1
|
Sharma A, Sharma N, Singh S, Dua K. Review on theranostic and neuroprotective applications of nanotechnology in multiple sclerosis. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
2
|
Handrea-Dragan IM, Botiz I, Tatar AS, Boca S. Patterning at the micro/nano-scale: Polymeric scaffolds for medical diagnostic and cell-surface interaction applications. Colloids Surf B Biointerfaces 2022; 218:112730. [DOI: 10.1016/j.colsurfb.2022.112730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 11/27/2022]
|
3
|
Singh AV, Chandrasekar V, Laux P, Luch A, Dakua SP, Zamboni P, Shelar A, Yang Y, Pandit V, Tisato V, Gemmati D. Micropatterned Neurovascular Interface to Mimic the Blood–Brain Barrier’s Neurophysiology and Micromechanical Function: A BBB-on-CHIP Model. Cells 2022; 11:cells11182801. [PMID: 36139383 PMCID: PMC9497163 DOI: 10.3390/cells11182801] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 12/25/2022] Open
Abstract
A hybrid blood–brain barrier (BBB)-on-chip cell culture device is proposed in this study by integrating microcontact printing and perfusion co-culture to facilitate the study of BBB function under high biological fidelity. This is achieved by crosslinking brain extracellular matrix (ECM) proteins to the transwell membrane at the luminal surface and adapting inlet–outlet perfusion on the porous transwell wall. While investigating the anatomical hallmarks of the BBB, tight junction proteins revealed tortuous zonula occludens (ZO-1), and claudin expressions with increased interdigitation in the presence of astrocytes were recorded. Enhanced adherent junctions were also observed. This junctional phenotype reflects in-vivo-like features related to the jamming of cell borders to prevent paracellular transport. Biochemical regulation of BBB function by astrocytes was noted by the transient intracellular calcium effluxes induced into endothelial cells. Geometry-force control of astrocyte–endothelial cell interactions was studied utilizing traction force microscopy (TFM) with fluorescent beads incorporated into a micropatterned polyacrylamide gel (PAG). We observed the directionality and enhanced magnitude in the traction forces in the presence of astrocytes. In the future, we envisage studying transendothelial electrical resistance (TEER) and the effect of chemomechanical stimulations on drug/ligand permeability and transport. The BBB-on-chip model presented in this proposal should serve as an in vitro surrogate to recapitulate the complexities of the native BBB cellular milieus.
Collapse
Affiliation(s)
- Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
- Correspondence: (A.V.S.); (S.P.D.)
| | | | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Sarada Prasad Dakua
- Department of Surgery, Hamad Medical Corporation (HMC), Doha 3050, Qatar
- Correspondence: (A.V.S.); (S.P.D.)
| | - Paolo Zamboni
- Department of Vascular Surgery, University of Ferrara, 44121 Ferrara, Italy
| | - Amruta Shelar
- Department of Technology, Savitribai Phule Pune University, Pune 411007, India
| | - Yin Yang
- College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Doha 24404, Qatar
| | - Vaibhav Pandit
- Dynex Technologies, 14340 Sullyfield Circle, Chantilly, VA 20151, USA
| | - Veronica Tisato
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Centre Hemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy
| | - Donato Gemmati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Centre Hemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
4
|
Chen Y, Zhou X, Huang S, Lan Y, Yan R, Shi X, Li X, Zhang Y, Lei Z, Fan D. Effect of Microgroove Structure in PDMS-Based Silicone Implants on Biocompatibility. Front Bioeng Biotechnol 2022; 9:793778. [PMID: 35127669 PMCID: PMC8812998 DOI: 10.3389/fbioe.2021.793778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/30/2021] [Indexed: 11/24/2022] Open
Abstract
Capsule and capsule contracture around implants are important concerns in a clinic. The physical topology of the material surface regulates the formation of the capsule, but the specific regulatory mechanism is unclear. In this study, four types of silicone implant materials with different microgroove structures (groove depths of 10 and 50 μm and widths of 50 and 200 μm) were constructed using lithography to form different gradient surface topologies. Mass spectrometry, Cell Counting Kit-8, 5-ethynyl-2′-deoxycytidine (EdU), enzyme-linked immunosorbent assay, western blot, immunofluorescence, and immunohistochemistry were used to explore the changes in protein adsorption, cell adhesion, cell proliferation, and collagen deposition on the surface of the materials. At the same time, RNA-seq was used to detect transcriptome differences caused by different structures. Furthermore, collagen deposition and capsule formation were observed in the rats. The groove structure was observed to significantly increase the surface roughness of the material. The deeper groove and the narrower width of the polydimethylsiloxane would increase the surface roughness of the material and the surface water contact angle but reduce the total amount of adsorbed protein in the first two hours. In vitro cell experiments revealed that microtopology affected cell proliferation and adhesion and regulated collagen secretion. Further analysis indicated the deeper and narrower groove (group 50–50) on the surface of the material caused more evident collagen deposition around the material, forming a thicker envelope. Surface roughness of the material was thus related to collagen deposition and envelope thickness. The thickness of the envelope tissue around smooth materials does not exceed that of the materials with surface roughness. In conclusion, the narrower and deeper grooves in the micron range exhibited poor histocompatibility and led to formation of thicker envelopes around the materials. The appropriate grooves can reduce envelope thickness.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zeyuan Lei
- *Correspondence: Dongli Fan, ; Zeyuan Lei,
| | - Dongli Fan
- *Correspondence: Dongli Fan, ; Zeyuan Lei,
| |
Collapse
|
5
|
Mittal KR, Pharasi N, Sarna B, Singh M, Rachana, Haider S, Singh SK, Dua K, Jha SK, Dey A, Ojha S, Mani S, Jha NK. Nanotechnology-based drug delivery for the treatment of CNS disorders. Transl Neurosci 2022; 13:527-546. [PMID: 36741545 PMCID: PMC9883694 DOI: 10.1515/tnsci-2022-0258] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 10/13/2022] [Accepted: 10/21/2022] [Indexed: 01/26/2023] Open
Abstract
Approximately 6.8 million people die annually because of problems related to the central nervous system (CNS), and out of them, approximately 1 million people are affected by neurodegenerative diseases that include Alzheimer's disease, multiple sclerosis, epilepsy, and Parkinson's disease. CNS problems are a primary concern because of the complexity of the brain. There are various drugs available to treat CNS disorders and overcome problems with toxicity, specificity, and delivery. Barriers like the blood-brain barrier (BBB) are a challenge, as they do not allow therapeutic drugs to cross and reach their target. Researchers have been searching for ways to allow drugs to pass through the BBB and reach the target sites. These problems highlight the need of nanotechnology to alter or manipulate various processes at the cellular level to achieve the desired attributes. Due to their nanosize, nanoparticles are able to pass through the BBB and are an effective alternative to drug administration and other approaches. Nanotechnology has the potential to improve treatment and diagnostic techniques for CNS disorders and facilitate effective drug transfer. With the aid of nanoengineering, drugs could be modified to perform functions like transference across the BBB, altering signaling pathways, targeting specific cells, effective gene transfer, and promoting regeneration and preservation of nerve cells. The involvement of a nanocarrier framework inside the delivery of several neurotherapeutic agents used in the treatment of neurological diseases is reviewed in this study.
Collapse
Affiliation(s)
- Khushi R. Mittal
- Department of Biotechnology, Center for Emerging Diseases, Jaypee Institute of Information Technology, Noida, India
| | - Nandini Pharasi
- Department of Biotechnology, Center for Emerging Diseases, Jaypee Institute of Information Technology, Noida, India
| | - Bhavya Sarna
- Department of Biotechnology, Center for Emerging Diseases, Jaypee Institute of Information Technology, Noida, India
| | - Manisha Singh
- Department of Biotechnology, Center for Emerging Diseases, Jaypee Institute of Information Technology, Noida, India
| | - Rachana
- Department of Biotechnology, Center for Emerging Diseases, Jaypee Institute of Information Technology, Noida, India
| | - Shazia Haider
- Department of Biotechnology, Center for Emerging Diseases, Jaypee Institute of Information Technology, Noida, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Plot No. 32-34 Knowledge Park III, Greater Noida, Uttar Pradesh, 201310, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata700073, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Shalini Mani
- Department of Biotechnology, Center for Emerging Diseases, Jaypee Institute of Information Technology, Noida, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Plot No. 32-34 Knowledge Park III, Greater Noida, Uttar Pradesh, 201310, India
| |
Collapse
|
6
|
Baranov MV, Kumar M, Sacanna S, Thutupalli S, van den Bogaart G. Modulation of Immune Responses by Particle Size and Shape. Front Immunol 2021; 11:607945. [PMID: 33679696 PMCID: PMC7927956 DOI: 10.3389/fimmu.2020.607945] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
The immune system has to cope with a wide range of irregularly shaped pathogens that can actively move (e.g., by flagella) and also dynamically remodel their shape (e.g., transition from yeast-shaped to hyphal fungi). The goal of this review is to draw general conclusions of how the size and geometry of a pathogen affect its uptake and processing by phagocytes of the immune system. We compared both theoretical and experimental studies with different cells, model particles, and pathogenic microbes (particularly fungi) showing that particle size, shape, rigidity, and surface roughness are important parameters for cellular uptake and subsequent immune responses, particularly inflammasome activation and T cell activation. Understanding how the physical properties of particles affect immune responses can aid the design of better vaccines.
Collapse
Affiliation(s)
- Maksim V. Baranov
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Manoj Kumar
- Simons Center for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, India
| | - Stefano Sacanna
- Molecular Design Institute, Department of Chemistry, New York University, New York, NY, United States
| | - Shashi Thutupalli
- Simons Center for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, India
- International Centre for Theoretical Sciences, Tata Institute for Fundamental Research, Bangalore, India
| | - Geert van den Bogaart
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|
7
|
Singh AV, Maharjan RS, Kanase A, Siewert K, Rosenkranz D, Singh R, Laux P, Luch A. Machine-Learning-Based Approach to Decode the Influence of Nanomaterial Properties on Their Interaction with Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1943-1955. [PMID: 33373205 DOI: 10.1021/acsami.0c18470] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In an in vitro nanotoxicity system, cell-nanoparticle (NP) interaction leads to the surface adsorption, uptake, and changes into nuclei/cell phenotype and chemistry, as an indicator of oxidative stress, genotoxicity, and carcinogenicity. Different types of nanomaterials and their chemical composition or "corona" have been widely studied in context with nanotoxicology. However, rare reports are available, which delineate the details of the cell shape index (CSI) and nuclear area factors (NAFs) as a descriptor of the type of nanomaterials. In this paper, we propose a machine-learning-based graph modeling and correlation-establishing approach using tight junction protein ZO-1-mediated alteration in the cell/nuclei phenotype to quantify and propose it as indices of cell-NP interactions. We believe that the phenotypic variation (CSI and NAF) in the epithelial cell is governed by the physicochemical descriptors (e.g., shape, size, zeta potential, concentration, diffusion coefficients, polydispersity, and so on) of the different classes of nanomaterials, which critically determines the intracellular uptake or cell membrane interactions when exposed to the epithelial cells at sub-lethal concentrations. The intrinsic and extrinsic physicochemical properties of the representative nanomaterials (NMs) were measured using optical (dynamic light scattering, NP tracking analysis) methods to create a set of nanodescriptors contributing to cell-NM interactions via phenotype adjustments. We used correlation function as a machine-learning algorithm to successfully predict cell and nuclei shapes and polarity functions as phenotypic markers for five different classes of nanomaterials studied herein this report. The CSI and NAF as nanodescriptors can be used as intuitive cell phenotypic parameters to define the safety of nanomaterials extensively used in consumer products and nanomedicine.
Collapse
Affiliation(s)
- Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Romi-Singh Maharjan
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Anurag Kanase
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Katherina Siewert
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Daniel Rosenkranz
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Rishabh Singh
- Rajarshi Shahu College of Engineering, 411007 Pune, India
| | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| |
Collapse
|
8
|
Teng F, Wu X, Libera M. Chemical Orthogonality in Surface-Patterned Poly(ethylene glycol) Microgels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10622-10627. [PMID: 32787029 DOI: 10.1021/acs.langmuir.0c02172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Because of its widely known antifouling properties, a variety of lithographic approaches has been used to pattern surfaces with poly(ethylene glycol) (PEG) to control surface interactions with biomolecules and cells over micro- and nanolength scales. Often, however, particular applications need additional functions within PEG-patterned surfaces. Monofunctional films can be generated using PEG modified to include a chemically functional group. We show that patterning with focused electron beams, in addition to cross-linking a monofunctional PEG homopolymer thin-film precursor and grafting the resulting patterned microgels to an underlying substrate, induces additional chemical functionality by radiation chemistry along the polymer main chain and that this second functionality can be orthogonal to the initial one. Specifically, we explore the reactivity of biotin-terminated PEG (PEG-B) as a function of electron dose using 2 keV electrons. At low doses (∼4-10 μC/cm2), the patterned PEG-B microgels are reactive with streptavidin (SA). As dose increases, the SA reactivity decays as biotin is damaged by the incident electrons. Independently, amine reactivity appears at higher doses (∼150-500 μC/cm2). At both extremes, the patterned PEG microgels retain their ability to resist fibronectin adsorption. We confirm that the amine reactivity derives from the PEG main chain by demonstrating similar dose response in hydroxy-terminated PEG (PEG-OH), and we attribute this behavior to the formation of ketones, aldehydes, and/or carboxylic acids during and after electron-beam (e-beam) patterning. Based on relative fluorescent intensities, we estimate that the functional contrast between the differentially patterned areas is about a factor of six or more. This approach provides the ability to easily pattern biospecific functionality while preserving the ability to resist nonspecific adsorption at length scales relevant to controlling protein and cell interactions.
Collapse
Affiliation(s)
- Feiyue Teng
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Xinpei Wu
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Matthew Libera
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| |
Collapse
|
9
|
Kanioura A, Constantoudis V, Petrou P, Kletsas D, Tserepi A, Gogolides E, Chatzichristidi M, Kakabakos S. Oxygen plasma micro-nanostructured PMMA plates and microfluidics for increased adhesion and proliferation of cancer versus normal cells: The role of surface roughness and disorder. MICRO AND NANO ENGINEERING 2020. [DOI: 10.1016/j.mne.2020.100060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Vacuum microcasting of 2-methacryloyloxyethyl phosphorylcholine polymer for stable cell patterning. Biotechniques 2020; 69:171-177. [PMID: 32580563 DOI: 10.2144/btn-2020-0052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This study demonstrates the rapid fabrication and utility of 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer film for cell patterning. The film was obtained on a cell culture surface by microcasting MPC polymer ethanol solution into a degassed polydimethylsiloxane mold with a desired pattern. After removal of the mold, 293AD cells were cultured on the surface of the polymer film with the patterned microstructures. Patterned cell adhesion restricted by the film was successfully maintained during at least a 168-h cultivation. The microcast MPC polymer film can be prepared rapidly and used for efficient long-term cell confinement.
Collapse
|
11
|
Singh AV, Ansari MHD, Mahajan M, Srivastava S, Kashyap S, Dwivedi P, Pandit V, Katha U. Sperm Cell Driven Microrobots-Emerging Opportunities and Challenges for Biologically Inspired Robotic Design. MICROMACHINES 2020; 11:E448. [PMID: 32340402 PMCID: PMC7231336 DOI: 10.3390/mi11040448] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/14/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022]
Abstract
With the advent of small-scale robotics, several exciting new applications like Targeted Drug Delivery, single cell manipulation and so forth, are being discussed. However, some challenges remain to be overcome before any such technology becomes medically usable; among which propulsion and biocompatibility are the main challenges. Propulsion at micro-scale where the Reynolds number is very low is difficult. To overcome this, nature has developed flagella which have evolved over millions of years to work as a micromotor. Among the microscopic cells that exhibit this mode of propulsion, sperm cells are considered to be fast paced. Here, we give a brief review of the state-of-the-art of Spermbots - a new class of microrobots created by coupling sperm cells to mechanical loads. Spermbots utilize the flagellar movement of the sperm cells for propulsion and as such do not require any toxic fuel in their environment. They are also naturally biocompatible and show considerable speed of motion thereby giving us an option to overcome the two challenges of propulsion and biocompatibility. The coupling mechanisms of physical load to the sperm cells are discussed along with the advantages and challenges associated with the spermbot. A few most promising applications of spermbots are also discussed in detail. A brief discussion of the future outlook of this extremely promising category of microrobots is given at the end.
Collapse
Affiliation(s)
- Ajay Vikram Singh
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Mohammad Hasan Dad Ansari
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Via Rinaldo Piaggio 34, 56025 Pontedera, Italy;
- Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Via Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Mihir Mahajan
- Königin-Olga-Stift Gymnasium, Johannesstraße 18, 70176 Stuttgart, Germany;
| | - Shubhangi Srivastava
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India;
| | - Shubham Kashyap
- Dr. A.P.J. Abdul Kalam Technical University, Lucknow 226031, India;
| | - Prajjwal Dwivedi
- Department of Physics, Shri Ramswaroop Memorial University, Lucknow 226007, India;
| | - Vaibhav Pandit
- Dynex Technologies, 14340 Sullyfield Circle, Chantilly, VA 20151-1621 USA;
| | - Uma Katha
- BioPharma Division, GALAB Laboratories GmbH, 21029 Hamburg, Germany;
| |
Collapse
|
12
|
Kanioura A, Petrou P, Kletsas D, Tserepi A, Chatzichristidi M, Gogolides E, Kakabakos S. Three-dimensional (3D) hierarchical oxygen plasma micro/nanostructured polymeric substrates for selective enrichment of cancer cells from mixtures with normal ones. Colloids Surf B Biointerfaces 2019; 187:110675. [PMID: 31810566 DOI: 10.1016/j.colsurfb.2019.110675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/16/2019] [Accepted: 11/25/2019] [Indexed: 12/30/2022]
Abstract
The enrichment of cancer cell population when in mixtures with normal ones is of great importance for cancer diagnosis. In this work, poly(methyl methacrylate) films have been processed applying different oxygen plasma conditions to fabricate surfaces with structure height ranging from 22 to more than 2000 nm. The surfaces were then evaluated with respect to adhesion and proliferation of both normal and cancer human cells. In particular, normal skin and lung fibroblasts, and four different cancer cell lines, A431 (skin cancer), HT1080 (fibrosarcoma), A549 (lung cancer), and PC3 (prostate cancer), have been employed. It was found that adhesion and proliferation of cancer cells was favored when cultured onto the hierarchical micro/nanostructured surfaces as compared to untreated ones with the maximum values obtained for substrates treated at -100 V for 3 min. On the other hand, although the adhesion of normal fibroblasts was not influenced by the micro/nanostructured surfaces, their morphology and proliferation was significantly impaired, especially after 3-day culture on these surfaces. The reduced proliferation rate of adherent fibroblasts was linked to reduced focal points formation, as it was verified through vinculin staining, and not to apoptosis. The micro/nanostructured surfaces prepared with plasma treatment at -100 V for 3 min (hierarchical topography with mean height of ∼800 nm) were selected as substrates for normal and cancer cell co-culture experiments. It was found that 25-80 times enrichment of cancer over the normal cells was achieved on the nanostructured surfaces after 3-day culture, while it was 5-8 times lower on the untreated ones. It should be noticed that this is the first time such high enrichment ratios are achieved without implementing surfaces modified with binding molecules specific for cancer cells. Thus, the nanostructured surfaces hold a strong promise as culture substrates for separation and enrichment of cancer cells from mixtures with normal ones that should find application in cancer diagnostics.
Collapse
Affiliation(s)
- Anastasia Kanioura
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR "Demokritos", Aghia Paraskevi, 15341, Greece
| | - Panagiota Petrou
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR "Demokritos", Aghia Paraskevi, 15341, Greece
| | - Dimitris Kletsas
- Institute of Biosciences and Applications, NCSR "Demokritos", Aghia Paraskevi, 15341, Greece
| | - Angeliki Tserepi
- Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", Aghia Paraskevi, 15341, Greece
| | | | - Evangelos Gogolides
- Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", Aghia Paraskevi, 15341, Greece
| | - Sotirios Kakabakos
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR "Demokritos", Aghia Paraskevi, 15341, Greece.
| |
Collapse
|
13
|
Rajabi M, Adeyeye M, Mousa SA. Peptide-Conjugated Nanoparticles as Targeted Anti-angiogenesis Therapeutic and Diagnostic in Cancer. Curr Med Chem 2019; 26:5664-5683. [DOI: 10.2174/0929867326666190620100800] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/11/2019] [Accepted: 03/21/2019] [Indexed: 12/25/2022]
Abstract
:Targeting angiogenesis in the microenvironment of a tumor can enable suppression of tumor angiogenesis and delivery of anticancer drugs into the tumor. Anti-angiogenesis targeted delivery systems utilizing passive targeting such as Enhanced Permeability and Retention (EPR) and specific receptor-mediated targeting (active targeting) should result in tumor-specific targeting. One targeted anti-angiogenesis approach uses peptides conjugated to nanoparticles, which can be loaded with anticancer agents. Anti-angiogenesis agents can suppress tumor angiogenesis and thereby affect tumor growth progression (tumor growth arrest), which may be further reduced with the targetdelivered anticancer agent. This review provides an update of tumor vascular targeting for therapeutic and diagnostic applications, with conventional or long-circulating nanoparticles decorated with peptides that target neovascularization (anti-angiogenesis) in the tumor microenvironment.
Collapse
Affiliation(s)
- Mehdi Rajabi
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, United States
| | - Mary Adeyeye
- Department of Chemistry, University of Albany, State University of New York, Albany, NY 12222, United States
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, United States
| |
Collapse
|
14
|
Singh AV, Dad Ansari MH, Dayan CB, Giltinan J, Wang S, Yu Y, Kishore V, Laux P, Luch A, Sitti M. Multifunctional magnetic hairbot for untethered osteogenesis, ultrasound contrast imaging and drug delivery. Biomaterials 2019; 219:119394. [DOI: 10.1016/j.biomaterials.2019.119394] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/15/2019] [Accepted: 07/27/2019] [Indexed: 12/18/2022]
|
15
|
The Adoption of Three-Dimensional Additive Manufacturing from Biomedical Material Design to 3D Organ Printing. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9040811] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Three-dimensional (3D) bioprinting promises to change future lifestyle and the way we think about aging, the field of medicine, and the way clinicians treat ailing patients. In this brief review, we attempt to give a glimpse into how recent developments in 3D bioprinting are going to impact vast research ranging from complex and functional organ transplant to future toxicology studies and printed organ-like 3D spheroids. The techniques were successfully applied to reconstructed complex 3D functional tissue for implantation, application-based high-throughput (HTP) platforms for absorption, distribution, metabolism, and excretion (ADME) profiling to understand the cellular basis of toxicity. We also provide an overview of merits/demerits of various bioprinting techniques and the physicochemical basis of bioink for tissue engineering. We briefly discuss the importance of universal bioink technology, and of time as the fourth dimension. Some examples of bioprinted tissue are shown, followed by a brief discussion on future biomedical applications.
Collapse
|
16
|
Chen B, Tjahja J, Malla S, Liebman C, Cho M. Astrocyte Viability and Functionality in Spatially Confined Microcavitation Zone. ACS APPLIED MATERIALS & INTERFACES 2019; 11:4889-4899. [PMID: 30638362 DOI: 10.1021/acsami.8b21410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Blast-induced traumatic brain injury (bTBI) can result in cell/tissue damage and lead to clinical and neuropsychiatric symptoms. Shock waves from a blast propagate through the brain and initiate cascades of mechanical and physiological events that can adversely affect the brain function. Although studies using animal models and brain slices have shown macroscale changes in the brain tissue in response to blast, systematic elucidation of coupling mechanisms is currently lacking. One mechanism that has been postulated and demonstrated repeatedly is the blast-induced generation and subsequent collapse of micron-size bubbles (i.e., microcavitation). Using a custom-designed exposure system, we have previously reported that upon collapsing of microbubbles, astrocytes exhibited changes in the cell viability, cellular biomechanics, production of reactive oxygen species, and activation of apoptotic signaling pathways. In this paper, we have applied microfabrication techniques and seeded astrocytes in a spatially controlled manner to determine the extent of cell damage from the site of the collapse of microbubbles. Such a novel experimental design is proven to facilitate our effort to examine the altered cell viability and functionality by monitoring the transient calcium spiking activity in real-time. We now report that the effect of microcavitation depends on the distance from which cells are seeded, and the cell functionality assessed by calcium dynamics is significantly diminished in the cells located within ∼800 μm of the collapsing microbubbles. Both calcium influx across the cell membrane via N-type calcium channels and intracellular calcium store are altered in response to microcavitation. Finally, the FDA-approved poloxamer 188 (P188) was used to reconstitute the compromised cell membrane and restore the cell's reparative capability. This finding may lead to a feasible treatment for partially mitigating the tissue damage associated with bTBI.
Collapse
Affiliation(s)
- Bo Chen
- Department of Bioengineering , University of Texas at Arlington , Arlington , Texas 76019 , United States
| | - Jessica Tjahja
- Department of Bioengineering , University of Texas at Arlington , Arlington , Texas 76019 , United States
| | - Sameep Malla
- Department of Bioengineering , University of Texas at Arlington , Arlington , Texas 76019 , United States
| | - Caleb Liebman
- Department of Bioengineering , University of Texas at Arlington , Arlington , Texas 76019 , United States
| | - Michael Cho
- Department of Bioengineering , University of Texas at Arlington , Arlington , Texas 76019 , United States
| |
Collapse
|
17
|
Ojha S, Kumar B. A review on nanotechnology based innovations in diagnosis and treatment of multiple sclerosis. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.jocit.2017.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Mora B, Perez-Valle A, Redondo C, Boyano MD, Morales R. Cost-Effective Design of High-Magnetic Moment Nanostructures for Biotechnological Applications. ACS APPLIED MATERIALS & INTERFACES 2018; 10:8165-8172. [PMID: 29390182 DOI: 10.1021/acsami.7b16779] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Disk-shaped magnetic nanostructures present distinctive features for novel biomedical applications. Fine tuning of geometry and dimensions is demanded to evaluate efficiency and capability of such applications. This work addresses a cost-effective, versatile, and maskless design of biocompatible high-magnetic moment elements at the sub-micrometer scale. Advantages and disadvantages of two high throughput fabrication routes using interference lithography were evaluated. Detrimental steps such as the release process of nanodisks into aqueous solution were optimized to fully preserve the magnetic properties of the material. Then, cell viability of the nanostructures was assessed in primary melanoma cultures. No toxicity effects were observed, validating the potential of these nanostructures in biotechnological applications. The present methodology will allow the fabrication of magnetic nanoelements at the sub-micrometer scale with unique spin configurations, such as vortex state, synthetic antiferromagnets, or exchange-coupled heterostructures, and their use in biomedical techniques that require a remote actuation or a magneto-electric response.
Collapse
Affiliation(s)
| | | | | | - Maria Dolores Boyano
- Department of Cell Biology and Histology , University of the Basque Country UPV/EHU, and Biocruces Health Research Institute , 48903 Barakaldo , Spain
| | - Rafael Morales
- IKERBASQUE, Basque Foundation for Science , 48011 Bilbao , Spain
| |
Collapse
|
19
|
Gui N, Xu W, Myers DE, Shukla R, Tang HP, Qian M. The effect of ordered and partially ordered surface topography on bone cell responses: a review. Biomater Sci 2018; 6:250-264. [DOI: 10.1039/c7bm01016h] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Current understanding of the role of ordered and partially ordered surface topography in bone cell responses for bone implant design.
Collapse
Affiliation(s)
- N. Gui
- Centre for Additive Manufacturing
- School of Engineering
- RMIT University
- Melbourne
- Australia
| | - W. Xu
- Department of Engineering
- Macquarie University
- Sydney
- Australia
| | - D. E. Myers
- Australian Institute for Musculoskeletal Science
- Victoria University and University of Melbourne
- Australia
- College of Health and Biomedicine
- Victoria University
| | - R. Shukla
- Nanobiotechnology Research Laboratory and Centre for Advanced Materials & Industrial Chemistry
- School of Science
- RMIT University
- Melbourne
- Australia
| | - H. P. Tang
- State Key Laboratory of Porous Metal Materials
- Northwest Institute for Nonferrous Metal Research
- and Xi'an Sailong Metal Materials Co. Ltd
- Xi'an 710016
- China
| | - M. Qian
- Centre for Additive Manufacturing
- School of Engineering
- RMIT University
- Melbourne
- Australia
| |
Collapse
|
20
|
Nissan I, Schori H, Kumar VB, Passig MA, Shefi O, Gedanken A. Topographical impact of silver nanolines on the morphology of neuronal SH-SY5Y Cells. J Mater Chem B 2017; 5:9346-9353. [PMID: 32264537 DOI: 10.1039/c7tb02492d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An extracellular environment is critical in neuronal development and growth. Changes in neuronal morphology, neuron adhesion, and even the rate of neurite formation, can be modified by both the chemical and physical properties of interfacing substrates. Topography has a major impact on neuronal growth. Neuronal behavior and morphology are affected by the size, shape and pattern of the topographic elements. Combining topography with active materials may lead to enhanced influence. This paper demonstrates the effects of silver nanolines (AgNLs) on the growth pattern of SH-SY5Y cells. The morphology of the cells atop the nanotopographical substrates is measured, revealing a significant promoting effect. The number of neurites initiating from the soma is larger in SH-SY5Y cells plated on AgNLs than in control samples. The cells also exhibit an increase in neurite branching points towards more complex structures. These results indicate that substrates decorated with nanotopography affect cellular growth in a way that may be useful for enhanced regeneration, opening new possibilities for electrode and implant design.
Collapse
Affiliation(s)
- Ifat Nissan
- Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel.
| | | | | | | | | | | |
Collapse
|
21
|
Vikram Singh A, Gharat T, Batuwangala M, Park B, Endlein T, Sitti M. Three‐dimensional patterning in biomedicine: Importance and applications in neuropharmacology. J Biomed Mater Res B Appl Biomater 2017; 106:1369-1382. [DOI: 10.1002/jbm.b.33922] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 04/19/2017] [Accepted: 04/22/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Ajay Vikram Singh
- Department of Physical IntelligenceMax Planck Institute for Intelligent Systems, Heisenbergstr 370569Stuttgart Germany
| | - Tanmay Gharat
- Department of Chemical and Biological EngineeringRensselaer Polytechnic InstituteNew York New York12180
| | - Madu Batuwangala
- Department of Physical IntelligenceMax Planck Institute for Intelligent Systems, Heisenbergstr 370569Stuttgart Germany
| | - Byung‐Wook Park
- Department of Physical IntelligenceMax Planck Institute for Intelligent Systems, Heisenbergstr 370569Stuttgart Germany
| | - Thomas Endlein
- Department of Physical IntelligenceMax Planck Institute for Intelligent Systems, Heisenbergstr 370569Stuttgart Germany
| | - Metin Sitti
- Department of Physical IntelligenceMax Planck Institute for Intelligent Systems, Heisenbergstr 370569Stuttgart Germany
| |
Collapse
|
22
|
Hydrophobic pinning with copper nanowhiskers leads to bactericidal properties. PLoS One 2017; 12:e0175428. [PMID: 28399162 PMCID: PMC5388474 DOI: 10.1371/journal.pone.0175428] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/24/2017] [Indexed: 12/12/2022] Open
Abstract
The considerable morbidity associated with hospitalized patients and clinics in developed countries due to biofilm formation on biomedical implants and surgical instruments is a heavy economic burden. An alternative to chemically treated surfaces for bactericidal activity started emerging from micro/nanoscale topographical cues in the last decade. Here, we demonstrate a putative antibacterial surface using copper nanowhiskers deposited by molecular beam epitaxy. Furthermore, the control of biological response is based on hydrophobic pinning of water droplets in the Wenzel regime, causing mechanical injury and cell death. Scanning electron microscopy images revealed the details of the surface morphology and non-contact mode laser scanning of the surface revealed the microtopography-associated quantitative parameters. Introducing the bacterial culture over nanowhiskers produces mechanical injury to cells, leading to a reduction in cell density over time due to local pinning of culture medium to whisker surfaces. Extended culture to 72 hours to observe biofilm formation revealed biofilm inhibition with scattered microcolonies and significantly reduced biovolume on nanowhiskers. Therefore, surfaces patterned with copper nanowhiskers can serve as potential antibiofilm surfaces. The topography-based antibacterial surfaces introduce a novel prospect in developing mechanoresponsive nanobiomaterials to reduce the risk of medical device biofilm-associated infections, contrary to chemical leaching of copper as a traditional bactericidal agent.
Collapse
|
23
|
Nissan I, Kumar VB, Porat Z, Makovec D, Shefi O, Gedanken A. Sonochemically-fabricated Ga@C-dots@Ga nanoparticle-aided neural growth. J Mater Chem B 2017; 5:1371-1379. [PMID: 32264629 DOI: 10.1039/c6tb02508k] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In this paper, we report the fabrication of an antibacterial material, Ga-doped C-dots on Ga nanoparticles (Ga@C-dots@Ga NPs), which is deposited on a glass substrate for neural growth. A one-step sonochemical process is applied for the simultaneous fabrication and coating of Ga@C-dots@Ga NPs using PEG 400 and molten gallium. The physical and chemical characteristics of the synthesized materials were studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), fluorescence analysis, dynamic light scattering (DLS) and other techniques. SH-SY5Y cells were plated on the substrates. The effect of the Ga@C-dots@Ga NPs on the development of neurites during the initiation and elongation growth phases was studied and compared with C-dots, Ga@C-dots and Ga NPs. Our research focuses on the influence of the physical and chemical properties of composites on neurite growth. We observed that cells grown on a Ga@C-dots@Ga-coated substrate exhibit a 97% increase in the number of branches originating from the soma. We found that surface modification and particle morphology play a significant role in the neural growth.
Collapse
Affiliation(s)
- Ifat Nissan
- Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel.
| | | | | | | | | | | |
Collapse
|
24
|
Pendyala P, Grewal HS, Kim HN, Cho IJ, Yoon ES. Individual Role of the Physicochemical Characteristics of Nanopatterns on Tribological Surfaces. ACS APPLIED MATERIALS & INTERFACES 2016; 8:30590-30600. [PMID: 27739687 DOI: 10.1021/acsami.6b10123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nanoscale patterns have dimensions that are comparable to the length scales affected by intermolecular and surface forces. In this study, we systematically investigated the individual roles of curvature, surface energy, lateral stiffness, material, and pattern density in the adhesion and friction of nanopatterns. We fabricated cylindrical and mushroom-shaped polymer pattern geometries containing flat- and round-topped morphologies using capillary force lithography and nanodrawing techniques. We showed that the curvature, surface energy, and density of the patterns predominantly influenced the adhesive interactions, whereas lateral stiffness dominated friction by controlling the geometrical interaction between the indenter and pillar during sliding. Interestingly, in contrast to previous studies, cylindrical and mushroom-shaped pillars showed similar adhesion characteristics but very different frictional properties. Using fracture mechanics analysis, we showed that this phenomenon is due to a larger ratio of the mushroom flange thickness (t) to the radius of the pillar stem (ρ), and we proposed a design criterion for mushroom patterns to exhibit a geckolike effect. The most important result of our work is the discovery of a linear master curve in the graph of adhesion versus friction for pillars with similar lateral stiffness values that is independent of curvature, material, surface energy, and pattern density. These results will aid in the identification of simple pattern parameters that can be scaled to tune adhesion and friction and will help broaden the understanding of nanoscale topographical interactions.
Collapse
Affiliation(s)
- Prashant Pendyala
- Center for BioMicrosystems, Korea Institute of Science and Technology (KIST) , Seoul 02792, Republic of Korea
| | - Harpreet S Grewal
- Department of Mechanical Engineering, School of Engineering, Shiv Nadar University , Uttar Pradesh 201314, India
| | - Hong Nam Kim
- Center for BioMicrosystems, Korea Institute of Science and Technology (KIST) , Seoul 02792, Republic of Korea
| | - Il-Joo Cho
- Center for BioMicrosystems, Korea Institute of Science and Technology (KIST) , Seoul 02792, Republic of Korea
| | - Eui-Sung Yoon
- Center for BioMicrosystems, Korea Institute of Science and Technology (KIST) , Seoul 02792, Republic of Korea
| |
Collapse
|
25
|
|
26
|
Penkov OV, Pukha VE, Starikova SL, Khadem M, Starikov VV, Maleev MV, Kim DE. Highly wear-resistant and biocompatible carbon nanocomposite coatings for dental implants. Biomaterials 2016; 102:130-6. [DOI: 10.1016/j.biomaterials.2016.06.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/10/2016] [Accepted: 06/11/2016] [Indexed: 11/28/2022]
|
27
|
Abdeen AA, Lee J, Kilian KA. Capturing extracellular matrix properties in vitro: Microengineering materials to decipher cell and tissue level processes. Exp Biol Med (Maywood) 2016; 241:930-8. [PMID: 27075930 PMCID: PMC4950351 DOI: 10.1177/1535370216644532] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Rapid advances in biology have led to the establishment of new fields with tremendous translational potential including regenerative medicine and immunoengineering. One commonality to these fields is the need to extract cells for manipulation in vitro; however, results obtained in laboratory cell culture will often differ widely from observations made in vivo. To more closely emulate native cell biology in the laboratory, designer engineered environments have proved a successful methodology to decipher the properties of the extracellular matrix that govern cellular decision making. Here, we present an overview of matrix properties that affect cell behavior, strategies for recapitulating important parameters in vitro, and examples of how these properties can affect cell and tissue level processes, with emphasis on leveraging these tools for immunoengineering.
Collapse
Affiliation(s)
- Amr A Abdeen
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Junmin Lee
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kristopher A Kilian
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
28
|
Azeem A, English A, Kumar P, Satyam A, Biggs M, Jones E, Tripathi B, Basu N, Henkel J, Vaquette C, Rooney N, Riley G, O'Riordan A, Cross G, Ivanovski S, Hutmacher D, Pandit A, Zeugolis D. The influence of anisotropic nano- to micro-topography on in vitro and in vivo osteogenesis. Nanomedicine (Lond) 2016; 10:693-711. [PMID: 25816874 DOI: 10.2217/nnm.14.218] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIM Topographically modified substrates are increasingly used in tissue engineering to enhance biomimicry. The overarching hypothesis is that topographical cues will control cellular response at the cell-substrate interface. MATERIALS & METHODS The influence of anisotropically ordered poly(lactic-co-glycolic acid) substrates (constant groove width of ~1860 nm; constant line width of ~2220 nm; variable groove depth of ~35, 306 and 2046 nm) on in vitro and in vivo osteogenesis were assessed. RESULTS & DISCUSSION We demonstrate that substrates with groove depths of approximately 306 and 2046 nm promote osteoblast alignment parallel to underlined topography in vitro. However, none of the topographies assessed promoted directional osteogenesis in vivo. CONCLUSION 2D imprinting technologies are useful tools for in vitro cell phenotype maintenance.
Collapse
Affiliation(s)
- Ayesha Azeem
- Network of Excellence for Functional Biomaterials (NFB), Biosciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Telitel S, Telitel S, Bosson J, Lalevée J, Clément JL, Godfroy M, Fillaut JL, Akdas-Kilig H, Guillaneuf Y, Gigmes D, Soppera O. UV-Induced Micropatterning of Complex Functional Surfaces by Photopolymerization Controlled by Alkoxyamines. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:10026-10036. [PMID: 26301751 DOI: 10.1021/acs.langmuir.5b01681] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report on the use of an alkoxyamine (AA) for fabrication of functional micropatterns with complex structures by UV mask lithography. The living character of the polymer surface and the vertical spatial control of the repolymerization reaction from few tens of nanometers to few micrometers were demonstrated. The impact of the main parameters governing the controlled polymerization and the reinitiation process activated by light or heat was investigated. Micropatterning is shown to be a powerful method to investigate the physicochemical molecular phenomena. It is possible to control the polymer microstructure thickness from few tens of nanometers to few micrometers. In the last section, some applications are provided showing the potential of the AA for generating covalently bonded hydrophilic/hydrophobic micropatterns or luminescent surfaces. This demonstrates the high versatility and interest of this route.
Collapse
Affiliation(s)
- Siham Telitel
- Institut de Science des Matériaux de Mulhouse, CNRS UMR 7361, Université de Haute-Alsace 15 rue Jean Starcky, BP 2488, 68057 Mulhouse, Cedex, France
| | - Sofia Telitel
- Institut de Science des Matériaux de Mulhouse, CNRS UMR 7361, Université de Haute-Alsace 15 rue Jean Starcky, BP 2488, 68057 Mulhouse, Cedex, France
| | - Julien Bosson
- Aix-Marseille Université , CNRS, Institut de Chimie Radicalaire UMR 7273, 13397, Marseille, France
| | - Jacques Lalevée
- Institut de Science des Matériaux de Mulhouse, CNRS UMR 7361, Université de Haute-Alsace 15 rue Jean Starcky, BP 2488, 68057 Mulhouse, Cedex, France
| | - Jean-Louis Clément
- Aix-Marseille Université , CNRS, Institut de Chimie Radicalaire UMR 7273, 13397, Marseille, France
| | - Maxime Godfroy
- Institut des Sciences Chimiques de Rennes, CNRS UMR 6226, Campus de Beaulieu, 263 av. du Général Leclerc, 35042 Rennes, France
| | - Jean-Luc Fillaut
- Institut des Sciences Chimiques de Rennes, CNRS UMR 6226, Campus de Beaulieu, 263 av. du Général Leclerc, 35042 Rennes, France
| | - Huriye Akdas-Kilig
- Institut des Sciences Chimiques de Rennes, CNRS UMR 6226, Campus de Beaulieu, 263 av. du Général Leclerc, 35042 Rennes, France
| | - Yohann Guillaneuf
- Aix-Marseille Université , CNRS, Institut de Chimie Radicalaire UMR 7273, 13397, Marseille, France
| | - Didier Gigmes
- Aix-Marseille Université , CNRS, Institut de Chimie Radicalaire UMR 7273, 13397, Marseille, France
| | - Olivier Soppera
- Institut de Science des Matériaux de Mulhouse, CNRS UMR 7361, Université de Haute-Alsace 15 rue Jean Starcky, BP 2488, 68057 Mulhouse, Cedex, France
| |
Collapse
|
30
|
|
31
|
Tsougeni K, Petrou PS, Awsiuk K, Marzec MM, Ioannidis N, Petrouleas V, Tserepi A, Kakabakos SE, Gogolides E. Direct Covalent Biomolecule Immobilization on Plasma-Nanotextured Chemically Stable Substrates. ACS APPLIED MATERIALS & INTERFACES 2015; 7:14670-14681. [PMID: 26098201 DOI: 10.1021/acsami.5b01754] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A new method for direct covalent immobilization of protein molecules (including antibodies) on organic polymers with plasma-induced random micronanoscale topography and stable-in-time chemical functionality is presented. This is achieved using a short (1-5 min) plasma etching and simultaneous micronanotexturing process, followed by a fast thermal annealing step, which induces accelerated hydrophobic recovery while preserving important chemical functionality created by the plasma. Surface-bound biomolecules resist harsh washing with sodium dodecyl sulfate and other detergents even at elevated temperatures, losing less than 40% of the biomolecules bound even at the harshest washing conditions. X-ray photoelectron spectroscopy, secondary-ion mass spectrometry, and electron paramagnetic resonance are used to unveil the chemical modification of the plasma-treated and stabilized surfaces. The nanotextured and chemically stabilized surfaces are used as substrates for the development of immunochemical assays for the sensitive detection of C-reactive protein and salmonella lipopolysaccharides through immobilization of the respective analyte-specific antibodies onto them. Such substrates are stable for a period of 1 year with ambient storage.
Collapse
Affiliation(s)
- K Tsougeni
- †Institute of Nanoscience and Nanotechnology, National Center For Scientific Research (NCSR) Demokritos, 15310 Agia Paraskevi, Greece
| | | | - K Awsiuk
- §M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - M M Marzec
- ∥Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - N Ioannidis
- †Institute of Nanoscience and Nanotechnology, National Center For Scientific Research (NCSR) Demokritos, 15310 Agia Paraskevi, Greece
| | - V Petrouleas
- †Institute of Nanoscience and Nanotechnology, National Center For Scientific Research (NCSR) Demokritos, 15310 Agia Paraskevi, Greece
| | - A Tserepi
- †Institute of Nanoscience and Nanotechnology, National Center For Scientific Research (NCSR) Demokritos, 15310 Agia Paraskevi, Greece
| | | | - E Gogolides
- †Institute of Nanoscience and Nanotechnology, National Center For Scientific Research (NCSR) Demokritos, 15310 Agia Paraskevi, Greece
| |
Collapse
|
32
|
Ryan CNM, Fuller KP, Larrañaga A, Biggs M, Bayon Y, Sarasua JR, Pandit A, Zeugolis DI. An academic, clinical and industrial update on electrospun, additive manufactured and imprinted medical devices. Expert Rev Med Devices 2015; 12:601-12. [DOI: 10.1586/17434440.2015.1062364] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
33
|
Zhang Y, Lynge ME, Teo BM, Ogaki R, Städler B. Mixed poly(dopamine)/poly(L-lysine) (composite) coatings: from assembly to interaction with endothelial cells. Biomater Sci 2015. [PMID: 26222034 DOI: 10.1039/c5bm00093a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Engineered polymer films are of significant importance in the field of biomedicine. Poly(dopamine) (PDA) is becoming more and more a key player in this context. Herein, we deposited mixed films consisting of PDA and poly(L-lysine) (PLL) of different molecular weights. The coatings were characterized by quartz crystal microbalance with dissipation monitoring, atomic force microscopy, and X-ray photoelectron spectroscopy. The protein adsorption to the mixed films was found to decrease with increasing amounts of PLL. PDA/PLL capsules were also successfully assembled. Higher PLL content in the membranes reduced their thickness while the ζ-potential increased. Further, endothelial cell adhesion and proliferation over 96 h were found to be independent of the type of coating. Using PDA/PLL in liposome-containing composite coatings showed that sequential deposition of the layers yielded higher liposome trapping compared to one-step adsorption except for negatively charged liposomes. Association/uptake of fluorescent cargo by adherent endothelial cells was found to be different for PDA and PDA/PLL films. Taken together, our findings illustrate the potential of PDA/PLL mixed films as coatings for biomedical applications.
Collapse
Affiliation(s)
- Yan Zhang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark.
| | | | | | | | | |
Collapse
|
34
|
Astrocytes increase ATP exocytosis mediated calcium signaling in response to microgroove structures. Sci Rep 2015; 5:7847. [PMID: 25597401 PMCID: PMC4297955 DOI: 10.1038/srep07847] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/16/2014] [Indexed: 01/14/2023] Open
Abstract
Following central nervous system (CNS) injury, activated astrocytes form glial scars, which inhibit axonal regeneration, leading to long-term functional deficits. Engineered nanoscale scaffolds guide cell growth and enhance regeneration within models of spinal cord injury. However, the effects of micro-/nanosize scaffolds on astrocyte function are not well characterized. In this study, a high throughput (HTP) microscale platform was developed to study astrocyte cell behavior on micropatterned surfaces containing 1 μm spacing grooves with a depth of 250 or 500 nm. Significant changes in cell and nuclear elongation and alignment on patterned surfaces were observed, compared to on flat surfaces. The cytoskeleton components (particularly actin filaments and focal adhesions) and nucleus-centrosome axis were aligned along the grooved direction as well. More interestingly, astrocytes on micropatterned surfaces showed enhanced mitochondrial activity with lysosomes localized at the lamellipodia of the cells, accompanied by enhanced adenosine triphosphate (ATP) release and calcium activities. These data indicate that the lysosome-mediated ATP exocytosis and calcium signaling may play an important role in astrocytic responses to substrate topology. These new findings have furthered our understanding of the biomechanical regulation of astrocyte cell–substrate interactions, and may benefit the optimization of scaffold design for CNS healing.
Collapse
|
35
|
Tuft BW, Zhang L, Xu L, Hangartner A, Leigh B, Hansen MR, Guymon CA. Material stiffness effects on neurite alignment to photopolymerized micropatterns. Biomacromolecules 2014; 15:3717-27. [PMID: 25211120 PMCID: PMC4195519 DOI: 10.1021/bm501019s] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ability to direct neurite growth into a close proximity of stimulating elements of a neural prosthesis, such as a retinal or cochlear implant (CI), may enhance device performance and overcome current spatial signal resolution barriers. In this work, spiral ganglion neurons (SGNs), which are the target neurons to be stimulated by CIs, were cultured on photopolymerized micropatterns with varied matrix stiffnesses to determine the effect of rigidity on neurite alignment to physical cues. Micropatterns were generated on methacrylate thin film surfaces in a simple, rapid photopolymerization step by photomasking the prepolymer formulation with parallel line-space gratings. Two methacrylate series, a nonpolar HMA-co-HDDMA series and a polar PEGDMA-co-EGDMA series, with significantly different surface wetting properties were evaluated. Equivalent pattern periodicity was maintained across each methacrylate series based on photomask band spacing, and the feature amplitude was tuned to a depth of 2 μm amplitude for all compositions using the temporal control afforded by the UV curing methodology. The surface morphology was characterized by scanning electron microscopy and white light interferometry. All micropatterned films adsorb similar amounts of laminin from solution, and no significant difference in SGN survival was observed when the substrate compositions were compared. SGN neurite alignment significantly increases with increasing material modulus for both methacrylate series. Interestingly, SGN neurites respond to material stiffness cues that are orders of magnitude higher (GPa) than what is typically ascribed to neural environments (kPa). The ability to understand neurite response to engineered physical cues and mechanical properties such as matrix stiffness will allow the development of advanced biomaterials that direct de novo neurite growth to address the spatial signal resolution limitations of current neural prosthetics.
Collapse
Affiliation(s)
- Bradley W Tuft
- Department of Chemical and Biochemical Engineering, University of Iowa , Iowa City, Iowa 52242, United States
| | | | | | | | | | | | | |
Collapse
|
36
|
Jeon H, Simon CG, Kim G. A mini-review: Cell response to microscale, nanoscale, and hierarchical patterning of surface structure. J Biomed Mater Res B Appl Biomater 2014; 102:1580-94. [DOI: 10.1002/jbm.b.33158] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 03/04/2014] [Accepted: 03/13/2014] [Indexed: 12/17/2022]
Affiliation(s)
- HoJun Jeon
- Department of Bio-Mechatronic Engineering; College of Biotechnology and Bioengineering, Sungkyunkwan University; Suwon South Korea
| | - Carl G. Simon
- Biosystems and Biomaterials Division; National Institute of Standards and Technology; Gaithersburg Maryland
| | - GeunHyung Kim
- Department of Bio-Mechatronic Engineering; College of Biotechnology and Bioengineering, Sungkyunkwan University; Suwon South Korea
| |
Collapse
|
37
|
Fabrication of Multifaceted, Micropatterned Surfaces and Image-Guided Patterning Using Laser Scanning Lithography. Methods Cell Biol 2014; 119:193-217. [DOI: 10.1016/b978-0-12-416742-1.00011-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|