1
|
Yang Z, Gordon D, Chen Y, Li H, Wu Y, Meng Z. Understanding the effects of mineralization and structure on the mechanical properties of tendon-bone insertion using mesoscale computational modeling. J Mech Behav Biomed Mater 2024; 160:106735. [PMID: 39288664 DOI: 10.1016/j.jmbbm.2024.106735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/29/2024] [Accepted: 09/08/2024] [Indexed: 09/19/2024]
Abstract
Tendon-bone fibrocartilaginous insertion, or enthesis, is a specialized interfacial region that connects tendon and bone, effectively transferring forces while minimizing stress concentrations. Previous studies have shown that insertion features gradient mineralization and branching fiber structure, which are believed to play critical roles in its excellent function. However, the specific structure-function relationship, particularly the effects of mineralization and structure at the mesoscale fiber level on the properties and function of insertion, remains poorly understood. In this study, we develop mesoscale computational models of the distinct fiber organization at tendon-bone insertions, capturing the branching network from tendon to interface fibers and the different mineralization scales. We specifically analyze three key descriptors: the mineralization scale of interface fibers, the mean, and relative standard deviation of the local branching angles of interface fibers. Tensile test simulations on insertion models with varying mineralization scales of interface fibers and structures are performed to mimic the primary loading condition applied to the insertion. We measure and analyze five representative mechanical properties: Young's modulus, strength, toughness, resilience, and failure strain. Our results reveal that mechanical properties are significantly influenced by the three key descriptors, with tradeoffs observed between mutually exclusive properties. For instance, strength and resilience plateau beyond a certain mineralization scale, while failure strain and Young's modulus exhibit monotonic decreasing and increasing trends, respectively. Consequently, there exists an optimal mineralization scale for toughness due to these tradeoffs. By analyzing the mesoscale deformation and failure mechanisms from simulation trajectories, we identify three fracture regimes closely related to the trends in mechanical properties, supporting the observed tradeoffs. Additionally, we examine in detail the effects of the mean and relative standard deviation of local branching angles on mechanical properties and deformation mechanisms. Overall, our study enhances the fundamental understanding of the composition-structure-function relationships at the tendon-bone insertion, complementing recent experimental studies. The mechanical insights from our work have the potential to guide the future biomimetic design of fibrillar adhesives and interfaces for joining soft and hard materials.
Collapse
Affiliation(s)
- Zhangke Yang
- Department of Mechanical Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Daniel Gordon
- Department of Bioengineering, Clemson University, Clemson, SC, 29634, USA
| | - Yitong Chen
- Department of Mechanical Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Hui Li
- Department of Bioengineering, Clemson University, Clemson, SC, 29634, USA
| | - Yongren Wu
- Department of Bioengineering, Clemson University, Clemson, SC, 29634, USA
| | - Zhaoxu Meng
- Department of Mechanical Engineering, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
2
|
Dong Y, Li J, Jiang Q, He S, Wang B, Yi Q, Cheng X, Gao X, Bai Y. Structure, ingredient, and function-based biomimetic scaffolds for accelerated healing of tendon-bone interface. J Orthop Translat 2024; 48:70-88. [PMID: 39185339 PMCID: PMC11342074 DOI: 10.1016/j.jot.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/11/2024] [Accepted: 07/16/2024] [Indexed: 08/27/2024] Open
Abstract
Background Tendon-bone interface (TBI) repair is slow and challenging owing to its hierarchical structure, gradient composition, and complex function. In this work, enlightened by the natural characteristics of TBI microstructure and the demands of TBI regeneration, a structure, composition, and function-based scaffold was fabricated. Methods: The biomimetic scaffold was designed based on the "tissue-inducing biomaterials" theory: (1) a porous scaffold was created with poly-lactic-co-glycolic-acid, nano-hydroxyapatite and loaded with BMP2-gelatinmp to simulate the bone (BP); (2) a hydrogel was produced from sodium alginate, type I collagen, and loaded with TGF-β3 to simulate the cartilage (CP); (3) the L-poly-lactic-acid fibers were oriented to simulate the tendon (TP). The morphology of tri-layered constructs, gelation kinetics, degradation rate, release kinetics and mechanical strength of the scaffold were characterized. Then, bone marrow mesenchymal stem cells (MSCs) and tenocytes (TT-D6) were cultured on the scaffold to evaluate its gradient differentiation inductivity. A rat Achilles tendon defect model was established, and BMSCs seeded on scaffolds were implanted into the lesionsite. The tendon-bone lesionsite of calcaneus at 4w and 8w post-operation were obtained for gross observation, radiological evaluation, biomechanical and histological assessment. Results The hierarchical microstructures not only endowed the scaffold with gradual composition and mechanical properties for matching the regional biophysical characteristics of TBI but also exhibited gradient differentiation inductivity through providing regional microenvironment for cells. Moreover, the scaffold seeded with cells could effectively accelerate healing in rat Achilles tendon defects, attributable to its enhanced differentiation performance. Conclusion The hierarchical scaffolds simulating the structural, compositional, and cellular heterogeneity of natural TBI tissue performed therapeutic effects on promoting regeneration of TBI and enhancing the healing quality of Achilles tendon. The translational potential of this article The novel scaffold showed the great efficacy on tendon to bone healing by offering a structural and compositional microenvironment. The results meant that the hierarchical scaffold with BMSCs may have a great potential for clinical application.
Collapse
Affiliation(s)
- YuHan Dong
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - JiangFeng Li
- Institute of Burn Research, Southwest Hospital & State Key Lab of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Qiang Jiang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - SiRong He
- School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Bin Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - QiYing Yi
- Laboratory Animal Center, Chongqing Medical University, Chongqing, 400016, China
| | - XiTing Cheng
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Xiang Gao
- College of Stomatology, Chongqing Medical University, Chongqing, 400016, China
| | - Yan Bai
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
3
|
Liang C, Fan Z, Zhang Z, Wang P, Deng H, Tao J. Electrospinning technology: a promising approach for tendon-bone interface tissue engineering. RSC Adv 2024; 14:26077-26090. [PMID: 39161449 PMCID: PMC11332360 DOI: 10.1039/d4ra04043k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/29/2024] [Indexed: 08/21/2024] Open
Abstract
The regeneration of tendon-bone interface tissue has become a topic of great interest in recent years. However, the complex nature of this interface has posed challenges in finding suitable solutions. Tissue engineering, with its potential to improve clinical outcomes and play a crucial role in musculoskeletal function, has been increasingly explored for tendon-bone interface regeneration. This review focuses on the research advancements of electrospinning technology in interface tissue engineering. By utilizing electrospinning, researchers have been able to fabricate scaffolds with tailored properties to promote the regeneration and integration of tendon and bone tissues. The review discusses the unique structure and function of the tendon-bone interface, the mechanisms involved in its healing, and the limitations currently faced in achieving successful regeneration. Additionally, it highlights the potential of electrospinning technology in scaffold fabrication and its role in facilitating the development of functional and integrated tendon-bone interface tissues. Overall, this review provides valuable insights into the application of electrospinning technology for tendon-bone interface tissue engineering, emphasizing its significance in addressing the challenges associated with regeneration in this complex interface.
Collapse
Affiliation(s)
- Chengzhi Liang
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University Nanchang Jiangxi 330000 China
| | - Zaiwei Fan
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University Nanchang Jiangxi 330000 China
| | - Zirui Zhang
- Department of Rehabilitation Medicine, The 960th Hospital of the Chinese People's Liberation Army Jinan 250000 China
| | - Pinkai Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University Nanchang Jiangxi 330000 China
| | - Hui Deng
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University Nanchang Jiangxi 330000 China
| | - Jun Tao
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University Nanchang Jiangxi 330000 China
| |
Collapse
|
4
|
Chen Y, Li Y, Zhu W, Liu Q. Biomimetic gradient scaffolds for the tissue engineering and regeneration of rotator cuff enthesis. Biofabrication 2024; 16:032005. [PMID: 38697099 DOI: 10.1088/1758-5090/ad467d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/02/2024] [Indexed: 05/04/2024]
Abstract
Rotator cuff tear is one of the most common musculoskeletal disorders, which often results in recurrent shoulder pain and limited movement. Enthesis is a structurally complex and functionally critical interface connecting tendon and bone that plays an essential role in maintaining integrity of the shoulder joint. Despite the availability of advanced surgical procedures for rotator cuff repair, there is a high rate of failure following surgery due to suboptimal enthesis healing and regeneration. Novel strategies based on tissue engineering are gaining popularity in improving tendon-bone interface (TBI) regeneration. Through incorporating physical and biochemical cues into scaffold design which mimics the structure and composition of native enthesis is advantageous to guide specific differentiation of seeding cells and facilitate the formation of functional tissues. In this review, we summarize the current state of research in enthesis tissue engineering highlighting the development and application of biomimetic scaffolds that replicate the gradient TBI. We also discuss the latest techniques for fabricating potential translatable scaffolds such as 3D bioprinting and microfluidic device. While preclinical studies have demonstrated encouraging results of biomimetic gradient scaffolds, the translation of these findings into clinical applications necessitates a comprehensive understanding of their safety and long-term efficacy.
Collapse
Affiliation(s)
- Yang Chen
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yexin Li
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Weihong Zhu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Qian Liu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
5
|
Zhang Y, Ye M, Liu W, Chen X, Zhou C, Yu T. In Situ Construction of Morphologically Different Hydroxyapatite-Mineralized Structures on a Three-Dimensional Bionic Chitin Scaffold. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8378-8390. [PMID: 38326945 DOI: 10.1021/acsami.3c16917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Slow healing at the tendon-bone interface is a prominent factor in the failure of tendon repair surgeries. The development of functional biomaterials with 3D gradient structures is urgently needed to improve tendon-bone integration. The crystalline form of hydroxyapatite (HAP) has a crucial impact on cell behavior, which directly influences protein adsorption, such as bone morphogenetic protein 2, the adhesion, proliferation, and osteogenic differentiation with cells. This work aimed to generate gradient mineral structures in situ by stabilizing calcium and phosphate ions using a polymer-induced liquid precursor process. To regulate the crystalline growth of HAP at the interface of β-chitin, this work made use of the surface properties of the organic matrix found in cuttlefish bone. These techniques allowed us to prepare an organic-inorganic composite gradient scaffold comprising plate-like HAP mineralized in situ on the surface of the scaffold and fibrous HAP in the scaffold's interior. Organic-inorganic composite gradient materials are anticipated for use in tendon-bone healing produced via the in situ construction of gradient-distributed HAP mineralization layers having varying crystalline morphologies on chitin scaffolds that possess a three-dimensional bionic structure.
Collapse
Affiliation(s)
- Yi Zhang
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Minxuan Ye
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Wenkang Liu
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Xiaohui Chen
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Changren Zhou
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Tao Yu
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China
| |
Collapse
|
6
|
Pugliese E, Rossoni A, Zeugolis DI. Enthesis repair - State of play. BIOMATERIALS ADVANCES 2024; 157:213740. [PMID: 38183690 DOI: 10.1016/j.bioadv.2023.213740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/08/2024]
Abstract
The fibrocartilaginous enthesis is a highly specialised tissue interface that ensures a smooth mechanical transfer between tendon or ligament and bone through a fibrocartilage area. This tissue is prone to injury and often does not heal, even after surgical intervention. Enthesis augmentation approaches are challenging due to the complexity of the tissue that is characterised by the coexistence of a range of cellular and extracellular components, architectural features and mechanical properties within only hundreds of micrometres. Herein, we discuss enthesis repair and regeneration strategies, with particular focus on elegant interfacial and functionalised scaffold-based designs.
Collapse
Affiliation(s)
- Eugenia Pugliese
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), University of Galway, Galway, Ireland
| | - Andrea Rossoni
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), University of Galway, Galway, Ireland; Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland.
| |
Collapse
|
7
|
Noh S, Lee SJ, Yoo JJ, Jin YJ, Yun HW, Min BH, Park JY, Park DY. Synovium-Derived Mesenchymal Stem Cell-Based Scaffold-Free Fibrocartilage Engineering for Bone-Tendon Interface Healing in an Anterior Cruciate Ligament Reconstruction Model. Tissue Eng Regen Med 2024; 21:341-351. [PMID: 37856071 PMCID: PMC10825091 DOI: 10.1007/s13770-023-00593-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/21/2023] [Accepted: 08/27/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Current tendon and ligament reconstruction surgeries rely on scar tissue healing which differs from native bone-to-tendon interface (BTI) tissue. We aimed to engineer Synovium-derived mesenchymal stem cells (Sy-MSCs) based scaffold-free fibrocartilage constructs and investigate in vivo bone-tendon interface (BTI) healing efficacy in a rat anterior cruciate ligament (ACL) reconstruction model. METHODS Sy-MSCs were isolated from knee joint of rats. Scaffold-free sy-MSC constructs were fabricated and cultured in differentiation media including TGF-β-only, CTGF-only, and TGF-β + CTGF. Collagenase treatment on tendon grafts was optimized to improve cell-to-graft integration. The effects of fibrocartilage differentiation and collagenase treatment on BTI integration was assessed by conducting histological staining, cell adhesion assay, and tensile testing. Finally, histological and biomechanical analyses were used to evaluate in vivo efficacy of fibrocartilage construct in a rat ACL reconstruction model. RESULTS Fibrocartilage-like features were observed with in the scaffold-free sy-MSC constructs when applying TGF-β and CTGF concurrently. Fifteen minutes collagenase treatment increased cellular attachment 1.9-fold compared to the Control group without affecting tensile strength. The failure stress was highest in the Col + D + group (22.494 ± 13.74 Kpa) compared to other groups at integration analysis in vitro. The ACL Recon + FC group exhibited a significant 88% increase in estimated stiffness (p = 0.0102) compared to the ACL Recon group at the 4-week postoperative period. CONCLUSION Scaffold-free, fibrocartilage engineering together with tendon collagenase treatment enhanced fibrocartilaginous BTI healing in ACL reconstruction.
Collapse
Affiliation(s)
- Sujin Noh
- Department of Biomedical Sciences, Graduate School of Ajou University, 206 World Cup-Ro, Yeongtong-Gu, Suwon, Republic of Korea
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Yong Jun Jin
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - Hee-Woong Yun
- Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea
| | - Byoung-Hyun Min
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Jae-Young Park
- Department of Orthopedics Surgery, CHA University Bundang Medical Center, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, Republic of Korea
| | - Do Young Park
- Department of Biomedical Sciences, Graduate School of Ajou University, 206 World Cup-Ro, Yeongtong-Gu, Suwon, Republic of Korea.
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea.
- Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea.
- Leading Convergence of Healthcare and Medicine, Institute of Science & Technology (ALCHeMIST), Ajou University, Suwon, Republic of Korea.
| |
Collapse
|
8
|
Chen Y, Zhang Y, Chen X, Huang J, Zhou B, Zhang T, Yin W, Fang C, Yin Z, Pan H, Li X, Shen W, Chen X. Biomimetic Intrafibrillar Mineralization of Native Tendon for Soft-Hard Interface Integration by Infiltration of Amorphous Calcium Phosphate Precursors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304216. [PMID: 37870172 PMCID: PMC10700236 DOI: 10.1002/advs.202304216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/21/2023] [Indexed: 10/24/2023]
Abstract
Soft and hard tissues possess distinct biological properties. Integrating the soft-hard interface is difficult due to the inherent non-osteogenesis of soft tissue, especially of anterior cruciate ligament and rotator cuff reconstruction. This property makes it difficult for tendons to be mineralized and integrated with bone in vivo. To overcome this challenge, a biomimetic mineralization strategy is employed to engineer mineralized tendons. The strategy involved infiltrating amorphous calcium phosphate precursors into collagen fibrils, resulting in hydroxyapatite deposition along the c-axis. The mineralized tendon presented characteristics similar to bone tissue and induced osteogenic differentiation of mesenchymal stem cells. Additionally, the interface between the newly formed bone and tendon is serrated, suggesting a superb integration between the two tissues. This strategy allows for biomineralization of tendon collagen and replicating the hallmarks of the bone matrix and extracellular niche, including nanostructure and inherent osteoinductive properties, ultimately facilitating the integration of soft and hard tissues.
Collapse
Affiliation(s)
- Yangwu Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated HospitalZhejiang University School of MedicineHangzhou310058P. R. China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang ProvinceZhejiang UniversityHangzhou310058P. R. China
- China Orthopedic Regenerative Medicine Group (CORMed)Hangzhou310000P. R. China
- Department of Sports MedicineZhejiang University School of MedicineHangzhou310000P. R. China
| | - Yuxiang Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated HospitalZhejiang University School of MedicineHangzhou310058P. R. China
- Department of Plastic SurgerySir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou310000P. R. China
- China Orthopedic Regenerative Medicine Group (CORMed)Hangzhou310000P. R. China
| | - Xiaoyi Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated HospitalZhejiang University School of MedicineHangzhou310058P. R. China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang ProvinceZhejiang UniversityHangzhou310058P. R. China
| | - Jiayun Huang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated HospitalZhejiang University School of MedicineHangzhou310058P. R. China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang ProvinceZhejiang UniversityHangzhou310058P. R. China
- China Orthopedic Regenerative Medicine Group (CORMed)Hangzhou310000P. R. China
- Department of Sports MedicineZhejiang University School of MedicineHangzhou310000P. R. China
| | - Bo Zhou
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated HospitalZhejiang University School of MedicineHangzhou310058P. R. China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang ProvinceZhejiang UniversityHangzhou310058P. R. China
| | - Tao Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated HospitalZhejiang University School of MedicineHangzhou310058P. R. China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang ProvinceZhejiang UniversityHangzhou310058P. R. China
- China Orthopedic Regenerative Medicine Group (CORMed)Hangzhou310000P. R. China
- Department of Sports MedicineZhejiang University School of MedicineHangzhou310000P. R. China
| | - Wei Yin
- Core FacilitiesZhejiang University School of MedicineHangzhou310000P. R. China
| | - Cailian Fang
- Rehabilitation DepartmentLishui People's HospitalLishui323000P. R. China
| | - Zi Yin
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang ProvinceZhejiang UniversityHangzhou310058P. R. China
- China Orthopedic Regenerative Medicine Group (CORMed)Hangzhou310000P. R. China
- Department of Sports MedicineZhejiang University School of MedicineHangzhou310000P. R. China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicineand Department of Orthopedic Surgery of Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310058P. R. China
| | - Haihua Pan
- Qiushi Academy for Advanced StudiesZhejiang UniversityHangzhou310058P. R. China
| | - Xiongfeng Li
- Huzhou HospitalZhejiang University School of MedicineHuzhou313000P. R. China
| | - Weiliang Shen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated HospitalZhejiang University School of MedicineHangzhou310058P. R. China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang ProvinceZhejiang UniversityHangzhou310058P. R. China
- China Orthopedic Regenerative Medicine Group (CORMed)Hangzhou310000P. R. China
- Department of Sports MedicineZhejiang University School of MedicineHangzhou310000P. R. China
| | - Xiao Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated HospitalZhejiang University School of MedicineHangzhou310058P. R. China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang ProvinceZhejiang UniversityHangzhou310058P. R. China
- China Orthopedic Regenerative Medicine Group (CORMed)Hangzhou310000P. R. China
- Department of Sports MedicineZhejiang University School of MedicineHangzhou310000P. R. China
| |
Collapse
|
9
|
Chen L, Zhou C, Jiang C, Huang X, Liu Z, Zhang H, Liang W, Zhao J. Translation of nanotechnology-based implants for orthopedic applications: current barriers and future perspective. Front Bioeng Biotechnol 2023; 11:1206806. [PMID: 37675405 PMCID: PMC10478008 DOI: 10.3389/fbioe.2023.1206806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/21/2023] [Indexed: 09/08/2023] Open
Abstract
The objective of bioimplant engineering is to develop biologically compatible materials for restoring, preserving, or altering damaged tissues and/or organ functions. The variety of substances used for orthopedic implant applications has been substantially influenced by modern material technology. Therefore, nanomaterials can mimic the surface properties of normal tissues, including surface chemistry, topography, energy, and wettability. Moreover, the new characteristics of nanomaterials promote their application in sustaining the progression of many tissues. The current review establishes a basis for nanotechnology-driven biomaterials by demonstrating the fundamental design problems that influence the success or failure of an orthopedic graft, cell adhesion, proliferation, antimicrobial/antibacterial activity, and differentiation. In this context, extensive research has been conducted on the nano-functionalization of biomaterial surfaces to enhance cell adhesion, differentiation, propagation, and implant population with potent antimicrobial activity. The possible nanomaterials applications (in terms of a functional nanocoating or a nanostructured surface) may resolve a variety of issues (such as bacterial adhesion and corrosion) associated with conventional metallic or non-metallic grafts, primarily for optimizing implant procedures. Future developments in orthopedic biomaterials, such as smart biomaterials, porous structures, and 3D implants, show promise for achieving the necessary characteristics and shape of a stimuli-responsive implant. Ultimately, the major barriers to the commercialization of nanotechnology-derived biomaterials are addressed to help overcome the limitations of current orthopedic biomaterials in terms of critical fundamental factors including cost of therapy, quality, pain relief, and implant life. Despite the recent success of nanotechnology, there are significant hurdles that must be overcome before nanomedicine may be applied to orthopedics. The objective of this review was to provide a thorough examination of recent advancements, their commercialization prospects, as well as the challenges and potential perspectives associated with them. This review aims to assist healthcare providers and researchers in extracting relevant data to develop translational research within the field. In addition, it will assist the readers in comprehending the scope and gaps of nanomedicine's applicability in the orthopedics field.
Collapse
Affiliation(s)
- Long Chen
- Department of Orthopedics, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, China
| | - Chanyi Jiang
- Department of Pharmacy, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Xiaogang Huang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, Zhejiang, China
| | - Zunyong Liu
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, Zhejiang, China
| | - Hengjian Zhang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, Zhejiang, China
| | - Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, Zhejiang, China
| | - Jiayi Zhao
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, Zhejiang, China
| |
Collapse
|
10
|
Ji W, Han F, Feng X, Shi L, Ma H, Lu Y, Tao R. Cocktail-like gradient gelatin/hyaluronic acid bioimplant for enhancing tendon-bone healing in fatty-infiltrated rotator cuff injury models. Int J Biol Macromol 2023:125421. [PMID: 37330074 DOI: 10.1016/j.ijbiomac.2023.125421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/28/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
The regeneration of enthesis tissue (native tendon-bone interface) at the post-surgically repaired rotator cuff remains a challenge for clinicians, especially with the emergence of degenerative affection such as fatty infiltration that exacerbate poor tendon-bone healing. In this study, we proposed a cocktail-like hydrogel with a four-layer structure (BMSCs+gNC@GH) for enhancing fatty infiltrated tendon-bone healing. As collagen and hyaluronic acid are the main biomacromolecules that constitute the extracellular matrix of enthesis tissue, this hydrogel was composed of UV-curable gelatin/hyaluronic acid (GelMA/HAMA) dual network gel (GH) with nanoclay (NC) and stem cells loaded. The results showed that NC exhibited a cocktail-like gradient distribution in GH, which effectively mimicked the structure of native enthesis and supported the long-term culture and encapsulation of BMSCs. What's more, the gradient variation of NC provided a biological signal for promoting gradient osteogenic differentiation of cells. Based on the in vivo results, BMSCs+gNC@GH effectively promoted fibrocartilage layer regeneration at the tendon-bone interface and inhibited fatty infiltration. Therefore, BMSCs+gNC@GH group exhibited better biomechanical properties. Thus, this cocktail-like implant may be a promising tissue-engineered scaffold for tendon-bone healing, and it provides a new idea for the development of scaffolds with the function of inhibiting degeneration.
Collapse
Affiliation(s)
- Wei Ji
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Fei Han
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Xian Feng
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Lei Shi
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Hongdong Ma
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Yue Lu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| | - Ran Tao
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| |
Collapse
|
11
|
McKenzie TJ, Cawood C, Davis C, Ayres N. Synthesis of patterned polyHIPE-hydrogel composite materials using thiol-ene chemistry. J Colloid Interface Sci 2023; 645:502-512. [PMID: 37159992 DOI: 10.1016/j.jcis.2023.04.132] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/11/2023]
Abstract
Elastomeric materials combining multiple properties within a single composite are highly desired in applications including biomaterials interfaces, actuators, and soft robotics. High spatial resolution is required to impart different properties across the composite for the intended application, but many techniques used to prepare these composites rely on multistep and complex methods. There is a need for the development of simple and efficient platforms to design layered composite materials. Here, we report the synthesis of horizontally- and vertically-patterned composites consisting of PDMS-based polymerized high internal phase emulsion (polyHIPE) porous elastomers and PDMS/PEG hydrogels. Composites with defined interfaces that were mechanically robust were prepared, and rheological analysis of the polyHIPE and hydrogel layers showed storage moduli values of ∼ 35 kPa and 45 kPa respectively. The compressive Young's Modulus and maximum strain of the polyHIPEs were dependent on the thiol to ene ratio in the formulation and obtained values ranging from 6 to 25 kPa and 50-65% respectively. The mechanical properties, total porosity of the polyHIPE, and swelling ratio of the hydrogel were unaffected by the patterning technique compared to non-patterned controls. PolyHIPE-hydrogel composite materials having up to 7-different horizontally pattered layers could be prepared that could expand and contract up hydration and drying.
Collapse
Affiliation(s)
- Tucker J McKenzie
- Department of Chemistry, The University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221, United States
| | - Christian Cawood
- Department of Chemistry, The University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221, United States
| | - Chelsea Davis
- Department of Chemistry, The University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221, United States
| | - Neil Ayres
- Department of Chemistry, The University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221, United States.
| |
Collapse
|
12
|
Development of three-layer collagen scaffolds to spatially direct tissue-specific cell differentiation for enthesis repair. Mater Today Bio 2023; 19:100584. [PMID: 36969698 PMCID: PMC10034511 DOI: 10.1016/j.mtbio.2023.100584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
Enthesis repair remains a challenging clinical indication. Herein, a three-layer scaffold composed of a tendon-like layer of collagen type I, a fibrocartilage-like layer of collagen type II and a bone-like layer of collagen type I and hydroxyapatite, was designed to recapitulate the matrix composition of the enthesis. To aid tenogenic and fibrochondrogenic differentiation, bioactive molecules were loaded in the tendon-like layer or the fibrocartilage-like layer and their effect was assessed in in vitro setting using human bone marrow derived mesenchymal stromal cells and in an ex vivo model. Seeded human bone marrow mesenchymal stromal cells infiltrated and homogeneously spread throughout the scaffold. As a response to the composition of the scaffold, cells differentiated in a localised manner towards the osteogenic lineage and, in combination with differentiation medium, towards the fibrocartilage lineage. Whilst functionalisation of the tendon-like layer did not improve tenogenic cell commitment within the time frame of this work, relevant fibrochondrogenic markers were detected in the fibrocartilage-like layer when scaffolds were functionalised with bone morphogenetic protein 2 or non-functionalised at all, in vitro and ex vivo, respectively. Altogether, our data advocate the use of compartmentalised scaffolds for the repair and regeneration of interfacial tissues, such as enthesis.
Collapse
|
13
|
Balestri W, Hickman GJ, Morris RH, Hunt JA, Reinwald Y. Triphasic 3D In Vitro Model of Bone-Tendon-Muscle Interfaces to Study Their Regeneration. Cells 2023; 12:313. [PMID: 36672248 PMCID: PMC9856925 DOI: 10.3390/cells12020313] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/02/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
The transition areas between different tissues, known as tissue interfaces, have limited ability to regenerate after damage, which can lead to incomplete healing. Previous studies focussed on single interfaces, most commonly bone-tendon and bone-cartilage interfaces. Herein, we develop a 3D in vitro model to study the regeneration of the bone-tendon-muscle interface. The 3D model was prepared from collagen and agarose, with different concentrations of hydroxyapatite to graduate the tissues from bones to muscles, resulting in a stiffness gradient. This graduated structure was fabricated using indirect 3D printing to provide biologically relevant surface topographies. MG-63, human dermal fibroblasts, and Sket.4U cells were found suitable cell models for bones, tendons, and muscles, respectively. The biphasic and triphasic hydrogels composing the 3D model were shown to be suitable for cell growth. Cells were co-cultured on the 3D model for over 21 days before assessing cell proliferation, metabolic activity, viability, cytotoxicity, tissue-specific markers, and matrix deposition to determine interface formations. The studies were conducted in a newly developed growth chamber that allowed cell communication while the cell culture media was compartmentalised. The 3D model promoted cell viability, tissue-specific marker expression, and new matrix deposition over 21 days, thereby showing promise for the development of new interfaces.
Collapse
Affiliation(s)
- Wendy Balestri
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Graham J. Hickman
- Imaging Suite, School of Science & Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Robert H. Morris
- Department of Physics and Mathematics, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - John A. Hunt
- Medical Technologies and Advanced Materials, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
- College of Biomedical Engineering, China Medical University, Taichung 40402, Taiwan
| | - Yvonne Reinwald
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| |
Collapse
|
14
|
Tindell RK, Busselle LP, Holloway JL. Magnetic fields enable precise spatial control over electrospun fiber alignment for fabricating complex gradient materials. J Biomed Mater Res A 2023; 111:778-789. [PMID: 36594559 DOI: 10.1002/jbm.a.37492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023]
Abstract
Musculoskeletal interfacial tissues consist of complex gradients in structure, cell phenotype, and biochemical signaling that are important for function. Designing tissue engineering strategies to mimic these types of gradients is an ongoing challenge. In particular, new fabrication techniques that enable precise spatial control over fiber alignment are needed to better mimic the structural gradients present in interfacial tissues, such as the tendon-bone interface. Here, we report a modular approach to spatially controlling fiber alignment using magnetically-assisted electrospinning. Electrospun fibers were highly aligned in the presence of a magnetic field and smoothly transitioned to randomly aligned fibers away from the magnetic field. Importantly, magnetically-assisted electrospinning allows for spatial control over fiber alignment at sub-millimeter resolution along the length of the fibrous scaffold similar to the native structural gradient present in many interfacial tissues. The versatility of this approach was further demonstrated using multiple electrospinning polymers and different magnet configurations to fabricate complex fiber alignment gradients. As expected, cells seeded onto gradient fibrous scaffolds were elongated and aligned on the aligned fibers and did not show a preferential alignment on the randomly aligned fibers. Overall, this fabrication approach represents an important step forward in creating gradient fibrous materials, where such materials are promising as tissue-engineered scaffolds for regenerating functional musculoskeletal interfacial tissues.
Collapse
Affiliation(s)
- Raymond Kevin Tindell
- Chemical Engineering, School of Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona, USA
| | - Lincoln P Busselle
- Chemical Engineering, School of Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona, USA
| | - Julianne L Holloway
- Chemical Engineering, School of Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
15
|
Shiroud Heidari B, Ruan R, Vahabli E, Chen P, De-Juan-Pardo EM, Zheng M, Doyle B. Natural, synthetic and commercially-available biopolymers used to regenerate tendons and ligaments. Bioact Mater 2023; 19:179-197. [PMID: 35510172 PMCID: PMC9034322 DOI: 10.1016/j.bioactmat.2022.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/15/2022] [Accepted: 04/04/2022] [Indexed: 12/26/2022] Open
Abstract
Tendon and ligament (TL) injuries affect millions of people annually. Biopolymers play a significant role in TL tissue repair, whether the treatment relies on tissue engineering strategies or using artificial tendon grafts. The biopolymer governs the mechanical properties, biocompatibility, degradation, and fabrication method of the TL scaffold. Many natural, synthetic and hybrid biopolymers have been studied in TL regeneration, often combined with therapeutic agents and minerals to engineer novel scaffold systems. However, most of the advanced biopolymers have not advanced to clinical use yet. Here, we aim to review recent biopolymers and discuss their features for TL tissue engineering. After introducing the properties of the native tissue, we discuss different types of natural, synthetic and hybrid biopolymers used in TL tissue engineering. Then, we review biopolymers used in commercial absorbable and non-absorbable TL grafts. Finally, we explain the challenges and future directions for the development of novel biopolymers in TL regenerative treatment.
Collapse
Affiliation(s)
- Behzad Shiroud Heidari
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, 6009, Australia
- School of Engineering, The University of Western Australia, Perth, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Rui Ruan
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
- Division of Surgery (Orthopaedics), Medical School, The University of Western Australia, Perth, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia
| | - Ebrahim Vahabli
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, 6009, Australia
- School of Engineering, The University of Western Australia, Perth, Australia
| | - Peilin Chen
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
- Division of Surgery (Orthopaedics), Medical School, The University of Western Australia, Perth, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia
| | - Elena M. De-Juan-Pardo
- School of Engineering, The University of Western Australia, Perth, Australia
- T3mPLATE, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, 6009, Australia
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Minghao Zheng
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
- Division of Surgery (Orthopaedics), Medical School, The University of Western Australia, Perth, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia
| | - Barry Doyle
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, 6009, Australia
- School of Engineering, The University of Western Australia, Perth, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
- BHF Centre for Cardiovascular Science, The University of Edinburgh, UK
| |
Collapse
|
16
|
Pitta Kruize C, Panahkhahi S, Putra NE, Diaz-Payno P, van Osch G, Zadpoor AA, Mirzaali MJ. Biomimetic Approaches for the Design and Fabrication of Bone-to-Soft Tissue Interfaces. ACS Biomater Sci Eng 2021. [PMID: 34784181 DOI: 10.1021/acsbiomaterials.1c00620] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bone-to-soft tissue interfaces are responsible for transferring loads between tissues with significantly dissimilar material properties. The examples of connective soft tissues are ligaments, tendons, and cartilages. Such natural tissue interfaces have unique microstructural properties and characteristics which avoid the abrupt transitions between two tissues and prevent formation of stress concentration at their connections. Here, we review some of the important characteristics of these natural interfaces. The native bone-to-soft tissue interfaces consist of several hierarchical levels which are formed in a highly specialized anisotropic fashion and are composed of different types of heterogeneously distributed cells. The characteristics of a natural interface can rely on two main design principles, namely by changing the local microarchitectural features (e.g., complex cell arrangements, and introducing interlocking mechanisms at the interfaces through various geometrical designs) and changing the local chemical compositions (e.g., a smooth and gradual transition in the level of mineralization). Implementing such design principles appears to be a promising approach that can be used in the design, reconstruction, and regeneration of engineered biomimetic tissue interfaces. Furthermore, prominent fabrication techniques such as additive manufacturing (AM) including 3D printing and electrospinning can be used to ease these implementation processes. Biomimetic interfaces have several biological applications, for example, to create synthetic scaffolds for osteochondral tissue repair.
Collapse
Affiliation(s)
- Carlos Pitta Kruize
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Sara Panahkhahi
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Niko Eka Putra
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Pedro Diaz-Payno
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Gerjo van Osch
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Mohammad J Mirzaali
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| |
Collapse
|
17
|
He S, Qin T. [Research progress of interfacial tissue engineering in rotator cuff repair]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:1341-1351. [PMID: 34651491 DOI: 10.7507/1002-1892.202104064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Objective To summarize the research progress of interfacial tissue engineering in rotator cuff repair. Methods The recent literature at home and abroad concerning interfacial tissue engineering in rotator cuff repair was analysed and summarized. Results Interfacial tissue engineering is to reconstruct complex and hierarchical interfacial tissues through a variety of methods to repair or regenerate damaged joints of different tissues. Interfacial tissue engineering in rotator cuff repair mainly includes seed cells, growth factors, biomaterials, oxygen concentration, and mechanical stimulation. Conclusion The best strategy for rotator cuff healing and regeneration requires not only the use of biomaterials with gradient changes, but also the combination of seed cells, growth factors, and specific culture conditions (such as oxygen concentration and mechanical stimulation). However, the clinical transformation of the relevant treatment is still a very slow process.
Collapse
Affiliation(s)
- Shukun He
- Laboratory of Stem Cells and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Tingwu Qin
- Laboratory of Stem Cells and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| |
Collapse
|
18
|
Jiang N, Mao M, Li X, Zhang W, He J, Li D. Advanced biofabrication strategies for biomimetic composite scaffolds to regenerate ligament‐bone interface. BIOSURFACE AND BIOTRIBOLOGY 2021. [DOI: 10.1049/bsb2.12021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Nan Jiang
- State Key Laboratory for Manufacturing Systems Engineering Xi’an Jiaotong University Xi’an Shaanxi China
- Department of Surgical Oncology Shaanxi Provincial People’s Hospital (Third Hospital of Medical College of Xi’an Jiaotong University) Xi’an Shaanxi China
| | - Mao Mao
- State Key Laboratory for Manufacturing Systems Engineering Xi’an Jiaotong University Xi’an Shaanxi China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices Xi’an Jiaotong University Xi’an Shaanxi China
| | - Xiao Li
- State Key Laboratory for Manufacturing Systems Engineering Xi’an Jiaotong University Xi’an Shaanxi China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices Xi’an Jiaotong University Xi’an Shaanxi China
| | - Weijie Zhang
- Department of Knee Joint Surgery Hong Hui Hospital Health Science Center Xi’an Jiaotong University Xi’an Shaanxi China
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering Xi’an Jiaotong University Xi’an Shaanxi China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices Xi’an Jiaotong University Xi’an Shaanxi China
| | - Dichen Li
- State Key Laboratory for Manufacturing Systems Engineering Xi’an Jiaotong University Xi’an Shaanxi China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices Xi’an Jiaotong University Xi’an Shaanxi China
| |
Collapse
|
19
|
He SK, Ning LJ, Yao X, Hu RN, Cui J, Zhang Y, Ding W, Luo JC, Qin TW. Hierarchically Demineralized Cortical Bone Combined With Stem Cell-Derived Extracellular Matrix for Regeneration of the Tendon-Bone Interface. Am J Sports Med 2021; 49:1323-1332. [PMID: 33667131 DOI: 10.1177/0363546521994511] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Poor healing of the tendon-bone interface after rotator cuff repair is one of the main causes of surgical failure. Previous studies demonstrated that demineralized cortical bone (DCB) could improve healing of the enthesis. PURPOSE To evaluate the outcomes of hierarchically demineralized cortical bone (hDCB) coated with stem cell-derived extracellular matrix (hDCB-ECM) in the repair of the rotator cuff in a rabbit model. STUDY DESIGN Controlled laboratory study. METHODS Tendon-derived stem cells (TDSCs) were isolated, cultured, and identified. Then, hDCB was prepared by the graded demineralization procedure. Finally, hDCB-ECM was fabricated via 2-week cell culture and decellularization, and the morphologic features and biochemical compositions of the hDCB-ECM were evaluated. A total of 24 rabbits (48 samples) were randomly divided into 4 groups: control, DCB, hDCB, and hDCB-ECM. All rabbits underwent bilateral detachment of the infraspinatus tendon, and the tendon-bone interface was repaired with or without scaffolds. After surgery, 8 rabbits were assessed by immunofluorescence staining at 2 weeks, and the others were assessed by micro-computed tomography (CT) examination, immunohistochemical staining, histological staining, and biomechanical testing at 12 weeks. RESULTS TDSCs were identified to have universal stem cell characteristics including cell markers, clonogenicity, and multilineage differentiation. The hDCB-ECM contained 3 components (bone, partial DCB, and DCB coated with ECM) with a gradient of calcium and phosphorus elements, and the ECM had stromal cell-derived factor 1, biglycan, and fibromodulin. Macroscopic observations demonstrated the absence of infection and rupture around the enthesis. The results of immunofluorescence staining showed that hDCB-ECM promoted stromal cell recruitment. Results of micro-CT analysis, immunohistochemical staining, and histological staining showed that hDCB-ECM enhanced bone and fibrocartilage formation at the tendon-bone interface. Biomechanical analysis showed that the hDCB-ECM group had higher ultimate tensile stress and Young modulus than the DCB group. CONCLUSION The administration of hDCB-ECM promoted healing of the tendon-bone interface. CLINICAL RELEVANCE hDCB-ECM could provide useful information for the design of scaffolds to repair the tendon-bone interface, and further studies are needed to determine its effectiveness.
Collapse
Affiliation(s)
- Shu-Kun He
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.,Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Liang-Ju Ning
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Xuan Yao
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.,Department of Clinical Hematology, Faculty of Laboratory Medicine, Army Medical University, Chongqing, China
| | - Ruo-Nan Hu
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Jing Cui
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yi Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Wei Ding
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Jing-Cong Luo
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Ting-Wu Qin
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| |
Collapse
|
20
|
Lei T, Zhang T, Ju W, Chen X, Heng BC, Shen W, Yin Z. Biomimetic strategies for tendon/ligament-to-bone interface regeneration. Bioact Mater 2021; 6:2491-2510. [PMID: 33665493 PMCID: PMC7889437 DOI: 10.1016/j.bioactmat.2021.01.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/04/2021] [Accepted: 01/20/2021] [Indexed: 12/19/2022] Open
Abstract
Tendon/ligament-to-bone healing poses a formidable clinical challenge due to the complex structure, composition, cell population and mechanics of the interface. With rapid advances in tissue engineering, a variety of strategies including advanced biomaterials, bioactive growth factors and multiple stem cell lineages have been developed to facilitate the healing of this tissue interface. Given the important role of structure-function relationship, the review begins with a brief description of enthesis structure and composition. Next, the biomimetic biomaterials including decellularized extracellular matrix scaffolds and synthetic-/natural-origin scaffolds are critically examined. Then, the key roles of the combination, concentration and location of various growth factors in biomimetic application are emphasized. After that, the various stem cell sources and culture systems are described. At last, we discuss unmet needs and existing challenges in the ideal strategies for tendon/ligament-to-bone regeneration and highlight emerging strategies in the field.
Collapse
Affiliation(s)
- Tingyun Lei
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Department of Orthopedic Surgery of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Tao Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Department of Orthopedic Surgery of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Wei Ju
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Department of Orthopedic Surgery of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiao Chen
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Department of Orthopedic Surgery of The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, China.,Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| | | | - Weiliang Shen
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Department of Orthopedic Surgery of The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, China.,Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| | - Zi Yin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Department of Orthopedic Surgery of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| |
Collapse
|
21
|
Pardo A, Gómez-Florit M, Barbosa S, Taboada P, Domingues RMA, Gomes ME. Magnetic Nanocomposite Hydrogels for Tissue Engineering: Design Concepts and Remote Actuation Strategies to Control Cell Fate. ACS NANO 2021; 15:175-209. [PMID: 33406360 DOI: 10.1021/acsnano.0c08253] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Most tissues of the human body are characterized by highly anisotropic physical properties and biological organization. Hydrogels have been proposed as scaffolding materials to construct artificial tissues due to their water-rich composition, biocompatibility, and tunable properties. However, unmodified hydrogels are typically composed of randomly oriented polymer networks, resulting in homogeneous structures with isotropic properties different from those observed in biological systems. Magnetic materials have been proposed as potential agents to provide hydrogels with the anisotropy required for their use on tissue engineering. Moreover, the intrinsic properties of magnetic nanoparticles enable their use as magnetomechanic remote actuators to control the behavior of the cells encapsulated within the hydrogels under the application of external magnetic fields. In this review, we combine a detailed summary of the main strategies to prepare magnetic nanoparticles showing controlled properties with an analysis of the different approaches available to their incorporation into hydrogels. The application of magnetically responsive nanocomposite hydrogels in the engineering of different tissues is also reviewed.
Collapse
Affiliation(s)
- Alberto Pardo
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco-Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Manuel Gómez-Florit
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco-Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Silvia Barbosa
- Colloids and Polymers Physics Group, Condensed Matter Physics Area, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Pablo Taboada
- Colloids and Polymers Physics Group, Condensed Matter Physics Area, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Rui M A Domingues
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco-Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Manuela E Gomes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco-Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| |
Collapse
|
22
|
Shiroud Heidari B, Ruan R, De-Juan-Pardo EM, Zheng M, Doyle B. Biofabrication and Signaling Strategies for Tendon/Ligament Interfacial Tissue Engineering. ACS Biomater Sci Eng 2021; 7:383-399. [PMID: 33492125 DOI: 10.1021/acsbiomaterials.0c00731] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tendons and ligaments (TL) have poor healing capability, and for serious injuries like tears or ruptures, surgical intervention employing autografts or allografts is usually required. Current tissue replacements are nonideal and can lead to future problems such as high retear rates, poor tissue integration, or heterotopic ossification. Alternatively, tissue engineering strategies are being pursued using biodegradable scaffolds. As tendons connect muscle and bone and ligaments attach bones, the interface of TL with other tissues represent complex structures, and this intricacy must be considered in tissue engineered approaches. In this paper, we review recent biofabrication and signaling strategies for biodegradable polymeric scaffolds for TL interfacial tissue engineering. First, we discuss biodegradable polymeric scaffolds based on the fabrication techniques as well as the target tissue application. Next, we consider the effect of signaling factors, including cell culture, growth factors, and biophysical stimulation. Then, we discuss human clinical studies on TL tissue healing using commercial synthetic scaffolds that have occurred over the past decade. Finally, we highlight the challenges and future directions for biodegradable scaffolds in the field of TL and interface tissue engineering.
Collapse
Affiliation(s)
- Behzad Shiroud Heidari
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia.,School of Engineering, The University of Western Australia, Perth, Western Australia 6009, Australia.,Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Rui Ruan
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Elena M De-Juan-Pardo
- School of Engineering, The University of Western Australia, Perth, Western Australia 6009, Australia.,T3mPLATE, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia.,Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| | - Minghao Zheng
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, Western Australia 6009, Australia
| | - Barry Doyle
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia.,School of Engineering, The University of Western Australia, Perth, Western Australia 6009, Australia.,Australian Research Council Centre for Personalised Therapeutics Technologies, Australia.,BHF Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
| |
Collapse
|
23
|
Zhang L, Fu L, Zhang X, Chen L, Cai Q, Yang X. Hierarchical and heterogeneous hydrogel system as a promising strategy for diversified interfacial tissue regeneration. Biomater Sci 2021; 9:1547-1573. [DOI: 10.1039/d0bm01595d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A state-of-the-art review on the design and preparation of hierarchical and heterogeneous hydrogel systems for interfacial tissue regeneration.
Collapse
Affiliation(s)
- Liwen Zhang
- State Key Laboratory of Organic–Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology
- Beijing 100029
- P.R. China
| | - Lei Fu
- State Key Laboratory of Organic–Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology
- Beijing 100029
- P.R. China
| | - Xin Zhang
- Institute of Sports Medicine
- Beijing Key Laboratory of Sports Injuries
- Peking University Third Hospital
- Beijing 100191
- P. R. China
| | - Linxin Chen
- Peking University Third Hospital
- Beijing 100191
- P. R. China
| | - Qing Cai
- State Key Laboratory of Organic–Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology
- Beijing 100029
- P.R. China
| | - Xiaoping Yang
- State Key Laboratory of Organic–Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology
- Beijing 100029
- P.R. China
| |
Collapse
|
24
|
Chae S, Sun Y, Choi YJ, Ha DH, Jeon IH, Cho DW. 3D cell-printing of tendon-bone interface using tissue-derived extracellular matrix bioinks for chronic rotator cuff repair. Biofabrication 2020; 13. [PMID: 33285539 DOI: 10.1088/1758-5090/abd159] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/07/2020] [Indexed: 01/01/2023]
Abstract
The tendon-bone interface (TBI) in rotator cuffs exhibits a structural and compositional gradient integrated through the fibrocartilaginous transition. Owing to restricted healing capacity, functional regeneration of the TBI is considered a great clinical challenge. Here, we establish a novel therapeutic platform based on 3D cell-printing and tissue-specific bioinks to achieve spatially-graded physiology for functional TBI regeneration. The 3D cell-printed TBI patch constructs are created via a spatial arrangement of cell-laden tendon and bone-specific bioinks in a graded manner, approximating a multi-tissue fibrocartilaginous interface. This TBI patch offers a cell favorable microenvironment, including high cell viability, proliferative capacity, and zonal-specific differentiation of encapsulated stem cells for TBI formation in vitro. Furthermore, in vivo application of spatially-graded TBI patches with stem cells demonstrates their regenerative potential, indicating that repair with 3D cell-printed TBI patch significantly accelerates and promotes TBI healing in a rat chronic tear model. Therefore, our findings propose a new therapeutic strategy for functional TBI regeneration using 3D cell-printing and tissue-specific decellularized extracellular matrix (dECM) bioink-based approach.
Collapse
Affiliation(s)
- Suhun Chae
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongsangbuk-do, 37673, Korea (the Republic of)
| | - Yucheng Sun
- Department of Hand Surgery, Affiliated Hospital of Nantong University, College of Medicine, Nantong University, No 20, West Temple Road, Nantong, 226000, CHINA
| | - Yeong-Jin Choi
- Department of Advanced Biomaterials Research, Korea Institute of Materials Science, 797, Changwon-daero, Seongsan-gu, Gyeongsangnam-do, Changwon, 51508, Korea (the Republic of)
| | - Dong-Heon Ha
- EDmicBio Inc., 117-3, Hoegi-ro, Dongdaemun-gu, Seoul, 02445, Korea (the Republic of)
| | - In-Ho Jeon
- Orthopaedic Surgery, University of Ulsan, Asan Medical Center, 88, OLYMPIC-RO 43-GIL, SONGPA-GU, Seoul, 05505, Korea (the Republic of)
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongsangbuk-do, 37673, Korea (the Republic of)
| |
Collapse
|
25
|
Lowen JM, Leach JK. Functionally graded biomaterials for use as model systems and replacement tissues. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1909089. [PMID: 33456431 PMCID: PMC7810245 DOI: 10.1002/adfm.201909089] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Indexed: 05/03/2023]
Abstract
The heterogeneity of native tissues requires complex materials to provide suitable substitutes for model systems and replacement tissues. Functionally graded materials have the potential to address this challenge by mimicking the gradients in heterogeneous tissues such as porosity, mineralization, and fiber alignment to influence strength, ductility, and cell signaling. Advancements in microfluidics, electrospinning, and 3D printing enable the creation of increasingly complex gradient materials that further our understanding of physiological gradients. The combination of these methods enables rapid prototyping of constructs with high spatial resolution. However, successful translation of these gradients requires both spatial and temporal presentation of cues to model the complexity of native tissues that few materials have demonstrated. This review highlights recent strategies to engineer functionally graded materials for the modeling and repair of heterogeneous tissues, together with a description of how cells interact with various gradients.
Collapse
Affiliation(s)
- Jeremy M. Lowen
- Department of Biomedical Engineering, University of California, Davis, CA, 95616
| | - J. Kent Leach
- Department of Biomedical Engineering, University of California, Davis, CA, 95616
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817
| |
Collapse
|
26
|
Regeneration of the rotator cuff tendon-to-bone interface using umbilical cord-derived mesenchymal stem cells and gradient extracellular matrix scaffolds from adipose tissue in a rat model. Acta Biomater 2020; 114:104-116. [PMID: 32682057 DOI: 10.1016/j.actbio.2020.07.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022]
Abstract
Regeneration of the gradient structure of the tendon-to-bone interface (TBI) is a crucial goal after rotator cuff repair. The purpose of this study was to investigate the efficacy of a biomimetic hydroxyapatite-gradient scaffold (HA-G scaffold) isolated from adipose tissue (AD) with umbilical cord derived mesenchymal stem cells (UC MSCs) on the regeneration of the structure of the TBI by analyzing the histological and biomechanical changes in a rat repair model. As a result, the HA-G scaffold had progressively increased numbers of hydroxyapatite (HA) particles from the tendon to the bone phase. After seeding UC MSCs to the scaffold, specific matrices, such as collagen, glycoaminoglycan, and calcium, were synthesized with respect to the HA density. In a rat repair model, compared to the repair group, the UC MSCs seeded HA-G scaffold group had improved collagen organization and cartilage formation by 52% at 8 weeks and 262.96% at 4 weeks respectively. Moreover, ultimate failure load also increased by 30.71% at 4 weeks in the UC MSCs seeded HA-G scaffold group compared to the repair group. Especially, the improved values were comparable to values in normal tissue. This study demonstrated that HA-G scaffold isolated from AD induced UC MSCs to form tendon, cartilage and bone matrices similar to the TBI structure according to the HA density. Furthermore, UC MSC-seeded HA-G scaffold regenerated the TBI of the rotator cuff in a rat repair model in terms of histological and biomechanical properties similar to the normal TBI. Statement of Significance We found specific extracellular matrix (ECM) formation in the biomimetic-hydroxyapatite-gradient-scaffold (HA-G-scaffold) in vitro as well as improved histological and biomechanical results of repaired rotator cuff after the scaffold implantation in a rat model. This study has four strengths; An ECM scaffold derived from human adipose tissue; only one-layer used for a gradient scaffold not a multilayer used to mimic the unique structure of the gradient tendon-to-bone-interface (TBI) of the rotator cuff; UC-MSCs as a new cell source for TBI regeneration; and the UC-MSCs synthesized specific matrices with respect to the HA density without any other stimuli. This study suggested that the UC-MSC seeded HA-G-scaffold could be used as a promising strategy for the regeneration of rotator cuff tears.
Collapse
|
27
|
Chen P, Li L, Dong L, Wang S, Huang Z, Qian Y, Wang C, Liu W, Yang L. Gradient Biomineralized Silk Fibroin Nanofibrous Scaffold with Osteochondral Inductivity for Integration of Tendon to Bone. ACS Biomater Sci Eng 2020; 7:841-851. [PMID: 33715375 DOI: 10.1021/acsbiomaterials.9b01683] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Enthesis injury repair remains a huge challenge because of the unique biomolecular composition, microstructure, and mechanics in the interfacial region. Surgical reconstruction often creates new bone-scaffold interfaces with mismatched properties, resulting in poor osseointegration. To mimic the natural interface tissue structures and properties, we fabricated a nanofibrous scaffold with gradient mineral coating based on 10 × simulated body fluid (SBF) and silk fibroin (SF). We then characterized the physicochemical properties of the scaffold and evaluated its biological functions both in vitro and in vivo. The results showed that different areas of SF nanofibrous scaffold had varying levels of mineralization with disparate mechanical properties and had different effects on bone marrow mesenchymal stem cell growth and differentiation. Furthermore, the gradient scaffolds exhibited an enhancement of integration in the tendon-to-bone interface with a higher ultimate load and more fibrocartilage-like tissue formation. These findings demonstrate that the silk-based nanofibrous scaffold with gradient mineral coating can regulate the formation of interfacial tissue and has the potential to be applied in interface tissue engineering.
Collapse
Affiliation(s)
- Peixing Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| | - Linhao Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P. R. China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, P. R. China
| | - Lili Dong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| | - Sixiang Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| | - Zhi Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| | - Yuna Qian
- Wenzhou Institute of Biomaterials & Engineering, University of Chinese Academy of Sciences, Wenzhou 325001, P. R. China
| | - Chunli Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| | - Wanqian Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, P. R. China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, P. R. China
| |
Collapse
|
28
|
Wei B, Wang C, Yan C, Tang B, Yu X, Zhang H, Tang L, Wang Q. Osteoprotegerin/bone morphogenetic protein 2 combining with collagen sponges on tendon-bone healing in rabbits. J Bone Miner Metab 2020; 38:432-441. [PMID: 31980897 DOI: 10.1007/s00774-019-01078-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 12/17/2019] [Indexed: 11/26/2022]
Abstract
INTRODUCTION The aim was to investigate the effect of collagen sponges (CS) as a delivery device for osteoprotegerin (OPG)/bone morphogenetic protein 2 (BMP-2) and support matrix on the tendon-bone healing after anterior crusicate ligament (ACL) reconstruction in modeled rabbits. MATERIALS AND METHODS Sixty New Zealand white rabbits were randomly divided into four groups based on treatments they received at the tendon-bone interface after left knee ACL reconstruction: the control group, OPG/BMP-2, CS, and OPG/BMP-2/CS combination. At 4, 8 and 12 weeks post-surgery, five rabbits from each group were euthanized to examine the tendon-bone healing. Levels of OPG and BMP-2 in synovial fluid, the bone tunnel enlargement value, the histomorphological typing of tendon-bone interface, and the bone tunnel area of the tendon-bone interface were compared among different treatments. RESULTS The OPG/BMP-2/CS combination treatment group had the highest levels of OPG and BMP-2 in synovial fluid (both P < 0.05), the greatest number of Sharpey-like collagen fibers at all test points (P < 0.05), the most fibrocartilage enthesis on week 12, the greatest bone tunnel area (P < 0.05), and the greatest decrease in bone tunnel enlargement on week 12 (P < 0.05). Histomorphological typing of tendon-bone interface of all groups showed changes varying from tendon-bone separation to firm healing, and the change was most significant in the OPG/BMP-2/CS combination treatment group. CONCLUSION CS treatment alone serves as a fixing support, and CS combining with growth factors OPG/BMP-2 ensures slow and stable release of OPG/BMP-2, significantly improves the tendon-bone healing in the rabbit ACL model.
Collapse
Affiliation(s)
- Bing Wei
- Department of Orthopedics, The First People's Hospital of Yongkang, Jinhua, 321300, People's Republic of China
| | - Chao Wang
- Department of Orthopedics, The First People's Hospital of Yongkang, Jinhua, 321300, People's Republic of China
| | - Cheng Yan
- Department of Orthopedics, The First People's Hospital of Yongkang, Jinhua, 321300, People's Republic of China
| | - Bushun Tang
- Department of Orthopedics, The First People's Hospital of Yongkang, Jinhua, 321300, People's Republic of China
| | - Xiaofei Yu
- Department of Pathology, The First People's Hospital of Yongkang, Jinhua, 321300, People's Republic of China
| | - Hui Zhang
- Department of General Diseases, The First People's Hospital of Yongkang, Jinhua, 321300, People's Republic of China
| | - Lixia Tang
- Department of General Diseases, The First People's Hospital of Yongkang, Jinhua, 321300, People's Republic of China.
| | - Qing Wang
- Department of Orthopedics, The First People's Hospital of Yongkang, Jinhua, 321300, People's Republic of China.
| |
Collapse
|
29
|
Cong S, Sun Y, Lin J, Liu S, Chen J. A Synthetic Graft With Multilayered Co-Electrospinning Nanoscaffolds for Bridging Massive Rotator Cuff Tear in a Rat Model. Am J Sports Med 2020; 48:1826-1836. [PMID: 32453629 DOI: 10.1177/0363546520917684] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Graft bridging is used in massive rotator cuff tear (MRCT); however, the integration of graft-tendon and graft-bone is still a challenge. HYPOTHESIS A co-electrospinning nanoscaffold of polycaprolactone (PCL) with an "enthesis-mimicking" (EM) structure could bridge MRCT, facilitate tendon regeneration, and improve graft-bone healing. STUDY DESIGN Controlled laboratory study. METHODS First, we analyzed the cytocompatibility of the electrospinning nanoscaffolds, including aligned PCL (aPCL), nonaligned PCL (nPCL), aPCL-collagen I, nPCL-collagen II, and nPCL-nanohydroxyapatite (nHA). Second, for the EM condition, nPCL-collagen II and nPCL-nHA were electrospun layer by layer at one end of the aPCL-collagen I; for the control condition, the nPCL was electrospun on the aPCL. In 40 mature male rats, resection of both the supraspinatus and infraspinatus tendons was performed to create MRCT, and the animals were divided randomly into EM and control groups. In both groups, one end of the layered structure was fixed on the footprint of the rotator cuff, whereas the other end of the layered structure was sutured with the tendon stump. The animals were euthanized for harvesting of tissues for histologic and biomechanical analysis at 4 weeks or 8 weeks postoperatively. RESULTS All scaffolds showed good cytocompatibility in vitro. The graft-tendon tissue in the EM group had more regularly arranged cells, denser tissue, a significantly higher tendon maturing score, and more birefringence compared with the control group at 8 weeks after operation. Newly formed fibrocartilage could be observed at the graft-bone interface in both groups by 8 weeks, but the EM group had a higher graft-bone healing score and significantly more newly formed fibrocartilage than the control group. An enthesis-like structure with transitional layers was observed in the EM group at 8 weeks. Biomechanically, the values for maximum failure load and stiffness of the tendon-graft-bone complex were significantly higher in the EM group than in the control group at 8 weeks. CONCLUSION The co-electrospinning nanoscaffold of aPCL-collagen I could be used as a bridging graft to improve early graft-tendon healing for MRCT in a rat model and enhance early enthesis reconstruction in combination with a multilayered structure of nPCL-collagen II and nPCL-nHA. CLINICAL RELEVANCE We constructed a graft to bridge MRCT, enhance graft-tendon healing and graft-bone healing, and reconstruct the enthesis structure.
Collapse
Affiliation(s)
- Shuang Cong
- Department of Sports Medicine, Huashan Hospital, Shanghai, China
| | - Yaying Sun
- Department of Sports Medicine, Huashan Hospital, Shanghai, China
| | - Jinrong Lin
- Department of Sports Medicine, Huashan Hospital, Shanghai, China
| | - Shaohua Liu
- Department of Sports Medicine, Huashan Hospital, Shanghai, China
| | - Jiwu Chen
- Department of Sports Medicine, Huashan Hospital, Shanghai, China
| |
Collapse
|
30
|
Alsaykhan H, Paxton JZ. Investigating materials and orientation parameters for the creation of a 3D musculoskeletal interface co-culture model. Regen Biomater 2020; 7:413-425. [PMID: 32793386 PMCID: PMC7415002 DOI: 10.1093/rb/rbaa018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/11/2020] [Accepted: 03/29/2020] [Indexed: 12/15/2022] Open
Abstract
Musculoskeletal tissue interfaces are a common site of injury in the young, active populations. In particular, the interface between the musculoskeletal tissues of tendon and bone is often injured and to date, no single treatment has been able to restore the form and function of damaged tissue at the bone–tendon interface. Tissue engineering and regeneration hold great promise for the manufacture of bespoke in vitro models or implants to be used to advance repair and so this study investigated the material, orientation and culture choices for manufacturing a reproducible 3D model of a musculoskeletal interface between tendon and bone cell populations. Such models are essential for future studies focussing on the regeneration of musculoskeletal interfaces in vitro. Cell-encapsulated fibrin hydrogels, arranged in a horizontal orientation though a simple moulding procedure, were shown to best support cellular growth and migration of cells to form an in vitro tendon–bone interface. This study highlights the importance of acknowledging the material and technical challenges in establishing co-cultures and suggests a reproducible methodology to form 3D co-cultures between tendon and bone, or other musculoskeletal cell types, in vitro.
Collapse
Affiliation(s)
- Hamad Alsaykhan
- Anatomy@Edinburgh, Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, UK.,Department of Basic Medical Sciences, College of Medicine and Health Sciences, Qassim University, PO Box 991, 51911 Unaizah Campus, Al-Qassim 51911, Saudi Arabia
| | - Jennifer Z Paxton
- Anatomy@Edinburgh, Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, UK
| |
Collapse
|
31
|
Reifenrath J, Wellmann M, Kempfert M, Angrisani N, Welke B, Gniesmer S, Kampmann A, Menzel H, Willbold E. TGF-β3 Loaded Electrospun Polycaprolacton Fibre Scaffolds for Rotator Cuff Tear Repair: An in Vivo Study in Rats. Int J Mol Sci 2020; 21:E1046. [PMID: 32033294 PMCID: PMC7036781 DOI: 10.3390/ijms21031046] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/27/2020] [Accepted: 02/04/2020] [Indexed: 12/21/2022] Open
Abstract
Biological factors such as TGF-β3 are possible supporters of the healing process in chronic rotator cuff tears. In the present study, electrospun chitosan coated polycaprolacton (CS-g-PCL) fibre scaffolds were loaded with TGF-β3 and their effect on tendon healing was compared biomechanically and histologically to unloaded fibre scaffolds in a chronic tendon defect rat model. The biomechanical analysis revealed that tendon-bone constructs with unloaded scaffolds had significantly lower values for maximum force compared to native tendons. Tendon-bone constructs with TGF-β3-loaded fibre scaffolds showed only slightly lower values. In histological evaluation minor differences could be observed. Both groups showed advanced fibre scaffold degradation driven partly by foreign body giant cell accumulation and high cellular numbers in the reconstructed area. Normal levels of neutrophils indicate that present mast cells mediated rather phagocytosis than inflammation. Fibrosis as sign of foreign body encapsulation and scar formation was only minorly present. In conclusion, TGF-β3-loading of electrospun PCL fibre scaffolds resulted in more robust constructs without causing significant advantages on a cellular level. A deeper investigation with special focus on macrophages and foreign body giant cells interactions is one of the major foci in further investigations.
Collapse
Affiliation(s)
- Janin Reifenrath
- Department of Orthopaedic Surgery, Hannover Medical School, Anna–von–Borries Str. 1–3, 30625 Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany
| | - Mathias Wellmann
- Department of Orthopaedic Surgery, Hannover Medical School, Anna–von–Borries Str. 1–3, 30625 Hannover, Germany
| | - Merle Kempfert
- Department of Orthopaedic Surgery, Hannover Medical School, Anna–von–Borries Str. 1–3, 30625 Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany
| | - Nina Angrisani
- Department of Orthopaedic Surgery, Hannover Medical School, Anna–von–Borries Str. 1–3, 30625 Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany
| | - Bastian Welke
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School, Haubergstraße 3, 30625 Hannover, Germany
| | - Sarah Gniesmer
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany
- Clinic for Cranio–Maxillo–Facial Surgery, Hannover Medical School, Carl–Neuberg–Straße 1, 30625 Hannover, Germany
| | - Andreas Kampmann
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany
- Clinic for Cranio–Maxillo–Facial Surgery, Hannover Medical School, Carl–Neuberg–Straße 1, 30625 Hannover, Germany
| | - Henning Menzel
- Institute for Technical Chemistry, Braunschweig University of Technology, Hagenring 30, 38106 Braunschweig, Germany
| | - Elmar Willbold
- Department of Orthopaedic Surgery, Hannover Medical School, Anna–von–Borries Str. 1–3, 30625 Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany
| |
Collapse
|
32
|
Calejo I, Costa-Almeida R, Reis RL, Gomes ME. A Physiology-Inspired Multifactorial Toolbox in Soft-to-Hard Musculoskeletal Interface Tissue Engineering. Trends Biotechnol 2020; 38:83-98. [DOI: 10.1016/j.tibtech.2019.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/20/2022]
|
33
|
Navarro J, Swayambunathan J, Janes ME, Santoro M, Mikos AG, Fisher JP. Dual-chambered membrane bioreactor for coculture of stratified cell populations. Biotechnol Bioeng 2019; 116:3253-3268. [PMID: 31502660 DOI: 10.1002/bit.27164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 12/13/2022]
Abstract
We have developed a dual-chambered bioreactor (DCB) that incorporates a membrane to study stratified 3D cell populations for skin tissue engineering. The DCB provides adjacent flow lines within a common chamber; the inclusion of the membrane regulates flow layering or mixing, which can be exploited to produce layers or gradients of cell populations in the scaffolds. Computational modeling and experimental assays were used to study the transport phenomena within the bioreactor. Molecular transport across the membrane was defined by a balance of convection and diffusion; the symmetry of the system was proven by its bulk convection stability, while the movement of molecules from one flow line to the other is governed by coupled convection-diffusion. This balance allowed the perfusion of two different fluids, with the membrane defining the mixing degree between the two. The bioreactor sustained two adjacent cell populations for 28 days, and was used to induce indirect adipogenic differentiation of mesenchymal stem cells due to molecular cross-talk between the populations. We successfully developed a platform that can study the dermis-hypodermis complex to address limitations in skin tissue engineering. Furthermore, the DCB can be used for other multilayered tissues or the study of communication pathways between cell populations.
Collapse
Affiliation(s)
- Javier Navarro
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland.,Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
| | - Jay Swayambunathan
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland.,Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
| | - Morgan Elizabeth Janes
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland.,Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
| | - Marco Santoro
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland.,Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
| | - Antonios G Mikos
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland.,Department of Bioengineering, Rice University, Houston, Texas
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland.,Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
| |
Collapse
|
34
|
Calejo I, Costa-Almeida R, Reis RL, Gomes ME. Enthesis Tissue Engineering: Biological Requirements Meet at the Interface. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:330-356. [DOI: 10.1089/ten.teb.2018.0383] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Isabel Calejo
- 3B's Research Group, I3Bs—Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Raquel Costa-Almeida
- 3B's Research Group, I3Bs—Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group, I3Bs—Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Center for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - Manuela E. Gomes
- 3B's Research Group, I3Bs—Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Center for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| |
Collapse
|
35
|
Sardelli L, Pacheco DP, Zorzetto L, Rinoldi C, Święszkowski W, Petrini P. Engineering biological gradients. J Appl Biomater Funct Mater 2019; 17:2280800019829023. [PMID: 30803308 DOI: 10.1177/2280800019829023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Biological gradients profoundly influence many cellular activities, such as adhesion, migration, and differentiation, which are the key to biological processes, such as inflammation, remodeling, and tissue regeneration. Thus, engineered structures containing bioinspired gradients can not only support a better understanding of these phenomena, but also guide and improve the current limits of regenerative medicine. In this review, we outline the challenges behind the engineering of devices containing chemical-physical and biomolecular gradients, classifying them according to gradient-making methods and the finalities of the systems. Different manufacturing processes can generate gradients in either in-vitro systems or scaffolds, which are suitable tools for the study of cellular behavior and for regenerative medicine; within these, rapid prototyping techniques may have a huge impact on the controlled production of gradients. The parallel need to develop characterization techniques is addressed, underlining advantages and weaknesses in the analysis of both chemical and physical gradients.
Collapse
Affiliation(s)
- L Sardelli
- 1 Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - D P Pacheco
- 1 Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - L Zorzetto
- 2 Department of Aerospace and Mechanical Engineering, University of Liège, Liège, Belgium
| | - C Rinoldi
- 3 Faculty of Materials Science and Engineering, Warsaw University of Technology, Poland
| | - W Święszkowski
- 3 Faculty of Materials Science and Engineering, Warsaw University of Technology, Poland
| | - P Petrini
- 1 Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| |
Collapse
|
36
|
Chen X, Jones IA, Park C, Vangsness CT. The Efficacy of Platelet-Rich Plasma on Tendon and Ligament Healing: A Systematic Review and Meta-analysis With Bias Assessment. Am J Sports Med 2018; 46:2020-2032. [PMID: 29268037 PMCID: PMC6339617 DOI: 10.1177/0363546517743746] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND There has been a surge in high-level studies investigating platelet-rich plasma (PRP) for tendon and ligament injuries. A number of meta-analyses have been published, but few studies have focused exclusively on tendon and ligament injuries. PURPOSE To perform a meta-analysis assessing the ability of PRP to reduce pain in patients with tendon and ligament injuries. STUDY DESIGN Systematic review and meta-analysis. METHODS This study followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. A comprehensive search of the literature was carried out in April 2017 using electronic databases PubMed, MEDLINE, and the Cochrane Library. Only level 1 studies were included. Platelet and leukocyte count, injection volume, kit used, participant age/sex, comparator, and activating agent used were recorded. The short-term and long-term efficacy of PRP was assessed using the visual analog scale (VAS) to measure pain intensity. Injury subgroups (rotator cuff, tendinopathy, anterior cruciate ligament, and lateral epicondylitis) were evaluated. Funnel plots and the Egger test were used to screen for publication bias, and sensitivity analysis was performed to evaluate the effect of potential outliers by removing studies one at a time. RESULTS Thirty-seven articles were included in this review, 21 (1031 participants) of which could be included in the quantitative analysis. The majority of studies published investigated rotator cuff injuries (38.1%) or lateral epicondylitis (38.1%). Seventeen studies (844 participants) reported short-term VAS data, and 14 studies (771 participants) reported long-term VAS data. Overall, long-term follow-up results showed significantly less pain in the PRP group compared with the control group (weighted mean difference [WMD], -0.84; 95% CI, -1.23 to -0.44; P < .01). Patients treated with PRP for rotator cuff injuries (WMD, -0.53; 95% CI, -0.98 to -0.09; P = .02) and lateral epicondylitis (WMD, -1.39; 95% CI, -2.49 to -0.29; P = .01) reported significantly less pain in the long term. Substantial heterogeneity was reported at baseline ( I2 = 72.0%; P < .01), short-term follow-up ( I2 = 72.5%; P < .01), long-term follow-up ( I2 = 76.1%; P < .01), and overall ( I2 = 75.8%; P < .01). The funnel plot appeared to be asymmetric, with some missingness at the lower right portion of the plot suggesting possible publication bias. CONCLUSION This review shows that PRP may reduce pain associated with lateral epicondylitis and rotator cuff injuries.
Collapse
Affiliation(s)
- X Chen
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - IA Jones
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - C Park
- Southern California Clinical and Translational Science Institute, Los Angeles, California, USA
| | - CT Vangsness
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
37
|
Cai J, Wang J, Ye K, Li D, Ai C, Sheng D, Jin W, Liu X, Zhi Y, Jiang J, Chen J, Mo X, Chen S. Dual-layer aligned-random nanofibrous scaffolds for improving gradient microstructure of tendon-to-bone healing in a rabbit extra-articular model. Int J Nanomedicine 2018; 13:3481-3492. [PMID: 29950830 PMCID: PMC6014388 DOI: 10.2147/ijn.s165633] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Tendon/ligament injuries are common sports injuries. Clinically, the repair of a ruptured tendon or ligament to its bony insertion is needed, but the enthesis structure is not well reestablished following surgical repair. Herein, we fabricated dual-layer aligned-random scaffold (ARS) by electrospinning and aimed to investigate the effect of the scaffold on tendon-to-bone healing in vivo. MATERIALS AND METHODS The random and dual-layer aligned-random silk fbroin poly(L-lactic acid-co-e-caprolactone) (P(LLA-CL)) nanofibrous scaffolds were successfully fabricated by electrospinning methods. Ninety New Zealand white rabbits were randomly divided into three groups (random scaffold [RS], ARS, and control groups), and they were subjected to surgery to establish an extra-articular tendon-to-bone healing model with autologous Achilles tendon. RESULTS Histological assessment showed that the ARS significantly increased the area of metachromasia, decreased the interface width, and improved collagen maturation and organization at the tendon-bone interface compared with the RS and control groups. Microcomputed tomography analysis showed that the bone tunnel area of RS and ARS groups was significantly smaller than those of the control group. Real-time polymerase chain reaction showed that BMP-2 and osteopontin expression levels of the tissue at the interface between the bone and graft in the RS and ARS groups were higher than those of the control group at 6 weeks. Collagen I expression level of the ARS group was significantly higher than those of the RS and control groups at 6 and 12 weeks. Moreover, the ARS groups had a better ultimate load-to-failure and stiffness than the RS and control groups. CONCLUSION ARS could effectively augment the tendon-to-bone integration and improve gradient microstructure in a rabbit extra-articular model by inducing the new bone formation, increasing the area of fibrocartilage, and improving collagen organization and maturation. The dual-layer aligned-random silk fibroin/P(LLA-CL) nanofibrous scaffold is proved to be a promising biomaterial for tendon-to-bone healing.
Collapse
Affiliation(s)
- Jiangyu Cai
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Juan Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Kaiqiang Ye
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Dandan Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Chengchong Ai
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Dandan Sheng
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wenhe Jin
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xingwang Liu
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yunlong Zhi
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jia Jiang
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jun Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Shanghai BJ-KMC Medical Technology Co., Ltd, Shanghai 201707, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
38
|
Petri M, Lu P, Omar M, Ettinger M, Krettek C, Neunaber C, Jagodzinski M. In vivo heterotopic culturing of prefabricated tendon grafts with mechanical stimulation in a sheep model. Knee 2018; 25:381-391. [PMID: 29655901 DOI: 10.1016/j.knee.2018.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 01/21/2018] [Accepted: 02/19/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND The goal of this study is to investigate the biomechanical and histological properties of in vivo heterotopically prefabricated cruciate ligament replacement grafts with and without mechanical stimulation. The clinical goal is to heterotopically prefabricate a bone-tendon-bone graft for anterior cruciate ligament reconstruction, which allows rapid ingrowth and early full weight bearing. METHODS In a sheep model, eight quadriceps tendon grafts were harvested and introduced into culture chambers at their proximal and distal ends. In group S, four tendon-chamber constructs were mechanically stimulated by direct attachment to the quadriceps tendon and patella. In group NS, the same constructs were cultured without proximal attachment. All sheep were sacrificed six weeks postoperatively and the constructs were examined biomechanically and histologically. The healthy contralateral ACL and quadriceps tendon were used as controls. RESULTS Macroscopically, no obvious ossification could be observed at the ends of the tendon-chamber constructs six weeks postoperatively. Histologically, the tendon tissue from the mechanically stimulated constructs revealed higher counts of cells and capillaries. However, there was less regular cell distribution and collagen fiber orientation compared to the control group. In addition, osteoblasts and osteogenesis were observed in the prefabricated constructs both with and without mechanical stimulation. Biomechanically, there were no significant differences in stiffness, elongation and ultimate failure load between the groups. CONCLUSION In vivo heterotopic culture of prefabricated tendon grafts may have the potential to stimulate osteoblasts and induce osteogenesis. Future studies with longer follow-up and modifications of the surgical technique and culture conditions are desirable.
Collapse
Affiliation(s)
- M Petri
- Trauma Department, Hannover Medical School (MHH), D-30625 Hannover, Germany.
| | - P Lu
- Trauma Department, Hannover Medical School (MHH), D-30625 Hannover, Germany
| | - M Omar
- Trauma Department, Hannover Medical School (MHH), D-30625 Hannover, Germany
| | - M Ettinger
- Department of Orthopedic Surgery, Hannover Medical School (MHH), Hannover, Germany
| | - C Krettek
- Trauma Department, Hannover Medical School (MHH), D-30625 Hannover, Germany
| | - C Neunaber
- Trauma Department, Hannover Medical School (MHH), D-30625 Hannover, Germany
| | - M Jagodzinski
- Department of Orthopedic Trauma, Agaplesion Ev. Hospital Bethel, Bückeburg, Germany
| |
Collapse
|
39
|
Pan P, Chen X, Metavarayuth K, Su J, Wang Q. Self-assembled supramolecular systems for bone engineering applications. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2018.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
40
|
Lin J, Zhou W, Han S, Bunpetch V, Zhao K, Liu C, Yin Z, Ouyang H. Cell-material interactions in tendon tissue engineering. Acta Biomater 2018; 70:1-11. [PMID: 29355716 DOI: 10.1016/j.actbio.2018.01.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 12/11/2017] [Accepted: 01/10/2018] [Indexed: 12/19/2022]
Abstract
The interplay between cells and materials is a fundamental topic in biomaterial-based tissue regeneration. One of the principles for biomaterial development in tendon regeneration is to stimulate tenogenic differentiation of stem cells. To this end, efforts have been made to optimize the physicochemical and bio-mechanical properties of biomaterials for tendon tissue engineering. However, recent progress indicated that innate immune cells, especially macrophages, can also respond to the material cues and undergo phenotypical changes, which will either facilitate or hinder tissue regeneration. This process has been, to some extent, neglected by traditional strategies and may partially explain the unsatisfactory outcomes of previous studies; thus, more researchers have turned their focus on developing and designing immunoregenerative biomaterials to enhance tendon regeneration. In this review, we will first summarize the effects of material cues on tenogenic differentiation and paracrine secretion of stem cells. A brief introduction will also be made on how material cues can be manipulated for the regeneration of tendon-to-bone interface. Then, we will discuss the characteristics and influences of macrophages on the repair process of tendon healing and how they respond to different materials cues. These principles may benefit the development of novel biomaterials provided with combinative bioactive cues to activate tenogenic differentiation of stem cells and pro-resolving macrophage phenotype. STATEMENT OF SIGNIFICANCE The progress achieved with the rapid development of biomaterial-based strategies for tendon regeneration has not yielded broad benefits to clinical patients. In addition to the interplay between stem cells and biomaterials, the innate immune response to biomaterials also plays a determinant role in tissue regeneration. Here, we propose that fine-tuning of stem cell behaviors and alternative activation of macrophages through material cues may lead to effective tendon/ligament regeneration. We first review the characteristics of key material cues that have been manipulated to promote tenogenic differentiation and paracrine secretion of stem cells in tendon regeneration. Then, we discuss the potentiality of corresponding material cues in activating macrophages toward a pro-resolving phenotype to promote tissue repair.
Collapse
Affiliation(s)
- Junxin Lin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Zhejiang University, China
| | - Wenyan Zhou
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Zhejiang University, China
| | - Shan Han
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Zhejiang University, China
| | - Varitsara Bunpetch
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Zhejiang University, China
| | - Kun Zhao
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Zhejiang University, China; Department of Sports Medicine, School of Medicine, Zhejiang University, China
| | - Chaozhong Liu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Zhejiang University, China
| | - Zi Yin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Zhejiang University, China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Zhejiang University, China; Department of Sports Medicine, School of Medicine, Zhejiang University, China; China Orthopedic Regenerative Medicine Group (CORMed), China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, China.
| |
Collapse
|
41
|
Lee-Barthel A, Lee CA, Vidal MA, Baar K. Localized BMP-4 release improves the enthesis of engineered bone-to-bone ligaments. TRANSLATIONAL SPORTS MEDICINE 2018. [DOI: 10.1002/tsm2.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- A. Lee-Barthel
- Department of Biomedical Engineering; University of California Davis; Davis CA USA
| | - C. A. Lee
- Department of Orthopaedic Surgery; University of California Davis; Sacramento CA USA
| | - M. A. Vidal
- Department of Surgical and Radiological Sciences; University of California Davis; Davis CA USA
| | - K. Baar
- Department of Neurobiology, Physiology, and Behavior; University of California Davis; Davis CA USA
| |
Collapse
|
42
|
Baudequin T, Tabrizian M. Multilineage Constructs for Scaffold-Based Tissue Engineering: A Review of Tissue-Specific Challenges. Adv Healthc Mater 2018; 7. [PMID: 29193897 DOI: 10.1002/adhm.201700734] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/28/2017] [Indexed: 12/11/2022]
Abstract
There is a growing interest in the regeneration of tissue in interfacial regions, where biological, physical, and chemical attributes vary across tissue type. The simultaneous use of distinct cell lineages can help in developing in vitro structures, analogous to native composite tissues. This literature review gathers the recent reports that have investigated multiple cell types of various sources and lineages in a coculture system for tissue-engineered constructs. Such studies aim at mimicking the native organization of tissues and their interfaces, and/or to improve the development of complex tissue substitutes. This paper thus distinguishes itself from those focusing on technical aspects of coculturing for a single specific tissue. The first part of this review is dedicated to variables of cocultured tissue engineering such as scaffold, cells, and in vitro culture environment. Next, tissue-specific coculture methods and approaches are covered for the most studied tissues. Finally, cross-analysis is performed to highlight emerging trends in coculture principles and to discuss how tissue-specific challenges can inspire new approaches for regeneration of different interfaces to improve the outcomes of various tissue engineering strategies.
Collapse
Affiliation(s)
- Timothée Baudequin
- Faculty of Medicine; Biomat'X Laboratory; Department of Biomedical Engineering; McGill University; 740 ave. Dr. Penfield, Room 4300 Montréal QC H3A 0G1 Québec Canada
| | - Maryam Tabrizian
- Faculty of Medicine; Biomat'X Laboratory; Department of Biomedical Engineering; McGill University; 740 ave. Dr. Penfield, Room 4300 Montréal QC H3A 0G1 Québec Canada
- Faculty of Dentistry; McGill University; 3775 rue University, Room 313/308B Montréal QC H3A 2B4 Québec Canada
| |
Collapse
|
43
|
Baudequin T, Gaut L, Mueller M, Huepkes A, Glasmacher B, Duprez D, Bedoui F, Legallais C. The Osteogenic and Tenogenic Differentiation Potential of C3H10T1/2 (Mesenchymal Stem Cell Model) Cultured on PCL/PLA Electrospun Scaffolds in the Absence of Specific Differentiation Medium. MATERIALS 2017; 10:ma10121387. [PMID: 29207566 PMCID: PMC5744322 DOI: 10.3390/ma10121387] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 12/21/2022]
Abstract
The differentiation potential of mesenchymal stem cells (MSC) has been extensively tested on electrospun scaffolds. However, this potential is often assessed with lineage-specific medium, making it difficult to interpret the real contribution of the properties of the scaffold in the cell response. In this study, we analyzed the ability of different polycaprolactone/polylactic acid PCL/PLA electrospun scaffolds (pure or blended compositions, random or aligned fibers, various fiber diameters) to drive MSC towards bone or tendon lineages in the absence of specific differentiation medium. C3H10T1/2 cells (a mesenchymal stem cell model) were cultured on scaffolds for 96 h without differentiation factors. We performed a cross-analysis of the cell–scaffold interactions (spreading, organization, and specific gene expression) with mechanical (elasticity), morphological (porosity, fibers diameter and orientation) and surface (wettability) characterizations of the electrospun fibers. We concluded that (1) osteogenic differentiation can be initiated on pure PCL-based electrospun scaffolds without specific culture conditions; (2) fiber alignment modified cell organization in the short term and (3) PLA added to PCL with an increased fiber diameter encouraged the stem cells towards the tendon lineage without additional tenogenic factors. In summary, the differentiation potential of stem cells on adapted electrospun fibers could be achieved in factor-free medium, making possible future applications in clinically relevant situations.
Collapse
Affiliation(s)
- Timothée Baudequin
- CNRS, UMR 7338 Biomechanics and Bioengineering, Sorbonne Universités, Université de Technologie de Compiègne, 60200 Compiègne, France.
| | - Ludovic Gaut
- CNRS UMR 7622 IBPS-Developmental Biology Laboratory, Sorbonne Universités, UPMC Univ Paris 06, F-75005 Paris, France.
- Inserm U1156, F-75005 Paris, France.
| | - Marc Mueller
- Institute for Multiphase Processes, Leibniz Universität Hanover, D-30167 Hanover, Germany.
| | - Angela Huepkes
- CNRS, UMR 7338 Biomechanics and Bioengineering, Sorbonne Universités, Université de Technologie de Compiègne, 60200 Compiègne, France.
- Institute for Multiphase Processes, Leibniz Universität Hanover, D-30167 Hanover, Germany.
| | - Birgit Glasmacher
- Institute for Multiphase Processes, Leibniz Universität Hanover, D-30167 Hanover, Germany.
| | - Delphine Duprez
- CNRS UMR 7622 IBPS-Developmental Biology Laboratory, Sorbonne Universités, UPMC Univ Paris 06, F-75005 Paris, France.
- Inserm U1156, F-75005 Paris, France.
| | - Fahmi Bedoui
- CNRS, UMR 7337 Roberval Laboratory for Mechanics, Sorbonne Universités, Université de Technologie de Compiègne, 60200 Compiègne, France.
| | - Cécile Legallais
- CNRS, UMR 7338 Biomechanics and Bioengineering, Sorbonne Universités, Université de Technologie de Compiègne, 60200 Compiègne, France.
| |
Collapse
|
44
|
Li X, Cheng R, Sun Z, Su W, Pan G, Zhao S, Zhao J, Cui W. Flexible bipolar nanofibrous membranes for improving gradient microstructure in tendon-to-bone healing. Acta Biomater 2017; 61:204-216. [PMID: 28778532 DOI: 10.1016/j.actbio.2017.07.044] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 06/30/2017] [Accepted: 07/31/2017] [Indexed: 01/08/2023]
Abstract
Enthesis is a specialized tissue interface between the tendon and bone. Enthesis structure is very complex because of gradient changes in its composition and structure. There is currently no strategy to create a suitable environment and to regenerate the gradual-changing enthesis because of the modular complexities between two tissue types. Herein, a dual-layer organic/inorganic flexible bipolar fibrous membrane (BFM) was successfully fabricated by electrospinning to generate biomimetic non-mineralized fibrocartilage and mineralized fibrocartilage in tendon-to-bone integration of enthesis. The growth of the in situ apatite nanoparticle layer was induced on the nano hydroxyapatite-poly-l-lactic acid (nHA-PLLA) fibrous layer in simulated body solution, and the poly-l-lactic acid (PLLA) fibrous layer retained its original properties to induce tendon regeneration. The in vivo results showed that BFM significantly increased the area of glycosaminoglycan staining at the tendon-bone interface and improved collagen organization when compared to the simplex fibrous membrane (SFM) of PLLA. Implanting the bipolar membrane also induced bone formation and fibrillogenesis as assessed by micro-CT and histological analysis. Biomechanical testing showed that the BFM group had a greater ultimate load-to-failure and stiffness than the SFM group at 12weeks after surgery. Therefore, this flexible bipolar nanofibrous membrane improves the healing and regeneration process of the enthesis in rotator cuff repair. STATEMENT OF SIGNIFICANCE In this study, we generated a biomimetic dual-layer organic/inorganic flexible bipolar fibrous membrane by sequential electrospinning and in situ biomineralization, producing integrated bipolar fibrous membranes of PLLA fibrous membrane as the upper layer and nHA-PLLA fibrous membrane as the lower layer to mimic non-mineralized fibrocartilage and mineralized fibrocartilage in tendon-to-bone integration of enthesis. Flexible bipolar nanofibrous membranes could be easily fabricated with gradient microstructure for enthesis regeneration in rotator cuff tears.
Collapse
|
45
|
Boys AJ, McCorry MC, Rodeo S, Bonassar LJ, Estroff LA. Next Generation Tissue Engineering of Orthopedic Soft Tissue-to-Bone Interfaces. MRS COMMUNICATIONS 2017; 7:289-308. [PMID: 29333332 PMCID: PMC5761353 DOI: 10.1557/mrc.2017.91] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/28/2017] [Indexed: 05/17/2023]
Abstract
Soft tissue-to-bone interfaces are complex structures that consist of gradients of extracellular matrix materials, cell phenotypes, and biochemical signals. These interfaces, called entheses for ligaments, tendons, and the meniscus, are crucial to joint function, transferring mechanical loads and stabilizing orthopedic joints. When injuries occur to connected soft tissue, the enthesis must be re-established to restore function, but due to structural complexity, repair has proven challenging. Tissue engineering offers a promising solution for regenerating these tissues. This prospective review discusses methodologies for tissue engineering the enthesis, outlined in three key design inputs: materials processing methods, cellular contributions, and biochemical factors.
Collapse
Affiliation(s)
- Alexander J Boys
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY
| | | | - Scott Rodeo
- Orthopedic Surgery, Hospital for Special Surgery, New York, NY
- Sports Medicine and Shoulder Service, Hospital for Special Surgery, New York, NY
- Tissue Engineering, Regeneration, and Repair Program, Hospital for Special Surgery, New York, NY
- Orthopedic Surgery, Weill Medical College of Cornell University, Cornell University, New York, NY
- New York Giants, East Rutherford, NJ
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY
| | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY
| | - Lara A Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY
- Kavli Institute at Cornell, Cornell University, Ithaca, NY
| |
Collapse
|
46
|
Silva ED, Babo PS, Costa-Almeida R, Domingues RMA, Mendes BB, Paz E, Freitas P, Rodrigues MT, Granja PL, Gomes ME. Multifunctional magnetic-responsive hydrogels to engineer tendon-to-bone interface. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 14:2375-2385. [PMID: 28614734 DOI: 10.1016/j.nano.2017.06.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 04/18/2017] [Accepted: 06/01/2017] [Indexed: 10/19/2022]
Abstract
Photocrosslinkable magnetic hydrogels are attracting great interest for tissue engineering strategies due to their versatility and multifunctionality, including their remote controllability ex vivo, thus enabling engineering complex tissue interfaces. This study reports the development of a photocrosslinkable magnetic responsive hydrogel made of methacrylated chondroitin sulfate (MA-CS) enriched with platelet lysate (PL) with tunable features, envisioning their application in tendon-to-bone interface. MA-CS coated iron-based magnetic nanoparticles were incorporated to provide magnetic responsiveness to the hydrogel. Osteogenically differentiated adipose-derived stem cells and/or tendon-derived cells were encapsulated within the hydrogel, proliferating and expressing bone- and tendon-related markers. External magnetic field (EMF) application modulated the swelling, degradation and release of PL-derived growth factors, and impacted both cell morphology and the expression and synthesis of tendon- and bone-like matrix with a more evident effect in co-cultures. Overall, the developed magnetic responsive hydrogel represents a potential cell carrier system for interfacial tissue engineering with EMF-controlled properties.
Collapse
Affiliation(s)
- Elsa D Silva
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Pedro S Babo
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Raquel Costa-Almeida
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui M A Domingues
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bárbara B Mendes
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Elvira Paz
- INL-International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Paulo Freitas
- INL-International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Márcia T Rodrigues
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Pedro L Granja
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Manuela E Gomes
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
47
|
Zhao S, Su W, Shah V, Hobson D, Yildirimer L, Yeung KWK, Zhao J, Cui W, Zhao X. Biomaterials based strategies for rotator cuff repair. Colloids Surf B Biointerfaces 2017. [PMID: 28633121 DOI: 10.1016/j.colsurfb.2017.06.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tearing of the rotator cuff commonly occurs as among one of the most frequently experienced tendon disorders. While treatment typically involves surgical repair, failure rates to achieve or sustain healing range from 20 to 90%. The insufficient capacity to recover damaged tendon to heal to the bone, especially at the enthesis, is primarily responsible for the failure rates reported. Various types of biomaterials with special structures have been developed to improve tendon-bone healing and tendon regeneration, and have received considerable attention for replacement, reconstruction, or reinforcement of tendon defects. In this review, we first give a brief introduction of the anatomy of the rotator cuff and then discuss various design strategies to augment rotator cuff repair. Furthermore, we highlight current biomaterials used for repair and their clinical applications as well as the limitations in the literature. We conclude this article with challenges and future directions in designing more advanced biomaterials for augmentation of rotator cuff repair.
Collapse
Affiliation(s)
- Song Zhao
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Wei Su
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Vishva Shah
- Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Divia Hobson
- Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Lara Yildirimer
- Barnet General Hospital, Royal Free NHS Trust Hospital, Wellhouse Lane, Barnet EN5 3DJ, London, UK
| | - Kelvin W K Yeung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.
| | - Wenguo Cui
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 708 Renmin Rd., Suzhou, Jiangsu 215006, China.
| | - Xin Zhao
- Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| |
Collapse
|
48
|
Development of polymeric functionally graded scaffolds: a brief review. J Appl Biomater Funct Mater 2017; 15:e107-e121. [PMID: 28009418 DOI: 10.5301/jabfm.5000332] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2016] [Indexed: 12/20/2022] Open
Abstract
Over recent years, there has been a growing interest in multilayer scaffolds fabrication approaches. In fact, functionally graded scaffolds (FGSs) provide biological and mechanical functions potentially similar to those of native tissues. Based on the final application of the scaffold, there are different properties (physical, mechanical, biochemical, etc.) which need to gradually change in space. Therefore, a number of different technologies have been investigated, and often combined, to customize each region of the scaffolds as much as possible, aiming at achieving the best regenerative performance.In general, FGSs can be categorized as bilayered or multilayered, depending on the number of layers in the whole structure. In other cases, scaffolds are characterized by a continuous gradient of 1 or more specific properties that cannot be related to the presence of clearly distinguished layers. Since each traditional approach presents peculiar advantages and disadvantages, FGSs are good candidates to overcome the limitations of current treatment options. In contrast to the reviews reported in the literature, which usually focus on the application of FGS, this brief review provides an overview of the most common strategies adopted to prepare FGS.
Collapse
|
49
|
Font Tellado S, Bonani W, Balmayor ER, Foehr P, Motta A, Migliaresi C, van Griensven M. * Fabrication and Characterization of Biphasic Silk Fibroin Scaffolds for Tendon/Ligament-to-Bone Tissue Engineering. Tissue Eng Part A 2017; 23:859-872. [PMID: 28330431 DOI: 10.1089/ten.tea.2016.0460] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Tissue engineering is an attractive strategy for tendon/ligament-to-bone interface repair. The structure and extracellular matrix composition of the interface are complex and allow for a gradual mechanical stress transfer between tendons/ligaments and bone. Thus, scaffolds mimicking the structural features of the native interface may be able to better support functional tissue regeneration. In this study, we fabricated biphasic silk fibroin scaffolds designed to mimic the gradient in collagen molecule alignment present at the interface. The scaffolds had two different pore alignments: anisotropic at the tendon/ligament side and isotropic at the bone side. Total porosity ranged from 50% to 80% and the majority of pores (80-90%) were <100-300 μm. Young's modulus varied from 689 to 1322 kPa depending on the type of construct. In addition, human adipose-derived mesenchymal stem cells were cultured on the scaffolds to evaluate the effect of pore morphology on cell proliferation and gene expression. Biphasic scaffolds supported cell attachment and influenced cytoskeleton organization depending on pore alignment. In addition, the gene expression of tendon/ligament, enthesis, and cartilage markers significantly changed depending on pore alignment in each region of the scaffolds. In conclusion, the biphasic scaffolds fabricated in this study show promising features for tendon/ligament-to-bone tissue engineering.
Collapse
Affiliation(s)
- Sònia Font Tellado
- 1 Department of Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich , Munich, Germany
| | - Walter Bonani
- 2 Department of Industrial Engineering, BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Trento , Trento, Italy .,3 Trento Research Unit, INSTM-National Interuniversity Consortium of Materials Science and Technology , Trento, Italy
| | - Elizabeth R Balmayor
- 1 Department of Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich , Munich, Germany
| | - Peter Foehr
- 4 Department of Orthopaedics and Sports Orthopaedics, Klinikum rechts der Isar, Technical University of Munich , Munich, Germany
| | - Antonella Motta
- 2 Department of Industrial Engineering, BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Trento , Trento, Italy
| | - Claudio Migliaresi
- 2 Department of Industrial Engineering, BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Trento , Trento, Italy .,3 Trento Research Unit, INSTM-National Interuniversity Consortium of Materials Science and Technology , Trento, Italy
| | - Martijn van Griensven
- 1 Department of Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich , Munich, Germany
| |
Collapse
|
50
|
Li Y, Xiao Y, Liu C. The Horizon of Materiobiology: A Perspective on Material-Guided Cell Behaviors and Tissue Engineering. Chem Rev 2017; 117:4376-4421. [PMID: 28221776 DOI: 10.1021/acs.chemrev.6b00654] [Citation(s) in RCA: 349] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although the biological functions of cell and tissue can be regulated by biochemical factors (e.g., growth factors, hormones), the biophysical effects of materials on the regulation of biological activity are receiving more attention. In this Review, we systematically summarize the recent progress on how biomaterials with controllable properties (e.g., compositional/degradable dynamics, mechanical properties, 2D topography, and 3D geometry) can regulate cell behaviors (e.g., cell adhesion, spreading, proliferation, cell alignment, and the differentiation or self-maintenance of stem cells) and tissue/organ functions. How the biophysical features of materials influence tissue/organ regeneration have been elucidated. Current challenges and a perspective on the development of novel materials that can modulate specific biological functions are discussed. The interdependent relationship between biomaterials and biology leads us to propose the concept of "materiobiology", which is a scientific discipline that studies the biological effects of the properties of biomaterials on biological functions at cell, tissue, organ, and the whole organism levels. This Review highlights that it is more important to develop ECM-mimicking biomaterials having a self-regenerative capacity to stimulate tissue regeneration, instead of attempting to recreate the complexity of living tissues or tissue constructs ex vivo. The principles of materiobiology may benefit the development of novel biomaterials providing combinative bioactive cues to activate the migration of stem cells from endogenous reservoirs (i.e., cell niches), stimulate robust and scalable self-healing mechanisms, and unlock the body's innate powers of regeneration.
Collapse
Affiliation(s)
- Yulin Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology , Meilong Road 130, Shanghai 200237, People's Republic of China
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology , Kelvin Grove, Brisbane, Queensland 4059, Australia
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology , Meilong Road 130, Shanghai 200237, People's Republic of China
| |
Collapse
|