1
|
Rangel RDCR, Rangel ALR, da Silva KB, Escada ALDA, Chaves JAM, Maia FR, Pina S, Reis RL, Oliveira JM, Rosifini Alves AP. Characterization of Iron Oxide Nanotubes Obtained by Anodic Oxidation for Biomedical Applications-In Vitro Studies. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3627. [PMID: 39124291 PMCID: PMC11313345 DOI: 10.3390/ma17153627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 08/12/2024]
Abstract
To improve the biocompatibility and bioactivity of biodegradable iron-based materials, nanostructured surfaces formed by metal oxides offer a promising strategy for surface functionalization. To explore this potential, iron oxide nanotubes were synthesized on pure iron (Fe) using an anodic oxidation process (50 V-30 min, using an ethylene glycol solution containing 0.3% NH4F and 3% H2O, at a speed of 100 rpm). A nanotube layer composed mainly of α-Fe2O3 with diameters between 60 and 70 nm was obtained. The effect of the Fe-oxide nanotube layer on cell viability and morphology was evaluated by in vitro studies using a human osteosarcoma cell line (SaOs-2 cells). The results showed that the presence of this layer did not harm the viability or morphology of the cells. Furthermore, cells cultured on anodized surfaces showed higher metabolic activity than those on non-anodized surfaces. This research suggests that growing a layer of Fe oxide nanotubes on pure Fe is a promising method for functionalizing and improving the cytocompatibility of iron substrates. This opens up new opportunities for biomedical applications, including the development of cardiovascular stents or osteosynthesis implants.
Collapse
Affiliation(s)
- Rita de Cássia Reis Rangel
- São Paulo State University (UNESP), School of Engineering, Ilha Solteira 15385-007, Brazil; (R.d.C.R.R.); (A.L.R.R.)
| | - André Luiz Reis Rangel
- São Paulo State University (UNESP), School of Engineering, Ilha Solteira 15385-007, Brazil; (R.d.C.R.R.); (A.L.R.R.)
| | - Kerolene Barboza da Silva
- São Paulo State University (UNESP), School of Engineering and Sciences, Guaratinguetá, São Paulo 01049-010, Brazil; (K.B.d.S.); (A.L.d.A.E.)
| | - Ana Lúcia do Amaral Escada
- São Paulo State University (UNESP), School of Engineering and Sciences, Guaratinguetá, São Paulo 01049-010, Brazil; (K.B.d.S.); (A.L.d.A.E.)
| | - Javier Andres Munoz Chaves
- Intelligent System Research Group, Faculty of Engineering, Corporación Universitaria Comfacauca-Unicomfacauca, Popayán 190003, Colombia;
| | - Fátima Raquel Maia
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (F.R.M.); (S.P.); (R.L.R.); (J.M.O.)
- ICVS/3B’s—PT Government Associated Laboratory, 4710-057 Guimarães, Portugal
| | - Sandra Pina
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (F.R.M.); (S.P.); (R.L.R.); (J.M.O.)
- ICVS/3B’s—PT Government Associated Laboratory, 4710-057 Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (F.R.M.); (S.P.); (R.L.R.); (J.M.O.)
- ICVS/3B’s—PT Government Associated Laboratory, 4710-057 Guimarães, Portugal
| | - Joaquim M. Oliveira
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (F.R.M.); (S.P.); (R.L.R.); (J.M.O.)
- ICVS/3B’s—PT Government Associated Laboratory, 4710-057 Guimarães, Portugal
| | - Ana Paula Rosifini Alves
- São Paulo State University (UNESP), School of Engineering and Sciences, Guaratinguetá, São Paulo 01049-010, Brazil; (K.B.d.S.); (A.L.d.A.E.)
| |
Collapse
|
2
|
Lee JJ, Jacome FP, Hiltzik DM, Pagadala MS, Hsu WK. Evolution of Titanium Interbody Cages and Current Uses of 3D Printed Titanium in Spine Fusion Surgery. Curr Rev Musculoskelet Med 2024:10.1007/s12178-024-09912-z. [PMID: 39003679 DOI: 10.1007/s12178-024-09912-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/20/2024] [Indexed: 07/15/2024]
Abstract
PURPOSE OF REVIEW To summarize the history of titanium implants in spine fusion surgery and its evolution over time. RECENT FINDINGS Titanium interbody cages used in spine fusion surgery have evolved from solid metal blocks to porous structures with varying shapes and sizes in order to provide stability while minimizing adverse side effects. Advancements in technology, especially 3D printing, have allowed for the creation of highly customizable spinal implants to fit patient specific needs. Recent evidence suggests that customizing shape and density of the implants may improve patient outcomes compared to current industry standards. Future work is warranted to determine the practical feasibility and long-term clinical outcomes of patients using 3D printed spine fusion implants. Outcomes in spine fusion surgery have improved greatly due to technological advancements. 3D printed spinal implants, in particular, may improve outcomes in patients undergoing spine fusion surgery when compared to current industry standards. Long term follow up and direct comparison between implant characteristics is required for the adoption of 3D printed implants as the standard of care.
Collapse
Affiliation(s)
- Justin J Lee
- Northwestern University, Simpson Querrey Institute (SQI), 808 N Cleveland Ave. 901, Chicago, IL, 60610, USA.
| | - Freddy P Jacome
- Northwestern University, Simpson Querrey Institute (SQI), 808 N Cleveland Ave. 901, Chicago, IL, 60610, USA
| | - David M Hiltzik
- Northwestern University, Simpson Querrey Institute (SQI), 808 N Cleveland Ave. 901, Chicago, IL, 60610, USA
| | - Manasa S Pagadala
- Northwestern University, Simpson Querrey Institute (SQI), 808 N Cleveland Ave. 901, Chicago, IL, 60610, USA
| | - Wellington K Hsu
- Northwestern University, Simpson Querrey Institute (SQI), 808 N Cleveland Ave. 901, Chicago, IL, 60610, USA
- Department of Orthopedic Surgery, Northwestern University, Chicago, IL, USA
| |
Collapse
|
3
|
Păun AG, Popescu S, Ungureanu C, Trusca R, Pirvu C. Reduced TiO 2 Nanotubes/Silk Fibroin/ZnO as a Promising Hybrid Antibacterial Coating. Chempluschem 2024; 89:e202300450. [PMID: 37888941 DOI: 10.1002/cplu.202300450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 10/28/2023]
Abstract
The current research aims to elucidate the influence of reduction process of TiO2 nanostructures on the surface properties of a bioinspired Ti modified implant, considering that the interface between a biomaterial surface and the living tissue plays an important role for this interaction. The production of reduced TiO2 nanotubes (RNT) with lower band gap is optimized and their performance is compared with those of simple TiO2 nanotubes (NT). The more conductive surfaces provided by the presence of RNT on Ti, allow a facile deposition of silk fibroin (SF) film using the electrochemical deposition method. This hybrid film is then functionalized with ZnO nanoparticles, to improve the antibacterial effect of the coating. The modified Ti surface is evaluated in terms of surface chemistry, morphology and roughness, wettability, surface energy, surface charge and antibacterial properties. Surface analysis such as SEM, AFM, FTIR and contact angle measurements were performed to obtain topographical features and wettability. FT-IR analysis confirms that SF was effectively attached to TiO2 nanotubes surfaces. The electrochemical deposition of SF and SF-ZnO reduced the interior diameter of nanotubes from ~85 nm to approx. 50-60 nm. All modified surfaces have a hydrophilic character.
Collapse
Affiliation(s)
- Angela Gabriela Păun
- Department of General Chemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Gheorghe Polizu 1-7 street, Bucharest, 011061, Romania
| | - Simona Popescu
- Department of General Chemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Gheorghe Polizu 1-7 street, Bucharest, 011061, Romania
| | - Camelia Ungureanu
- Department of General Chemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Gheorghe Polizu 1-7 street, Bucharest, 011061, Romania
| | - Roxana Trusca
- National Center for Micro and Nanomaterials, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042, Bucharest, Romania
| | - Cristian Pirvu
- Department of General Chemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Gheorghe Polizu 1-7 street, Bucharest, 011061, Romania
| |
Collapse
|
4
|
Lee YT, Liou EJW, Chen SW. Comparison between microporous and nanoporous orthodontic miniscrews : An experimental study in rabbits. J Orofac Orthop 2024; 85:1-12. [PMID: 35593908 DOI: 10.1007/s00056-022-00398-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Surface characteristics of orthodontic miniscrews might affect survival rates and removal torque values (RTVs). This experimental study aimed to clarify whether and why a microporous or nanoporous surface promotes higher survival rates and RTVs for orthodontic miniscrews. METHODS Using a split-leg design, one set each of nonporous (sham control, n = 24) and microporous (control, n = 6), and three sets of nanoporous (experimental, n = 6 per set) miniscrews were implanted in the tibias of 12 New Zealand rabbits and immediately loaded with 1.5 N nickel-titanium coil springs for 12 weeks. The surface morphology, micropores, and nanotube diameters of the miniscrews were examined using scanning electron microscopy and field-emission scanning electron microscopy. The surface composition and thickness were determined using Auger electron spectroscopy. The survival rates and RTVs of each set were assessed. RESULTS The nanoporous miniscrews had higher survival rates, RTVs (p < 0.001), and thicker nanotube oxide thicknesses (p < 0.001) than the nonporous and microporous miniscrews. The nonporous and microporous miniscrews had no nanotube structures. The surface oxide composition was titanium dioxide (TiO2). The threshold RTV, TiO2 thickness, and nanotube diameter of nanoporous miniscrews needed to promote the experimental survival rate to 100% was determined to be 6.6 ± 0.8 N-cm (p < 0.05), 22.5 ± 4.8 nm (p < 0.05), and 17.6 ± 2.3 nm or above, respectively. CONCLUSION Nanoporous surfaces promoted higher survival rates and RTVs than microporous miniscrews. This could be due to TiO2 nanotube structures with thicker oxide layers in nanoporous miniscrews.
Collapse
Affiliation(s)
- Yueh-Tse Lee
- Graduate Institute of Dental and Craniofacial Science, Chang Gung University, Taoyuan, Taiwan
- Craniofacial Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Department of Craniofacial Orthodontics, Chang Gung Memorial Hospital, Linkou, 5, Fusing St., Gueishan District, Taoyuan, 333, Taiwan
| | - Eric Jein-Wein Liou
- Graduate Institute of Dental and Craniofacial Science, Chang Gung University, Taoyuan, Taiwan.
- Craniofacial Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.
- Department of Craniofacial Orthodontics, Chang Gung Memorial Hospital, Taipei, 199, Tung-Hwa North Rd., Taipei, 105, Taiwan.
| | - Sinn-Wen Chen
- Department of Chemical Engineering, National Tsing Hua University, #101, Sec. 2, Kuang-Fu Rd., Hsin-Chu, 300, Taiwan
| |
Collapse
|
5
|
Li S, Deng Q, Si Q, Li J, Zeng H, Chen S, Guo T. TiO 2nanotubes promote osteogenic differentiation of human bone marrow stem cells via epigenetic regulation of RMRP/ DLEU2/EZH2 pathway. Biomed Mater 2023; 18:055027. [PMID: 37437580 DOI: 10.1088/1748-605x/ace6e9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 07/12/2023] [Indexed: 07/14/2023]
Abstract
TiO2nanotubes (TNTs) significantly promote osteogenic differentiation and bone regeneration of cells. Nevertheless, the biological processes by which they promote osteogenesis are currently poorly understood. Long non-coding RNAs (lncRNAs) are essential for controlling osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Epigenetic chromatin modification is one of the pathways in which lncRNAs regulate osteogenic differentiation. Here, we reported that TNTs could upregulate lncRNARMRP, and inhibition of lncRNARMRPin human BMSCs (hBMSCs) grown on TNTs could decrease runt-related transcription factor 2 (RUNX2), alkaline phosphatase, osteopontin, and osteocalcin (OCN) expression. Furthermore, we discovered that inhibiting lncRNARMRPelevated the expression of lncRNADLEU2, and lncRNADLEU2knockdown promoted osteogenic differentiation in hBMSCs. RNA immunoprecipitation experiments showed that lncRNADLEU2could interact with EZH2 to induce H3K27 methylation in the promoter regions of RUNX2 and OCN, suppressing gene expression epigenetically. According to these results, lncRNARMRPis upregulated by TNTs to promote osteogenic differentiation throughDLEU2/EZH2-mediated epigenetic modifications.
Collapse
Affiliation(s)
- Shuangqin Li
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, People's Republic of China
| | - Qing Deng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, People's Republic of China
| | - Qiqi Si
- School of Life and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, People's Republic of China
| | - JinSheng Li
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Huanghe Zeng
- School of Life and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, People's Republic of China
| | - Song Chen
- Department of Orthopedics of the General Hospital of Western Theater Command, Chengdu, Sichuan 610086, People's Republic of China
| | - Tailin Guo
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, People's Republic of China
| |
Collapse
|
6
|
Akiyama N, Patel KD, Jang EJ, Shannon MR, Patel R, Patel M, Perriman AW. Tubular nanomaterials for bone tissue engineering. J Mater Chem B 2023; 11:6225-6248. [PMID: 37309580 DOI: 10.1039/d3tb00905j] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanomaterial composition, morphology, and mechanical performance are critical parameters for tissue engineering. Within this rapidly expanding space, tubular nanomaterials (TNs), including carbon nanotubes (CNTs), titanium oxide nanotubes (TNTs), halloysite nanotubes (HNTs), silica nanotubes (SiNTs), and hydroxyapatite nanotubes (HANTs) have shown significant potential across a broad range of applications due to their high surface area, versatile surface chemistry, well-defined mechanical properties, excellent biocompatibility, and monodispersity. These include drug delivery vectors, imaging contrast agents, and scaffolds for bone tissue engineering. This review is centered on the recent developments in TN-based biomaterials for structural tissue engineering, with a strong focus on bone tissue regeneration. It includes a detailed literature review on TN-based orthopedic coatings for metallic implants and composite scaffolds to enhance in vivo bone regeneration.
Collapse
Affiliation(s)
- Naomi Akiyama
- Department of Chemical Engineering, The Cooper Union of the Advancement of Science and Art, New York City, NY 10003, USA
| | - Kapil D Patel
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Eun Jo Jang
- Nano Science and Engineering (NSE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, Yeonsu-gu, Incheon 21983, South Korea
| | - Mark R Shannon
- Bristol Composites Institute (BCI), University of Bristol, Bristol, BS8 1UP, UK
| | - Rajkumar Patel
- Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, Yeonsu-gu, Incheon 21983, South Korea
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, South Korea.
| | - Adam Willis Perriman
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
7
|
Xuan B, Li L, Zhang H, Liu Z, Luo R, Yang W, Wang W. Antibacterial and anti-inflammatory effects of PGLa-loaded TiO 2 nanotube arrays. Front Chem 2023; 11:1210425. [PMID: 37361019 PMCID: PMC10285048 DOI: 10.3389/fchem.2023.1210425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Objectives: This study investigated the antimicrobial effect and anti-inflammatory activities of PGLa-loaded TiO2 nanotube arrays (TiO2 NTs) in osteoblast-like MG-63 cells. Methods: The surface morphology and roughness of three titanium (Ti) substrates (Ti, TiO2 NTs, PGLa-loaded TiO2 NTs) were evaluated by scanning electron microscopy (SEM) and atomic force microscope (AFM). The wettability of three titanium substrates was evaluated by contact angle. Biocompatibility of PGLa-loaded TiO2 NTs were evaluated in MG-63 cells (cell adhesion, proliferation, cytoskeletal evaluation and alkaline phosphatase activity). Spread plate counting method was used to evaluate antibacterial abilities of the titanium substrates. The calcein AM/PI staining evaluated cell viability of MG-63 cells on the substrates with or without proinflammatory factors (TNF-α). Results: The average surface roughness of untreated Ti, TiO2 NTs, PGLa-loaded TiO2 NTs were found to be 135.8 ± 6.4 nm, 300.5 ± 10.5 nm, 348.9 ± 16.9 nm, respectively. The contact angle of the untreated Ti was 77.4° ± 6.6°. TiO2 NTs displayed excellent wettability which of contact angle was 12.1° ± 2.9°. The contact angle of the PGLa-loaded TiO2 NTs was 34.6° ± 4.9°. MG-63 cells on surface of PGLa-loaded TiO2 NTs showed better cell adhesion, proliferation and osteogenic activity. The antibacterial rate of PGLa-loaded TiO2 NTs group significantly increased (84.6% ± 5.5%, p < 0.05). The rate of dead cells on the surfaces of the PGLa-loaded TiO2 NTs with TNF-α decreased significantly (4.49% ± 0.02, p < 0.01). Conclusion: PGLa-loaded TiO2 NTs have multi-biofunctions including biocompatibility, antibacterial and anti-inflammatory properties.
Collapse
|
8
|
Riivari S, Närvä E, Kangasniemi I, Willberg J, Närhi T. Focal adhesion formation of primary human gingival fibroblast on hydrothermally and in-sol-made TiO 2 -coated titanium. Clin Implant Dent Relat Res 2023. [PMID: 36815407 DOI: 10.1111/cid.13195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/31/2023] [Accepted: 02/11/2023] [Indexed: 02/24/2023]
Abstract
Optimal cell adhesion of the gingival fibroblasts to dental implants is important for maintaining good implant integration. The aim of this study was to discover, if the nanoporous TiO2 -coating on titanium alloy substrates is able to increase the cell adhesion of the human gingival fibroblasts (HGF). The study consisted of three differently produced titanium groups: hydrothermally produced TiO2 -coating (HT), novel TiO2 -coating made in sol (SOL), and noncoated control group. Primary HGF cells were initiated from gingival biopsies from patients having a third molar extraction. HGF were cultivated on titanium discs for 2 and 24 h to determine the initial attachment with confocal microscope. The cell spreading and adhesion protein signals were measured. In addition, expression of adhesion proteins vinculin, paxillin, and focal adhesion kinase (FAK) were measured after 3 days of cultivation by using Western Blotting. Higher protein levels of paxillin, vinculin, and FAK were induced on both coated discs compared to noncoated discs. The difference was statistically significant (p < 0.05) concerning expression of paxillin. The cell spreading was significantly larger on SOL discs after 2 and 24 h when comparing to noncoated controls. The confocal microscope analyses revealed significantly higher adhesion protein signals on both HT- and SOL-coated titanium compared to control group. This study showed, that both methods to produce TiO2 -coatings are able to increase HGF adhesion protein expression and cell spreading on titanium surface. Accordingly, the coatings can potentially improve the gingival attachment to titanium implant surfaces.
Collapse
Affiliation(s)
- Sini Riivari
- Department of Prosthetic Dentistry and Stomatognathic Physiology, University of Turku, Turku, Finland
| | - Elisa Närvä
- Institute of Biomedicine and Cancer Research Laboratory FICAN West, University of Turku, Turku, Finland
| | | | - Jaana Willberg
- Department of Oral Pathology and Oral Radiology, University of Turku, Turku, Finland.,Department of Pathology, Turku University Central Hospital, Turku, Finland
| | - Timo Närhi
- Department of Prosthetic Dentistry and Stomatognathic Physiology, University of Turku, Turku, Finland
| |
Collapse
|
9
|
Daniel M, Eleršič Filipič K, Filová E, Judl T, Fojt J. Modelling the role of membrane mechanics in cell adhesion on titanium oxide nanotubes. Comput Methods Biomech Biomed Engin 2023; 26:281-290. [PMID: 35380071 DOI: 10.1080/10255842.2022.2058875] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Titanium surface treated with titanium oxide nanotubes was used in many studies to quantify the effect of surface topography on cell fate. However, the predicted optimal diameter of nanotubes considerably differs among studies. We propose a model that explains cell adhesion to a nanostructured surface by considering the deformation energy of cell protrusions into titanium nanotubes and the adhesion to the surface. The optimal surface topology is defined as a geometry that gives the membrane a minimum energy shape. A dimensionless parameter, the cell interaction index, was proposed to describe the interplay between the cell membrane bending, the intrinsic curvature, and the strength of cell adhesion. Model simulation shows that an optimal nanotube diameter ranging from 20 nm to 100 nm (cell interaction index between 0.2 and 1, respectively) is feasible within a certain range of parameters describing cell membrane adhesion and bending. The results indicate a possibility to tune the topology of a nanostructural surface in order to enhance the proliferation and differentiation of cells mechanically compatible with the given surface geometry while suppressing the growth of other mechanically incompatible cells.
Collapse
Affiliation(s)
- Matej Daniel
- Faculty of Mechanical Engineering, Czech Technical University in Prague, Prague, Czechia
| | | | - Eva Filová
- Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | | | - Jaroslav Fojt
- Faculty of Chemical Technology, University of Chemistry and Technology Prague, Prague, Czechia
| |
Collapse
|
10
|
Valdez-Salas B, Castillo-Uribe S, Beltran-Partida E, Curiel-Alvarez M, Perez-Landeros O, Guerra-Balcazar M, Cheng N, Gonzalez-Mendoza D, Flores-Peñaloza O. Recovering Osteoblast Functionality on TiO2 Nanotube Surfaces Under Diabetic Conditions. Int J Nanomedicine 2022; 17:5469-5488. [PMID: 36426372 PMCID: PMC9680990 DOI: 10.2147/ijn.s387386] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
Introduction Titanium (Ti) and its alloys (eg, Ti6Al4V) are exceptional treatments for replacing or repairing bones and damaged surrounding tissues. Although Ti-based implants exhibit excellent osteoconductive performance under healthy conditions, the effectiveness and successful clinical achievements are negatively altered in diabetic patients. Concernedly, diabetes mellitus (DM) contributes to osteoblastic dysfunctionality, altering efficient osseointegration. This work investigates the beneficial osteogenic activity conducted by nanostructured TiO2 under detrimental microenvironment conditions, simulated by human diabetic serum. Methods We evaluated the bone-forming functional properties of osteoblasts on synthesized TiO2 nanotubes (NTs) by anodization and Ti6Al4V non-modified alloy surfaces under detrimental diabetic conditions. To simulate the detrimental environment, MC3T3E-1 preosteoblasts were cultured under human diabetic serum (DS) of two diagnosed and metabolically controlled patients. Normal human serum (HS) was used to mimic health conditions and fetal bovine serum (FBS) as the control culture environment. We characterized the matrix mineralization under the detrimental conditions on the control alloy and the NTs. Moreover, we applied immunofluorescence of osteoblasts differentiation markers on the NTs to understand the bone-expression stimulated by the biochemical medium conditions. Results The diabetic conditions depressed the initial osteoblast growth ability, as evidenced by altered early cell adhesion and reduced proliferation. Nonetheless, after three days, the diabetic damage was suppressed by the NTs, enhancing the osteoblast activity. Therefore, the osteogenic markers of bone formation and the differentiation of osteoblasts were reactivated by the nanoconfigured surfaces. Far more importantly, collagen secretion and bone-matrix mineralization were stimulated and conducted to levels similar to those of the control of FBS conditions, in comparison to the control alloy, which was not able to reach similar levels of bone functionality than the NTs. Conclusion Our study brings knowledge for the potential application of nanostructured biomaterials to work as an integrative platform under the detrimental metabolic status present in diabetic conditions.
Collapse
Affiliation(s)
- Benjamin Valdez-Salas
- Laboratorio de Biología Molecular y Cáncer, Instituto de Ingeniería, Universidad Autónoma de Baja California, Mexicali, Baja California, México
| | - Sandra Castillo-Uribe
- Laboratorio de Biología Molecular y Cáncer, Instituto de Ingeniería, Universidad Autónoma de Baja California, Mexicali, Baja California, México
| | - Ernesto Beltran-Partida
- Laboratorio de Biología Molecular y Cáncer, Instituto de Ingeniería, Universidad Autónoma de Baja California, Mexicali, Baja California, México
- Correspondence: Ernesto Beltran-Partida, Laboratorio de Biología Molecular y Cáncer, Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle de la Normal, Mexicali, Baja California, C.P. 21280, México, Email
| | - Mario Curiel-Alvarez
- Laboratorio de Biología Molecular y Cáncer, Instituto de Ingeniería, Universidad Autónoma de Baja California, Mexicali, Baja California, México
| | - Oscar Perez-Landeros
- Laboratorio de Biología Molecular y Cáncer, Instituto de Ingeniería, Universidad Autónoma de Baja California, Mexicali, Baja California, México
| | - Minerva Guerra-Balcazar
- Facultad de Ingeniería, División de Investigación y Posgrado, Universidad Autónoma de Querétaro, Querétaro, México
| | | | - Daniel Gonzalez-Mendoza
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexicali, Baja California, México
| | - Olivia Flores-Peñaloza
- Laboratorio de Biología Molecular y Cáncer, Instituto de Ingeniería, Universidad Autónoma de Baja California, Mexicali, Baja California, México
| |
Collapse
|
11
|
Zhao Q, Wu J, Li Y, Xu R, Zhu X, Jiao Y, Luo R, Ni X. Promotion of bone formation and antibacterial properties of titanium coated with porous Si/Ag-doped titanium dioxide. Front Bioeng Biotechnol 2022; 10:1001514. [PMID: 36338114 PMCID: PMC9633953 DOI: 10.3389/fbioe.2022.1001514] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/10/2022] [Indexed: 07/30/2023] Open
Abstract
Implant materials are mainly used to repair and replace defects in human hard tissue (bones and teeth). Titanium (Ti) and Ti alloys are widely used as implant materials because of their good mechanical properties and biocompatibilities, but they do not have the ability to induce new bone formation and have no antibacterial properties. Through surface modification, Ti and its alloys have certain osteogenic and antibacterial properties such that Ti implants can meet clinical needs and ensure integration between Ti implants and bone tissue, and this is currently an active research area. In this study, bioactive Si and Ag were introduced onto a Ti surface by plasma oxidation. The surface morphology, structure, elemental composition and valence, surface roughness, hydrophilicity and other physical and chemical properties of the coating were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), a profiler and a contact angle meter (CA). Adhesion and extensions of osteoblasts on the surface of the material were observed by scanning electron microscopy, and mineralization of osteoblasts on the surface of the material were observed by alizarin red staining. The antibacterial properties of the material were tested by culturing Staphylococcus aureus on the surface of the material. The osteogenic properties of Ti implants with porous Si/Ag TiO2 (TCP-SA) coatings were evaluated with in vivo experiments in rats. The results showed that Si and Ag were successfully introduced onto the Ti surface by plasma oxidation, and doping with Si and Ag did not change the surface morphology of the coating. The osteoblasts showed good adhesion and extension on the surfaces of Si/Ag coated samples, and the porous Si/Ag TiO2 coating promoted cell proliferation and mineralization. The bacterial experiments showed that the porous TiO2 coatings containing Si/Ag had certain antibacterial properties. The animal experiments showed that Si/Ag-coated Ti implants promoted integration between the implants and the surrounding bone. It was concluded that the porous Si/Ag TiO2 coating on the Ti surface had good osteogenic and antibacterial properties and provides an optimal strategy for improving the osteogenic and antibacterial properties of Ti implants.
Collapse
Affiliation(s)
- Quanming Zhao
- Department of Orthopedics, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Jieshi Wu
- Department of Orthopaedics, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Yankun Li
- Department of Orthopedics, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Ruisheng Xu
- Department of Orthopaedics, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Xingyuan Zhu
- Department of Orthopedics, Dafeng People’s Hospital, Yancheng, Jiangsu, China
| | - Yang Jiao
- Department of Stomatology, The 7th Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Rui Luo
- Department of Orthopedics, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Xiaohui Ni
- Department of Orthopedics, Dafeng People’s Hospital, Yancheng, Jiangsu, China
| |
Collapse
|
12
|
Xu Z, Jiang X. Osteogenic TiO2 composite nano-porous arrays: A favorable platform based on titanium alloys applied in artificial implants. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Self-organized TiO2 nanotubes on Ti-Nb-Fe alloys for biomedical applications: Synthesis and characterization. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
14
|
Sheng X, Wang A, Wang Z, Liu H, Wang J, Li C. Advanced Surface Modification for 3D-Printed Titanium Alloy Implant Interface Functionalization. Front Bioeng Biotechnol 2022; 10:850110. [PMID: 35299643 PMCID: PMC8921557 DOI: 10.3389/fbioe.2022.850110] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/28/2022] [Indexed: 12/20/2022] Open
Abstract
With the development of three-dimensional (3D) printed technology, 3D printed alloy implants, especially titanium alloy, play a critical role in biomedical fields such as orthopedics and dentistry. However, untreated titanium alloy implants always possess a bioinert surface that prevents the interface osseointegration, which is necessary to perform surface modification to enhance its biological functions. In this article, we discuss the principles and processes of chemical, physical, and biological surface modification technologies on 3D printed titanium alloy implants in detail. Furthermore, the challenges on antibacterial, osteogenesis, and mechanical properties of 3D-printed titanium alloy implants by surface modification are summarized. Future research studies, including the combination of multiple modification technologies or the coordination of the structure and composition of the composite coating are also present. This review provides leading-edge functionalization strategies of the 3D printed titanium alloy implants.
Collapse
Affiliation(s)
- Xiao Sheng
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Ao Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Chen Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| |
Collapse
|
15
|
The Effect of Ultraviolet Treatment on TiO2 Nanotubes: A Study of Surface Characteristics, Bacterial Adhesion, and Gingival Fibroblast Response. METALS 2022. [DOI: 10.3390/met12010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Titanium dioxide (TiO2) nanotubes are emerging as a provocative target for oral implant research. The aim of this study was to evaluate the effect of UV on the wettability behavior, bacterial colonization, and fibroblast proliferation rate of TiO2 nanotube surfaces prepared using different anodization voltages and aimed for use as implant abutment materials. Four different experimental materials were prepared: (1) TiO2 nanotube 10 V; (2) TiO2 nanotube 15 V; (3) TiO2 nanotube 20 V; and (4) commercial pure titanium as a control group. TiO2 nanotube arrays were prepared in an aqueous electrolyte solution of hydrofluoric acid (HF, 0.5 vol.%). Different anodization voltages were used to modify the morphology of the TiO2 nanotubes. Equilibrium contact angles were measured using the sessile drop method with a contact angle meter. The investigated surfaces (n = 3) were incubated at 37 °C in a suspension of Streptococcus mutans (S. mutans) for 30 min for bacterial adhesion and 3 days for biofilm formation. Human gingival fibroblasts were plated and cultured on the experimental substrates for up to 7 days and the cell proliferation rate was assessed using the AlamarBlue assayTM (BioSource International, Camarillo, CA, USA). The data were analyzed using one-way ANOVA followed by Tukey’s post-hoc test. Water contact angle measurements on the TiO2 after UV treatment showed an overall hydrophilic behavior regardless of the anodization voltage. The ranking of the UV-treated surfaces of experimental groups from lowest to highest for bacterial adhesion was: TiO2 nanotube 20 V < Ti and TiO2 nanotube 15 V < TiO2 nanotube 10 V (p < 0.05), and for bacterial biofilm formation was: TiO2 nanotube 20 V-TiO2 nanotube 10 V < Ti-TiO2 nanotube 15 V (p < 0.05). Fibroblast cell proliferation was lower on TiO2 nanotube surfaces throughout the incubation period and UV light treatment showed no enhancement in cellular response. UV treatment enhances the wettability behavior of TiO2 nanotube surfaces and could result in lower bacterial adhesion and biofilm formation.
Collapse
|
16
|
dos Anjos KFL, da Silva CDC, de Souza MAA, de Mattos AB, Coelho LCBB, Machado G, de Melo JV, de Figueiredo RCBQ. The Deposition of a Lectin from Oreochromis niloticus on the Surface of Titanium Dioxide Nanotubes Improved the Cell Adhesion, Proliferation, and Osteogenic Activity of Osteoblast-like Cells. Biomolecules 2021; 11:1748. [PMID: 34944393 PMCID: PMC8698878 DOI: 10.3390/biom11121748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/20/2022] Open
Abstract
Titanium and its alloys are used as biomaterials for medical and dental applications, due to their mechanical and physical properties. Surface modifications of titanium with bioactive molecules can increase the osseointegration by improving the interface between the bone and implant. In this work, titanium dioxide nanotubes (TiO2NTs) were functionalized with a lectin from the plasma of the fish Oreochromis niloticus aiming to favor the adhesion and proliferation of osteoblast-like cells, improving its biocompatibility. The TiO2NTs were obtained by anodization of titanium and annealed at 400 °C for 3 h. The resulting TiO2NTs were characterized by high-resolution scanning electron microscopy. The successful incorporation of OniL on the surface of TiO2NTs, by spin coating, was demonstrated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIE), and attenuated total reflection-Fourier transform infrared spectrum (ATR-FTIR). Our results showed that TiO2NTs were successfully synthesized in a regular and well-distributed way. The modification of TiO2NTs with OniL favored adhesion, proliferation, and the osteogenic activity of osteoblast-like cells, suggesting its use to improve the quality and biocompatibility of titanium-based biomaterials.
Collapse
Affiliation(s)
- Keicyanne Fernanda Lessa dos Anjos
- Departamento de Microbiologia, Instituto Aggeu Magalhães (FIOCRUZ-PE), Campus da UFPE, Av. Prof. Moraes Rego s/n Cidade Universitária, Recife 50670-420, PE, Brazil; (K.F.L.d.A.); (C.D.C.d.S.); (M.A.A.d.S.)
| | - Cynarha Daysy Cardoso da Silva
- Departamento de Microbiologia, Instituto Aggeu Magalhães (FIOCRUZ-PE), Campus da UFPE, Av. Prof. Moraes Rego s/n Cidade Universitária, Recife 50670-420, PE, Brazil; (K.F.L.d.A.); (C.D.C.d.S.); (M.A.A.d.S.)
| | - Mary Angela Aranda de Souza
- Departamento de Microbiologia, Instituto Aggeu Magalhães (FIOCRUZ-PE), Campus da UFPE, Av. Prof. Moraes Rego s/n Cidade Universitária, Recife 50670-420, PE, Brazil; (K.F.L.d.A.); (C.D.C.d.S.); (M.A.A.d.S.)
| | - Alessandra Batista de Mattos
- Centro de Tecnologias Estratégicas do Nordeste (CETENE), Av. Prof. Luiz Freire, 01. Cidade Universitária, Recife 50740-540, PE, Brazil; (A.B.d.M.); (G.M.); (J.V.d.M.)
| | - Luana Cassandra Breitenbach Barroso Coelho
- Centro de Ciências Biológicas, Departamento de Bioquímica, Campus da UFPE, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego s/n Cidade Universitária, Recife 50670-420, PE, Brazil;
| | - Giovanna Machado
- Centro de Tecnologias Estratégicas do Nordeste (CETENE), Av. Prof. Luiz Freire, 01. Cidade Universitária, Recife 50740-540, PE, Brazil; (A.B.d.M.); (G.M.); (J.V.d.M.)
| | - Janaina Viana de Melo
- Centro de Tecnologias Estratégicas do Nordeste (CETENE), Av. Prof. Luiz Freire, 01. Cidade Universitária, Recife 50740-540, PE, Brazil; (A.B.d.M.); (G.M.); (J.V.d.M.)
| | - Regina Celia Bressan Queiroz de Figueiredo
- Departamento de Microbiologia, Instituto Aggeu Magalhães (FIOCRUZ-PE), Campus da UFPE, Av. Prof. Moraes Rego s/n Cidade Universitária, Recife 50670-420, PE, Brazil; (K.F.L.d.A.); (C.D.C.d.S.); (M.A.A.d.S.)
| |
Collapse
|
17
|
Zheng Z, Ao X, Xie P, Zheng X, Lee K, Chen W. Nonthermal Plasma Brush Treatment on Titanium and Zirconia To Improve Periabutment Epithelium Formation. ACS Biomater Sci Eng 2021; 7:5039-5047. [PMID: 34637254 DOI: 10.1021/acsbiomaterials.1c00895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The peri-implant soft tissue with inferior adhesion takes a long healing period to form, which is undesirable for the reaction around the peri-implant soft tissues. The aim of this study is to improve the physicochemical properties of titanium (Ti) and zirconia (ZrO2) implant abutments and shorten the formation period of periabutment epithelium tissue. A nonthermal atmospheric plasma brush (NTAPB, N) was employed for Ti and ZrO2 activation. The surface topographies, roughness, crystallinity, wettability, and chemical elements of the abutment materials were examined. The epithelial cell behavior analysis and tissue remodeling of the periabutment epithelial tissue were performed in vitro and in vivo. N-Ti and N-ZrO2 had a similar good surface wettability, with a 65 and 70% increase in oxygen content and a 70 and 75% decrease in carbon content, respectively. Both N-Ti and N-ZrO2 showed excellent adhesion, spread, and proliferation of epithelial cells in vitro, with improved adhesion molecule expression levels compared to untreated samples. N-Ti and N-ZrO2 abutments were placed in the implantation sites of rats. From week 2 to week 6 after implantation, N-Ti and N-ZrO2 had similar periabutment epithelium tissue formation, and both had increased plectin-positive and laminin γ2-positive cell numbers compared to Ti and ZrO2. The NTAPB shows promising abutment modification abilities. It promotes the expression levels of adhesion molecules and the epithelial cell performance, which later leads to a quicker formation and remodeling of the important periabutment epithelial tissue.
Collapse
Affiliation(s)
- Zheng Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610065, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiaogang Ao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610065, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610065, China
| | - Peng Xie
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610065, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiao Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610065, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610065, China
| | - Kevin Lee
- Department of Stomatology, Medical College of Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610065, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
18
|
Kim YG, Kim WT, Jung BH, Yoo KY, Um HS, Chang BS, Lee JK, Choi WY. Effects of ibuprofen-loaded TiO₂ nanotube dental implants in alloxan-induced diabetic rabbits. J Periodontal Implant Sci 2021; 51:352-363. [PMID: 34713996 PMCID: PMC8558002 DOI: 10.5051/jpis.2007520376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/22/2021] [Accepted: 03/22/2021] [Indexed: 11/25/2022] Open
Abstract
Purpose Some systemic conditions, especially diabetes mellitus (DM), adversely affect dental implant success. This study aimed to investigate the effects of ibuprofen-loaded TiO2 nanotube (ILTN) dental implants in alloxan-induced diabetic rabbits. Methods Twenty-six New Zealand white rabbits were treated with alloxan monohydrate to induce DM. At 2 weeks following DM induction, 3 types of implants (sandblasted, large-grit, and acid-etched [SLA], ILTN, and machined) were placed into the proximal tibia in the 10 rabbits that survived following DM induction. Each type of implant was fitted randomly in 1 of the holes (round-robin method). The animals were administered alizarin (at 3 weeks) and calcein (at 6 weeks) as fluorescent bone markers, and were sacrificed at 8 weeks for radiographic and histomorphometric analyses. Results TiO2 nanotube arrays of ~70 nm in diameter and ~17 μm in thickness were obtained, and ibuprofen was loaded into the TiO2 nanotube arrays. A total of 26 rabbits were treated with alloxan monohydrate and only 10 rabbits survived. The 10 surviving rabbits showed a blood glucose level of 300 mg/dL or higher, and the implants were placed in these diabetic rabbits. The implant stability quotient (ISQ) and bone-to-implant contact (BIC) values were significantly higher in the ILTN group (ISQ: 61.8, BIC: 41.3%) and SLA group (ISQ: 62.6, BIC: 46.3%) than in the machined group (ISQ: 53.4, BIC: 20.2%), but the difference in the BIC percentage between the SLA and ILTN groups was not statistically significant (P=0.628). However, the bone area percentage was significantly higher in the ILTN group (78.0%) than in the SLA group (52.1%; P=0.000). Conclusions The ILTN dental implants showed better stability (ISQ) and BIC than the machined implants; however, these values were similar to the commercially used SLA implants in the 2-week diabetic rabbit model.
Collapse
Affiliation(s)
- Young-Gyo Kim
- Department of Periodontology, Gangneung-Wonju National University College of Dentistry, Gangneung, Korea
| | - Wan-Tae Kim
- Department of Advanced Materials Engineering, Gangneung-Wonju National University, Gangneung, Korea
| | - Bo Hyun Jung
- Department of Anatomy, Gangneung-Wonju National University College of Dentistry, Gangneung, Korea
| | - Ki-Yeon Yoo
- Department of Anatomy, Gangneung-Wonju National University College of Dentistry, Gangneung, Korea.,Research Institute for Dental Engineering, Gangneung-Wonju National University, Gangneung, Korea
| | - Heung-Sik Um
- Department of Periodontology, Gangneung-Wonju National University College of Dentistry, Gangneung, Korea
| | - Beom-Seok Chang
- Department of Periodontology, Gangneung-Wonju National University College of Dentistry, Gangneung, Korea
| | - Jae-Kwan Lee
- Department of Periodontology, Gangneung-Wonju National University College of Dentistry, Gangneung, Korea.,Research Institute for Dental Engineering, Gangneung-Wonju National University, Gangneung, Korea.
| | - Won-Youl Choi
- Department of Advanced Materials Engineering, Gangneung-Wonju National University, Gangneung, Korea.,Research Institute for Dental Engineering, Gangneung-Wonju National University, Gangneung, Korea.
| |
Collapse
|
19
|
Maher S, Linklater D, Rastin H, Le Yap P, Ivanova EP, Losic D. Tailoring Additively Manufactured Titanium Implants for Short-Time Pediatric Implantations with Enhanced Bactericidal Activity. ChemMedChem 2021; 17:e202100580. [PMID: 34606176 DOI: 10.1002/cmdc.202100580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/29/2021] [Indexed: 01/01/2023]
Abstract
Paediatric titanium (Ti) implants are used for the short-term fixation of fractures, after which they are removed. However, bone overgrowth on the implant surface can complicate their removal. The current Ti implants research focuses on improving their osseointegration and antibacterial properties for long-term use while overlooking the requirements of temporary implants. This paper presents the engineering of additively manufactured Ti implants with antibacterial properties and prevention of bone cell overgrowth. 3D-printed implants were fabricated followed by electrochemical anodization to generate vertically aligned titania nanotubes (TNTs) on the surface with specific diameters (∼100 nm) to reduce cell attachment and proliferation. To achieve enhanced antibacterial performance, TNTs were coated with gallium nitrate as antibacterial agent. The physicochemical characteristics of these implants assessed by the attachment, growth and viability of osteoblastic MG-63 cells showed significantly reduced cell attachment and proliferation, confirming the ability of TNTs surface to avoid cell overgrowth. Gallium coated TNTs showed strong antibacterial activity against S. aureus and P. aeruginosa with reduced bacterial attachment and high rates of bacterial death. Thus a new approach for the engineering of temporary Ti implants with enhanced bactericidal properties with reduced bone cell attachment is demonstrated as a new strategy toward a new generation of short-term implants in paediatrics.
Collapse
Affiliation(s)
- Shaheer Maher
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.,Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Denver Linklater
- College of STEM, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Hadi Rastin
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Pei Le Yap
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Elena P Ivanova
- College of STEM, School of Science, RMIT University, Melbourne, VIC 3000, Australia.,Australian Research Council (ARC) Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Dusan Losic
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
20
|
Zhao QM, Li B, Yu FX, Li YK, Wu JS, Peng Z, He J, Han QS, Zhang LB, Yi L, Xu RS, Jiao Y. Cu-Co Co-Doped Microporous Coating on Titanium with Osteogenic and Antibacterial Properties. J Biomed Nanotechnol 2021; 17:1435-1447. [PMID: 34446146 DOI: 10.1166/jbn.2021.3120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Titanium (Ti) and its alloys are widely used in bone surgery by virtue of their excellent mechanical properties and good biocompatibility; however, complications such as loosening and sinking have been reported post-implantation. Herein we deposited a copper-cobalt (Cu-Co) co-doped titanium dioxide (TUO) coating on the surface of Ti implants by microarc oxidation. The osteogenic and antimicrobial properties of the coating were evaluated by in vitro experiments, and we also assessed β-catenin expression levels on different sample surfaces. Our results revealed that the coating promoted the adhesion, proliferation, and differentiation of MG63 osteoblasts, and TUO coating promoted β-catenin expression; moreover, the proliferation of Staphylococcus aureus was inhibited. To summarize, we report that Cu-Co co-doping can enhance the osteogenic and antibacterial activities of orthopedic Ti implants, leading to potentially improved clinical performance.
Collapse
Affiliation(s)
- Quan-Ming Zhao
- Department of Orthopaedics, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, China
| | - Bo Li
- Department of Orthopaedics, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, China
| | - Fu-Xun Yu
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, China
| | - Yan-Kun Li
- Department of Orthopaedics, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, China
| | - Jie-Shi Wu
- Department of Orthopaedics, Affiliated Hospital of Jiangnan University (Wuxi Translational Medicine Center), Wuxi 214000, Jangsu, China
| | - Zhi Peng
- Department of Orthopaedics, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, China
| | - Jie He
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, China
| | - Quan-Sheng Han
- Department of Orthopaedics, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, China
| | - Lei-Bing Zhang
- Department of Orthopaedics, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, China
| | - Lei Yi
- Department of Burn, Ruijin Hospital Affliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rui-Sheng Xu
- Department of Orthopaedics, Affiliated Hospital of Jiangnan University (Wuxi Translational Medicine Center), Wuxi 214000, Jangsu, China
| | - Yang Jiao
- Department of Stomatology, The 7th Medical Center, Chinese PLA General Hospital, Beijing 100700, China
| |
Collapse
|
21
|
Pawlik A, Jarosz M, Socha RP, Sulka GD. The Impacts of Crystalline Structure and Different Surface Functional Groups on Drug Release and the Osseointegration Process of Nanostructured TiO 2. Molecules 2021; 26:1723. [PMID: 33808785 PMCID: PMC8003584 DOI: 10.3390/molecules26061723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 11/17/2022] Open
Abstract
In implantable materials, surface topography and chemistry are the most important in the effective osseointegration and interaction with drug molecules. Therefore, structural and surface modifications of nanostructured titanium dioxide (TiO2) layers are reported in the present work. In particular, the modification of annealed TiO2 samples with -OH groups and silane derivatives, confirmed by X-ray photoelectron spectroscopy, is shown. Moreover, the ibuprofen release process was studied regarding the desorption-desorption-diffusion (DDD) kinetic model. The results proved that the most significant impact on the release profile is annealing, and further surface modifications did not change its kinetics. Additionally, the cell adhesion and proliferation were examined based on the MTS test and immunofluorescent staining. The obtained data showed that the proposed changes in the surface chemistry enhance the samples' hydrophilicity. Moreover, improvements in the adhesion and proliferation of the MG-63 cells were observed.
Collapse
Affiliation(s)
- Anna Pawlik
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30387 Krakow, Poland; (A.P.); (G.D.S.)
| | - Magdalena Jarosz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30387 Krakow, Poland; (A.P.); (G.D.S.)
| | - Robert P. Socha
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Science, Niezapominajek 8, 30239 Krakow, Poland;
| | - Grzegorz D. Sulka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30387 Krakow, Poland; (A.P.); (G.D.S.)
| |
Collapse
|
22
|
Baker EA, Fleischer MM, Vara AD, Salisbury MR, Baker KC, Fortin PT, Friedrich CR. Local and Systemic In Vivo Responses to Osseointegrative Titanium Nanotube Surfaces. NANOMATERIALS 2021; 11:nano11030583. [PMID: 33652733 PMCID: PMC7996927 DOI: 10.3390/nano11030583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 01/25/2023]
Abstract
Orthopedic implants requiring osseointegration are often surface modified; however, implants may shed these coatings and generate wear debris leading to complications. Titanium nanotubes (TiNT), a new surface treatment, may promote osseointegration. In this study, in vitro (rat marrow-derived bone marrow cell attachment and morphology) and in vivo (rat model of intramedullary fixation) experiments characterized local and systemic responses of two TiNT surface morphologies, aligned and trabecular, via animal and remote organ weight, metal ion, hematologic, and nondecalcified histologic analyses. In vitro experiments showed total adherent cells on trabecular and aligned TiNT surfaces were greater than control at 30 min and 4 h, and cells were smaller in diameter and more eccentric. Control animals gained more weight, on average; however, no animals met the institutional trigger for weight loss. No hematologic parameters (complete blood count with differential) were significantly different for TiNT groups vs. control. Inductively coupled plasma mass spectrometry (ICP-MS) showed greater aluminum levels in the lungs of the trabecular TiNT group than in those of the controls. Histologic analysis demonstrated no inflammatory infiltrate, cytotoxic, or necrotic conditions in proximity of K-wires. There were significantly fewer eosinophils/basophils and neutrophils in the distal region of trabecular TiNT-implanted femora; and, in the midshaft of aligned TiNT-implanted femora, there were significantly fewer foreign body giant/multinucleated cells and neutrophils, indicating a decreased immune response in aligned TiNT-implanted femora compared to controls.
Collapse
Affiliation(s)
- Erin A. Baker
- Departments of Orthopaedic Research and Surgery, Beaumont Health, Royal Oak, MI 48073, USA; (M.M.F.); (A.D.V.); (M.R.S.); (K.C.B.); (P.T.F.)
- Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI 49931, USA;
- Department of Orthopaedic Surgery, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
- Correspondence:
| | - Mackenzie M. Fleischer
- Departments of Orthopaedic Research and Surgery, Beaumont Health, Royal Oak, MI 48073, USA; (M.M.F.); (A.D.V.); (M.R.S.); (K.C.B.); (P.T.F.)
| | - Alexander D. Vara
- Departments of Orthopaedic Research and Surgery, Beaumont Health, Royal Oak, MI 48073, USA; (M.M.F.); (A.D.V.); (M.R.S.); (K.C.B.); (P.T.F.)
| | - Meagan R. Salisbury
- Departments of Orthopaedic Research and Surgery, Beaumont Health, Royal Oak, MI 48073, USA; (M.M.F.); (A.D.V.); (M.R.S.); (K.C.B.); (P.T.F.)
| | - Kevin C. Baker
- Departments of Orthopaedic Research and Surgery, Beaumont Health, Royal Oak, MI 48073, USA; (M.M.F.); (A.D.V.); (M.R.S.); (K.C.B.); (P.T.F.)
- Department of Orthopaedic Surgery, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Paul T. Fortin
- Departments of Orthopaedic Research and Surgery, Beaumont Health, Royal Oak, MI 48073, USA; (M.M.F.); (A.D.V.); (M.R.S.); (K.C.B.); (P.T.F.)
- Department of Orthopaedic Surgery, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Craig R. Friedrich
- Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI 49931, USA;
| |
Collapse
|
23
|
Sarraf M, Nasiri-Tabrizi B, Yeong CH, Madaah Hosseini HR, Saber-Samandari S, Basirun WJ, Tsuzuki T. Mixed oxide nanotubes in nanomedicine: A dead-end or a bridge to the future? CERAMICS INTERNATIONAL 2021; 47:2917-2948. [PMID: 32994658 PMCID: PMC7513735 DOI: 10.1016/j.ceramint.2020.09.177] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 05/12/2023]
Abstract
Nanomedicine has seen a significant rise in the development of new research tools and clinically functional devices. In this regard, significant advances and new commercial applications are expected in the pharmaceutical and orthopedic industries. For advanced orthopedic implant technologies, appropriate nanoscale surface modifications are highly effective strategies and are widely studied in the literature for improving implant performance. It is well-established that implants with nanotubular surfaces show a drastic improvement in new bone creation and gene expression compared to implants without nanotopography. Nevertheless, the scientific and clinical understanding of mixed oxide nanotubes (MONs) and their potential applications, especially in biomedical applications are still in the early stages of development. This review aims to establish a credible platform for the current and future roles of MONs in nanomedicine, particularly in advanced orthopedic implants. We first introduce the concept of MONs and then discuss the preparation strategies. This is followed by a review of the recent advancement of MONs in biomedical applications, including mineralization abilities, biocompatibility, antibacterial activity, cell culture, and animal testing, as well as clinical possibilities. To conclude, we propose that the combination of nanotubular surface modification with incorporating sensor allows clinicians to precisely record patient data as a critical contributor to evidence-based medicine.
Collapse
Key Words
- ALP, Alkaline Phosphatase
- APH, Anodization-Cyclic Precalcification-Heat Treatment
- Ag2O NPs, Silver Oxide Nanoparticles
- AgNPs, Silver Nanoparticles
- Anodization
- BIC, Bone-Implant Contact
- Bioassays
- CAGR, Compound Annual Growth Rate
- CT, Computed Tomography
- DMF, Dimethylformamide
- DMSO, Dimethyl Sulfoxide
- DRI, Drug-Releasing Implants
- E. Coli, Escherichia Coli
- ECs, Endothelial Cells
- EG, Ethylene Glycol
- Electrochemistry
- FA, Formamide
- Fe2+, Ferrous Ion
- Fe3+, Ferric Ion
- Fe3O4, Magnetite
- GEP, Gene Expression Programming
- GO, Graphene Oxide
- HA, Hydroxyapatite
- HObs, Human Osteoblasts
- HfO2 NTs, Hafnium Oxide Nanotubes
- IMCs, Intermetallic Compounds
- LEDs, Light emitting diodes
- MEMS, Microelectromechanical Systems
- MONs, Mixed Oxide Nanotubes
- MOPSO, Multi-Objective Particle Swarm Optimization
- MSCs, Mesenchymal Stem Cells
- Mixed oxide nanotubes
- NMF, N-methylformamide
- Nanomedicine
- OPC1, Osteo-Precursor Cell Line
- PSIs, Patient-Specific Implants
- PVD, Physical Vapor Deposition
- RF, Radio-Frequency
- ROS, Radical Oxygen Species
- S. aureus, Staphylococcus Aureus
- S. epidermidis, Staphylococcus Epidermidis
- SBF, Simulated Body Fluid
- TiO2 NTs, Titanium Dioxide Nanotubes
- V2O5, Vanadium Pentoxide
- VSMCs, Vascular Smooth Muscle Cells
- XPS, X-ray Photoelectron Spectroscopy
- ZrO2 NTs, Zirconium Dioxide Nanotubes
- hASCs, Human Adipose-Derived Stem Cells
Collapse
Affiliation(s)
- Masoud Sarraf
- Centre of Advanced Materials, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
- Materials Science and Engineering Department, Sharif University of Technology, P.O. Box 11155-9466, Azadi Avenue, Tehran, Iran
| | - Bahman Nasiri-Tabrizi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
- New Technologies Research Center, Amirkabir University of Technology, Tehran, Iran
| | - Chai Hong Yeong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Hamid Reza Madaah Hosseini
- Materials Science and Engineering Department, Sharif University of Technology, P.O. Box 11155-9466, Azadi Avenue, Tehran, Iran
| | | | - Wan Jefrey Basirun
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Takuya Tsuzuki
- Research School of Electrical Energy and Materials Engineering, College of Engineering and Computer Science, Australian National University, Canberra, 2601, Australia
| |
Collapse
|
24
|
Nogueira RP, Deuzimar Uchoa J, Hilario F, Santana-Melo GDF, de Vasconcellos LMR, Marciano FR, Roche V, Moreira Jorge Junior A, Lobo AO. Characterization of Optimized TiO 2 Nanotubes Morphology for Medical Implants: Biological Activity and Corrosion Resistance. Int J Nanomedicine 2021; 16:667-682. [PMID: 33531806 PMCID: PMC7847373 DOI: 10.2147/ijn.s285805] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/31/2020] [Indexed: 11/23/2022] Open
Abstract
Background Nanostructured surface modifications of Ti-based biomaterials are moving up from a highly-promising to a successfully-implemented approach to developing safe and reliable implants. Methods The study’s main objective is to help consolidate the knowledge and identify the more suitable experimental strategies related to TiO2 nanotubes-modified surfaces. In this sense, it proposes the thorough investigation of two optimized nanotubes morphologies in terms of their biological activity (cell cytotoxicity, alkaline phosphatase activity, alizarin red mineralization test, and cellular adhesion) and their electrochemical behavior in simulated body fluid (SBF) electrolyte. Layers of small-short and large-long nanotubes were prepared and investigated in their amorphous and crystallized states and compared to non-anodized samples. Results Results show that much more than the surface area development associated with the nanotubes’ growth; it is the heat treatment-induced change from amorphous to crystalline anatase-rutile structures that ensure enhanced biological activity coupled to high corrosion resistance. Conclusion Compared to both non-anodized and amorphous nanotubes layers, the crystallized nano-structures’ outstanding bioactivity was related to the remarkable increase in their hydrophilic behavior, while the enhanced electrochemical stability was ascribed to the thickening of the dense rutile barrier layer at the Ti surface beneath the nanotubes.
Collapse
Affiliation(s)
- Ricardo Pereira Nogueira
- Chemical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates.,Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, GrenobleINPLEPMI, Grenoble 38000, France
| | - Jose Deuzimar Uchoa
- Federal Institute of Education, Science and Technology of Piauí, Teresina 64053-390, Brazil.,Interdisciplinary Laboratory for Advanced Materials, BioMatLab Group, Materials Science and Engineering Graduate Program, UFPI - Federal University of Piaui, Teresina 64049-550 Brazil
| | - Fanny Hilario
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, GrenobleINPLEPMI, Grenoble 38000, France
| | - Gabriela de Fátima Santana-Melo
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, Sao Paulo State University, Sao José dos Campos 12245-000, Brazil
| | - Luana Marotta Reis de Vasconcellos
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, Sao Paulo State University, Sao José dos Campos 12245-000, Brazil
| | | | - Virginie Roche
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, GrenobleINPLEPMI, Grenoble 38000, France
| | - Alberto Moreira Jorge Junior
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, GrenobleINPLEPMI, Grenoble 38000, France.,Department of Materials Engineering, Federal University of São Carlos, São Carlos 13565-905, Brazil
| | - Anderson Oliveira Lobo
- Interdisciplinary Laboratory for Advanced Materials, BioMatLab Group, Materials Science and Engineering Graduate Program, UFPI - Federal University of Piaui, Teresina 64049-550 Brazil
| |
Collapse
|
25
|
Plasma-activated interfaces for biomedical engineering. Bioact Mater 2021; 6:2134-2143. [PMID: 33511312 PMCID: PMC7810626 DOI: 10.1016/j.bioactmat.2021.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/16/2020] [Accepted: 01/01/2021] [Indexed: 02/06/2023] Open
Abstract
As an important phenomenon to monitor disease development, cell signaling usually takes place at the interface between organisms/cells or between organisms/cells and abiotic materials. Therefore, finding a strategy to build the specific biomedical interfaces will help regulate information transmission and produce better therapeutic results to benefit patients. In the past decades, plasmas containing energetic and active species have been employed to construct various interfaces to meet biomedical demands such as bacteria inactivation, tissue regeneration, cancer therapy, and so on. Based on the potent functions of plasma modified surfaces, this mini-review is aimed to summarize the state-of-art plasma-activated interfaces and provide guidance to researchers to select the proper plasma and processing conditions to design and prepare interfaces with the optimal biological and related functions. After a brief introduction, plasma-activated interfaces are described and categorized according to different criteria including direct plasma-cells interfaces and indirect plasma-material-cells interfaces and recent research activities on the application of plasma-activated interfaces are described. The authors hope that this mini-review will spur interdisciplinary research efforts in this important area and expedite associated clinical applications. The Interfaces between organisms/cells and abiotic materials are crucial for cell signaling. Plasmas containing energetic and active species are potent tool to construct biomedical interfaces. The objective here is to summarize recent plasma-activated interfaces to spur interdisciplinary efforts for clinical applications.
Collapse
|
26
|
Shu T, Zhang Y, Sun G, Pan Y, He G, Cheng Y, Li A, Pei D. Enhanced Osseointegration by the Hierarchical Micro-Nano Topography on Selective Laser Melting Ti-6Al-4V Dental Implants. Front Bioeng Biotechnol 2021; 8:621601. [PMID: 33490056 PMCID: PMC7817818 DOI: 10.3389/fbioe.2020.621601] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022] Open
Abstract
Currently, selective laser melting (SLM) has been thriving in implant dentistry for on-demand fabricating dental implants. Based on the coarse microtopography of SLM titanium surfaces, constructing nanostructure to form the hierarchical micro-nano topography is effective in enhancing osseointegration. Given that current nanomodification techniques of SLM implants, such as anodization and hydrothermal treatment, are facing the inadequacy in costly specific apparatus and reagents, there has been no recognized nanomodified SLM dental implants. The present study aimed to construct hierarchical micro-nano topography on self-made SLM dental implants by a simple and safe inorganic chemical oxidation, and to evaluate its contribution on osteoblastic cells bioactivity and osseointegration. The surface chemical and physical parameters were characterized by FE-SEM, EDS, profilometer, AFM, and contact angle meter. The alteration on bioactivity of MG-63 human osteoblastic cells were detected by qRT-PCR. Then the osseointegration was assessed by implanting implants on the femur condyle of New Zealand Rabbits. The hierarchical micro-nano topography was constituted by the microrough surface of SLM implants and nanoneedles (diameter: 20∼50 nm, height: 150∼250 nm), after nanomodifying SLM implants in 30% hydrogen peroxide and 30% hydrochloride acid (volume ratio 1:2.5) at room temperature for 36 h. Low chemical impurities content and high hydrophilicity were observed in the nanomodified group. Cell experiments on the nanomodified group showed higher expression of mitophagy related gene (PINK1, PARKIN, LC3B, and LAMP1) at 5 days and higher expression of osteogenesis related gene (Runx2 and OCN) at 14 days. In the early stage of bone formation, the nanomodified SLM implants demonstrated higher bone-to-implant contact. Intriguingly, the initial bone-to-implant contact of nanomodified SLM implants consisted of more mineralized bone with less immature osteoid. After the cessation of bone formation, the bone-to-implant contact of nanomodified SLM implants was equal to untreated SLM implants and marketable TixOs implants. The overall findings indicated that the inorganic chemical oxidized hierarchical micro-nano topography could enhance the bioactivity of osteoblastic cells, and consequently promote the peri-implant bone formation and mineralization of SLM dental implants. This study sheds some light on improvements in additive manufactured dental implants.
Collapse
Affiliation(s)
- Tianyu Shu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yuchen Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Guo Sun
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yang Pan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Gang He
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yilong Cheng
- School of Chemistry, Xi'an Jiaotong University, Xi'an, China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Dandan Pei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
27
|
Uslu E, Mimiroglu D, Ercan B. Nanofeature Size and Morphology of Tantalum Oxide Surfaces Control Osteoblast Functions. ACS APPLIED BIO MATERIALS 2021. [DOI: 10.1021/acsabm.0c01354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ece Uslu
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara 06800, Çankaya, Turkey
| | - Didem Mimiroglu
- Biochemistry, Graduate School of Natural and Applied Sciences, Middle East Technical University, Ankara 06800, Çankaya, Turkey
- Biochemistry, Faculty of Science, Sivas Cumhuriyet University, Sivas 58140, Turkey
| | - Batur Ercan
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara 06800, Çankaya, Turkey
- Biomedical Engineering Program, Middle East Technical University, Ankara 06800, Çankaya, Turkey
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara 06800, Çankaya, Turkey
| |
Collapse
|
28
|
Nanoparticles and Nanostructured Surface Fabrication for Innovative Cranial and Maxillofacial Surgery. MATERIALS 2020; 13:ma13235391. [PMID: 33260938 PMCID: PMC7731022 DOI: 10.3390/ma13235391] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/12/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022]
Abstract
A novel strategy to improve the success of soft and hard tissue integration of titanium implants is the use of nanoparticles coatings made from basically any type of biocompatible substance, which can advantageously enhance the properties of the material, as compared to its similar bulk material. So, most of the physical methods approaches involve the compaction of nanoparticles versus micron-level particles to yield surfaces with nanoscale grain boundaries, simultaneously preserving the chemistry of the surface among different topographies. At the same time, nanoparticles have been known as one of the most effective antibacterial agents and can be used as effective growth inhibitors of various microorganisms as an alternative to antibiotics. In this paper, based on literature research, we present a comprehensive review of the mechanical, physical, and chemical methods for creating nano-structured titanium surfaces along with the main nanoparticles used for the surface modification of titanium implants, the fabrication methods, their main features, and the purpose of use. We also present two patented solutions which involve nanoparticles to be used in cranioplasty, i.e., a cranial endoprosthesis with a sliding system to repair the traumatic defects of the skull, and a cranial implant based on titanium mesh with osteointegrating structures and functional nanoparticles. The main outcomes of the patented solutions are: (a) a novel geometry of the implant that allow both flexible adaptation of the implant to the specific anatomy of the patient and the promotion of regeneration of the bone tissue; (b) porous structure and favorable geometry for the absorption of impregnated active substances and cells proliferation; (c) the new implant model fit 100% on the structure of the cranial defect without inducing mechanical stress; (d) allows all kinds of radiological examinations and rapid osteointegration, along with the patient recover in a shorter time.
Collapse
|
29
|
Determining the relative importance of titania nanotubes characteristics on bone implant surface performance: A quality by design study with a fuzzy approach. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:110995. [DOI: 10.1016/j.msec.2020.110995] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/04/2020] [Accepted: 04/18/2020] [Indexed: 12/18/2022]
|
30
|
Voltrova B, Jarolimova P, Hybasek V, Blahnova VH, Sepitka J, Sovkova V, Matějka R, Daniel M, Fojt J, Filova E. In vitro evaluation of a novel nanostructured Ti-36Nb-6Ta alloy for orthopedic applications. Nanomedicine (Lond) 2020; 15:1843-1859. [PMID: 32752935 DOI: 10.2217/nnm-2020-0123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/05/2020] [Indexed: 11/21/2022] Open
Abstract
Aim: To evaluate the impact of a nanostructured surface created on β-titanium alloy, Ti-36Nb-6Ta, on the growth and differentiation of human mesenchymal stem cells. Materials & methods: The nanotubes, with average diameters 18, 36 and 46 nm, were prepared by anodic oxidation. Morphology, hydrophilicity and mechanical properties of the nanotube layers were characterized. The biocompatibility and osteogenic potential of the nanostructured surfaces were established using various in vitro assays, scanning electron microscopy and confocal microscopy. Results: The nanotubes lowered elastic modulus close to that of bone, positively influenced cell adhesion, improved ALP activity, synthesis of type I collagen and osteocalcin expression, but diminished early cell proliferation. Conclusion: Nanostructured Ti-36Nb-6Ta with nanotube diameters 36 nm was the most promising material for bone implantation.
Collapse
Affiliation(s)
- Barbora Voltrova
- Department of Tissue Engineering, Institute of Experimental Medicine of The Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
- Department of Physiology, Faculty of Science, Charles University in Prague, Albertov 2038/6, 128 00, Prague, Czech Republic
| | - Petra Jarolimova
- Department of Metals & Corrosion Engineering, University of Chemistry & Technology, Technická 5, 166 29, Prague, Czech Republic
| | - Vojtech Hybasek
- Department of Metals & Corrosion Engineering, University of Chemistry & Technology, Technická 5, 166 29, Prague, Czech Republic
| | - Veronika Hefka Blahnova
- Department of Tissue Engineering, Institute of Experimental Medicine of The Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
- Second Faculty of Medicine, Charles University in Prague, V Úvalu 84, 150 06, Prague, Czech Republic
| | - Josef Sepitka
- Faculty of Mechanical Engineering, Czech Technical University in Prague, Technická 4, 160 00, Prague, Czech Republic
| | - Vera Sovkova
- Department of Tissue Engineering, Institute of Experimental Medicine of The Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Roman Matějka
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Náměstí Sítná 3105, 272 01, Kladno, Czech Republic
| | - Matej Daniel
- Faculty of Mechanical Engineering, Czech Technical University in Prague, Technická 4, 160 00, Prague, Czech Republic
| | - Jaroslav Fojt
- Department of Metals & Corrosion Engineering, University of Chemistry & Technology, Technická 5, 166 29, Prague, Czech Republic
| | - Eva Filova
- Department of Tissue Engineering, Institute of Experimental Medicine of The Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
- Second Faculty of Medicine, Charles University in Prague, V Úvalu 84, 150 06, Prague, Czech Republic
| |
Collapse
|
31
|
Mansoorianfar M, Khataee A, Riahi Z, Shahin K, Asadnia M, Razmjou A, Hojjati-Najafabadi A, Mei C, Orooji Y, Li D. Scalable fabrication of tunable titanium nanotubes via sonoelectrochemical process for biomedical applications. ULTRASONICS SONOCHEMISTRY 2020; 64:104783. [PMID: 31937440 DOI: 10.1016/j.ultsonch.2019.104783] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/28/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
Titanium does not react well with the human tissues and due to its bio-inert nature the surface modification has yet to be well-studied. In this study, the sonoelectrochemical process has been carried out to generate TiO2 nanotube arrays on implantable Ti 6-4. All the prepared nanotubes fill with the vancomycin by immersion and electrophoresis method. Drug-releasing properties, antibacterial behavior, protein adsorption and cell attachment of drug-modified nanotubes are examined by UV-vis, flow cytometry, modified disc diffusion, BSA adsorption, and FESEM, respectively. The most uniform morphology, appropriate drug release, cell viability behavior and antibacterial properties can be achieved by samples anodized in the range of 60-75 V. Also improves the adsorption of BSA protein in bone healing and promotes osteoblast activity and osseointegration. Drug loading efficiency increases up to 60% via electrophoresis comparing the immersion method for anodized sample in 75 V. While electrophoresis does not affect the amount of vancomycin adsorption for lower voltages. Besides, the present study indicates that an anodized sample without drug loading has no antibacterial activity. Moreover, 28-days drug releasing from nanotubes is investigated by mathematical formula according to Fickian's law to find an effective dose of loaded drug.
Collapse
Affiliation(s)
- Mojtaba Mansoorianfar
- College of Materials Science and Engineering, Nanjing Forestry University, No. 159, Longpan Road, Nanjing, 210037 Jiangsu, PR China
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400 Gebze, Turkey
| | - Zohreh Riahi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Khashayar Shahin
- International Phage Research Center (IPRC), Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, Australia
| | - Amir Razmjou
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran; UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, Australia
| | - Akbar Hojjati-Najafabadi
- Faculty of Materials, Metallurgy and Chemistry, School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Changtong Mei
- College of Materials Science and Engineering, Nanjing Forestry University, No. 159, Longpan Road, Nanjing, 210037 Jiangsu, PR China
| | - Yasin Orooji
- College of Materials Science and Engineering, Nanjing Forestry University, No. 159, Longpan Road, Nanjing, 210037 Jiangsu, PR China.
| | - Dagang Li
- College of Materials Science and Engineering, Nanjing Forestry University, No. 159, Longpan Road, Nanjing, 210037 Jiangsu, PR China.
| |
Collapse
|
32
|
Yang J, Zhang H, Chan SM, Li R, Wu Y, Cai M, Wang A, Wang Y. TiO 2 Nanotubes Alleviate Diabetes-Induced Osteogenetic Inhibition. Int J Nanomedicine 2020; 15:3523-3537. [PMID: 32547011 PMCID: PMC7244447 DOI: 10.2147/ijn.s237008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 04/08/2020] [Indexed: 12/11/2022] Open
Abstract
Background Patients with diabetes mellitus (DM) have a higher failure rate of dental implant treatments. However, whether titanium (Ti) implants with TiO2 nanotubes (TNT) surface can retain their biocompatibility and osteogenetic ability under DM conditions has not been investigated; in addition, their behavior in DM conditions is not well characterized. Materials and Methods Pure Ti discs were surface treated into the polishing (mechanically polished, MP), sandblasted and acid-etched (SLA), and TNT groups. Scanning electron microscopy was used to examine the surface morphology. The cell adhesion and proliferation ability on different modified Ti surfaces at various glucose concentrations (5.5, 11, 16.5, and 22 mM) was detected by the CCK-8 assay. The osteogenetic ability on different modified Ti surfaces under high-glucose conditions was evaluated by alkaline phosphatase (ALP), osteopontin (OPN) immunofluorescence, Western blot, and Alizarin Red staining in vitro. Detection of cell apoptosis and intracellular reactive oxygen species (ROS) was undertaken both before and after N-acetylcysteine (NAC) treatment to assess the oxidative stress associated with different modified Ti surfaces under high-glucose conditions. An in vivo study was conducted in DM rats with different modified Ti femoral implants. The osteogenetic ability of different modified Ti implants in DM rats was assessed using a micro-CT scan. Results High-glucose conditions inhibited cell adhesion, proliferation, and osteogenetic ability of different modified Ti surfaces. High-glucose conditions induced higher apoptosis rate and intracellular ROS level on different modified Ti surfaces; these effects were alleviated by NAC. Compared with the SLA surface, the TNT surface alleviated the osteogenetic inhibition induced by high-glucose states by reversing the overproduction of ROS in vitro. In the in vivo experiment, micro-CT scan analysis further confirmed the best osteogenetic ability of TNT surface in rats with DM. Conclusion TNT surface modification alleviates osteogenetic inhibition induced by DM. It may provide a more favorable Ti implant surface for patients with DM.
Collapse
Affiliation(s)
- Jinghong Yang
- Department of Prosthodontics, Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Hui Zhang
- Department of Prosthodontics, Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Sin Man Chan
- Department of Prosthodontics, Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ruoqi Li
- Department of Prosthodontics, Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yu Wu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Min Cai
- Department of Prosthodontics, Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Anxun Wang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yan Wang
- Department of Prosthodontics, Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
33
|
Ma J, Sun Y, Zan R, Ni J, Zhang X. Cellular different responses to different nanotube inner diameter on surface of pure tantalum. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110520. [DOI: 10.1016/j.msec.2019.110520] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/21/2019] [Accepted: 12/02/2019] [Indexed: 01/13/2023]
|
34
|
Steeves AJ, Ho W, Munisso MC, Lomboni DJ, Larrañaga E, Omelon S, Martínez E, Spinello D, Variola F. The Implication of Spatial Statistics in Human Mesenchymal Stem Cell Response to Nanotubular Architectures. Int J Nanomedicine 2020; 15:2151-2169. [PMID: 32280212 PMCID: PMC7125340 DOI: 10.2147/ijn.s238280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/16/2020] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION In recent years there has been ample interest in nanoscale modifications of synthetic biomaterials to understand fundamental aspects of cell-surface interactions towards improved biological outcomes. In this study, we aimed at closing in on the effects of nanotubular TiO2 surfaces with variable nanotopography on the response on human mesenchymal stem cells (hMSCs). Although the influence of TiO2 nanotubes on the cellular response, and in particular on hMSC activity, has already been addressed in the past, previous studies overlooked critical morphological, structural and physical aspects that go beyond the simple nanotube diameter, such as spatial statistics. METHODS To bridge this gap, we implemented an extensive characterization of nanotubular surfaces generated by anodization of titanium with a focus on spatial structural variables including eccentricity, nearest neighbour distance (NND) and Voronoi entropy, and associated them to the hMSC response. In addition, we assessed the biological potential of a two-tiered honeycomb nanoarchitecture, which allowed the detection of combinatory effects that this hierarchical structure has on stem cells with respect to conventional nanotubular designs. We have combined experimental techniques, ranging from Scanning Electron (SEM) and Atomic Force (AFM) microscopy to Raman spectroscopy, with computational simulations to characterize and model nanotubular surfaces. We evaluated the cell response at 6 hrs, 1 and 2 days by fluorescence microscopy, as well as bone mineral deposition by Raman spectroscopy, demonstrating substrate-induced differential biological cueing at both the short- and long-term. RESULTS Our work demonstrates that the nanotube diameter is not sufficient to comprehensively characterize nanotubular surfaces and equally important parameters, such as eccentricity and wall thickness, ought to be included since they all contribute to the overall spatial disorder which, in turn, dictates the overall bioactive potential. We have also demonstrated that nanotubular surfaces affect the quality of bone mineral deposited by differentiated stem cells. Lastly, we closed in on the integrated effects exerted by the superimposition of two dissimilar nanotubular arrays in the honeycomb architecture. DISCUSSION This work delineates a novel approach for the characterization of TiO2 nanotubes which supports the incorporation of critical spatial structural aspects that have been overlooked in previous research. This is a crucial aspect to interpret cellular behaviour on nanotubular substrates. Consequently, we anticipate that this strategy will contribute to the unification of studies focused on the use of such powerful nanostructured surfaces not only for biomedical applications but also in other technology fields, such as catalysis.
Collapse
Affiliation(s)
- Alexander J Steeves
- Faculty of Engineering, Department of Mechanical Engineering, University of Ottawa, Ottawa, ON, Canada
- Ottawa-Carleton Institute for Biomedical Engineering, Ottawa, Canada
| | - William Ho
- Faculty of Engineering, Department of Mechanical Engineering, University of Ottawa, Ottawa, ON, Canada
- Ottawa-Carleton Institute for Biomedical Engineering, Ottawa, Canada
| | - Maria Chiara Munisso
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, Moriguchi, Japan
| | - David J Lomboni
- Faculty of Engineering, Department of Mechanical Engineering, University of Ottawa, Ottawa, ON, Canada
- Ottawa-Carleton Institute for Biomedical Engineering, Ottawa, Canada
| | - Enara Larrañaga
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Sidney Omelon
- Faculty of Engineering, Department of Mechanical Engineering, University of Ottawa, Ottawa, ON, Canada
- Faculty of Engineering, Department of Mining and Materials Engineering, McGill University, Montreal, QC, Canada
| | - Elena Martínez
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain
| | - Davide Spinello
- Faculty of Engineering, Department of Mechanical Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Fabio Variola
- Faculty of Engineering, Department of Mechanical Engineering, University of Ottawa, Ottawa, ON, Canada
- Ottawa-Carleton Institute for Biomedical Engineering, Ottawa, Canada
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Children’s Hospital of Eastern Ontario (CHEO), Ottawa, ON, Canada
| |
Collapse
|
35
|
Application of Self-Made Connection Device in Intractable Intramedullary Device. J Craniofac Surg 2020; 31:555-557. [PMID: 31977696 DOI: 10.1097/scs.0000000000006113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Intramedullary fixation a standard surgical technique for long bone meta/diaphyseal fractures. There were many difficulties in removal of the intractable intramedullary device. The authors reported a new technique to remove the intractable intramedullary nail by using a self-made connecting device. METHODS The subject underwent removal of the intramedullary nail using a self-made connecting device, the core components of which were a caudal connecting rod and a sliding hammer in the common intramedullary nail removal device, and the auxiliary device was mainly a clinically commonly used Kirschner wire (K-wire; diameter 1.5-2.5 mm). In technical procedure, the key point was the connection between the k-wire and the intramedullary device, according to the specific conditions of the intramedullary device. RESULTS From 2012 to 2017, a total of 10 cases of intractable intramedullary devices were taken out using this self-made connection device, including 7 cases of tibial intramedullary nails, 1 case of femoral nail, and 1 case of tibial elastic nail. The technique provided satisfactory results, no infection or re-fracture occurred after the. CONCLUSION The self-made connecting device may provide new technique for more surgeons in the face of intractable intramedullary device.
Collapse
|
36
|
Comprehensive Evaluation of the Biological Properties of Surface-Modified Titanium Alloy Implants. J Clin Med 2020; 9:jcm9020342. [PMID: 31991841 PMCID: PMC7073575 DOI: 10.3390/jcm9020342] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/18/2020] [Accepted: 01/22/2020] [Indexed: 12/15/2022] Open
Abstract
An increasing interest in the fabrication of implants made of titanium and its alloys results from their capacity to be integrated into the bone system. This integration is facilitated by different modifications of the implant surface. Here, we assessed the bioactivity of amorphous titania nanoporous and nanotubular coatings (TNTs), produced by electrochemical oxidation of Ti6Al4V orthopedic implants' surface. The chemical composition and microstructure of TNT layers was analyzed by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). To increase their antimicrobial activity, TNT coatings were enriched with silver nanoparticles (AgNPs) with the chemical vapor deposition (CVD) method and tested against various bacterial and fungal strains for their ability to form a biofilm. The biointegrity and anti-inflammatory properties of these layers were assessed with the use of fibroblast, osteoblast, and macrophage cell lines. To assess and exclude potential genotoxicity issues of the fabricated systems, a mutation reversal test was performed (Ames Assay MPF, OECD TG 471), showing that none of the TNT coatings released mutagenic substances in long-term incubation experiments. The thorough analysis performed in this study indicates that the TNT5 and TNT5/AgNPs coatings (TNT5-the layer obtained upon applying a 5 V potential) present the most suitable physicochemical and biological properties for their potential use in the fabrication of implants for orthopedics. For this reason, their mechanical properties were measured to obtain full system characteristics.
Collapse
|
37
|
Liao C, Li Y, Tjong SC. Visible-Light Active Titanium Dioxide Nanomaterials with Bactericidal Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E124. [PMID: 31936581 PMCID: PMC7022691 DOI: 10.3390/nano10010124] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 12/16/2022]
Abstract
This article provides an overview of current research into the development, synthesis, photocatalytic bacterial activity, biocompatibility and cytotoxic properties of various visible-light active titanium dioxide (TiO2) nanoparticles (NPs) and their nanocomposites. To achieve antibacterial inactivation under visible light, TiO2 NPs are doped with metal and non-metal elements, modified with carbonaceous nanomaterials, and coupled with other metal oxide semiconductors. Transition metals introduce a localized d-electron state just below the conduction band of TiO2 NPs, thereby narrowing the bandgap and causing a red shift of the optical absorption edge into the visible region. Silver nanoparticles of doped TiO2 NPs experience surface plasmon resonance under visible light excitation, leading to the injection of hot electrons into the conduction band of TiO2 NPs to generate reactive oxygen species (ROS) for bacterial killing. The modification of TiO2 NPs with carbon nanotubes and graphene sheets also achieve the efficient creation of ROS under visible light irradiation. Furthermore, titanium-based alloy implants in orthopedics with enhanced antibacterial activity and biocompatibility can be achieved by forming a surface layer of Ag-doped titania nanotubes. By incorporating TiO2 NPs and Cu-doped TiO2 NPs into chitosan or the textile matrix, the resulting polymer nanocomposites exhibit excellent antimicrobial properties that can have applications as fruit/food wrapping films, self-cleaning fabrics, medical scaffolds and wound dressings. Considering the possible use of visible-light active TiO2 nanomaterials for various applications, their toxicity impact on the environment and public health is also addressed.
Collapse
Affiliation(s)
- Chengzhu Liao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuchao Li
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China;
| | - Sie Chin Tjong
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| |
Collapse
|
38
|
Ozan S, Munir K, Biesiekierski A, Ipek R, Li Y, Wen C. Titanium Alloys, Including Nitinol. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00018-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Biological Effects of Anodic Oxidation on Titanium Miniscrews: An In Vitro Study on Human Cells. Dent J (Basel) 2019; 7:dj7040107. [PMID: 31744265 PMCID: PMC6960790 DOI: 10.3390/dj7040107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 10/27/2019] [Accepted: 11/13/2019] [Indexed: 11/24/2022] Open
Abstract
This controlled in vitro study compared the effects of varying the thickness of a TiO2 layer on cellular activity using commercially available miniscrew samples with identical surface features to derive information with direct clinical impact. Titanium grade V plates with four different thicknesses of TiO2 layer/color were used: absent/gray (Control group), 40–50 nm/pink (Pink group), 130 nm/gold (Gold group) and 140 nm/rosé (Rosé group). In vitro experiments used Saos-2 cells and included cell growth analysis, phospho-Histone H3 and procollagen I staining, cell viability analysis, and a cell migration assay at 12, 24, 40 and to 48 h. Few differences were seen among the groups, with no clear behavior of cellular activity according to the TiO2 thickness. The Control group showed a greater cell count. Phospho-Histone H3 staining was similar among the groups and procollagen I staining was greater in the Rosé group. Cell viability analysis showed a significant difference for live cell counts (greater in the Rosé group) and no difference for the dead cell counts. The cell migration assay showed a delay for the Rosé group up to 40 h, where full repopulation of cell-free areas was obtained at 48 h. The results suggest that the TiO2 layers of the commercial miniscrews have minimal biological effects, including cytotoxicity, with possibly negligible or minimal clinical implications.
Collapse
|
40
|
Li L, Yang S, Xu L, Li Y, Fu Y, Zhang H, Song J. Nanotopography on titanium promotes osteogenesis via autophagy-mediated signaling between YAP and β-catenin. Acta Biomater 2019; 96:674-685. [PMID: 31284094 DOI: 10.1016/j.actbio.2019.07.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/17/2019] [Accepted: 07/03/2019] [Indexed: 12/19/2022]
Abstract
Nanostructured titanium implants are recognized for inducing osteogenesis, but the cell signal transductions related to topography are not fully understood. Implant topography is associated with the functionality of osteogenic transcription factors directed by β-catenin in the nucleus, and autophagic flux in the cytoplasm; YAP (Yes-associated protein) is implicated in the destruction of β-catenin in the cytoplasm and is susceptible to autophagic flux. This study investigated whether surface topography of the titanium implant modulates autophagy-lysosome degradation of cytoplasmic YAP. Titanium surfaces were modified with smooth, micro, or nanotopographies. Compared with the smooth and micro surfaces, nanotopography was associated with higher β-catenin nuclear translocation, osteogenic differentiation, and autophagy, and less cytoplasmic YAP. Blockade of the autophagy-lysosome pathway resulted in YAP retention in MC3T3-E1 cells. Cytoplasmic YAP restricted β-catenin nuclear translocation. In the nano surface group, β-catenin accumulation in the nucleus and expression of osteogenesis genes was improved. However, in the absence of cell-cell (confluent) contact, manipulation of YAP and β-catenin localization associated with topography-induced autophagy was lost. In summary, the osteogenesis observed in response to titanium implants with nanotopography involves a signaling link between YAP and β-catenin. STATEMENT OF SIGNIFICANCE: Titanium with rough topographical surfaces is extensively applied in orthopedic and dental clinics. However, the cellular response to topographies that promotes osteogenesis and underlying mechanisms are not fully understood. In this study, we modified titanium surfaces to produce smooth, micro, or nano topographies. Experiments indicated that the nanotopography induced a stronger autophagic response, leading to degraded cytoplasmic YAP. With the lower levels of YAP, β-catenin transported and accumulated in the nucleus to activate TCF/LEF transcription factors, resulting in stronger osteogenesis. Additionally, cell-cell contact was essential in the autophagy-mediated signaling link between YAP and β-catenin. Consequently, our investigation revealed a novel signal transduction in nanotopography-regulated osteogenesis, and supports the modification of biomaterial surfaces to maximize osseointegration.
Collapse
Affiliation(s)
- Lingjie Li
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Sheng Yang
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Ling Xu
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Yuzhou Li
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Yiru Fu
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - He Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Jinlin Song
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| |
Collapse
|
41
|
Ranjous Y, Regdon G, Pintye-Hódi K, Sovány T. Standpoint on the priority of TNTs and CNTs as targeted drug delivery systems. Drug Discov Today 2019; 24:1704-1709. [PMID: 31158513 DOI: 10.1016/j.drudis.2019.05.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/05/2019] [Accepted: 05/28/2019] [Indexed: 12/21/2022]
|
42
|
Soliman AM, Tolba SA, Sharafeldin IM, Gepreel MAH, Allam NK. Ni-free, built-in nanotubular drug eluting stents: Experimental and theoretical insights. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109750. [PMID: 31349498 DOI: 10.1016/j.msec.2019.109750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 12/23/2022]
Abstract
Stents used for cardiovascular applications are composed of three main elements; a metal, polymer coating and the specific drug component. Nickel-based metals and polymer coatings currently used in the stent market have increased the recurrence of in-stent restenosis and stent failure due to inflammation. In this study, a Ti-8Mn alloy was used to fabricate a nanostructured surface that can be used for drug eluting stents to overcome the hypersensitivity of metals that are currently used in stent making as well as introducing a new built-in nano-drug reservoir instead of polymer coatings. Two different systems were studied: titanium dioxide nanotubes (NTs) and Ti-8Mn oxides NTs. The materials were characterized using field emission electron microscope (FESEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), roughness, wettability and surface energy measurements. Nanoindentation was used to evaluate the mechanical properties of the nanotubes as well as their stability. In-vitro cytotoxicity and cell proliferation assays were used to study the effect of the nanotubes on cell viability. Computational insights were also used to test the blood compatibility using band gap model analysis, comparing the band gap of the materials under investigation with that of the fibrinogen, in order to study the possibility of charge transfer that affects the blood clotting mechanism. In addition, the drug loading capacity of the materials was studied using acetyl salicylic acid as a drug model.
Collapse
Affiliation(s)
- Alaa M Soliman
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Sarah A Tolba
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Icell M Sharafeldin
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Mohamed Abdel-Hady Gepreel
- Department of Materials Science and Engineering, Egypt-Japan University for Science and Technology, New Borg El-Arab 21934, Alexandria, Egypt
| | - Nageh K Allam
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt.
| |
Collapse
|
43
|
Tao B, Deng Y, Song L, Ma W, Qian Y, Lin C, Yuan Z, Lu L, Chen M, Yang X, Cai K. BMP2-loaded titania nanotubes coating with pH-responsive multilayers for bacterial infections inhibition and osteogenic activity improvement. Colloids Surf B Biointerfaces 2019; 177:242-252. [DOI: 10.1016/j.colsurfb.2019.02.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/26/2019] [Accepted: 02/06/2019] [Indexed: 12/19/2022]
|
44
|
A Novel Methodology for Economical Scale-Up of TiO2 Nanotubes Fabricated on Ti and Ti Alloys. JOURNAL OF NANOTECHNOLOGY 2019. [DOI: 10.1155/2019/5902346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The prospective use of nanotechnology for medical devices is increasing. While the impact of material surface nanopatterning on the biological response is convincing, creating a large surface area with such nanotechnology remains an unmet challenge. In this paper, we describe, for the first time, a reproducible scale-up manufacturing technique for creating controlled nanotubes on the surfaces of Ti and Ti alloys. We describe an average of approximately 7.5-fold increase in cost and time efficiency with regards to the generation of 20, 50, and 100 nm diameter nanotubes using an anodisation technique. These novel materials have great potential in the medical field through their influence on cellular activity, in particular, protein absorption, focal adhesion, and osteoinduction. In this paper, we provide a step-by-step guide to optimise an anodisation system, starting with design rationale, proof of concept, device upscaling, consistency, and reproducibility check, followed by cost and efficiency analysis. We show that the optimised device can produce a high number of anodised specimens with customisable specimen shape at reduced cost and time, without compromising the repeatability and consistency. The device can fabricate highly uniform and vertically oriented TiO2 nanotube layer with desired pore diameters.
Collapse
|
45
|
Li J, Li Z, Shi Y, Wang H, Li R, Tu J, Jin G. In vitro and in vivo comparisons of the porous Ti6Al4V alloys fabricated by the selective laser melting technique and a new sintering technique. J Mech Behav Biomed Mater 2019; 91:149-158. [DOI: 10.1016/j.jmbbm.2018.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/19/2018] [Accepted: 12/08/2018] [Indexed: 10/27/2022]
|
46
|
Li J, Li Z, Wang Q, Shi Y, Li W, Fu Y, Jin G. Sintered porous Ti6Al4V scaffolds incorporated with recombinant human bone morphogenetic protein-2 microspheres and thermosensitive hydrogels can enhance bone regeneration. RSC Adv 2019; 9:1541-1550. [PMID: 35518032 PMCID: PMC9059563 DOI: 10.1039/c8ra10200g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/08/2019] [Indexed: 11/21/2022] Open
Abstract
A well-controlled powder sintering technique was used to fabricate porous Ti6Al4V scaffold. The thermosensitive chitosan thioglycolic acid (CS-TA) hydrogel was used as a carrier to inject recombinant human bone morphogenetic protein-2 (rhBMP-2) microspheres into pores of the Ti6Al4V scaffold at 37 °C, and then the porous Ti6Al4V/rhBMP-2 loaded hydrogel composite was obtained. The bare Ti6Al4V scaffold was used as the control. The characteristics and mechanical properties of the scaffold, rheological properties of the hydrogels and the rhBMP-2 loaded hydrogel, the release of the rhBMP-2 loaded hydrogel, and the biological properties of the two types of samples were evaluated by in vitro and in vivo tests. Results indicated that the sintered porous Ti6Al4V had high porosity, large pore size with good mechanical properties. The hydrogel and rhBMP-2 loaded hydrogel showed thermosensity. The rhBMP-2 loaded hydrogel showed a stable and extended release profile without too high burst release of rhBMP-2. Both groups showed good biocompatibility and osteogenic ability. However, according to the results of cell tests and implantation, the group with rhBMP-2 loaded hydrogel had significantly higher cell proliferation rate, faster bone growth speed, and more bone ingrowth at every time point. Therefore, the sintered porous Ti6Al4V scaffolds incorporated with rhBMP-2 microspheres and CS-TA hydrogel was effective in enhancing the bone regeneration, and prospects a good candidate for application in orthopedics.
Collapse
Affiliation(s)
- Ji Li
- Department of Orthopedics, General Hospital of PLA No. 28 Fuxing Road, Haidian District Beijing 100853 China +86 010 66938306 +86 010 66938306
| | - Zhongli Li
- Department of Orthopedics, General Hospital of PLA No. 28 Fuxing Road, Haidian District Beijing 100853 China +86 010 66938306 +86 010 66938306
| | - Qi Wang
- Department of Orthopedics, Characteristic Medical Center of PAP Tianjin 300162 China
| | - Yueyi Shi
- Department of Stomatology, General Hospital of PLA No. 28 Fuxing Road, Haidian District Beijing 100853 China
| | - Wei Li
- Department of Orthopedics, General Hospital of PLA No. 28 Fuxing Road, Haidian District Beijing 100853 China +86 010 66938306 +86 010 66938306
| | - Yangmu Fu
- Department of Orthopedics, General Hospital of PLA No. 28 Fuxing Road, Haidian District Beijing 100853 China +86 010 66938306 +86 010 66938306
| | - Gong Jin
- ZhongAoHuiCheng Technology Co. No. 20 Kechuang Road, Economic and Technological Development Zone Beijing 100176 China
| |
Collapse
|
47
|
Albu AM, Draghicescu W, Munteanu T, Ion R, Mitran V, Cimpean A, Popescu S, Pirvu C. Nitrodopamine vs dopamine as an intermediate layer for bone regeneration applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:461-471. [PMID: 30813048 DOI: 10.1016/j.msec.2019.01.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/10/2018] [Accepted: 01/04/2019] [Indexed: 01/08/2023]
Abstract
The aim of this paper was to present a parallel investigation of the poly(dopamine) (DP) and nitrodopamine (NDP) structures deposited on titanium surface (Ti) and titanium oxide nanotubes (NT-TiO2/Ti) and to highlight their advantages and drawbacks to serve as an intermediary layer for bone regeneration applications. This study outlines some hypotheses regarding the manner in which these compounds are able to form a stable film that could serve as bioadhesive. The paper is also a study of structuring and evolution of film architecture for two coatings, polydopamine and nitrodopamine in terms of surface structure, stability, wettability, morphology, adhesion and ability to protect the titanium surface. All investigations are based on the data provided by surface characterization techniques: SEM, RAMAN, XRD, XPS, wettability and flexural strength. The impact of polydopamine and nitrodopamine coatings on the biocompatibility of titanium nanotubes was investigated in vitro. Cell morphology, viability, proliferation and pre-osteoblast differentiation were examined in detail. It was highlighted that both DP and NDP functionalized TiO2 nanotubes display good cell response in terms of cell spreading, formation of focal adhesions, cell viability and proliferation, suggesting their suitability for applications in bone regeneration field. However, NDP coated TiO2 nanotubes demonstrated an enhanced osteogenic potential compared to DP coated substrates.
Collapse
Affiliation(s)
- Ana Maria Albu
- University Polytechnica of Bucharest, Faculty of Applied Chemistry and Materials Science, 1-7 Polizu, 011061 Bucharest, Romania
| | - Wanda Draghicescu
- University Polytechnica of Bucharest, Faculty of Applied Chemistry and Materials Science, 1-7 Polizu, 011061 Bucharest, Romania
| | - Tatiana Munteanu
- University Polytechnica of Bucharest, Faculty of Applied Chemistry and Materials Science, 1-7 Polizu, 011061 Bucharest, Romania
| | - Raluca Ion
- University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095, Bucharest, Romania
| | - Valentina Mitran
- University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095, Bucharest, Romania
| | - Anisoara Cimpean
- University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095, Bucharest, Romania
| | - Simona Popescu
- University Polytechnica of Bucharest, Faculty of Applied Chemistry and Materials Science, 1-7 Polizu, 011061 Bucharest, Romania
| | - Cristian Pirvu
- University Polytechnica of Bucharest, Faculty of Applied Chemistry and Materials Science, 1-7 Polizu, 011061 Bucharest, Romania; University Politehnica of Bucharest, Faculty of Medical Engineering, 1-7 Polizu, 011061 Bucharest, Romania.
| |
Collapse
|
48
|
Voltrova B, Hybasek V, Blahnova V, Sepitka J, Lukasova V, Vocetkova K, Sovkova V, Matejka R, Fojt J, Joska L, Daniel M, Filova E. Different diameters of titanium dioxide nanotubes modulate Saos-2 osteoblast-like cell adhesion and osteogenic differentiation and nanomechanical properties of the surface. RSC Adv 2019; 9:11341-11355. [PMID: 35520235 PMCID: PMC9062999 DOI: 10.1039/c9ra00761j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/28/2019] [Indexed: 01/09/2023] Open
Abstract
Nanostructured cpTi surfaces affected Saos-2 cell adhesion, proliferation, and osteogenic differentiation as well as the nanomechanical properties of the surface.
Collapse
|
49
|
Luo F, Hong G, Matsui H, Endo K, Wan Q, Sasaki K. Initial osteoblast adhesion and subsequent differentiation on zirconia surfaces are regulated by integrins and heparin-sensitive molecule. Int J Nanomedicine 2018; 13:7657-7667. [PMID: 30538450 PMCID: PMC6251461 DOI: 10.2147/ijn.s175536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Purpose It is well known that zirconia materials have good biocompatibility; however, little is known regarding the mechanism by which cells attach to these materials. The purpose of this study is to elucidate the mechanism of cell attachment. Materials and methods In this study, we examined the surface characteristics of ceria-stabilized zirconia/alumina nanocomposite (NANOZR), yttria-stabilized zirconia (Y-TZP) and commercially pure titanium (CpTi), and we evaluated the initial response of osteoblast-like cells to them with different inhibitors. Results Under the same polishing treatment, the three materials, NANOZR, Y-TZP and CpTi, show similar surface wettability but different surface roughness. Osteoblasts could adhere to the surface of all three materials, and spindle shapes were clearer in serum-containing media compared to PBS and serum-free culture media, suggesting that serum-contained proteins are helpful for the initial cell adhesion and spreading. Cell adhesion and proliferation were disrupted in the presence of EDTA. RGD-peptide interfered with cell proliferation by affecting cell protrusion and stress fibers. Monoclonal antibody against non-RGD type integrin α2β1 enhanced proliferation in Y-TZP, CpTi and culture dish but not in NANOZR. Cell proliferation on NANOZR was specifically inhibited in the presence of heparin. Furthermore, under heparin administration, spindle shape formation was maintained but actin cytoskeleton was disrupted, resulting in loose cellular spreading. Conclusion These results suggest that RGD type integrins and heparin-sensitive protein in coordination regulate cell morphology and proliferation on NANOZR, through the regulation of cell polarity and stress fiber formation, respectively.
Collapse
Affiliation(s)
- Feng Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China, .,Division of Advanced Prosthetic Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Guang Hong
- Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Japan, .,Faculty of Dental Medicine, Airlangga University, Surabaya, Indonesia,
| | - Hiroyuki Matsui
- Division of Advanced Prosthetic Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Kosei Endo
- Division of Aging and Geriatric Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China,
| | - Keiichi Sasaki
- Division of Advanced Prosthetic Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| |
Collapse
|
50
|
Li Y, Li B, Song Y, Ma A, Li C, Zhang X, Li H, Zhang Q, Zhang K. Improved osteoblast adhesion and osseointegration on TiO 2 nanotubes surface with hydroxyapatite coating. Dent Mater J 2018; 38:278-286. [PMID: 30541994 DOI: 10.4012/dmj.2018-118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To improve initial osteoblast adhesion and subsequent osseointegration, TiO2 nanotubes layer was constructed on the titanium (Ti) surface by anodic oxidation (AO), with an additional hydroxyapatite (HA) coating to form the AO/HA surface. Tests on in vitro cellular activity displayed that the AO surface, especially the AO/HA surface, promoted initial adhesion, proliferation and differentiation of osteoblast cells. The modified AO and AO/HA surfaces further presented an up-regulated gene expression of osteogenic and adhesion markers collagen type 1 (COL), osteopontin (OPN), osteocalcin (OCN) and vinculin. In addition, in vivo experiments with a rat model demonstrated that the AO surface, particularly the AO/HA surface, achieved earlier osseointegration and a superior bone bonding ability compared with Ti. Our study shed light on a synergistic role played by nanotopography and HA in promoting osteoblast adhesion, proliferation, differentiation and osseointegration, thus suggesting a promising method for better modifying the implant surface.
Collapse
Affiliation(s)
- Ying Li
- Stomatological Hospital, Tianjin Medical University
| | - Baoe Li
- School of Materials Science and Engineering, Hebei University of Technology
| | - Yunjia Song
- Stomatological Hospital, Tianjin Medical University
| | - Aobo Ma
- Stomatological Hospital, Tianjin Medical University
| | - Changyi Li
- Stomatological Hospital, Tianjin Medical University
| | - Xu Zhang
- Stomatological Hospital, Tianjin Medical University
| | - Hongjie Li
- Stomatological Hospital, Tianjin Medical University
| | - Qian Zhang
- Stomatological Hospital, Tianjin Medical University
| | - Kai Zhang
- Stomatological Hospital, Tianjin Medical University
| |
Collapse
|