficiency of wound healing. Chitosan-based hydrogels are considered as ideal materials for enhancing wound healing owing to their biodegradable, biocompatible, non-toxic, antimicrobial, biologically adhesive, biological activity and hemostatic effects. Chitosan-based hydrogels have been demonstrated to promote wound healing at different wound healing stages, and also can alleviate the factors against wound healing (such as excessive inflammatory and chronic wound infection). The unique biological properties of a chitosan-based hydrogel enable it to serve as both a wound dressing and as a drug delivery system (DDS) to deliver antibacterial agents, growth factors, stem cells and so on, which could further accelerate wound healing. For various kinds of wounds, chitosan-based hydrogels are able to promote the effectiveness of wound healing by modifying or combining with other polymers, and carrying different types of active substances. In this review, we will take a close look at the application of chitosan-based hydrogels in wound dressings and DDS to enhance wound healing.
Collapse
Affiliation(s)
- He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University Changchun 130041 P. R. China
| | - Chenyu Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University Changchun 130041 P. R. China
- Hallym University 1Hallymdaehak-gil Chuncheon Gangwon-do 200-702 Korea
| | - Chen Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University Changchun 130041 P. R. China
| | - Yanguo Qin
- Orthopaedic Medical Center, The Second Hospital of Jilin University Changchun 130041 P. R. China
| | - Zhonghan Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University Changchun 130041 P. R. China
| | - Fan Yang
- Orthopaedic Medical Center, The Second Hospital of Jilin University Changchun 130041 P. R. China
| | - Zuhao Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University Changchun 130041 P. R. China
| | - Jincheng Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University Changchun 130041 P. R. China
| |
Collapse
|
38
|
Alginate Utilization in Tissue Engineering and Cell Therapy. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2018. [DOI: 10.1007/978-981-10-6910-9_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Alginate Processing Routes to Fabricate Bioinspired Platforms for Tissue Engineering and Drug Delivery. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2018. [DOI: 10.1007/978-981-10-6910-9_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Influence of Stage Cooling Method on Pore Architecture of Biomimetic Alginate Scaffolds. Sci Rep 2017; 7:16150. [PMID: 29170388 PMCID: PMC5701068 DOI: 10.1038/s41598-017-16024-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/06/2017] [Indexed: 01/08/2023] Open
Abstract
Porous scaffold is widely used in the field of tissue engineering. However, the anisotropic structure of actual extracellular matrix (ECM) of human tissue pose a challenge to the scaffold structure that pore size should be changed in gradient. Here we report a stage cooling method to fabricate alginate scaffold with gradient pores. Eight cooling models were set according to different temperature steps, different initial temperature, and different time duration. The thermal characterization of solution during cooling process were recorded and scaffold morphology were observed. The results revealed that the temperature steps mainly affected pore shape, while the initial temperature and time duration mainly affected pore size. By altering the initial temperature and time duration, scaffold exhibited cellular and gradually enlarged pores on the vertical axial direction (10-65 μm at base, 50-141 μm at top). With this stage cooling method, pore shape and pore size could be easily tailored and scaffold with gradient structure could be fabricated.
Collapse
|
41
|
Florczyk SJ, Kievit FM, Wang K, Erickson AE, Ellenbogen RG, Zhang M. 3D Porous Chitosan-Alginate Scaffolds Promote Proliferation and Enrichment of Cancer Stem-Like Cells. J Mater Chem B 2016; 4:6326-6334. [PMID: 28133535 PMCID: PMC5260821 DOI: 10.1039/c6tb01713d] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer stem cells are increasingly becoming a primary target for new cancer treatment development. The ability to study their transient behavior in vitro will provide the opportunity for high-throughput testing of more effective therapies. We have previously demonstrated the use of 3D porous chitosan-alginate (CA) scaffolds to promote cancer stem-like cell (CSC) proliferation and enrichment in glioblastoma. Here we use 3D porous CA scaffolds to promote cancer stem-like cell enrichment in cell lines from prostate, liver, and breast cancers, and investigate the proliferation, morphology, and gene expressions of cells cultured in CA scaffolds as compared to 2D controls. The 3D CA scaffold cultures for all three cancer types showed reduced proliferation, formation of tumor spheroids, and increased expression of CSC associated mark genes (CD133 and NANOG), as opposed to monolayers. Additionally, we present a putative mechanism for the cancer stem-like cell enrichment on CA scaffolds. This study demonstrates that the cancer stem-like cell enrichment in CA scaffolds is a robust process that is not restricted to particular cancer types.
Collapse
Affiliation(s)
- Stephen J. Florczyk
- Department of Materials Science & Engineering, University of Washington, Seattle, WA 98195
| | - Forrest M. Kievit
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195
| | - Kui Wang
- Department of Materials Science & Engineering, University of Washington, Seattle, WA 98195
| | - Ariane E. Erickson
- Department of Materials Science & Engineering, University of Washington, Seattle, WA 98195
| | | | - Miqin Zhang
- Department of Materials Science & Engineering, University of Washington, Seattle, WA 98195
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195
| |
Collapse
|
42
|
Bierhalz AC, Westin CB, Moraes ÂM. Comparison of the properties of membranes produced with alginate and chitosan from mushroom and from shrimp. Int J Biol Macromol 2016; 91:496-504. [DOI: 10.1016/j.ijbiomac.2016.05.095] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/14/2016] [Accepted: 05/26/2016] [Indexed: 12/16/2022]
|
43
|
Mussel-inspired alginate gel promoting the osteogenic differentiation of mesenchymal stem cells and anti-infection. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:496-504. [PMID: 27612740 DOI: 10.1016/j.msec.2016.06.044] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 05/30/2016] [Accepted: 06/13/2016] [Indexed: 11/23/2022]
Abstract
Alginate hydrogels have been used in cell encapsulation for many years but a prevalent issue with pure alginates is that they are unable to provide enough bioactive properties to interact with mammalian cells. This paper discusses the modification of alginate with mussel-inspired dopamine for cell loading and anti-infection. Mouse bone marrow stem cells were immobilized into alginate and alginate-dopamine beads and fibers. Through live-dead and MTT assay, alginates modified by dopamine promoted cell viability and proliferation. In vitro cell differentiation results showed that such an alginate-dopamine gel can promote the osteogenic differentiation of mesenchymal stem cell after PCR and ALP assays. In addition to that, the adhesive prosperities of dopamine allowed for coating the surface of alginate-dopamine gel with silver nanoparticles, which provided the gel with significant antibacterial characteristics. Overall, these results demonstrate that a dopamine-modified alginate gel can be a great tool for cell encapsulation to promote cell proliferation and can be applied to bone regeneration, especially in contaminated bone defects.
Collapse
|
44
|
3D-Printed Scaffolds and Biomaterials: Review of Alveolar Bone Augmentation and Periodontal Regeneration Applications. Int J Dent 2016; 2016:1239842. [PMID: 27366149 PMCID: PMC4913015 DOI: 10.1155/2016/1239842] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/17/2016] [Accepted: 05/10/2016] [Indexed: 12/23/2022] Open
Abstract
To ensure a successful dental implant therapy, the presence of adequate vertical and horizontal alveolar bone is fundamental. However, an insufficient amount of alveolar ridge in both dimensions is often encountered in dental practice due to the consequences of oral diseases and tooth loss. Although postextraction socket preservation has been adopted to lessen the need for such invasive approaches, it utilizes bone grafting materials, which have limitations that could negatively affect the quality of bone formation. To overcome the drawbacks of routinely employed grafting materials, bone graft substitutes such as 3D scaffolds have been recently investigated in the dental field. In this review, we highlight different biomaterials suitable for 3D scaffold fabrication, with a focus on “3D-printed” ones as bone graft substitutes that might be convenient for various applications related to implant therapy. We also briefly discuss their possible adoption for periodontal regeneration.
Collapse
|
45
|
Study of Enzymatically Treated Alginate/Chitosan Hydrosols in Sponges Formation Process. Polymers (Basel) 2016; 8:polym8010008. [PMID: 30979105 PMCID: PMC6432604 DOI: 10.3390/polym8010008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 12/16/2015] [Accepted: 12/30/2015] [Indexed: 11/16/2022] Open
Abstract
The aim of the study was to produce 3D sponges based on enzymatically modified lysozyme selected polysaccharides and assess their physicochemical properties. The alginate/chitosan sponges were formed from polymers hydrosols in different proportions at a final concentration of 1% polysaccharides. Hydrosols were modified by lysozyme addition of 1000 U. Hydrosols without or with enzyme were analyzed for their reducing sugar content, rheological properties and ability to scavenge free radicals. Sponges formed from hydrosols were tested for solubility and compressive properties. Only chitosan was hydrolyzed by lysozyme. The morphology of sponges was investigated by scanning electron microscopy (SEM). It was proven that the antioxidant properties of hydrosols are dependent on the concentration of chitosan. It was also shown that the addition of lysozyme negatively affected the free radical scavenging ability of single hydrosols of alginate and chitosan, and their mixtures. The Ostwald de Waele as well as Herschel⁻Bulkley models of rheological properties fitted the experimental data well (R² is between 0.947 and 1.000). Increase in textural features values of sponges was observed. Sponges with pure alginate and pure chitosan were almost completely soluble. The enzyme addition significantly changed the characteristics of the cross-section structure of sponges, and made the surface smoother.
Collapse
|
46
|
Kievit FM, Wang K, Erickson AE, Lan Levengood SK, Ellenbogen RG, Zhang M. Modeling the tumor microenvironment using chitosan-alginate scaffolds to control the stem-like state of glioblastoma cells. Biomater Sci 2015; 4:610-3. [PMID: 26688867 DOI: 10.1039/c5bm00514k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Better prediction of in vivo drug efficacy using in vitro models should greatly improve in vivo success. Here we utilize 3D highly porous chitosan-alginate complex scaffolds to probe how various components of the glioblastoma microenvironment including extracellular matrix and stromal cells affect tumor cell stem-like state.
Collapse
Affiliation(s)
- Forrest M Kievit
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Kim HL, Jung GY, Yoon JH, Han JS, Park YJ, Kim DG, Zhang M, Kim DJ. Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 54:20-5. [DOI: 10.1016/j.msec.2015.04.033] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 02/17/2015] [Accepted: 04/21/2015] [Indexed: 10/23/2022]
|
48
|
Bai S, Han H, Huang X, Xu W, Kaplan DL, Zhu H, Lu Q. Silk scaffolds with tunable mechanical capability for cell differentiation. Acta Biomater 2015; 20:22-31. [PMID: 25858557 DOI: 10.1016/j.actbio.2015.04.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/23/2015] [Accepted: 04/02/2015] [Indexed: 12/31/2022]
Abstract
Bombyx mori silk fibroin is a promising biomaterial for tissue regeneration and is usually considered an "inert" material with respect to actively regulating cell differentiation due to few specific cell signaling peptide domains in the primary sequence and the generally stiffer mechanical properties due to crystalline content formed in processing. In the present study, silk fibroin porous 3D scaffolds with nanostructures and tunable stiffness were generated via a silk fibroin nanofiber-assisted lyophilization process. The silk fibroin nanofibers with high β-sheet content were added into the silk fibroin solutions to modulate the self-assembly, and to directly induce water-insoluble scaffold formation after lyophilization. Unlike previously reported silk fibroin scaffold formation processes, these new scaffolds had lower overall β-sheet content and softer mechanical properties for improved cell compatibility. The scaffold stiffness could be further tuned to match soft tissue mechanical properties, which resulted in different differentiation outcomes with rat bone marrow-derived mesenchymal stem cells toward myogenic and endothelial cells, respectively. Therefore, these silk fibroin scaffolds regulate cell differentiation outcomes due to their mechanical features.
Collapse
|
49
|
Venkatesan J, Bhatnagar I, Manivasagan P, Kang KH, Kim SK. Alginate composites for bone tissue engineering: A review. Int J Biol Macromol 2015; 72:269-81. [DOI: 10.1016/j.ijbiomac.2014.07.008] [Citation(s) in RCA: 417] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/26/2014] [Accepted: 07/04/2014] [Indexed: 12/20/2022]
|
50
|
Bueno CZ, Dias AMA, de Sousa HJC, Braga MEM, Moraes ÂM. Control of the properties of porous chitosan–alginate membranes through the addition of different proportions of Pluronic F68. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 44:117-25. [DOI: 10.1016/j.msec.2014.08.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/27/2014] [Accepted: 08/03/2014] [Indexed: 12/17/2022]
|