1
|
Getova VE, Pinheiro-Machado E, Harmsen MC, Burgess JK, Smink AM. The role of extracellular matrix hydrogels and adipose-derived stromal cells in soft tissue vascularization - A systematic review. BIOMATERIALS ADVANCES 2024; 164:213986. [PMID: 39151272 DOI: 10.1016/j.bioadv.2024.213986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/12/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024]
Abstract
Decellularized extracellular matrix (dECM) hydrogels loaded with adipose-derived stromal cells (ASC) or their conditioned medium (ASC CM) present a promising and versatile treatment approach for tissue vascularization and regeneration. These hydrogels are easy to produce, store, personalize, manipulate, and deliver to the target tissue. This literature review aimed to investigate the applications of dECM hydrogels with ASC or ASC CM for in vivo tissue vascularization. Fourteen experimental studies have been reviewed using vessel density as the primary outcome parameter for in vivo vascularization. The studies consistently reported an increased efficacy in augmenting angiogenesis by the ASC or ASC CM-loaded hydrogels compared to untreated controls. However, this systematic review shows the need to standardize procedures and characterization, particularly of the final administered product(s). The findings from these experimental studies highlight the potential of dECM hydrogel with ASC or ASC CM in novel tissue regeneration and regenerative medicine applications.
Collapse
Affiliation(s)
- Vasilena E Getova
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, Groningen, the Netherlands
| | - Erika Pinheiro-Machado
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands
| | - Martin C Harmsen
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
| | - Alexandra M Smink
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands
| |
Collapse
|
2
|
Ostadi Y, Khanali J, Tehrani FA, Yazdanpanah G, Bahrami S, Niazi F, Niknejad H. Decellularized Extracellular Matrix Scaffolds for Soft Tissue Augmentation: From Host-Scaffold Interactions to Bottlenecks in Clinical Translation. Biomater Res 2024; 28:0071. [PMID: 39247652 PMCID: PMC11378302 DOI: 10.34133/bmr.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/29/2024] [Indexed: 09/10/2024] Open
Abstract
Along with a paradigm shift in looking at soft tissue fillers from space-filling to bioactive materials, decellularized extracellular matrix (DEM) fillers have gained more attention considering their superior bioactivity. However, the complex mechanisms that govern the interaction between host tissues and DEMs have been partially understood. This review first covers the mechanisms that determine immunogenicity, angiogenesis and vasculogenesis, and recellularization and remodeling after DEM implantation into host tissue, with a particular focus on related findings from filler materials. Accordingly, the review delves into the dual role of macrophages and their M1/M2 polarization paradigm to form both constructive and destructive immune responses to DEM implants. Moreover, the contribution of macrophages in angiogenesis has been elucidated, which includes but is not limited to the secretion of angiogenic growth factors and extracellular matrix (ECM) remodeling. The findings challenge the traditional view of immune cells as solely destructive entities in biomaterials and indicate their multifaceted roles in tissue regeneration. Furthermore, the review discusses how the compositional factors of DEMs, such as the presence of growth factors and matrikines, can influence angiogenesis, cell fate, and differentiation during the recellularization process. It is also shown that the biomechanical properties of DEMs, including tissue stiffness, modulate cell responses through mechanotransduction pathways, and the structural properties of DEMs, such as scaffold porosity, impact cell-cell and cell-ECM interactions. Finally, we pointed out the current clinical applications, the bottlenecks in the clinical translation of DEM biomaterials into soft tissue fillers, as well as the naïve research areas of the field.
Collapse
Affiliation(s)
- Yasamin Ostadi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Khanali
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh A Tehrani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Feizollah Niazi
- Department of Plastic and Reconstructive Surgery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Xiong C, Yao W, Tao R, Yang S, Jiang W, Xu Y, Zhang J, Han Y. Application of Decellularized Adipose Matrix as a Bioscaffold in Different Tissue Engineering. Aesthetic Plast Surg 2024; 48:1045-1053. [PMID: 37726399 DOI: 10.1007/s00266-023-03608-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/10/2023] [Indexed: 09/21/2023]
Abstract
With the development of tissue engineering, the application of decellularized adipose matrix as scaffold material in tissue engineering has been intensively explored due to its wide source and excellent potential in tissue regeneration. Decellularized adipose matrix is a promising candidate for adipose tissue regeneration, while modification of decellularized adipose matrix scaffold can also allow it to transcend the limitations of adipose tissue source properties and applied to other tissue engineering fields, including cartilage and bone tissue engineering, neural tissue engineering, and skin tissue engineering. In this review, we summarized the development of the applications of decellularized adipose matrix in different tissue engineering and present future perspectives.Level of Evidence III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Chenlu Xiong
- School of Medicine, Nankai University, Tianjin, China
- Department of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing, 100853, China
| | - Wende Yao
- School of Medicine, Nankai University, Tianjin, China
- Department of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing, 100853, China
| | - Ran Tao
- Department of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing, 100853, China
| | - Sihan Yang
- School of Medicine, Nankai University, Tianjin, China
- Department of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing, 100853, China
| | - Weiqian Jiang
- Department of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing, 100853, China
| | - Yujian Xu
- Department of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing, 100853, China
| | - Julei Zhang
- Department of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing, 100853, China.
- Department of Burn and Plastic Surgery, The 980st Hospital of the PLA Joint Logistics Support Force, Hebei, China.
| | - Yan Han
- Department of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing, 100853, China.
| |
Collapse
|
4
|
Cai D, Weng W. Development potential of extracellular matrix hydrogels as hemostatic materials. Front Bioeng Biotechnol 2023; 11:1187474. [PMID: 37383519 PMCID: PMC10294235 DOI: 10.3389/fbioe.2023.1187474] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/02/2023] [Indexed: 06/30/2023] Open
Abstract
The entry of subcutaneous extracellular matrix proteins into the circulation is a key step in hemostasis initiation after vascular injury. However, in cases of severe trauma, extracellular matrix proteins are unable to cover the wound, making it difficult to effectively initiate hemostasis and resulting in a series of bleeding events. Acellular-treated extracellular matrix (ECM) hydrogels are widely used in regenerative medicine and can effectively promote tissue repair due to their high mimic nature and excellent biocompatibility. ECM hydrogels contain high concentrations of extracellular matrix proteins, including collagen, fibronectin, and laminin, which can simulate subcutaneous extracellular matrix components and participate in the hemostatic process. Therefore, it has unique advantages as a hemostatic material. This paper first reviewed the preparation, composition and structure of extracellular hydrogels, as well as their mechanical properties and safety, and then analyzed the hemostatic mechanism of the hydrogels to provide a reference for the application and research, and development of ECM hydrogels in the field of hemostasis.
Collapse
|
5
|
Xiao H, Chen X, Liu X, Wen G, Yu Y. Recent advances in decellularized biomaterials for wound healing. Mater Today Bio 2023; 19:100589. [PMID: 36880081 PMCID: PMC9984902 DOI: 10.1016/j.mtbio.2023.100589] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/07/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
The skin is one of the most essential organs in the human body, interacting with the external environment and shielding the body from diseases and excessive water loss. Thus, the loss of the integrity of large portions of the skin due to injury and illness may lead to significant disabilities and even death. Decellularized biomaterials derived from the extracellular matrix of tissues and organs are natural biomaterials with large quantities of bioactive macromolecules and peptides, which possess excellent physical structures and sophisticated biomolecules, and thus, promote wound healing and skin regeneration. Here, we highlighted the applications of decellularized materials in wound repair. First, the wound-healing process was reviewed. Second, we elucidated the mechanisms of several extracellular matrix constitutes in facilitating wound healing. Third, the major categories of decellularized materials in the treatment of cutaneous wounds in numerous preclinical models and over decades of clinical practice were elaborated. Finally, we discussed the current hurdles in the field and anticipated the future challenges and novel avenues for research on decellularized biomaterials-based wound treatment.
Collapse
Affiliation(s)
- Huimin Xiao
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Xin Chen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Xuanzhe Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Gen Wen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Yaling Yu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.,Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
6
|
Barroca N, da Silva DM, Pinto SC, Sousa JPM, Verstappen K, Klymov A, Fernández-San-Argimiro FJ, Madarieta I, Murua O, Olalde B, Papadimitriou L, Karali K, Mylonaki K, Stratakis E, Ranella A, Marques PAAP. Interfacing reduced graphene oxide with an adipose-derived extracellular matrix as a regulating milieu for neural tissue engineering. BIOMATERIALS ADVANCES 2023; 148:213351. [PMID: 36842343 DOI: 10.1016/j.bioadv.2023.213351] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Enthralling evidence of the potential of graphene-based materials for neural tissue engineering is motivating the development of scaffolds using various structures related to graphene such as graphene oxide (GO) or its reduced form. Here, we investigated a strategy based on reduced graphene oxide (rGO) combined with a decellularized extracellular matrix from adipose tissue (adECM), which is still unexplored for neural repair and regeneration. Scaffolds containing up to 50 wt% rGO relative to adECM were prepared by thermally induced phase separation assisted by carbodiimide (EDC) crosslinking. Using partially reduced GO enables fine-tuning of the structural interaction between rGO and adECM. As the concentration of rGO increased, non-covalent bonding gradually prevailed over EDC-induced covalent conjugation with the adECM. Edge-to-edge aggregation of rGO favours adECM to act as a biomolecular physical crosslinker to rGO, leading to the softening of the scaffolds. The unique biochemistry of adECM allows neural stem cells to adhere and grow. Importantly, high rGO concentrations directly control cell fate by inducing the differentiation of both NE-4C cells and embryonic neural progenitor cells into neurons. Furthermore, primary astrocyte fate is also modulated as increasing rGO boosts the expression of reactivity markers while unaltering the expression of scar-forming ones.
Collapse
Affiliation(s)
- Nathalie Barroca
- TEMA - Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; LASI - Intelligent Systems Associate Laboratory, Portugal.
| | - Daniela M da Silva
- TEMA - Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; LASI - Intelligent Systems Associate Laboratory, Portugal
| | - Susana C Pinto
- TEMA - Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; LASI - Intelligent Systems Associate Laboratory, Portugal
| | - Joana P M Sousa
- TEMA - Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; LASI - Intelligent Systems Associate Laboratory, Portugal
| | - Kest Verstappen
- Radboud University Nijmegen Medical Centre, Department of Regenerative Biomaterials, 6500HB Nijmegen, the Netherlands
| | - Alexey Klymov
- Radboud University Nijmegen Medical Centre, Department of Regenerative Biomaterials, 6500HB Nijmegen, the Netherlands
| | | | - Iratxe Madarieta
- TECNALIA, Basque Research and Technology Alliance (BRTA), E20009 Donostia-San Sebastian, Spain
| | - Olatz Murua
- TECNALIA, Basque Research and Technology Alliance (BRTA), E20009 Donostia-San Sebastian, Spain
| | - Beatriz Olalde
- TECNALIA, Basque Research and Technology Alliance (BRTA), E20009 Donostia-San Sebastian, Spain
| | - Lina Papadimitriou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH), Heraklion, 71003, Greece
| | - Kanelina Karali
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH), Heraklion, 71003, Greece
| | - Konstantina Mylonaki
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH), Heraklion, 71003, Greece
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH), Heraklion, 71003, Greece
| | - Anthi Ranella
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH), Heraklion, 71003, Greece.
| | - Paula A A P Marques
- TEMA - Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; LASI - Intelligent Systems Associate Laboratory, Portugal.
| |
Collapse
|
7
|
Long J, Qin Z, Chen G, Song B, Zhang Z. Decellularized extracellular matrix (d-ECM): the key role of the inflammatory process in pre-regeneration after implantation. Biomater Sci 2023; 11:1215-1235. [PMID: 36625281 DOI: 10.1039/d2bm01204a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Clinical medicine is encountering the challenge of repairing soft-tissue defects. Currently, natural and synthetic materials have been developed as natural scaffolds. Among them, the decellularized extracellular matrix (d-ECM) can achieve tissue remodeling following injury and, thus, replace defects due to its advantages of the extensiveness of the source and excellent biological and mechanical properties. However, by analyzing the existing decellularization techniques, we found that different preparation methods directly affect the residual components of the d-ECM, and further have different effects on inflammation and regeneration of soft tissues. Therefore, we analyzed the role of different residual components of the d-ECM after decellularization. Then, we explored the inflammatory process and immune cells in an attempt to understand the mechanisms and causes of tissue degeneration and regeneration after transplantation. In this paper, we summarize the current studies related to updated protocols for the preparation of the d-ECM, biogenic and exogenous residual substances, inflammation, and immune cells influencing the fate of the d-ECM.
Collapse
Affiliation(s)
- Jie Long
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Zijin Qin
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Guo Chen
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Baoqiang Song
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Ziang Zhang
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
8
|
Tang J, Li H, Peng H, Zhang Z, Liu C, Cheng Y, Wang K, Yu Z, Lyu Z, Zhang J, Yi C. Pre-clinical evaluation of thermosensitive decellularized adipose tissue/platelet-rich plasma interpenetrating polymer network hydrogel for wound healing. Mater Today Bio 2022; 17:100498. [DOI: 10.1016/j.mtbio.2022.100498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
|
9
|
Xia B, Chen G. Research progress of natural tissue-derived hydrogels for tissue repair and reconstruction. Int J Biol Macromol 2022; 214:480-491. [PMID: 35753517 DOI: 10.1016/j.ijbiomac.2022.06.137] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/05/2022] [Accepted: 06/20/2022] [Indexed: 12/26/2022]
Abstract
There are many different grafts to repair damaged tissue. Various types of biological scaffolds, including films, fibers, microspheres, and hydrogels, can be used for tissue repair. A hydrogel, which is composed a natural or synthetic polymer network with high water absorption capacity, can provide a microenvironment closely resembling the extracellular matrix (ECM) of natural tissues to stimulate cell adhesion, proliferation, and differentiation. It has been shown to have great application potential in the field of tissue repair and regeneration. Hydrogels derived from natural tissues retain a variety of proteins and growth factors in optimal proportions, which is beneficial for the regeneration of specific tissues. This article reviews the latest research advances in the field of hydrogels from a variety of natural tissue sources, including bone tissue, blood vessels, nerve tissue, adipose tissue, skin tissue, and muscle tissue, including preparation methods, advantages, and applications in tissue engineering and regenerative medicine. Finally, it summarizes and discusses the challenges faced by natural tissue-derived hydrogels used in tissue repair, as well as future research and application directions.
Collapse
Affiliation(s)
- Bin Xia
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, PR China
| | - Guobao Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China; Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, PR China.
| |
Collapse
|
10
|
Tang W, Qi J, Wang Q, Qu Y, Fu S, Luan J. Investigating the Adipogenic Effects of Different Tissue-Derived Decellularized Matrices. Front Bioeng Biotechnol 2022; 10:872897. [PMID: 35497363 PMCID: PMC9046558 DOI: 10.3389/fbioe.2022.872897] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Decellularized adipose-derived matrix (DAM) can promote adipogenic differentiation and adipose tissue remodeling, but the biological impact of tissue origin on DAM remains unknown. The present study aimed to investigate the effects of tissue origins on the adipogenic capacity of the decellularized matrix by comparing the cellular and tissue responses of DAM versus acellular dermal matrix (ADM). Methods: The in vitro response of adipose-derived stem/stromal cells (ADSCs) to DAM and ADM was characterized by proliferation and differentiation. The in vivo remodeling response was evaluated in the subcutaneous injection model of immunocompromised mice, using histology, protein expression, and transcriptome analysis. Results: Both DAM and ADM exhibited excellent decellularization effects and cytocompatibility. In the absence of exogenous stimuli, DAM could induce adipogenic differentiation of ADSCs compared with ADM. In the animal model, the levels of PDGF, VEGF, and ACRP30 were higher in the DAM groups than in the ADM group, and more neovascularization and extensive adipose tissue remodeling were observed. The mRNA-seq analysis indicated that the DAM implant regulated tissue remodeling by modulating Lat1/2 expression along with Hippo Signaling pathway in the early stage. Conclusion: Tissue origin can influence the biological response of the decellularized matrix. DAM can retain favorable tissue-specific characteristics after the decellularization process and have unique adipogenic effects in vitro and vivo, which can be fully utilized for soft tissue repair and regeneration.
Collapse
Affiliation(s)
| | | | | | | | - Su Fu
- *Correspondence: Su Fu, ; Jie Luan,
| | - Jie Luan
- *Correspondence: Su Fu, ; Jie Luan,
| |
Collapse
|
11
|
Modular cell-assembled adipose matrix-derived bead foams as a mesenchymal stromal cell delivery platform for soft tissue regeneration. Biomaterials 2021; 275:120978. [PMID: 34182328 DOI: 10.1016/j.biomaterials.2021.120978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/19/2022]
Abstract
With the goal of establishing a new clinically-relevant bioscaffold format to enable the delivery of high densities of human adipose-derived stromal cells (ASCs) for applications in soft tissue regeneration, a novel "cell-assembly" method was developed to generate robust 3-D scaffolds comprised of fused networks of decellularized adipose tissue (DAT)-derived beads. In vitro studies confirmed that the assembly process was mediated by remodelling of the extracellular matrix by the seeded ASCs, which were well distributed throughout the scaffolds and remained highly viable after 8 days in culture. The ASC density, sulphated glycosaminoglycan content and scaffold stability were enhanced under culture conditions that included growth factor preconditioning. In vivo testing was performed to compare ASCs delivered within the cell-assembled DAT bead foams to an equivalent number of ASCs delivered on a previously-established pre-assembled DAT bead foam platform in a subcutaneous implant model in athymic nude mice. Scaffolds were fabricated with human ASCs engineered to stably co-express firefly luciferase and tdTomato to enable long-term cell tracking. Longitudinal bioluminescence imaging showed a significantly stronger signal associated with viable human ASCs at timepoints up to 7 days in the cell-assembled scaffolds, although both implant groups were found to retain similar densities of human ASCs at 28 days. Notably, the infiltration of CD31+ murine endothelial cells was enhanced in the cell-assembled implants at 28 days. Moreover, microcomputed tomography angiography revealed that there was a marked reduction in vascular permeability in the cell-assembled group, indicating that the developing vascular network was more stable in the new scaffold format. Overall, the novel cell-assembled DAT bead foams represent a promising platform to harness the pro-regenerative paracrine functionality of human ASCs and warrant further investigation as a clinically-translational approach for volume augmentation.
Collapse
|
12
|
Yang J, Zhou C, Fu J, Yang Q, He T, Tan Q, Lv Q. In situ Adipogenesis in Biomaterials Without Cell Seeds: Current Status and Perspectives. Front Cell Dev Biol 2021; 9:647149. [PMID: 33763426 PMCID: PMC7982583 DOI: 10.3389/fcell.2021.647149] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/08/2021] [Indexed: 02/05/2023] Open
Abstract
For cosmetic and reconstructive purposes in the setting of small-volume adipose tissue damage due to aging, traumatic defects, oncological resections, and degenerative diseases, the current strategies for soft tissue replacement involve autologous fat grafts and tissue fillers with synthetic, bioactive, or tissue-engineered materials. However, they all have drawbacks such as volume shrinkage and foreign-body responses. Aiming to regenerate bioactive vascularized adipose tissue on biomaterial scaffolds, adipose tissue engineering (ATE) has emerged as a suitable substitute for soft tissue repair. The essential components of ATE include scaffolds as support, cells as raw materials for fat formation, and a tolerant local environment to allow regeneration to occur. The commonly loaded seeding cells are adipose-derived stem cells (ASCs), which are expected to induce stable and predictable adipose tissue formation. However, defects in stem cell enrichment, such as donor-site sacrifice, limit their wide application. As a promising alternative approach, cell-free bioactive scaffolds recruit endogenous cells for adipogenesis. In biomaterials without cell seeds, the key to sufficient adipogenesis relies on the recruitment of endogenous host cells and continuous induction of cell homing to scaffolds. Regeneration, rather than repair, is the fundamental dominance of an optimal mature product. To induce in situ adipogenesis, many researchers have focused on the mechanical and biochemical properties of scaffolds. In addition, efforts to regulate an angiogenic and adipogenic microenvironment in cell-free settings involve integrating growth factors or extracellular matrix (ECM) proteins onto bioactive scaffolds. Despite the theoretical feasibility and encouraging results in animal models, few of the reported cell-free biomaterials have been tested in humans, and failures of decellularized adipose tissues in adipogenesis have also been reported. In these cases, the most likely reason was the lack of supporting vasculature. This review summarizes the current status of biomaterials without cell seeds. Related mechanisms and influencing factors of in situ adipogenesis in cell-free biomaterials, dilemma in the development of biomaterials, and future perspectives are also addressed.
Collapse
Affiliation(s)
- Jiqiao Yang
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast Disease, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Chen Zhou
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jingyang Fu
- West China School of Medicine/West China Hospital, Sichuan University, Chengdu, China
| | - Qianru Yang
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Tao He
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Qiuwen Tan
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Lv
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Han TTY, Walker JT, Grant A, Dekaban GA, Flynn LE. Preconditioning Human Adipose-Derived Stromal Cells on Decellularized Adipose Tissue Scaffolds Within a Perfusion Bioreactor Modulates Cell Phenotype and Promotes a Pro-regenerative Host Response. Front Bioeng Biotechnol 2021; 9:642465. [PMID: 33816453 PMCID: PMC8012684 DOI: 10.3389/fbioe.2021.642465] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/05/2021] [Indexed: 12/18/2022] Open
Abstract
Cell-based therapies involving the delivery of adipose-derived stromal cells (ASCs) on decellularized adipose tissue (DAT) scaffolds are a promising approach for soft tissue augmentation and reconstruction. Our lab has recently shown that culturing human ASCs on DAT scaffolds within a perfusion bioreactor prior to implantation can enhance their capacity to stimulate in vivo adipose tissue regeneration. Building from this previous work, the current study investigated the effects of bioreactor preconditioning on the ASC phenotype and secretory profile in vitro, as well as host cell recruitment following implantation in an athymic nude mouse model. Immunohistochemical analyses indicated that culturing within the bioreactor increased the percentage of ASCs co-expressing inducible nitric oxide synthase (iNOS) and arginase-1 (Arg-1), as well as tumor necrosis factor-alpha (TNF-α) and interleukin-10 (IL-10), within the peripheral regions of the DAT relative to statically cultured controls. In addition, bioreactor culture altered the expression levels of a range of immunomodulatory factors in the ASC-seeded DAT. In vivo testing revealed that culturing the ASCs on the DAT within the perfusion bioreactor prior to implantation enhanced the infiltration of host CD31+ endothelial cells and CD26+ cells into the DAT implants, but did not alter CD45+F4/80+CD68+ macrophage recruitment. However, a higher fraction of the CD45+ cell population expressed the pro-regenerative macrophage marker CD163 in the bioreactor group, which may have contributed to enhanced remodeling of the scaffolds into host-derived adipose tissue. Overall, the findings support that bioreactor preconditioning can augment the capacity of human ASCs to stimulate regeneration through paracrine-mediated mechanisms.
Collapse
Affiliation(s)
- Tim Tian Y. Han
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - John T. Walker
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Aaron Grant
- Division of Plastic and Reconstructive Surgery, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Gregory A. Dekaban
- Molecular Medicine Research Laboratories, Robarts Research Institute, The University of Western Ontario, London, ON, Canada
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Lauren E. Flynn
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
- Department of Chemical and Biochemical Engineering, Faculty of Engineering, The University of Western Ontario, London, ON, Canada
- Bone and Joint Institute, The University of Western Ontario, London, ON, Canada
- *Correspondence: Lauren E. Flynn,
| |
Collapse
|
14
|
Xia Z, Guo X, Yu N, Zeng A, Si L, Long F, Zhang W, Wang X, Zhu L, Liu Z. The Application of Decellularized Adipose Tissue Promotes Wound Healing. Tissue Eng Regen Med 2020; 17:863-874. [PMID: 33165769 PMCID: PMC7710820 DOI: 10.1007/s13770-020-00286-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/07/2020] [Accepted: 07/20/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Due to adipose-derived stem cells (ASCs) being easy to obtain, their rapid proliferation rate, and their multidirectional differentiation capabilities, they have been widely used in the field of regenerative medicine. With the progress of decellularized adipose tissue (DAT) and adipose tissue engineering research, the role of DAT in promoting angiogenesis has gradually been emphasized. METHODS We examined the biological characteristics and biosafety of DAT and evaluated the stem cell maintenance ability and promotion of growth factor secretion through conducting in vitro and in vivo studies. RESULTS The tested ASCs showed high rat:es of proliferation and adhered well to DAT. The expression levels of essential genes for cell stem maintenance, including OCT4, SOX2, and Nanog were low at 2-24 h and much higher at 48 and 96 h. The Adipogenic expression level of markers for ASCs proliferation including PPARγ, C/EPBα, and LPL increased from 2 to 96 h. Co-culture of ASCs and DAT increased the secretion of local growth factors, such as VEGF, PDGF-bb, bFGF, HGF, EGF, and FDGF-bb, and secretion gradually increased from 0 to 48 h. A model of full-thickness skin defects on the back of nude mice was established, and the co-culture of ASCs and DAT showed the best in vivo treatment effect. CONCLUSION The application of DAT promotes wound healing, and DAT combined with ASCs may be a promising material in adipose tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Zenan Xia
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Dongcheng District, Beijing, 100730, China
| | - Xiao Guo
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Dongcheng District, Beijing, 100730, China
| | - Nanze Yu
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Dongcheng District, Beijing, 100730, China
| | - Ang Zeng
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Dongcheng District, Beijing, 100730, China
| | - Loubin Si
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Dongcheng District, Beijing, 100730, China
| | - Fei Long
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Dongcheng District, Beijing, 100730, China
| | - Wenchao Zhang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Dongcheng District, Beijing, 100730, China
| | - Xiaojun Wang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Dongcheng District, Beijing, 100730, China
| | - Lin Zhu
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Dongcheng District, Beijing, 100730, China.
| | - Zhifei Liu
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
15
|
Robb KP, Juignet L, Morissette Martin P, Walker JT, Brooks CR, Barreira C, Dekaban GA, Flynn LE. Adipose Stromal Cells Enhance Decellularized Adipose Tissue Remodeling Through Multimodal Mechanisms. Tissue Eng Part A 2020; 27:618-630. [PMID: 32873224 DOI: 10.1089/ten.tea.2020.0180] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Decellularized adipose tissue (DAT) scaffolds represent a promising cell-instructive platform for soft tissue engineering. While recent work has highlighted that mesenchymal stromal cells, including adipose-derived stromal cells (ASCs), can be combined with decellularized scaffolds to augment tissue regeneration, the mechanisms involved require further study. The objective of this work was to probe the roles of syngeneic donor ASCs and host-derived macrophages in tissue remodeling of DAT scaffolds within an immunocompetent mouse model. Dual transgenic reporter mouse strains were employed to track and characterize the donor ASCs and host macrophages within the DAT implants. More specifically, ASCs isolated from dsRed mice were seeded on DAT scaffolds, and the seeded and unseeded control scaffolds were implanted subcutaneously into MacGreen transgenic mice for up to 8 weeks. ASC seeding was shown to augment cell infiltration into the DAT implants at 8 weeks, and this was linked to significantly enhanced angiogenesis relative to the unseeded controls. Immunohistochemical staining demonstrated long-term retention of the syngeneic donor ASCs over the duration of the 8-week study, providing evidence that the DAT scaffolds are a cell-supportive delivery platform. Notably, newly formed adipocytes within the DAT implants were not dsRed+, indicating that the donor ASCs supported fat formation through indirect mechanisms. Immunohistochemical tracking of host macrophages through costaining for enhanced green fluorescent protein with the macrophage marker Iba1 revealed that ASC seeding significantly increased the number of infiltrating macrophages within the DAT implants at 3 weeks, while the fraction of macrophages relative to the total cellular infiltrate was similar between the groups at 1, 3, and 8 weeks. Consistent with the tissue remodeling response that was observed, western blotting demonstrated that there was significantly augmented expression of CD163 and CD206, markers of constructive M2-like macrophages, within the ASC-seeded DAT implants. Overall, our results demonstrate that exogenous ASCs enhance tissue regeneration within DAT scaffolds indirectly through multimodal mechanisms that include host cell recruitment and immunomodulation. These data provide further evidence to support the use of decellularized scaffolds as a delivery platform for ASCs in tissue engineering.
Collapse
Affiliation(s)
- Kevin P Robb
- School of Biomedical Engineering, University of Western Ontario, London, Canada
| | - Laura Juignet
- Department of Anatomy and Cell Biology and Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Pascal Morissette Martin
- Department of Anatomy and Cell Biology and Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - John T Walker
- Department of Anatomy and Cell Biology and Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Courtney R Brooks
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Christy Barreira
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Canada
| | - Gregory A Dekaban
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Canada.,Department of Microbiology & Immunology and University of Western Ontario, London, Canada
| | - Lauren E Flynn
- School of Biomedical Engineering, University of Western Ontario, London, Canada.,Department of Anatomy and Cell Biology and Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada.,Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Canada.,Bone and Joint Institute, University of Western Ontario, London, Canada
| |
Collapse
|
16
|
Han TTY, Flynn LE. Perfusion bioreactor culture of human adipose‐derived stromal cells on decellularized adipose tissue scaffolds enhances in vivo adipose tissue regeneration. J Tissue Eng Regen Med 2020; 14:1827-1840. [DOI: 10.1002/term.3133] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/02/2020] [Accepted: 09/17/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Tim Tian Y. Han
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry The University of Western Ontario London Ontario Canada
| | - Lauren E. Flynn
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry The University of Western Ontario London Ontario Canada
- Department of Chemical and Biochemical Engineering, Thompson Engineering Building The University of Western Ontario London Ontario Canada
- Bone and Joint Institute The University of Western Ontario London Ontario Canada
| |
Collapse
|
17
|
Xing H, Lee H, Luo L, Kyriakides TR. Extracellular matrix-derived biomaterials in engineering cell function. Biotechnol Adv 2020; 42:107421. [PMID: 31381963 PMCID: PMC6995418 DOI: 10.1016/j.biotechadv.2019.107421] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 07/12/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022]
Abstract
Extracellular matrix (ECM) derived components are emerging sources for the engineering of biomaterials that are capable of inducing desirable cell-specific responses. This review explores the use of biomaterials derived from naturally occurring ECM proteins and their derivatives in approaches that aim to regulate cell function. Biomaterials addressed are grouped into six categories: purified single ECM proteins, combinations of purified ECM proteins, cell-derived ECM, tissue-derived ECM, diseased and modified ECM, and ECM-polymer coupled biomaterials. Purified ECM proteins serve as a material coating for enhanced cell adhesion and biocompatibility. Cell-derived and tissue-derived ECM, generated by cell isolation and decellularization technologies, can capture the native state of the ECM environment and guide cell migration and alignment patterns as well as stem cell differentiation. We focus primarily on recent advances in the fields of soft tissue, cardiac, and dermal repair, and explore the utilization of ECM proteins as biomaterials to engineer cell responses.
Collapse
Affiliation(s)
- Hao Xing
- Department of Biomedical Engineering, Yale University, United States of America
| | - Hudson Lee
- Department of Molecular Biophysics and Biochemistry, Yale University, United States of America
| | - Lijing Luo
- Department of Pathology, Yale University, United States of America
| | - Themis R Kyriakides
- Department of Biomedical Engineering, Yale University, United States of America; Department of Pathology, Yale University, United States of America.
| |
Collapse
|
18
|
Yang JZ, Qiu LH, Xiong SH, Dang JL, Rong XK, Hou MM, Wang K, Yu Z, Yi CG. Decellularized adipose matrix provides an inductive microenvironment for stem cells in tissue regeneration. World J Stem Cells 2020; 12:585-603. [PMID: 32843915 PMCID: PMC7415251 DOI: 10.4252/wjsc.v12.i7.585] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/27/2020] [Accepted: 05/30/2020] [Indexed: 02/06/2023] Open
Abstract
Stem cells play a key role in tissue regeneration due to their self-renewal and multidirectional differentiation, which are continuously regulated by signals from the extracellular matrix (ECM) microenvironment. Therefore, the unique biological and physical characteristics of the ECM are important determinants of stem cell behavior. Although the acellular ECM of specific tissues and organs (such as the skin, heart, cartilage, and lung) can mimic the natural microenvironment required for stem cell differentiation, the lack of donor sources restricts their development. With the rapid development of adipose tissue engineering, decellularized adipose matrix (DAM) has attracted much attention due to its wide range of sources and good regeneration capacity. Protocols for DAM preparation involve various physical, chemical, and biological methods. Different combinations of these methods may have different impacts on the structure and composition of DAM, which in turn interfere with the growth and differentiation of stem cells. This is a narrative review about DAM. We summarize the methods for decellularizing and sterilizing adipose tissue, and the impact of these methods on the biological and physical properties of DAM. In addition, we also analyze the application of different forms of DAM with or without stem cells in tissue regeneration (such as adipose tissue), repair (such as wounds, cartilage, bone, and nerves), in vitro bionic systems, clinical trials, and other disease research.
Collapse
Affiliation(s)
- Ji-Zhong Yang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Li-Hong Qiu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Shao-Heng Xiong
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Juan-Li Dang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Xiang-Ke Rong
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Meng-Meng Hou
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Kai Wang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Zhou Yu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Cheng-Gang Yi
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| |
Collapse
|
19
|
Nellinger S, Schmidt I, Heine S, Volz A, Kluger PJ. Adipose stem cell‐derived extracellular matrix represents a promising biomaterial by inducing spontaneous formation of prevascular‐like structures by mvECs. Biotechnol Bioeng 2020; 117:3160-3172. [DOI: 10.1002/bit.27481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/24/2020] [Accepted: 06/24/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Svenja Nellinger
- Reutlingen Research Institute Reutlingen University Reutlingen Germany
| | - Isabelle Schmidt
- School of Applied Chemistry Reutlingen University Reutlingen Germany
| | - Simon Heine
- Reutlingen Research Institute Reutlingen University Reutlingen Germany
| | - Ann‐Cathrin Volz
- Reutlingen Research Institute Reutlingen University Reutlingen Germany
| | - Petra J. Kluger
- School of Applied Chemistry Reutlingen University Reutlingen Germany
| |
Collapse
|
20
|
Cramer MC, Badylak SF. Extracellular Matrix-Based Biomaterials and Their Influence Upon Cell Behavior. Ann Biomed Eng 2020; 48:2132-2153. [PMID: 31741227 PMCID: PMC7231673 DOI: 10.1007/s10439-019-02408-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/08/2019] [Indexed: 01/16/2023]
Abstract
Biologic scaffold materials composed of allogeneic or xenogeneic extracellular matrix (ECM) are commonly used for the repair and remodeling of injured tissue. The clinical outcomes associated with implantation of ECM-based materials range from unacceptable to excellent. The variable clinical results are largely due to differences in the preparation of the material, including characteristics of the source tissue, the method and efficacy of decellularization, and post-decellularization processing steps. The mechanisms by which ECM scaffolds promote constructive tissue remodeling include mechanical support, degradation and release of bioactive molecules, recruitment and differentiation of endogenous stem/progenitor cells, and modulation of the immune response toward an anti-inflammatory phenotype. The methods of ECM preparation and the impact of these methods on the quality of the final product are described herein. Examples of favorable cellular responses of immune and stem cells associated with constructive tissue remodeling of ECM bioscaffolds are described.
Collapse
Affiliation(s)
- Madeline C Cramer
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
21
|
Sharath SS, Ramu J, Nair SV, Iyer S, Mony U, Rangasamy J. Human Adipose Tissue Derivatives as a Potent Native Biomaterial for Tissue Regenerative Therapies. Tissue Eng Regen Med 2020; 17:123-140. [PMID: 31953618 PMCID: PMC7105544 DOI: 10.1007/s13770-019-00230-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/07/2019] [Accepted: 11/15/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Human adipose tissue is a great source of translatable biomaterials owing to its ease of availability and simple processing. Reusing discardable adipose tissue for tissue regeneration helps in mimicking the exact native microenvironment of tissue. Over the past 10 years, extraction, processing, tuning and fabrication of adipose tissue have grabbed the attention owing to their native therapeutic and regenerative potential. The present work gives the overview of next generation biomaterials derived from human adipose tissue and their development with clinical relevance. METHODS Around 300 articles have been reviewed to widen the knowledge on the isolation, characterization techniques and medical applications of human adipose tissue and its derivatives from bench to bedside. The prospective applications of adipose tissue derivatives like autologous fat graft, stromal vascular fraction, stem cells, preadipocyte, adipokines and extracellular matrix, their behavioural mechanism, rational property of providing native bioenvironment, circumventing their translational abilities, recent advances in featuring them clinically have been reviewed extensively to reveal the dormant side of human adipose tissue. RESULTS Basic understanding about the molecular and structural aspect of human adipose tissue is necessary to employ it constructively. This review has nailed the productive usage of human adipose tissue, in a stepwise manner from exploring the methods of extracting derivatives, concerns during processing and its formulations to turning them into functional biomaterials. Their performance as functional biomaterials for skin regeneration, wound healing, soft tissue defects, stem cell and other regenerative therapies under in vitro and in vivo conditions emphasizes the translational efficiency of adipose tissue derivatives. CONCLUSION In the recent years, research interest has inclination towards constructive tissue engineering and regenerative therapies. Unravelling the maximum utilization of human adipose tissue derivatives paves a way for improving existing tissue regeneration and cellular based therapies and other biomedical applications.
Collapse
Affiliation(s)
- Siva Sankari Sharath
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Janarthanan Ramu
- Department of Plastic and Reconstructive Surgery, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Shantikumar Vasudevan Nair
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Subramaniya Iyer
- Department of Plastic and Reconstructive Surgery, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Ullas Mony
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, India.
| | - Jayakumar Rangasamy
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, India.
| |
Collapse
|
22
|
Shridhar A, Lam AYL, Sun Y, Simmons CA, Gillies ER, Flynn LE. Culture on Tissue‐Specific Coatings Derived from α‐Amylase‐Digested Decellularized Adipose Tissue Enhances the Proliferation and Adipogenic Differentiation of Human Adipose‐Derived Stromal Cells. Biotechnol J 2019; 15:e1900118. [DOI: 10.1002/biot.201900118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 10/08/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Arthi Shridhar
- Department of Chemical and Biochemical EngineeringThompson Engineering BuildingThe University of Western Ontario London N6A 5B9 Ontario Canada
| | - Alan Y. L. Lam
- Institute of Biomaterials and Biomedical EngineeringUniversity of Toronto Toronto M5S 3G9 Ontario Canada
| | - Yu Sun
- Institute of Biomaterials and Biomedical EngineeringUniversity of Toronto Toronto M5S 3G9 Ontario Canada
- Department of Mechanical and Industrial EngineeringUniversity of Toronto Toronto M5S 3G8 Ontario Canada
| | - Craig A. Simmons
- Institute of Biomaterials and Biomedical EngineeringUniversity of Toronto Toronto M5S 3G9 Ontario Canada
- Department of Mechanical and Industrial EngineeringUniversity of Toronto Toronto M5S 3G8 Ontario Canada
| | - Elizabeth R. Gillies
- Department of Chemical and Biochemical EngineeringThompson Engineering BuildingThe University of Western Ontario London N6A 5B9 Ontario Canada
- Department of ChemistryThe University of Western Ontario London N6A 5B7 Ontario Canada
| | - Lauren E. Flynn
- Department of Chemical and Biochemical EngineeringThompson Engineering BuildingThe University of Western Ontario London N6A 5B9 Ontario Canada
- Department of Anatomy & Cell BiologySchulich School of Medicine & DentistryThe University of Western Ontario London N6A 3K7 Ontario Canada
| |
Collapse
|
23
|
Lin M, Ge J, Wang X, Dong Z, Xing M, Lu F, He Y. Biochemical and biomechanical comparisions of decellularized scaffolds derived from porcine subcutaneous and visceral adipose tissue. J Tissue Eng 2019; 10:2041731419888168. [PMID: 31762987 PMCID: PMC6856974 DOI: 10.1177/2041731419888168] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/21/2019] [Indexed: 12/18/2022] Open
Abstract
Decellularized adipose tissue (DAT) is a promising biomaterial for adipose tissue
engineering. However, there is a lack of research of DAT prepared from
xenogeneic porcine adipose tissue. This study aimed to compare the adipogenic
ability of DAT derived from porcine subcutaneous (SDAT) and visceral adipose
tissue (VDAT). The retention of key collagen in decellularized matrix was
analysed to study the biochemical properties of SDAT and VDAT. For the
biomechanical study, both DAT materials were fabricated into three-dimensional
(3D) porous scaffolds for rheology and compressive tests. Human adipose-derived
stem cells (ADSCs) were cultured on both scaffolds to further investigate the
effect of matrix stiffness on cellular morphology and on adipogenic
differentiation. ADSCs cultured on soft VDAT exhibited significantly reduced
cellular area and upregulated adipogenic markers compared to those cultured on
SDAT. In vivo results revealed higher adipose regeneration in the VDAT compared
to the SDAT. This study further demonstrated that the relative expression of
collagen IV and laminin was significantly higher in VDAT than in SDAT, while the
collagen I expression and matrix stiffness of SDAT was significantly higher in
comparison to VDAT. This result suggested that porcine adipose tissue could
serve as a promising candidate for preparing DAT.
Collapse
Affiliation(s)
- Maohui Lin
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Jinbo Ge
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Xuecen Wang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Ziqing Dong
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Malcolm Xing
- Departments of Mechanical Engineering, and Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada.,Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Yunfan He
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
24
|
Thomas-Porch C, Li J, Zanata F, Martin EC, Pashos N, Genemaras K, Poche JN, Totaro NP, Bratton MR, Gaupp D, Frazier T, Wu X, Ferreira LM, Tian W, Wang G, Bunnell BA, Flynn L, Hayes D, Gimble JM. Comparative proteomic analyses of human adipose extracellular matrices decellularized using alternative procedures. J Biomed Mater Res A 2019; 106:2481-2493. [PMID: 29693792 DOI: 10.1002/jbm.a.36444] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/09/2018] [Accepted: 04/05/2018] [Indexed: 12/25/2022]
Abstract
Decellularized human adipose tissue has potential clinical utility as a processed biological scaffold for soft tissue cosmesis, grafting, and reconstruction. Adipose tissue decellularization has been accomplished using enzymatic-, detergent-, and/or solvent-based methods. To examine the hypothesis that distinct decellularization processes may yield scaffolds with differing compositions, the current study employed mass spectrometry to compare the proteomes of human adipose-derived matrices generated through three independent methods combining enzymatic-, detergent-, and/or solvent-based steps. In addition to protein content, bioscaffolds were evaluated for deoxyribose nucleic acid depletion, extracellular matrix composition, and physical structure using optical density, histochemical staining, and scanning electron microscopy. Mass spectrometry based proteomic analyses identified 25 proteins (having at least two peptide sequences detected) in the scaffolds generated with an enzymatic approach, 143 with the detergent approach, and 102 with the solvent approach, as compared to 155 detected in unprocessed native human fat. Immunohistochemical detection confirmed the presence of the structural proteins actin, collagen type VI, fibrillin, laminin, and vimentin. Subsequent in vivo analysis of the predominantly enzymatic- and detergent-based decellularized scaffolds following subcutaneous implantation in GFP+ transgenic mice demonstrated that the matrices generated with both approaches supported the ingrowth of host-derived adipocyte progenitors and vasculature in a time dependent manner. Together, these results determine that decellularization methods influence the protein composition of adipose tissue-derived bioscaffolds. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A:2481-2493, 2018.
Collapse
Affiliation(s)
- Caasy Thomas-Porch
- Biomedical Science Program, Tulane University School of Medicine, New Orleans, Louisiana.,Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Jie Li
- Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana.,National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Fabiana Zanata
- Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana.,Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Elizabeth C Martin
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana
| | - Nicholas Pashos
- Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Kaylynn Genemaras
- Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - J Nicholas Poche
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana
| | - Nicholas P Totaro
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana
| | - Melyssa R Bratton
- Department of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana
| | - Dina Gaupp
- Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Trivia Frazier
- Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana.,LaCell LLC, New Orleans, Louisiana.,Department of Structural and Cell Biology, , Tulane University School of Medicine, New Orleans, Louisiana
| | | | | | - Weidong Tian
- National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Guangdi Wang
- Department of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana
| | - Bruce A Bunnell
- Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana.,Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Lauren Flynn
- Department of Chemical and Biochemical Engineering, Western University, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Western University, London, Ontario, Canada
| | - Daniel Hayes
- Department of Biomedical Engineering, Pennsylvania State University, State College, Pennsylvania
| | - Jeffrey M Gimble
- Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana.,LaCell LLC, New Orleans, Louisiana.,Department of Structural and Cell Biology, , Tulane University School of Medicine, New Orleans, Louisiana.,Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana.,Department of Surgery, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
25
|
Freedman BR, Mooney DJ. Biomaterials to Mimic and Heal Connective Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806695. [PMID: 30908806 PMCID: PMC6504615 DOI: 10.1002/adma.201806695] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/27/2019] [Indexed: 05/11/2023]
Abstract
Connective tissue is one of the four major types of animal tissue and plays essential roles throughout the human body. Genetic factors, aging, and trauma all contribute to connective tissue dysfunction and motivate the need for strategies to promote healing and regeneration. The goal here is to link a fundamental understanding of connective tissues and their multiscale properties to better inform the design and translation of novel biomaterials to promote their regeneration. Major clinical problems in adipose tissue, cartilage, dermis, and tendon are discussed that inspire the need to replace native connective tissue with biomaterials. Then, multiscale structure-function relationships in native soft connective tissues that may be used to guide material design are detailed. Several biomaterials strategies to improve healing of these tissues that incorporate biologics and are biologic-free are reviewed. Finally, important guidance documents and standards (ASTM, FDA, and EMA) that are important to consider for translating new biomaterials into clinical practice are highligted.
Collapse
Affiliation(s)
- Benjamin R Freedman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
26
|
He Y, Lin M, Wang X, Guan J, Dong Z, Lu F, Xing M, Feng C, Li X. Optimized adipose tissue engineering strategy based on a neo-mechanical processing method. Wound Repair Regen 2018; 26:163-171. [PMID: 29802722 DOI: 10.1111/wrr.12640] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/01/2018] [Indexed: 12/27/2022]
Abstract
Decellularized adipose tissue (DAT) represents a promising scaffold for adipose tissue engineering. However, the unique and prolonged lipid removal process required for adipose tissue can damage extracellular matrix (ECM) constituents. Moreover, inadequate vascularization limits the recellularization of DAT in vivo. We proposed a neo-mechanical protocol for rapidly breaking adipocytes and removing lipid content from adipose tissue. The lipid-depleted adipose tissue was then subjected to a fast and mild decellularization to fabricate high-quality DAT (M-DAT). Adipose liquid extract (ALE) derived from this mechanical process was collected and incorporated into M-DAT to further optimize in vivo recellularization. Ordinary DAT was fabricated and served as a control. This developed strategy was evaluated based on decellularization efficiency, ECM quality, and recellularization efficiency. Angiogenic factor components and angiogenic potential of ALE were evaluated in vivo and in vitro. M-DAT achieved the same decellularization efficiency, but exhibited better retention of ECM components and recellularization, compared with those with ordinary DAT. Protein quantification revealed considerable levels of angiogenic factors (basic fibroblast growth factor, epidermal growth factor, transforming growth factor-β1, and vascular endothelial growth factor) in ALE. ALE promoted tube formation in vitro and induced intense angiogenesis in M-DAT in vivo; furthermore, higher expression of the adipogenic factor PPARγ and greater numbers of adipocytes were evident following ALE treatment, compared with those in the M-DAT group. Mechanical processing of adipose tissue led to the production of high-quality M-DAT and angiogenic factor-enriched ALE. The combination of ALE and M-DAT could be a promising strategy for engineered adipose tissue construction.
Collapse
Affiliation(s)
- Yunfan He
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.,Department of Mechanical Engineering, Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Maohui Lin
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xuecen Wang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jingyan Guan
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Ziqing Dong
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Malcolm Xing
- Department of Mechanical Engineering, Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Chuanbo Feng
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaojian Li
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
27
|
Harvestine JN, Orbay H, Chen JY, Sahar DE, Leach JK. Cell-secreted extracellular matrix, independent of cell source, promotes the osteogenic differentiation of human stromal vascular fraction. J Mater Chem B 2018; 6:4104-4115. [PMID: 30505446 DOI: 10.1039/c7tb02787g] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lipoaspirates contain a readily accessible heterogeneous cell source for use in bone regeneration collectively referred to as the stromal vascular fraction (SVF). However, the osteogenic potential of SVF is inferior to other progenitor cell populations, thereby requiring alternative strategies to potentiate its effective use in cell-based therapies of bone repair. Cell-secreted extracellular matrix (ECM) is a promising substrate to guide cell phenotype or for use in biomaterial design, yet the instructional capacity of ECMs produced by various cell types is unknown. To determine whether the bioactivity of cell-secreted ECM was dependent on cell source, we assessed the osteogenic response of human SVF on ECMs secreted by bone marrow-derived mesenchymal stem cells (MSCs), adipose stromal cells (ASCs), and human dermal fibroblasts (HDFs). Tissue culture plastic (TCP), type I collagen, and ECM induced expression of integrin subunits α2, α5, and β1 in SVF, yet seeding efficiency was only improved on MSC-derived ECM. Regardless of ECM source, SVF deposited over 8- and 1.3-fold more calcium compared to TCP and collagen-coated controls, respectively. Flow cytometry confirmed that SVF cultured on ECM retained CD31 and CD34 positive cell populations better than TCP. After depleting accessory cells, ASCs deposited significantly less calcium compared to donor-matched SVF. This function was partially restored in the presence of MSC-derived ECM when donor-matched endothelial cells (ECs) were added in an ASC/EC co-culture, confirming a role for ECs in osteogenic differentiation. These findings support the use of cell-derived ECM as a means to promote cell retention and osteogenic differentiation of SVF.
Collapse
Affiliation(s)
- Jenna N Harvestine
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616
| | - Hakan Orbay
- Department of Surgery, Division of Plastic Surgery, UC Davis Health, Sacramento, CA 95817
| | - Jonathan Y Chen
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616
| | - David E Sahar
- Department of Surgery, Division of Plastic Surgery, UC Davis Health, Sacramento, CA 95817
| | - J Kent Leach
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616.,Department of Orthopaedic Surgery, School of Medicine, UC Davis Health, Sacramento, CA 95817
| |
Collapse
|
28
|
Mahoney CM, Imbarlina C, Yates CC, Marra KG. Current Therapeutic Strategies for Adipose Tissue Defects/Repair Using Engineered Biomaterials and Biomolecule Formulations. Front Pharmacol 2018; 9:507. [PMID: 29867506 PMCID: PMC5966552 DOI: 10.3389/fphar.2018.00507] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/27/2018] [Indexed: 01/01/2023] Open
Abstract
Tissue engineered scaffolds for adipose restoration/repair has significantly evolved in recent years. Patients requiring soft tissue reconstruction, caused by defects or pathology, require biomaterials that will restore void volume with new functional tissue. The gold standard of autologous fat grafting (AFG) is not a reliable option. This review focuses on the latest therapeutic strategies for the treatment of adipose tissue defects using biomolecule formulations and delivery, and specifically engineered biomaterials. Additionally, the clinical need for reliable off-the-shelf therapies, animal models, and challenges facing current technologies are discussed.
Collapse
Affiliation(s)
- Christopher M Mahoney
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Cayla Imbarlina
- Department of Biology, Carlow University, Pittsburgh, PA, United States
| | - Cecelia C Yates
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Health Promotion and Development, School of Nursing, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, Pittsburgh, PA, United States
| | - Kacey G Marra
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, Pittsburgh, PA, United States.,Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
29
|
Dong J, Yu M, Zhang Y, Yin Y, Tian W. Recent developments and clinical potential on decellularized adipose tissue. J Biomed Mater Res A 2018; 106:2563-2574. [PMID: 29664222 DOI: 10.1002/jbm.a.36435] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/20/2018] [Accepted: 04/10/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Jia Dong
- State Key Laboratory of Oral Disease; West China Hospital of Stomatology, Sichuan University; Chengdu China
- National Clinical Research Center for Oral Diseases; West China Hospital of Stomatology, Sichuan University; Chengdu China
- National Engineering Laboratory for Oral Regenerative Medicine; West China Hospital of Stomatology, Sichuan University; Chengdu China
- Department of Oral and Maxillofacial Surgery; West China Hospital of Stomatology, Sichuan University; Chengdu China
| | - Mei Yu
- State Key Laboratory of Oral Disease; West China Hospital of Stomatology, Sichuan University; Chengdu China
- National Clinical Research Center for Oral Diseases; West China Hospital of Stomatology, Sichuan University; Chengdu China
- National Engineering Laboratory for Oral Regenerative Medicine; West China Hospital of Stomatology, Sichuan University; Chengdu China
- Department of Oral and Maxillofacial Surgery; West China Hospital of Stomatology, Sichuan University; Chengdu China
| | - Yan Zhang
- State Key Laboratory of Oral Disease; West China Hospital of Stomatology, Sichuan University; Chengdu China
- National Clinical Research Center for Oral Diseases; West China Hospital of Stomatology, Sichuan University; Chengdu China
- National Engineering Laboratory for Oral Regenerative Medicine; West China Hospital of Stomatology, Sichuan University; Chengdu China
- Department of Oral and Maxillofacial Surgery; West China Hospital of Stomatology, Sichuan University; Chengdu China
| | - Yin Yin
- State Key Laboratory of Oral Disease; West China Hospital of Stomatology, Sichuan University; Chengdu China
- National Clinical Research Center for Oral Diseases; West China Hospital of Stomatology, Sichuan University; Chengdu China
- National Engineering Laboratory for Oral Regenerative Medicine; West China Hospital of Stomatology, Sichuan University; Chengdu China
- Department of Oral and Maxillofacial Surgery; West China Hospital of Stomatology, Sichuan University; Chengdu China
| | - Weidong Tian
- State Key Laboratory of Oral Disease; West China Hospital of Stomatology, Sichuan University; Chengdu China
- National Clinical Research Center for Oral Diseases; West China Hospital of Stomatology, Sichuan University; Chengdu China
- National Engineering Laboratory for Oral Regenerative Medicine; West China Hospital of Stomatology, Sichuan University; Chengdu China
- Department of Oral and Maxillofacial Surgery; West China Hospital of Stomatology, Sichuan University; Chengdu China
| |
Collapse
|
30
|
Spang MT, Christman KL. Extracellular matrix hydrogel therapies: In vivo applications and development. Acta Biomater 2018; 68:1-14. [PMID: 29274480 DOI: 10.1016/j.actbio.2017.12.019] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/09/2017] [Accepted: 12/15/2017] [Indexed: 12/12/2022]
Abstract
Decellularized extracellular matrix (ECM) has been widely used for tissue engineering applications and is becoming increasingly versatile as it can take many forms, including patches, powders, and hydrogels. Following additional processing, decellularized ECM can form an inducible hydrogel that can be injected, providing for new minimally-invasive procedure opportunities. ECM hydrogels have been derived from numerous tissue sources and applied to treat many disease models, such as ischemic injuries and organ regeneration or replacement. This review will focus on in vivo applications of ECM hydrogels and functional outcomes in disease models, as well as discuss considerations for clinical translation. STATEMENT OF SIGNIFICANCE Extracellular matrix (ECM) hydrogel therapies are being developed to treat diseased or damaged tissues and organs throughout the body. Many ECM hydrogels are progressing from in vitro models to in vivo biocompatibility studies and functional models. There is significant potential for clinical translation of these therapies since one ECM hydrogel therapy is already in a Phase 1 clinical trial.
Collapse
|
31
|
Decellularized Adipose Tissue Scaffolds for Soft Tissue Regeneration and Adipose-Derived Stem/Stromal Cell Delivery. Methods Mol Biol 2018; 1773:53-71. [PMID: 29687381 DOI: 10.1007/978-1-4939-7799-4_6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Surgically discarded adipose tissue is not only an abundant source of multipotent adipose-derived stem/stromal cells (ASCs) but can also be decellularized to obtain a biomimetic microenvironment for tissue engineering applications. The decellularization methods involve processing excised fat through a series of chemical, mechanical, and enzymatic treatment stages designed to extract cells, cellular components, and lipid from the tissues. This process yields a complex 3D bioscaffold enriched in collagens that mimics the biochemical and biomechanical properties of the native extracellular matrix (ECM). For ASC culture and delivery, decellularized adipose tissue (DAT) provides a cell-supportive platform that is conducive to adipogenesis. While DAT can be applied in its intact form as an off-the-shelf adipogenic matrix, it can also be used as an ECM source for the fabrication of an array of other scaffold formats including adipose ECM-derived microcarriers and porous foams. In this chapter, we describe the methods developed in our lab to decellularize human adipose tissue and to further process it into a variety of scaffolding materials for a range of applications in soft tissue regeneration, wound healing, and cell culture.
Collapse
|
32
|
Robb KP, Shridhar A, Flynn LE. Decellularized Matrices As Cell-Instructive Scaffolds to Guide Tissue-Specific Regeneration. ACS Biomater Sci Eng 2017; 4:3627-3643. [PMID: 33429606 DOI: 10.1021/acsbiomaterials.7b00619] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Decellularized scaffolds are promising clinically translational biomaterials that can be applied to direct cell responses and promote tissue regeneration. Bioscaffolds derived from the extracellular matrix (ECM) of decellularized tissues can naturally mimic the complex extracellular microenvironment through the retention of compositional, biomechanical, and structural properties specific to the native ECM. Increasingly, studies have investigated the use of ECM-derived scaffolds as instructive substrates to recapitulate properties of the stem cell niche and guide cell proliferation, paracrine factor production, and differentiation in a tissue-specific manner. Here, we review the application of decellularized tissue scaffolds as instructive matrices for stem or progenitor cells, with a focus on the mechanisms through which ECM-derived scaffolds can mediate cell behavior to promote tissue-specific regeneration. We conclude that although additional preclinical studies are required, ECM-derived scaffolds are a promising platform to guide cell behavior and may have widespread clinical applications in the field of regenerative medicine.
Collapse
Affiliation(s)
- Kevin P Robb
- Biomedical Engineering Graduate Program, The University of Western Ontario, Claudette MacKay Lassonde Pavilion, London, Ontario, Canada N6A 5B9
| | - Arthi Shridhar
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, Thompson Engineering Building, London, Ontario, Canada N6A 5B9
| | - Lauren E Flynn
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, Thompson Engineering Building, London, Ontario, Canada N6A 5B9.,Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada N6A 5C1
| |
Collapse
|
33
|
Tissue Augmentation with Allograft Adipose Matrix For the Diabetic Foot in Remission. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2017; 5:e1555. [PMID: 29184753 PMCID: PMC5682189 DOI: 10.1097/gox.0000000000001555] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/08/2017] [Indexed: 01/22/2023]
Abstract
Supplemental Digital Content is available in the text. Background: Repetitive stress on the neuropathic plantar foot is the primary cause of diabetic foot ulcers. After healing, recurrence is common. Modulating plantar pressure has been associated with extension of ulcer free days. Therefore, the goal of this study was to determine the effects of an injectable allograft adipose matrix in providing a protective padding and reducing the pressure in the plantar foot. Methods: After healing his recurrent ulcer using total contact casting, a 71-year-old man with a 9-year history of recurrent diabetic foot ulcers was treated with injection of allograft adipose matrix, procured from donated human tissue. This was delivered under postulcerative callus on the weight-bearing surface of the distal end of the first ray resection. As is standard in our clinic for tissue augmentation procedures, our patient underwent serial plantar pressure mapping using an in-shoe pressure monitoring system. Results: There was a 76.8% decrease in the mean peak pressure due to the fat matrix injected into the second metatarsal region and a 70.1% decrease in mean peak pressure for the first ray resection at the site of the postulcerative callus. By 2 months postoperatively, there was no evidence of residual callus. This extended out to the end of clinical follow-up at 4 months. Conclusion: The results from this preliminary experience suggest that allograft adipose matrix delivered to the high risk diabetic foot may have promise in reducing tissue stress over pre- and postulcerative lesions. This may ultimately assist the clinician in extending ulcer-free days for patients in diabetic foot remission.
Collapse
|
34
|
Kayabolen A, Keskin D, Aykan A, Karslıoglu Y, Zor F, Tezcaner A. Native extracellular matrix/fibroin hydrogels for adipose tissue engineering with enhanced vascularization. ACTA ACUST UNITED AC 2017; 12:035007. [PMID: 28361795 DOI: 10.1088/1748-605x/aa6a63] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adipose tissue engineering is a promising field for regeneration of soft tissue defects. However, vascularization is needed since nutrients and oxygen cannot reach cells in thick implants by diffusion. Obtaining a biocompatible scaffold with good mechanical properties is another problem. In this study, we aimed to develop thick and vascularized adipose tissue constructs supporting cell viability and adipose tissue regeneration. Hydrogels were prepared by mixing rat decellularized adipose tissue (DAT) and silk fibroin (Fib) at different v/v ratios (3:1, 1:1 and 1:3) and vortexing. Gelation times decreased with increasing fibroin ratio Among hydrogel groups 1:3-DAT:Fib ratio group showed similar mechanical properties with adipose tissue. Both pre-adipocytes and pre-endothelial cells, pre-differentiated from adipose derived stem cells (ASCs), were encapsulated in hydrogels at a 1: 3 ratio. In vitro analyses showed that hydrogels with 1:3 (v/v) DAT:Fib ratio supported better cell viability. Pre-adipocytes had lipid vesicles, and pre-endothelial cells formed tubular structures inside hydrogels only after 3 days in vitro. When endothelial and adipogenic pre-differentiated ASCs (for 7 days before encapsulation) were encapsulated together into 1:3-DAT:Fib hydrogels both cell types continued to differentiate into the committed cell lineage. Vascularization process in the hydrogels implanted with adipogenic and endothelial pre-differentiated ASCs took place between the first and second week after implantation which was faster than observed in the empty hydrogels. ASCs pre-differentiated towards adipogenic lineage inside hydrogels had begun to accumulate lipid vesicles after 1 week of subcutaneous implantation Based on these results, we suggest that 1:3-DAT:Fib hydrogels with enhanced vascularization hold promise for adipose tissue engineering.
Collapse
Affiliation(s)
- Alisan Kayabolen
- Department of Biomedical Engineering, Middle East Technical University, Turkey
| | | | | | | | | | | |
Collapse
|
35
|
Visscher LE, Cheng M, Chhaya M, Hintz ML, Schantz JT, Tran P, Ung O, Wong C, Hutmacher DW. Breast Augmentation and Reconstruction from a Regenerative Medicine Point of View: State of the Art and Future Perspectives. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:281-293. [PMID: 28437235 DOI: 10.1089/ten.teb.2016.0303] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Breast reconstruction and augmentation are very common procedures, yet the prevailing current methods utilize silicone implants that may have significant local complications requiring reoperation. Lipofillling is increasingly used to contour and is considered safe, however, its utility is limited by significant volume loss. A new approach could offer an alternative and increase the scope of patient choice. A small number of teams around the world are investigating a breast tissue engineering (TE) paradigm. Conventional breast TE concepts are based on seeding a scaffold with the patients' own stem cells. However, the clinical viability of many of these approaches is limited by their costs in relevant volumes. In this article the state of the art of tissue-engineered breast reconstruction is reviewed and future perspectives are presented and discussed.
Collapse
Affiliation(s)
- Luke E Visscher
- 1 Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology , Australia .,2 School of Medicine, University of Queensland , Brisbane, Australia
| | - Matthew Cheng
- 1 Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology , Australia .,3 Plastic and Reconstructive Surgery Unit, Princess Alexandra Hospital , Woolloongabba, Australia
| | - Mohit Chhaya
- 1 Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology , Australia
| | - Madeline L Hintz
- 1 Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology , Australia
| | - Jan-Thorsten Schantz
- 4 Department of Plastic and Hand Surgery, Klinikum rechts der Isar, Technische Universität München , München, Germany
| | - Phong Tran
- 1 Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology , Australia
| | - Owen Ung
- 2 School of Medicine, University of Queensland , Brisbane, Australia .,5 Surg 1, Breast Endocrine Unit, Royal Brisbane and Women's Hospital , Herston, Brisbane, Australia
| | - Clement Wong
- 2 School of Medicine, University of Queensland , Brisbane, Australia .,5 Surg 1, Breast Endocrine Unit, Royal Brisbane and Women's Hospital , Herston, Brisbane, Australia
| | - Dietmar W Hutmacher
- 1 Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology , Australia .,6 ARC Centre in Additive Biomanufacturing, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
36
|
Brett E, Chung N, Leavitt WT, Momeni A, Longaker MT, Wan DC. A Review of Cell-Based Strategies for Soft Tissue Reconstruction. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:336-346. [PMID: 28372485 DOI: 10.1089/ten.teb.2016.0455] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Soft tissue reconstruction to restore volume to damaged or deficient tissue beneath the skin remains a challenging endeavor. Current techniques are centered around autologous fat transfer, or the use of synthetic substitutes, however, a great deal of scientific inquiry has been made into both the molecular mechanisms involved in, and limitations of, de novo adipogenesis, that is, the formation of new adipose tissue from precursor cells. To best comprehend these mechanisms, an understanding of defined markers for adipogenic differentiation, and knowledge of both commercially available and primary cell lines that enable in vitro and in vivo studies is necessary. We review the growth factors, proteins, cytokines, drugs, and molecular pathways that have shown promise in enhancing adipogenesis and vasculogenesis, in addition to the multitude of scaffolds that act as delivery vehicles to support these processes. While progress continues on these fronts, equally important is how researchers are optimizing clinically employed strategies such as autologous fat transfer through cell-based intervention, and the potential to augment this approach through isolation of preferentially adipogenic or angiogenic precursor subpopulations, which exists on the horizon. This review will highlight the novel molecular and synthetic modifications currently being studied for inducing adipose tissue regeneration on a cellular level, which will expand our arsenal of techniques for approaching soft tissue reconstruction.
Collapse
Affiliation(s)
- Elizabeth Brett
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Plastic and Reconstructive Surgery Division, Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - Natalie Chung
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Plastic and Reconstructive Surgery Division, Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - William Tripp Leavitt
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Plastic and Reconstructive Surgery Division, Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - Arash Momeni
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Plastic and Reconstructive Surgery Division, Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - Michael T Longaker
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Plastic and Reconstructive Surgery Division, Department of Surgery, Stanford University School of Medicine , Stanford, California.,2 Institute for Stem Cell Biology and Regenerative Medicine, Stanford University , Stanford, California
| | - Derrick C Wan
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Plastic and Reconstructive Surgery Division, Department of Surgery, Stanford University School of Medicine , Stanford, California
| |
Collapse
|
37
|
Tukmachev D, Forostyak S, Koci Z, Zaviskova K, Vackova I, Vyborny K, Sandvig I, Sandvig A, Medberry CJ, Badylak SF, Sykova E, Kubinova S. Injectable Extracellular Matrix Hydrogels as Scaffolds for Spinal Cord Injury Repair. Tissue Eng Part A 2016; 22:306-17. [PMID: 26729284 DOI: 10.1089/ten.tea.2015.0422] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Restoration of lost neuronal function after spinal cord injury (SCI) still remains a big challenge for current medicine. One important repair strategy is bridging the SCI lesion with a supportive and stimulatory milieu that would enable axonal rewiring. Injectable extracellular matrix (ECM)-derived hydrogels have been recently reported to have neurotrophic potential in vitro. In this study, we evaluated the presumed neuroregenerative properties of ECM hydrogels in vivo in the acute model of SCI. ECM hydrogels were prepared by decellularization of porcine spinal cord (SC) or porcine urinary bladder (UB), and injected into a spinal cord hemisection cavity. Histological analysis and real-time qPCR were performed at 2, 4, and 8 weeks postinjection. Both types of hydrogels integrated into the lesion and stimulated neovascularization and axonal ingrowth into the lesion. On the other hand, massive infiltration of macrophages into the lesion and rapid hydrogel degradation did not prevent cyst formation, which progressively developed over 8 weeks. No significant differences were found between SC-ECM and UB-ECM. Gene expression analysis revealed significant downregulation of genes related to immune response and inflammation in both hydrogel types at 2 weeks post SCI. A combination of human mesenchymal stem cells with SC-ECM did not further promote ingrowth of axons and blood vessels into the lesion, when compared with the SC-ECM hydrogel alone. In conclusion, both ECM hydrogels bridged the lesion cavity, modulated the innate immune response, and provided the benefit of a stimulatory substrate for in vivo neural tissue regeneration. However, fast hydrogel degradation might be a limiting factor for the use of native ECM hydrogels in the treatment of acute SCI.
Collapse
Affiliation(s)
- Dmitry Tukmachev
- 1 Institute of Experimental Medicine AS CR , Prague, Czech Republic .,2 2nd Medical Faculty, Charles University , Prague, Czech Republic
| | - Serhiy Forostyak
- 1 Institute of Experimental Medicine AS CR , Prague, Czech Republic .,2 2nd Medical Faculty, Charles University , Prague, Czech Republic
| | - Zuzana Koci
- 1 Institute of Experimental Medicine AS CR , Prague, Czech Republic .,2 2nd Medical Faculty, Charles University , Prague, Czech Republic
| | - Kristyna Zaviskova
- 1 Institute of Experimental Medicine AS CR , Prague, Czech Republic .,2 2nd Medical Faculty, Charles University , Prague, Czech Republic
| | - Irena Vackova
- 1 Institute of Experimental Medicine AS CR , Prague, Czech Republic
| | - Karel Vyborny
- 1 Institute of Experimental Medicine AS CR , Prague, Czech Republic .,2 2nd Medical Faculty, Charles University , Prague, Czech Republic
| | - Ioanna Sandvig
- 3 Department of Neuroscience, Norwegian University of Science and Technology , Trondheim, Norway .,4 John Van Geest Centre for Brain Repair, School of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom
| | - Axel Sandvig
- 3 Department of Neuroscience, Norwegian University of Science and Technology , Trondheim, Norway .,5 Division of Pharmacology and Clinical Neuroscience, Department of Neurosurgery, Umeå University , Umeå, Sweden
| | | | - Stephen F Badylak
- 6 McGowan Institute for Regenerative Medicine , Pittsburgh, Pennsylvania
| | - Eva Sykova
- 1 Institute of Experimental Medicine AS CR , Prague, Czech Republic .,2 2nd Medical Faculty, Charles University , Prague, Czech Republic
| | - Sarka Kubinova
- 1 Institute of Experimental Medicine AS CR , Prague, Czech Republic
| |
Collapse
|
38
|
Agmon G, Christman KL. Controlling stem cell behavior with decellularized extracellular matrix scaffolds. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2016; 20:193-201. [PMID: 27524932 PMCID: PMC4979580 DOI: 10.1016/j.cossms.2016.02.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Decellularized tissues have become a common regenerative medicine platform with multiple materials being researched in academic laboratories, tested in animal studies, and used clinically. Ideally, when a tissue is decellularized the native cell niche is maintained with many of the structural and biochemical cues that naturally interact with the cells of that particular tissue. This makes decellularized tissue materials an excellent platform for providing cells with the signals needed to initiate and maintain differentiation into tissue-specific lineages. The extracellular matrix (ECM) that remains after the decellularization process contains the components of a tissue specific microenvironment that is not possible to create synthetically. The ECM of each tissue has a different composition and structure and therefore has unique properties and potential for affecting cell behavior. This review describes the common methods for preparing decellularized tissue materials and the effects that decellularized materials from different tissues have on cell phenotype.
Collapse
|
39
|
Microenvironmental Control of Adipocyte Fate and Function. Trends Cell Biol 2016; 26:745-755. [PMID: 27268909 DOI: 10.1016/j.tcb.2016.05.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/09/2016] [Accepted: 05/16/2016] [Indexed: 01/07/2023]
Abstract
The properties of tissue-specific microenvironments vary widely in the human body and demonstrably influence the structure and function of many cell types. Adipocytes are no exception, responding to cues in specialized niches to perform vital metabolic and endocrine functions. The adipose microenvironment is remodeled during tissue expansion to maintain the structural and functional integrity of the tissue and disrupted remodeling in obesity contributes to the progression of metabolic syndrome, breast cancer, and other malignancies. The increasing incidence of these obesity-related diseases and the recent focus on improved in vitro models of human tissue biology underscore growing interest in the regulatory role of adipocyte microenvironments in health and disease.
Collapse
|
40
|
Wassenaar JW, Braden RL, Osborn KG, Christman KL. Modulating In Vivo Degradation Rate of Injectable Extracellular Matrix Hydrogels. J Mater Chem B 2016; 4:2794-2802. [PMID: 27563436 PMCID: PMC4993464 DOI: 10.1039/c5tb02564h] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Extracellular matrix (ECM) derived hydrogels are increasingly used as scaffolds to stimulate endogenous repair. However, few studies have examined how altering the degradation rates of these materials affect cellular interaction in vivo. This study sought to examine how crosslinking or matrix metalloproteinase (MMP) inhibition by doxycycline could be employed to modulate the degradation rate of an injectable hydrogel derived from decellularized porcine ventricular myocardium. While both approaches were effective in reducing degradation in vitro, only doxycycline significantly prolonged hydrogel degradation in vivo without affecting material biocompatibility. In addition, unlike crosslinking, incorporation of doxycycline into the hydrogel did not affect mechanical properties. Lastly, the results of this study highlighted the need for development of novel crosslinkers for in situ modification of injectable ECM-derived hydrogels, as none of the crosslinking agents investigated in this study were both biocompatible and effective.
Collapse
Affiliation(s)
- Jean W. Wassenaar
- Department of Bioengineering and Sanford Consortium for Regenerative Medicine, University of California, San Diego
| | - Rebecca L. Braden
- Department of Bioengineering and Sanford Consortium for Regenerative Medicine, University of California, San Diego
| | - Kent G. Osborn
- Office of Animal Research, University of California, San Diego
| | - Karen L. Christman
- Department of Bioengineering and Sanford Consortium for Regenerative Medicine, University of California, San Diego
| |
Collapse
|
41
|
Banyard DA, Borad V, Amezcua E, Wirth GA, Evans GRD, Widgerow AD. Preparation, Characterization, and Clinical Implications of Human Decellularized Adipose Tissue Extracellular Matrix (hDAM): A Comprehensive Review. Aesthet Surg J 2016; 36:349-57. [PMID: 26333991 DOI: 10.1093/asj/sjv170] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2015] [Indexed: 12/17/2022] Open
Abstract
Fat grafting is commonly employed by plastic and reconstructive surgeons to address contour abnormalities and soft-tissue defects; however, because retention rates and thus volume filling effects are unpredictable, there is a search for new and innovative approaches. Initial studies on the use of human decellularized adipose tissue extracellular matrix (hDAM) show promise for its use not only in tissue engineering, but also in fat grafting. In this review, we examine and analyze the literature for the preparation, characterization, and use of hDAM and its derivatives in tissue engineering and plastic surgery applications. All studies reviewed involve physical, chemical, and/or biological treatment stages for the preparation of hDAM; however a distinction should be made between detergent and nondetergent-based processing, the latter of which appears to preserve the native integrity of the hDAM while most-efficiently achieving complete decellularization. Methods of hDAM characterization vary among groups and included simple and immunohistochemical staining, biochemical assays, 3-dimensional (3D) imaging, and mechano-stress testing, all of which are necessary to achieve a comprehensive description of this novel tissue. Finally, we examine the various preclinical models utilized to optimize hDAM performance, which primarily include the addition of adipose-derived stem cells or cross-linking agents. Overall, hDAM appears to be a promising adjunct in fat-grafting applications or even possibly as a stand-alone soft-tissue filler with off-the-shelf potential for commercial applications.
Collapse
Affiliation(s)
- Derek A Banyard
- Dr Banyard is a Post-Doctoral Research Fellow and California Institute for Regenerative Medicine (CIRM) Clinical Fellow, Mr. Amezcua is an Undergraduate Student Research Assistant, and Dr Widgerow is Director and Clinical Professor, The Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine. Dr Borad is a Plastic Surgery Resident, Department of Surgery, University of Minnesota, Minneapolis, Minnesota. Dr Wirth is a Professor and Dr Evans is Chairman and a Professor, Department of Plastic Surgery, University of California, Irvine
| | - Vedant Borad
- Dr Banyard is a Post-Doctoral Research Fellow and California Institute for Regenerative Medicine (CIRM) Clinical Fellow, Mr. Amezcua is an Undergraduate Student Research Assistant, and Dr Widgerow is Director and Clinical Professor, The Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine. Dr Borad is a Plastic Surgery Resident, Department of Surgery, University of Minnesota, Minneapolis, Minnesota. Dr Wirth is a Professor and Dr Evans is Chairman and a Professor, Department of Plastic Surgery, University of California, Irvine
| | - Eduardo Amezcua
- Dr Banyard is a Post-Doctoral Research Fellow and California Institute for Regenerative Medicine (CIRM) Clinical Fellow, Mr. Amezcua is an Undergraduate Student Research Assistant, and Dr Widgerow is Director and Clinical Professor, The Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine. Dr Borad is a Plastic Surgery Resident, Department of Surgery, University of Minnesota, Minneapolis, Minnesota. Dr Wirth is a Professor and Dr Evans is Chairman and a Professor, Department of Plastic Surgery, University of California, Irvine
| | - Garrett A Wirth
- Dr Banyard is a Post-Doctoral Research Fellow and California Institute for Regenerative Medicine (CIRM) Clinical Fellow, Mr. Amezcua is an Undergraduate Student Research Assistant, and Dr Widgerow is Director and Clinical Professor, The Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine. Dr Borad is a Plastic Surgery Resident, Department of Surgery, University of Minnesota, Minneapolis, Minnesota. Dr Wirth is a Professor and Dr Evans is Chairman and a Professor, Department of Plastic Surgery, University of California, Irvine
| | - Gregory R D Evans
- Dr Banyard is a Post-Doctoral Research Fellow and California Institute for Regenerative Medicine (CIRM) Clinical Fellow, Mr. Amezcua is an Undergraduate Student Research Assistant, and Dr Widgerow is Director and Clinical Professor, The Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine. Dr Borad is a Plastic Surgery Resident, Department of Surgery, University of Minnesota, Minneapolis, Minnesota. Dr Wirth is a Professor and Dr Evans is Chairman and a Professor, Department of Plastic Surgery, University of California, Irvine
| | - Alan D Widgerow
- Dr Banyard is a Post-Doctoral Research Fellow and California Institute for Regenerative Medicine (CIRM) Clinical Fellow, Mr. Amezcua is an Undergraduate Student Research Assistant, and Dr Widgerow is Director and Clinical Professor, The Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine. Dr Borad is a Plastic Surgery Resident, Department of Surgery, University of Minnesota, Minneapolis, Minnesota. Dr Wirth is a Professor and Dr Evans is Chairman and a Professor, Department of Plastic Surgery, University of California, Irvine
| |
Collapse
|
42
|
Han TTY, Toutounji S, Amsden BG, Flynn LE. Adipose-derived stromal cells mediate in vivo adipogenesis, angiogenesis and inflammation in decellularized adipose tissue bioscaffolds. Biomaterials 2015; 72:125-37. [PMID: 26360790 DOI: 10.1016/j.biomaterials.2015.08.053] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/25/2015] [Accepted: 08/28/2015] [Indexed: 12/20/2022]
Abstract
Decellularized adipose tissue (DAT) has shown promise as an adipogenic bioscaffold for soft tissue augmentation and reconstruction. The objective of the current study was to investigate the effects of allogeneic adipose-derived stem/stromal cells (ASCs) on in vivo fat regeneration in DAT bioscaffolds using an immunocompetent rat model. ASC seeding significantly enhanced angiogenesis and adipogenesis, with cell tracking studies indicating that the newly-forming tissues were host-derived. Incorporating ASCs also mediated the inflammatory response and promoted a more constructive macrophage phenotype. A fraction of the CD163(+) macrophages in the implants expressed adipogenic markers, with higher levels of this "adipocyte-like" phenotype in proximity to the developing adipose tissues. Our results indicate that the combination of ASCs and adipose extracellular matrix (ECM) provides an inductive microenvironment for adipose regeneration mediated by infiltrating host cell populations. The DAT scaffolds are a useful tissue-specific model system for investigating the mechanisms of in vivo adipogenesis that may help to develop a better understanding of this complex process in the context of both regeneration and disease. Overall, combining adipose-derived matrices with ASCs is a highly promising approach for the in situ regeneration of host-derived adipose tissue.
Collapse
Affiliation(s)
- Tim Tian Y Han
- Department of Chemical Engineering, Queen's University, 19 Division Street, Kingston, Ontario, Canada, K7L 3N6; Human Mobility Research Centre, Kingston General Hospital, 76 Stuart Street, Kingston, Ontario, Canada, K7L 2V7
| | - Sandra Toutounji
- Department of Chemical Engineering, Queen's University, 19 Division Street, Kingston, Ontario, Canada, K7L 3N6
| | - Brian G Amsden
- Department of Chemical Engineering, Queen's University, 19 Division Street, Kingston, Ontario, Canada, K7L 3N6; Human Mobility Research Centre, Kingston General Hospital, 76 Stuart Street, Kingston, Ontario, Canada, K7L 2V7
| | - Lauren E Flynn
- Department of Chemical Engineering, Queen's University, 19 Division Street, Kingston, Ontario, Canada, K7L 3N6; Human Mobility Research Centre, Kingston General Hospital, 76 Stuart Street, Kingston, Ontario, Canada, K7L 2V7; Department of Chemical and Biochemical Engineering, Thompson Engineering Building, The University of Western Ontario, London, Ontario, Canada, N6A 5B9; Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1.
| |
Collapse
|
43
|
Ungerleider JL, Johnson TD, Rao N, Christman KL. Fabrication and characterization of injectable hydrogels derived from decellularized skeletal and cardiac muscle. Methods 2015; 84:53-9. [PMID: 25843605 DOI: 10.1016/j.ymeth.2015.03.024] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/24/2015] [Accepted: 03/26/2015] [Indexed: 12/31/2022] Open
Abstract
Biomaterials, which can contain appropriate biomechanical and/or biochemical cues, are increasingly being investigated as potential scaffolds for tissue regeneration and/or repair for treating myocardial infarction, heart failure, and peripheral artery disease. Specifically, injectable hydrogels are touted for their minimally invasive delivery, ability to self-assemble in situ, and capacity to encourage host tissue regeneration. Here we present detailed methods for fabricating and characterizing decellularized injectable cardiac and skeletal muscle extracellular matrix (ECM) hydrogels. The ECM derived hydrogels have low cellular and DNA content, retain sulfated glycosaminoglycans and other extracellular matrix proteins such as collagen, gel at physiologic temperature and pH, and assume a nanofibrous architecture. These injectable hydrogels are amenable to minimally invasive, tissue specific biomaterial therapies for treating myocardial infarction and peripheral artery disease.
Collapse
Affiliation(s)
- J L Ungerleider
- Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - T D Johnson
- Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - N Rao
- Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - K L Christman
- Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
44
|
Advances in Mesenchymal Stem Cell-based Strategies for Cartilage Repair and Regeneration. Stem Cell Rev Rep 2014; 10:686-96. [DOI: 10.1007/s12015-014-9526-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|