1
|
Gkioka M, Rausch-Fan X. Antimicrobial Effects of Metal Coatings or Physical, Chemical Modifications of Titanium Dental Implant Surfaces for Prevention of Peri-Implantitis: A Systematic Review of In Vivo Studies. Antibiotics (Basel) 2024; 13:908. [PMID: 39335082 PMCID: PMC11428254 DOI: 10.3390/antibiotics13090908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Introduction: Peri-implantitis poses a significant challenge for implant dentistry due to its association with bacterial colonization on implant surfaces and the complexity of its management. This systematic review aims to assess evidence from in vivo studies regarding the antimicrobial efficacy of titanium (Ti) dental implant surfaces following physical/chemical modifications or the application of various metal element coatings in preventing bacterial growth associated with peri-implantitis. Materials and Methods: A literature review was conducted across four scientific databases (PubMed, Embase, Scopus, Web of Science), encompassing in vivo studies published between 2013 and 2024, and 18 reports were included in the systematic review. Results: The findings suggest that titanium dental implant surfaces, following physical/chemical modifications and metal element coatings, exhibit antimicrobial effects against bacteria associated with peri-implantitis in humans and various animal models. Conclusions: The reviewed studies indicated a reduction in bacterial colonization, diminished biofilm formation, and decreased signs of inflammation in the peri-implant tissues, which provides evidence that physical/chemical alterations on titanium dental implant surfaces or metal element coatings, like silver (Ag), zinc (Zn), magnesium (Mg), and copper (Cu), demonstrate antimicrobial properties in in vivo studies. However, caution is warranted when translating findings to clinical practice due to methodological disparities and high bias risks. Further larger-scale clinical trials are imperative to assess their long-term efficacy and validate their clinical applicability.
Collapse
Affiliation(s)
- Maria Gkioka
- Department of Dentistry, Division of Oral and Maxillofacial Surgery, Vaud University Hospital Center, 1005 Lausanne, Switzerland
| | - Xiaohui Rausch-Fan
- Division of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
2
|
Fernández-Grajera M, Pacha-Olivenza MA, Fernández-Calderón MC, González-Martín ML, Gallardo-Moreno AM. Dynamic Adhesive Behavior and Biofilm Formation of Staphylococcus aureus on Polylactic Acid Surfaces in Diabetic Environments. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3349. [PMID: 38998429 PMCID: PMC11243244 DOI: 10.3390/ma17133349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
Interest in biodegradable implants has focused attention on the resorbable polymer polylactic acid. However, the risk of these materials promoting infection, especially in patients with existing pathologies, needs to be monitored. The enrichment of a bacterial adhesion medium with compounds that are associated with human pathologies can help in understanding how these components affect the development of infectious processes. Specifically, this work evaluates the influence of glucose and ketone bodies (in a diabetic context) on the adhesion dynamics of S. aureus to the biomaterial polylactic acid, employing different approaches and discussing the results based on the physical properties of the bacterial surface and its metabolic activity. The combination of ketoacidosis and hyperglycemia (GK2) appears to be the worst scenario: this system promotes a state of continuous bacterial colonization over time, suppressing the stationary phase of adhesion and strengthening the attachment of bacteria to the surface. In addition, these supplements cause a significant increase in the metabolic activity of the bacteria. Compared to non-enriched media, biofilm formation doubles under ketoacidosis conditions, while in the planktonic state, it is glucose that triggers metabolic activity, which is practically suppressed when only ketone components are present. Both information must be complementary to understand what can happen in a real system, where planktonic bacteria are the ones that initially colonize a surface, and, subsequently, these attached bacteria end up forming a biofilm. This information highlights the need for good monitoring of diabetic patients, especially if they use an implanted device made of PLA.
Collapse
Affiliation(s)
- María Fernández-Grajera
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 06006 Badajoz, Spain; (M.F.-G.); (M.A.P.-O.); (M.C.F.-C.); (A.M.G.-M.)
- University Institute of Extremadura Sanity Research (INUBE), 06006 Badajoz, Spain
| | - Miguel A. Pacha-Olivenza
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 06006 Badajoz, Spain; (M.F.-G.); (M.A.P.-O.); (M.C.F.-C.); (A.M.G.-M.)
- University Institute of Extremadura Sanity Research (INUBE), 06006 Badajoz, Spain
- Department of Biomedical Science, University of Extremadura, 06006 Badajoz, Spain
| | - María Coronada Fernández-Calderón
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 06006 Badajoz, Spain; (M.F.-G.); (M.A.P.-O.); (M.C.F.-C.); (A.M.G.-M.)
- University Institute of Extremadura Sanity Research (INUBE), 06006 Badajoz, Spain
- Department of Biomedical Science, University of Extremadura, 06006 Badajoz, Spain
| | - María Luisa González-Martín
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 06006 Badajoz, Spain; (M.F.-G.); (M.A.P.-O.); (M.C.F.-C.); (A.M.G.-M.)
- University Institute of Extremadura Sanity Research (INUBE), 06006 Badajoz, Spain
- Department of Applied Physics, University of Extremadura, 06006 Badajoz, Spain
| | - Amparo M. Gallardo-Moreno
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 06006 Badajoz, Spain; (M.F.-G.); (M.A.P.-O.); (M.C.F.-C.); (A.M.G.-M.)
- University Institute of Extremadura Sanity Research (INUBE), 06006 Badajoz, Spain
- Department of Applied Physics, University of Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
3
|
Barylski A, Aniołek K, Dercz G, Matuła I, Kaptacz S, Rak J, Paszkowski R. Improving the Tribological Properties of WE43 and WE54 Magnesium Alloys by Deep Cryogenic Treatment with Precipitation Hardening in Linear Reciprocating Motion. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2011. [PMID: 38730818 PMCID: PMC11084510 DOI: 10.3390/ma17092011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024]
Abstract
This paper presents the results of tribological tests on WE43 and WE54 magnesium alloys with rare earth metals performed in linear reciprocating motion for four different material couples (AISI 316-L steel, silicon nitride-Si3N4, WC tungsten carbide, and zirconium dioxide-ZrO2). Additionally, magnesium alloys were subjected to a complex heat treatment consisting of precipitation hardening combined with a deep cryogenic treatment. The study presents the effect of deep cryogenic treatment combined with precipitation hardening on the tribological properties of WE43 and WE54 alloys. Tribological tests revealed the most advantageous results for the magnesium alloy-AISI 316-L steel friction node. For both alloys tested after heat treatment, a nearly 2-fold reduction in specific wear rate has been achieved. Furthermore, microscopic examinations of the wear track areas and wear products were performed, and the wear mechanisms and types of wear products occurring in linear reciprocating friction were determined. Wear measurements were taken using the 3D profilometric method and compared with the results obtained from calculations performed in accordance with ASTM G133 and ASTM D7755, which were modified to improve the accuracy of the calculation results (the number of measured profiles was increased from four to eight). Appropriately selected calculation methods allow for obtaining reliable tribological test results and enabling the verification of both the most advantageous heat treatment variant and material couple, which results in an increase in the durability of the tested alloys.
Collapse
Affiliation(s)
- Adrian Barylski
- Faculty of Science and Technology, Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty Street 1A, 41-500 Chorzów, Poland; (K.A.); (G.D.); (I.M.); (S.K.); (J.R.); (R.P.)
| | | | | | | | | | | | | |
Collapse
|
4
|
Wu H, Yu M, Zhang S, You M, Xiong A, Feng B, Niu J, Yuan G, Yue B, Pei J. Mg-based implants with a sandwiched composite coating simultaneously facilitate antibacterial and osteogenic properties. J Mater Chem B 2024; 12:2015-2027. [PMID: 38304935 DOI: 10.1039/d3tb02744a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Insufficient antibacterial effects and over-fast degradation are the main limitations of magnesium (Mg)-based orthopedic implants. In this study, a sandwiched composite coating containing a triclosan (TCS)-loaded poly(lactic acid) (PLA) layer inside and brushite (DCPD) layer outside was prepared on the surface of the Mg-Nd-Zn-Zr (denoted as JDBM) implant. In vitro degradation tests revealed a remarkable improvement in the corrosion resistance and moderate degradation rate. The drug release profile demonstrated a controllable and sustained TCS release for at least two weeks in vitro. The antibacterial rates of the implant were all over 99.8% for S. aureus, S. epidermidis, and E. coli, demonstrating superior antibacterial effects. Additionally, this coated JDBM implant exhibited no cytotoxicity but improved cell adhesion and proliferation, indicating excellent cytocompatibility. In vivo assays were conducted by implant-related femur osteomyelitis and osseointegration models in rats. Few bacteria were attached to the implant surface and the surrounding bone tissue. Furthermore, the coated JDBM implant exhibited more new bone formation than other groups due to the synergistic biological effects of released TCS and Mg2+, revealing excellent osteogenic ability. In summary, the JDBM implant with the sandwiched composite coating could significantly enhance the antibacterial activities and osteogenic properties simultaneously by the controllable release of TCS and Mg2+, presenting great potential for clinical transformation.
Collapse
Affiliation(s)
- Han Wu
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Mengjiao Yu
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Shutao Zhang
- Department of Bone and Joint Surgery, Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mingyu You
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Ao Xiong
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Boxuan Feng
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jialin Niu
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Bing Yue
- Department of Bone and Joint Surgery, Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jia Pei
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
5
|
Tan X, Wang Z, Yang X, Yu P, Sun M, Zhao Y, Yu H. Enhancing cell adhesive and antibacterial activities of glass-fibre-reinforced polyetherketoneketone through Mg and Ag PIII. Regen Biomater 2023; 10:rbad066. [PMID: 37489146 PMCID: PMC10363026 DOI: 10.1093/rb/rbad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/24/2023] [Accepted: 06/29/2023] [Indexed: 07/26/2023] Open
Abstract
Glass-fibre-reinforced polyetherketoneketone (PEKK-GF) shows great potential for application as a dental implant restoration material; however, its surface bioinertness and poor antibacterial properties limit its integration with peri-implant soft tissue, which is critical in the long-term success of implant restoration. Herein, functional magnesium (Mg) and silver (Ag) ions were introduced into PEKK-GF by plasma immersion ion implantation (PIII). Surface characterization confirmed that the surface morphology of PEKK-GF was not visibly affected by PIII treatment. Further tests revealed that PIII changed the wettability and electrochemical environment of the PEKK-GF surface and enabled the release of Mg2+ and Ag+ modulated by Giavanni effect. In vitro experiments showed that Mg/Ag PIII-treated PEKK-GF promoted the proliferation and adhesion of human gingival fibroblasts and upregulated the expression of adhesion-related genes and proteins. In addition, the treated samples inhibited the metabolic viability and adhesion of Streptococcus mutans and Porphyromonas gingivalis on their surfaces, distorting bacterial morphology. Mg/Ag PIII surface treatment improved the soft tissue integration and antibacterial activities of PEKK-GF, which will further support and broaden its adoption in dentistry.
Collapse
Affiliation(s)
| | | | - Xin Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Yu
- Department of Stomatology, Chengdu Second People’s Hospital, Chengdu, China
| | - Manlin Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuwei Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haiyang Yu
- Correspondence address. Tel: +86 0 18980685999, E-mail:
| |
Collapse
|
6
|
Xue K, Li YJ, Ma TH, Cui LY, Liu CB, Zou YH, Li SQ, Zhang F, Zeng RC. In vitro corrosion resistance and dual antibacterial ability of curcumin loaded composite coatings on AZ31 alloy: Effect of amorphous calcium carbonate. J Colloid Interface Sci 2023; 649:867-879. [PMID: 37390534 DOI: 10.1016/j.jcis.2023.06.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/02/2023]
Abstract
Rapid corrosion and bacterial infection are obstacles to put into use biodegradable magnesium (Mg) alloy as biomedical materials. In this research, an amorphous calcium carbonate (ACC)@curcumin (Cur) loaded poly-methyltrimethoxysilane (PMTMS) coating prepared by self-assembly method on micro-arc oxidation (MAO) coated Mg alloy has been proposed. Scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy are adopted to analyze the morphology and composition of the obtained coatings. The corrosion behaviour of the coatings is estimated by hydrogen evolution and electrochemical tests. The spread plate method without or with 808 nm near-infrared irradiation is applied to evaluate the antimicrobial and photothermal antimicrobial ability of the coatings. Cytotoxicity of the samples is tested by 3-(4,5)-dimethylthiahiazo(-z-y1)-2,5-di- phenytetrazoliumromide (MTT) and live/dead assay culturing with MC3T3-E1 cells. Results show that the MAO/ACC@Cur-PMTMS coating exhibited favourable corrosion resistance, dual antibacterial ability, and good biocompatibility. Cur was employed as an antibacterial agent and photosensitizer for photothermal therapy. The core of ACC significantly improved the loading of Cur and the deposition of hydroxyapatite corrosion products during degradation, which greatly promoted the long-term corrosion resistance and antibacterial activity of Mg alloys as biomedical materials.
Collapse
Affiliation(s)
- Kui Xue
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yan-Jin Li
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Tian-Hao Ma
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Lan-Yue Cui
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Cheng-Bao Liu
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yu-Hong Zou
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Shuo-Qi Li
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Fen Zhang
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Rong-Chang Zeng
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| |
Collapse
|
7
|
Wang N, Ma Y, Shi H, Song Y, Guo S, Yang S. Mg-, Zn-, and Fe-Based Alloys With Antibacterial Properties as Orthopedic Implant Materials. Front Bioeng Biotechnol 2022; 10:888084. [PMID: 35677296 PMCID: PMC9168471 DOI: 10.3389/fbioe.2022.888084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/11/2022] [Indexed: 11/22/2022] Open
Abstract
Implant-associated infection (IAI) is one of the major challenges in orthopedic surgery. The development of implants with inherent antibacterial properties is an effective strategy to resolve this issue. In recent years, biodegradable alloy materials have received considerable attention because of their superior comprehensive performance in the field of orthopedic implants. Studies on biodegradable alloy orthopedic implants with antibacterial properties have gradually increased. This review summarizes the recent advances in biodegradable magnesium- (Mg-), iron- (Fe-), and zinc- (Zn-) based alloys with antibacterial properties as orthopedic implant materials. The antibacterial mechanisms of these alloy materials are also outlined, thus providing more basis and insights on the design and application of biodegradable alloys with antibacterial properties as orthopedic implants.
Collapse
Affiliation(s)
- Ning Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yutong Ma
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Huixin Shi
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yiping Song
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Shu Guo, ; Shude Yang,
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, School of Stomatology and Department of Oral Pathology, School of Stomatology, China Medical University, Shenyang, China
- *Correspondence: Shu Guo, ; Shude Yang,
| |
Collapse
|
8
|
Kroczek K, Turek P, Mazur D, Szczygielski J, Filip D, Brodowski R, Balawender K, Przeszłowski Ł, Lewandowski B, Orkisz S, Mazur A, Budzik G, Cebulski J, Oleksy M. Characterisation of Selected Materials in Medical Applications. Polymers (Basel) 2022; 14:1526. [PMID: 35458276 PMCID: PMC9027145 DOI: 10.3390/polym14081526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 11/19/2022] Open
Abstract
Tissue engineering is an interdisciplinary field of science that has developed very intensively in recent years. The first part of this review describes materials with medical and dental applications from the following groups: metals, polymers, ceramics, and composites. Both positive and negative sides of their application are presented from the point of view of medical application and mechanical properties. A variety of techniques for the manufacture of biomedical components are presented in this review. The main focus of this work is on additive manufacturing and 3D printing, as these modern techniques have been evaluated to be the best methods for the manufacture of medical and dental devices. The second part presents devices for skull bone reconstruction. The materials from which they are made and the possibilities offered by 3D printing in this field are also described. The last part concerns dental transitional implants (scaffolds) for guided bone regeneration, focusing on polylactide-hydroxyapatite nanocomposite due to its unique properties. This section summarises the current knowledge of scaffolds, focusing on the material, mechanical and biological requirements, the effects of these devices on the human body, and their great potential for applications.
Collapse
Affiliation(s)
- Kacper Kroczek
- Doctoral School of Engineering and Technical Sciences, Rzeszow University of Technology, 35-959 Rzeszow, Poland;
| | - Paweł Turek
- Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (Ł.P.); (G.B.)
| | - Damian Mazur
- Faculty of Electrical and Computer Engineering, Rzeszow University of Technology, 35-959 Rzeszow, Poland
| | - Jacek Szczygielski
- Faculty of Medicine, University of Rzeszow, 35-959 Rzeszow, Poland; (J.S.); (K.B.); (B.L.); (S.O.); (A.M.)
- Department of Neurosurgery, Faculty of Medicine, Saarland University, 66123 Saarbrücken, Germany
| | - Damian Filip
- Institute of Medical Science, University of Rzeszow, 35-959 Rzeszow, Poland;
| | - Robert Brodowski
- Department of Maxillofacial Surgery, Fryderyk Chopin Clinical Voivodeship Hospital No.1 in Rzeszow, 35-055 Rzeszow, Poland;
| | - Krzysztof Balawender
- Faculty of Medicine, University of Rzeszow, 35-959 Rzeszow, Poland; (J.S.); (K.B.); (B.L.); (S.O.); (A.M.)
| | - Łukasz Przeszłowski
- Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (Ł.P.); (G.B.)
| | - Bogumił Lewandowski
- Faculty of Medicine, University of Rzeszow, 35-959 Rzeszow, Poland; (J.S.); (K.B.); (B.L.); (S.O.); (A.M.)
- Department of Maxillofacial Surgery, Fryderyk Chopin Clinical Voivodeship Hospital No.1 in Rzeszow, 35-055 Rzeszow, Poland;
| | - Stanisław Orkisz
- Faculty of Medicine, University of Rzeszow, 35-959 Rzeszow, Poland; (J.S.); (K.B.); (B.L.); (S.O.); (A.M.)
| | - Artur Mazur
- Faculty of Medicine, University of Rzeszow, 35-959 Rzeszow, Poland; (J.S.); (K.B.); (B.L.); (S.O.); (A.M.)
| | - Grzegorz Budzik
- Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (Ł.P.); (G.B.)
| | - Józef Cebulski
- Institute of Physics, University of Rzeszow, 35-959 Rzeszow, Poland;
| | - Mariusz Oleksy
- Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland;
| |
Collapse
|
9
|
Corrosion Behavior in Magnesium-Based Alloys for Biomedical Applications. MATERIALS 2022; 15:ma15072613. [PMID: 35407944 PMCID: PMC9000648 DOI: 10.3390/ma15072613] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 12/14/2022]
Abstract
Magnesium alloys exhibit superior biocompatibility and biodegradability, which makes them an excellent candidate for artificial implants. However, these materials also suffer from lower corrosion resistance, which limits their clinical applicability. The corrosion mechanism of Mg alloys is complicated since the spontaneous occurrence is determined by means of loss of aspects, e.g., the basic feature of materials and various corrosive environments. As such, this study provides a review of the general degradation/precipitation process multifactorial corrosion behavior and proposes a reasonable method for modeling and preventing corrosion in metals. In addition, the composition design, the structural treatment, and the surface processing technique are involved as potential methods to control the degradation rate and improve the biological properties of Mg alloys. This systematic representation of corrosive mechanisms and the comprehensive discussion of various technologies for applications could lead to improved designs for Mg-based biomedical devices in the future.
Collapse
|
10
|
Magnesium-Based Alloys Used in Orthopedic Surgery. MATERIALS 2022; 15:ma15031148. [PMID: 35161092 PMCID: PMC8840615 DOI: 10.3390/ma15031148] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023]
Abstract
Magnesium (Mg)-based alloys have become an important category of materials that is attracting more and more attention due to their high potential use as orthopedic temporary implants. These alloys are a viable alternative to nondegradable metals implants in orthopedics. In this paper, a detailed overview covering alloy development and manufacturing techniques is described. Further, important attributes for Mg-based alloys involved in orthopedic implants fabrication, physiological and toxicological effects of each alloying element, mechanical properties, osteogenesis, and angiogenesis of Mg are presented. A section detailing the main biocompatible Mg-based alloys, with examples of mechanical properties, degradation behavior, and cytotoxicity tests related to in vitro experiments, is also provided. Special attention is given to animal testing, and the clinical translation is also reviewed, focusing on the main clinical cases that were conducted under human use approval.
Collapse
|
11
|
Polat O, Toy S, Kibar B. Surgical outcomes of scaphoid fracture osteosynthesis with magnesium screws. Jt Dis Relat Surg 2021; 32:721-728. [PMID: 34842105 PMCID: PMC8650676 DOI: 10.52312/jdrs.2021.298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/31/2021] [Indexed: 11/25/2022] Open
Abstract
Objectives
This study aims to evaluate the mid-term functional and radiological outcomes of magnesium-based screws in the treatment of scaphoid fractures. Patients and methods
Between February 2015 and February 2018, a total of 21 patients (18 males, 3 females; mean age: 28.5±5.8 years; range, 19 to 39 years) with acute scaphoid waist fractures who underwent fracture fixation with biologically degradable magnesium-based compression screws were retrospectively analyzed. Fractures were classified according to the Herbert and Fisher classification. The absence of pain on palpation and painless active range of motion were accepted as the signs of union. Results
The mean follow-up was 43.3±5.3 (range, 36 to 52) months. According to the Herbert and Fisher classification, nine patients had type B1 and 12 patients had type B2 scaphoid fractures. Union was achieved in all cases. The mean time to union was 11.2±1.5 (range, 9 to 14) weeks. The mean grip strength, flexion, and extension were 43.57°, 73.57°, and 76.43°, respectively. The grip strength, pinch strength, and range of motion of the operated side were evaluated at the final follow-up visit and compared with the contralateral side (control group). No complication occurred. Any screw was not removed. Conclusion
Magnesium-based compression screws can be safely used for acute scaphoid fractures considering their favorable functional and radiological results.
Collapse
Affiliation(s)
- Oktay Polat
- Ağrı Eğitim ve Araştırma Hastanesi, Ortopedi ve Travmatoloji Kliniği, 04200 Ağrı, Türkiye.
| | | | | |
Collapse
|
12
|
Wong PC, Wang RY, Lu LS, Wang WR, Jang JSC, Wu JL, Su TY, Chang LH. Two-Step Approach Using Degradable Magnesium to Inhibit Surface Biofilm and Subsequently Kill Planktonic Bacteria. Biomedicines 2021; 9:biomedicines9111677. [PMID: 34829908 PMCID: PMC8615932 DOI: 10.3390/biomedicines9111677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Bacterial infection remains a great risk in medical implantation surgery. In this paper, we found that degradable metals may be a feasible alternative option of antibacterial implantation materials. It is known that the spalling mechanism of magnesium (Mg) during degradation leads to Mg ions-induced alkaline environment, which is harmful to planktonic bacteria. In this study, we showed that alkaline pH environment is almost harmless to those adhesive bacteria protected in well-formed biofilms. Moreover, experimental results demonstrated that the biofilm formed in the place where Mg spalls are destroyed, releasing the covered bacteria to be planktonic in the alkaline environment. As a result, the colonization of biofilms continues to shrink during the degradation of Mg. It implies that if degradable metal is employed as implantation material, even if bacterial infection occurs, it may be possibly cured without second surgery.
Collapse
Affiliation(s)
- Pei-Chun Wong
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Orthopedics, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Orthopedics Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Ren-Yi Wang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (R.-Y.W.); (L.-S.L.)
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Long-Sheng Lu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (R.-Y.W.); (L.-S.L.)
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei-Ru Wang
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan;
| | - Jason Shian-Ching Jang
- Department of Mechanical Engineering, National Central University, Taoyuan 32001, Taiwan
- Institute of Materials Science and Engineering, National Central University, Taoyuan 32001, Taiwan
- Correspondence: (J.S.-C.J.); (J.-L.W.); (T.-Y.S.); (L.-H.C.)
| | - Jia-Lin Wu
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Orthopedics, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Orthopedics Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Centers for Regional Anesthesia and Pain Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11600, Taiwan
- Correspondence: (J.S.-C.J.); (J.-L.W.); (T.-Y.S.); (L.-H.C.)
| | - Tai-Yuan Su
- Department Electrical Engineering, Yuan-Ze University, Chung-Li 32003, Taiwan
- Correspondence: (J.S.-C.J.); (J.-L.W.); (T.-Y.S.); (L.-H.C.)
| | - Ling-Hua Chang
- Department Electrical Engineering, Yuan-Ze University, Chung-Li 32003, Taiwan
- Correspondence: (J.S.-C.J.); (J.-L.W.); (T.-Y.S.); (L.-H.C.)
| |
Collapse
|
13
|
The Mechanisms of Antibacterial Activity of Magnesium Alloys with Extreme Wettability. MATERIALS 2021; 14:ma14185454. [PMID: 34576677 PMCID: PMC8470035 DOI: 10.3390/ma14185454] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/11/2021] [Accepted: 09/18/2021] [Indexed: 01/04/2023]
Abstract
In this study, we applied the method of nanosecond laser treatment for the fabrication of superhydrophobic and superhydrophilic magnesium-based surfaces with hierarchical roughness when the surface microrelief is evenly decorated by MgO nanoparticles. The comparative to the bare sample behavior of such surfaces with extreme wettability in contact with dispersions of bacteria cells Pseudomonas aeruginosa and Klebsiella pneumoniae in phosphate buffered saline (PBS) was studied. To characterize the bactericidal activity of magnesium samples with different wettability immersed into a bacterial dispersion, we determined the time variation of the planktonic bacterial titer in the dispersion. To explore the anti-bacterial mechanisms of the magnesium substrates, a set of experimental studies on the evolution of the magnesium ion concentration in liquid, pH of the dispersion medium, surface morphology, composition, and wettability was performed. The obtained data made it possible to reveal two mechanisms that, in combination, play a key role in the bacterial decontamination of the liquid. These are the alkalization of the dispersion medium and the collection of bacterial cells by microrods growing on the surface as a result of the interaction of magnesium with the components of the buffer solution.
Collapse
|
14
|
Xie K, Wang N, Guo Y, Zhao S, Tan J, Wang L, Li G, Wu J, Yang Y, Xu W, Chen J, Jiang W, Fu P, Hao Y. Additively manufactured biodegradable porous magnesium implants for elimination of implant-related infections: An in vitro and in vivo study. Bioact Mater 2021; 8:140-152. [PMID: 34541392 PMCID: PMC8424517 DOI: 10.1016/j.bioactmat.2021.06.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/08/2021] [Accepted: 06/26/2021] [Indexed: 01/05/2023] Open
Abstract
Magnesium (Mg) alloys that have both antibacterial and osteogenic properties are suitable candidates for orthopedic implants. However, the fabrication of ideal Mg implants suitable for bone repair remains challenging because it requires implants with interconnected pore structures and personalized geometric shapes. In this study, we fabricated a porous 3D-printed Mg-Nd-Zn-Zr (denoted as JDBM) implant with suitable mechanical properties using selective laser melting technology. The 3D-printed JDBM implant exhibited cytocompatibility in MC3T3-E1 and RAW267.4 cells and excellent osteoinductivity in vitro. Furthermore, the implant demonstrated excellent antibacterial ratios of 90.0% and 92.1% for methicillin-resistant S. aureus (MRSA) and Escherichia coli, respectively. The 3D-printed JDBM implant prevented MRSA-induced implant-related infection in a rabbit model and showed good in vivo biocompatibility based on the results of histological evaluation, blood tests, and Mg2+ deposition detection. In addition, enhanced inflammatory response and TNF-α secretion were observed at the bone-implant interface of the 3D-printed JDBM implants during the early implantation stage. The high Mg2+ environment produced by the degradation of 3D-printed JDBM implants could promote M1 phenotype of macrophages (Tnf, iNOS, Ccl3, Ccl4, Ccl5, Cxcl10, and Cxcl2), and enhance the phagocytic ability of macrophages. The enhanced immunoregulatory effect generated by relatively fast Mg2+ release and implant degradation during the early implantation stage is a potential antibacterial mechanism of Mg-based implant. Our findings indicate that 3D-printed porous JDBM implants, having both antibacterial property and osteoinductivity, hold potential for future orthopedic applications. Porous JDBM implants promising mechanical properties was fabricated by selective laser melting. 3D-printed JDBM implant exhibited excellent antibacterial property, osteoinductivity, and biocompatibility. Temporally enhanced immunoregulatory effect in early stage was a potential antibacterial mechanism of Mg-based implant.
Collapse
Affiliation(s)
- Kai Xie
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Nanqing Wang
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, 100044, Beijing, China
| | - Shuang Zhao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jia Tan
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Lei Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Guoyuan Li
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Junxiang Wu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yangzi Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Wenyu Xu
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Juan Chen
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenbo Jiang
- Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Penghuai Fu
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yongqiang Hao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| |
Collapse
|
15
|
Zhang E, Zhao X, Hu J, Wang R, Fu S, Qin G. Antibacterial metals and alloys for potential biomedical implants. Bioact Mater 2021; 6:2569-2612. [PMID: 33615045 PMCID: PMC7876544 DOI: 10.1016/j.bioactmat.2021.01.030] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/11/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Metals and alloys, including stainless steel, titanium and its alloys, cobalt alloys, and other metals and alloys have been widely used clinically as implant materials, but implant-related infection or inflammation is still one of the main causes of implantation failure. The bacterial infection or inflammation that seriously threatens human health has already become a worldwide complaint. Antibacterial metals and alloys recently have attracted wide attention for their long-term stable antibacterial ability, good mechanical properties and good biocompatibility in vitro and in vivo. In this review, common antibacterial alloying elements, antibacterial standards and testing methods were introduced. Recent developments in the design and manufacturing of antibacterial metal alloys containing various antibacterial agents were described in detail, including antibacterial stainless steel, antibacterial titanium alloy, antibacterial zinc and alloy, antibacterial magnesium and alloy, antibacterial cobalt alloy, and other antibacterial metals and alloys. Researches on the antibacterial properties, mechanical properties, corrosion resistance and biocompatibility of antibacterial metals and alloys have been summarized in detail for the first time. It is hoped that this review could help researchers understand the development of antibacterial alloys in a timely manner, thereby could promote the development of antibacterial metal alloys and the clinical application.
Collapse
Affiliation(s)
- Erlin Zhang
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
- Research Center for Metallic Wires, Northeastern University, Shenyang, 110819, China
| | - Xiaotong Zhao
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
| | - Jiali Hu
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
| | - Ruoxian Wang
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
| | - Shan Fu
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
| | - Gaowu Qin
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
- Research Center for Metallic Wires, Northeastern University, Shenyang, 110819, China
| |
Collapse
|
16
|
Jiao J, Zhang S, Qu X, Yue B. Recent Advances in Research on Antibacterial Metals and Alloys as Implant Materials. Front Cell Infect Microbiol 2021; 11:693939. [PMID: 34277473 PMCID: PMC8283567 DOI: 10.3389/fcimb.2021.693939] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Implants are widely used in orthopedic surgery and are gaining attention of late. However, their use is restricted by implant-associated infections (IAI), which represent one of the most serious and dangerous complications of implant surgeries. Various strategies have been developed to prevent and treat IAI, among which the closest to clinical translation is designing metal materials with antibacterial functions by alloying methods based on existing materials, including titanium, cobalt, tantalum, and biodegradable metals. This review first discusses the complex interaction between bacteria, host cells, and materials in IAI and the mechanisms underlying the antibacterial effects of biomedical metals and alloys. Then, their applications for the prevention and treatment of IAI are highlighted. Finally, new insights into their clinical translation are provided. This review also provides suggestions for further development of antibacterial metals and alloys.
Collapse
Affiliation(s)
- Juyang Jiao
- Department of Bone and Joint Surgery, Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shutao Zhang
- Department of Bone and Joint Surgery, Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bing Yue
- Department of Bone and Joint Surgery, Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Kim J, Ren D, Gilbert JL. Cytotoxic effect of galvanically coupled magnesium-titanium particles on Escherichia coli. J Biomed Mater Res B Appl Biomater 2021; 109:2162-2173. [PMID: 33979012 DOI: 10.1002/jbm.b.34864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 02/04/2021] [Accepted: 04/28/2021] [Indexed: 11/06/2022]
Abstract
Orthopedic device-related infections (ODRIs) are difficult to control due to microbial biofilm formation and associated with high-level resistance to conventional antibiotics. In many cases, the only treatment option for ODRI is explantation. Previous studies have shown that application of cathodic potentials at the metal surface can eradicate biofilms, and Mg and Mg-Ti particles have the same effect as cathodic potentials. This study investigated the effects of Mg and Mg-Ti particles on established biofilms and planktonic cells E. coli. Bacterial cultures with developed biofilms or planktonic cells were treated with Mg or Mg-Ti particles, and the viability were assessed using flow cytometry or visual assessment methods (i.e., observation from SEM images and opacity of the solution). It was found that viability of biofilms treated with 16.67 mg/ml of Mg was 2.8 ± 0.96% at the end of 6-hr killing compared to untreated controls. This extent of killing was more significant compared to 24-hr grown biofilms treated with ofloxacin, an antibiotic known to be effective against these bacteria. Biofilms treated with 50 and 100 μg/ml of ofloxacin had 62 ± 4.6% and 52 ± 19.3% survival, respectively, where ofloxacin at these concentrations is known to kill planktonic counterparts very effectively. Inhibition zone tests revealed that biofilms within 2 mm of Mg or Mg-Ti particle clusters were effectively killed. These results demonstrated the potential of Mg or Mg-Ti particles in killing microbial biofilms and potential for controlling ODRI.
Collapse
Affiliation(s)
- Jua Kim
- Department of Biomedical and Chemical Engineering, College of Engineering and Computer Science, Syracuse University, Syracuse, New York, USA.,Syracuse Biomaterials Institute, College of Engineering and Computer Science, Syracuse University, Syracuse, New York, USA.,Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Dacheng Ren
- Department of Biomedical and Chemical Engineering, College of Engineering and Computer Science, Syracuse University, Syracuse, New York, USA.,Syracuse Biomaterials Institute, College of Engineering and Computer Science, Syracuse University, Syracuse, New York, USA
| | - Jeremy L Gilbert
- Department of Biomedical and Chemical Engineering, College of Engineering and Computer Science, Syracuse University, Syracuse, New York, USA.,Syracuse Biomaterials Institute, College of Engineering and Computer Science, Syracuse University, Syracuse, New York, USA.,Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.,Clemson-Medical University of South Carolina Bioengineering Program, Charleston, South Carolina, USA
| |
Collapse
|
18
|
Research status of biodegradable metals designed for oral and maxillofacial applications: A review. Bioact Mater 2021; 6:4186-4208. [PMID: 33997502 PMCID: PMC8099919 DOI: 10.1016/j.bioactmat.2021.01.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/10/2021] [Accepted: 01/10/2021] [Indexed: 01/08/2023] Open
Abstract
The oral and maxillofacial regions have complex anatomical structures and different tissue types, which have vital health and aesthetic functions. Biodegradable metals (BMs) is a promising bioactive materials to treat oral and maxillofacial diseases. This review summarizes the research status and future research directions of BMs for oral and maxillofacial applications. Mg-based BMs and Zn-based BMs for bone fracture fixation systems, and guided bone regeneration (GBR) membranes, are discussed in detail. Zn-based BMs with a moderate degradation rate and superior mechanical properties for GBR membranes show great potential for clinical translation. Fe-based BMs have a relatively low degradation rate and insoluble degradation products, which greatly limit their application and clinical translation. Furthermore, we proposed potential future research directions for BMs in the oral and maxillofacial regions, including 3D printed BM bone scaffolds, surface modification for BMs GBR membranes, and BMs containing hydrogels for cartilage regeneration, soft tissue regeneration, and nerve regeneration. Taken together, the progress made in the development of BMs in oral and maxillofacial regions has laid a foundation for further clinical translation.
Collapse
|
19
|
Zhou W, Yan J, Li Y, Wang L, Jing L, Li M, Yu S, Cheng Y, Zheng Y. Based on the synergistic effect of Mg 2+ and antibacterial peptides to improve the corrosion resistance, antibacterial ability and osteogenic activity of magnesium-based degradable metals. Biomater Sci 2021; 9:807-825. [PMID: 33210105 DOI: 10.1039/d0bm01584a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
To overcome the restricted degradation, poor antiacterial and osteoindctive problems of magnesium and its alloys, this study presented the spinning coating of an antimicrobial peptide (AP)-loaded silk fibroin (SF) composite onto a corrosion-resistant MgO-coated AZ31 Mg alloy via anodization (aMgO) and electrodeposition (eMgO) methods. The composite coatings not only created a smooth and hydrophilic surface, but also obviously improved the corrosion resistance according to the test of corrosion potential and current density. The colonization of E. coli on MgO-AP composite coatings was significantly reduced as compared to the MgO layers, due to the potential synergetic effects of APs and Mg2+. Compared with the bare AZ31, the composite coating inhibited the corrosion of the substrate and the release of Mg2+, supported the adhesion, spreading and proliferation of osteoblasts, and presented a significantly improved osteogenic differentiation trend. Therefore, the MgO-AP composite coating, which had both antibacterial and bone-promoting abilities, was expected to be applied for surface modification of magnesium alloy implants to solve the clinical problems of bacterial infection and poor osseointegration.
Collapse
Affiliation(s)
- Wenhao Zhou
- Shaanxi Key Laboratory of biomedical metal materials, Northwest Institute for Non-ferrous Metal Research, Xi'an 710016, P R China.
| | - Jianglong Yan
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| | - Yangyang Li
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| | - Lan Wang
- Shaanxi Key Laboratory of biomedical metal materials, Northwest Institute for Non-ferrous Metal Research, Xi'an 710016, P R China.
| | - Lei Jing
- Shaanxi Key Laboratory of biomedical metal materials, Northwest Institute for Non-ferrous Metal Research, Xi'an 710016, P R China.
| | - Ming Li
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Sen Yu
- Shaanxi Key Laboratory of biomedical metal materials, Northwest Institute for Non-ferrous Metal Research, Xi'an 710016, P R China.
| | - Yan Cheng
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| | - Yufeng Zheng
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
20
|
Bioabsorbable magnesium screw versus conventional titanium screw fixation for medial malleolar fractures. J Orthop Traumatol 2020; 21:9. [PMID: 32451727 PMCID: PMC7248135 DOI: 10.1186/s10195-020-00547-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/24/2020] [Indexed: 12/21/2022] Open
Abstract
Background It is still unknown whether bioabsorbable magnesium (Mg) screws provide an advantage over titanium screws in the treatment of medial malleolar (MM) fractures. The purpose of this retrospective study is to compare the clinical and radiological outcomes of MM fractures fixed with either bioabsorbable Mg screws or conventional titanium screws. Materials and methods A cohort of 48 patients with MM fractures who underwent compression screw fixation was retrospectively reviewed. Twenty-three patients (16 male, 7 female; mean age: 37.9 ± 17.7 years) were treated with bioabsorbable Mg screws, and 25 patients (14 male, 11 female; mean age: 45.0 ± 15.7 years) were treated with conventional titanium screw fixation. All patients were followed up for at least 1 year, with a mean time of 24.6 ± 10.5 months (12–53 months). The American Orthopedic Foot and Ankle Society (AOFAS) scale was used to evaluate the clinical results. The Kellgren–Lawrence (KL) osteoarthritis grading was used to evaluate posttraumatic osteoarthritis on final ankle radiographs. Fracture union, rate of implant removal, and complications were recorded. Comparative analysis of two independent groups was performed using the chi-squared test and the Mann–Whitney U-test. Results The two groups were comparable concerning demographic and clinical characteristics. Age (p = 0.146), sex (p = 0.252), side (p = 0.190), MM fracture type (p = 0.500), associated fractures (p = 0.470), and follow-up period (p = 0.903) were similar between the groups. At final follow-up examination, AOFAS score (p = 0.191) was similar between groups. Fracture union was achieved in all cases. Grade of posttraumatic osteoarthritis, according to KL, was equally distributed in both groups (p = 0.074). No deep infection or osteomyelitis was seen. Five patients in the titanium screw group underwent implant removal, due to pain in three of them and difficulty in wearing shoes in the other two (p = 0.031). Implant removal was performed after a mean of 14.2 ± 3.1 months (12–19 months). Conclusions Bioabsorbable Mg and titanium screws had similar therapeutic efficacy in MM fracture fixation regarding functional and radiological outcomes. However, the rate of implant removal was higher with titanium screws. Bioabsorbable Mg screws may be a favorable fixation option since secondary implant removal procedures can be prevented. Level of evidence Level IV, Retrospective case series.
Collapse
|
21
|
Luque-Agudo V, Fernández-Calderón MC, Pacha-Olivenza MA, Pérez-Giraldo C, Gallardo-Moreno AM, González-Martín ML. The role of magnesium in biomaterials related infections. Colloids Surf B Biointerfaces 2020; 191:110996. [PMID: 32272388 DOI: 10.1016/j.colsurfb.2020.110996] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/09/2020] [Accepted: 03/23/2020] [Indexed: 01/09/2023]
Abstract
Magnesium is currently increasing interest in the field of biomaterials. An extensive bibliography on this material in the last two decades arises from its potential for the development of biodegradable implants. In addition, many researches, motivated by this progress, have analyzed the performance of magnesium in both in vitro and in vivo assays with gram-positive and gram-negative bacteria in a very broad range of conditions. This review explores the extensive literature in recent years on magnesium in biomaterials-related infections, and discusses the mechanisms of the Mg action on bacteria, as well as the competition of Mg2+ and/or synergy with other divalent cations in this subject.
Collapse
Affiliation(s)
- Verónica Luque-Agudo
- University of Extremadura, Department of Applied Physics, Badajoz, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Badajoz, Spain; University Institute of Extremadura Sanity Research (iNube), Badajoz, Spain
| | - M Coronada Fernández-Calderón
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Badajoz, Spain; University Institute of Extremadura Sanity Research (iNube), Badajoz, Spain; University of Extremadura, Department of Biomedical Science, Badajoz, Spain
| | - Miguel A Pacha-Olivenza
- University of Extremadura, Department of Biomedical Science, Badajoz, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Badajoz, Spain; University Institute of Extremadura Sanity Research (iNube), Badajoz, Spain
| | - Ciro Pérez-Giraldo
- University of Extremadura, Department of Biomedical Science, Badajoz, Spain; University Institute of Extremadura Sanity Research (iNube), Badajoz, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Badajoz, Spain
| | - Amparo M Gallardo-Moreno
- University of Extremadura, Department of Applied Physics, Badajoz, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Badajoz, Spain; University Institute of Extremadura Sanity Research (iNube), Badajoz, Spain.
| | - M Luisa González-Martín
- University of Extremadura, Department of Applied Physics, Badajoz, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Badajoz, Spain; University Institute of Extremadura Sanity Research (iNube), Badajoz, Spain
| |
Collapse
|
22
|
Ma R, Wang W, Yang P, Wang C, Guo D, Wang K. In vitro antibacterial activity and cytocompatibility of magnesium-incorporated poly(lactide-co-glycolic acid) scaffolds. Biomed Eng Online 2020; 19:12. [PMID: 32070352 PMCID: PMC7029519 DOI: 10.1186/s12938-020-0755-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 02/10/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bone defects are often combined with the risk of infection in the clinic, and artificial bone substitutes are often implanted to repair the defective bone. However, the implant materials are carriers for bacterial growth, and biofilm can form on the implant surface, which is difficult to eliminate using antibiotics and the host immune system. Magnesium (Mg) was previously reported to possess antibacterial potential. METHODS In this study, Mg was incorporated into poly(lactide-co-glycolic acid) (PLGA) to fabricate a PLGA/Mg scaffold using a low-temperature rapid-prototyping technique. All scaffolds were divided into three groups: PLGA (P), PLGA/10 wt% Mg with low Mg content (PM-L) and PLGA/20 wt% Mg with high Mg content (PM-H). The degradation test of the scaffolds was conducted by immersing them into the trihydroxymethyl aminomethane-hydrochloric acid (Tris-HCl) buffer solution and measuring the change of pH values and concentrations of Mg ions. The antibacterial activity of the scaffolds was investigated by the spread plate method, tissue culture plate method, scanning electron microscopy and confocal laser scanning microscopy. Additionally, the cell attachment and proliferation of the scaffolds were evaluated by the cell counting kit-8 (CCK-8) assay using MC3T3-E1 cells. RESULTS The Mg-incorporated scaffolds degraded and released Mg ions and caused an increase in the pH value. Both PM-L and PM-H inhibited bacterial growth and biofilm formation, and PM-H exhibited higher antibacterial activity than PM-L after incubation for 24 and 48 h. Cell tests revealed that PM-H exerted a suppressive effect on cell attachment and proliferation. CONCLUSIONS These findings demonstrated that the PLGA/Mg scaffolds possessed favorable antibacterial activity, and a higher content of Mg (20%) exhibited higher antibacterial activity and inhibitory effects on cell attachment and proliferation than low Mg content (10%).
Collapse
Affiliation(s)
- Rui Ma
- Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shanxi, China
| | - Wei Wang
- Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shanxi, China
| | - Pei Yang
- Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shanxi, China
| | - Chunsheng Wang
- Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shanxi, China
| | - Dagang Guo
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shanxi, China
| | - Kunzheng Wang
- Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shanxi, China.
| |
Collapse
|
23
|
Fernández-Calderón M, Romero-Guzmán D, Ferrández-Montero A, Pérez-Giraldo C, González-Carrasco JL, Lieblich M, Benavente R, Ferrari B, González-Martín M, Gallardo-Moreno AM. Impact of PLA/Mg films degradation on surface physical properties and biofilm survival. Colloids Surf B Biointerfaces 2020; 185:110617. [DOI: 10.1016/j.colsurfb.2019.110617] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 10/25/2022]
|
24
|
Aging of Solvent-Casting PLA-Mg Hydrophobic Films: Impact on Bacterial Adhesion and Viability. COATINGS 2019. [DOI: 10.3390/coatings9120814] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biomaterials used for the manufacture of biomedical devices must have suitable surface properties avoiding bacterial colonization and/or proliferation. Most biomaterial-related infections start during the surgery. Bacteria can begin colonization of the surface of a device right after implantation or in the next few hours. This time may also be sufficient to begin the deterioration of a biodegradable implant. This work explores the surface changes that hydrophobic films of poly(lactic) acid reinforced with Mg particles, prepared by solving-casting, undergone after in vitro degradation at different times. Hydrophobicity, surface tension, zeta potential, topography, and elemental composition were obtained from new and aged films. The initial degradation for 4 h was combined with unspecific bacterial adhesion and viability tests to check if degraded films are more or less susceptible to be contaminated. The degradation of the films decreases their hydrophobicity and causes the appearance of a biocompatible layer, composed mainly of magnesium phosphate. The release of Mg2+ is very acute at the beginning of the degradation process, and such positive charges may favor the electrostatic approach and attachment of Staphylococci. However, all bacteria attached on the films containing Mg particles appeared damaged, ensuring the bacteriostatic effect of these films, even after the first hours of their degradation.
Collapse
|
25
|
Rahim MI, Szafrański SP, Ingendoh-Tsakmakidis A, Stiesch M, Mueller PP. Evidence for inoculum size and gas interfaces as critical factors in bacterial biofilm formation on magnesium implants in an animal model. Colloids Surf B Biointerfaces 2019; 186:110684. [PMID: 31812076 DOI: 10.1016/j.colsurfb.2019.110684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/09/2019] [Accepted: 11/27/2019] [Indexed: 01/23/2023]
Abstract
Infections of medical implants caused by bacterial biofilms are a major clinical problem. Bacterial colonization is predicted to be prevented by alkaline magnesium surfaces. However, in experimental animal studies, magnesium implants prolonged infections. The reason for this peculiarity likely lies within the ‒still largely hypothetical‒ mechanism by which infection arises. Investigating subcutaneous magnesium implants infected with bioluminescent Pseudomonas aeruginosa via in vivo imaging, we found that the rate of implant infections was critically dependent on a surprisingly high quantity of injected bacteria. At high inocula, bacteria were antibiotic-refractory immediately after infection. High cell densities are known to limit nutrient availability, restricting proliferation and trigger quorum sensing which could both contribute to the rapid initial resistance. We propose that gas bubbles such as those formed during magnesium corrosion, can then act as interfaces that support biofilm formation and permit long-term survival. This model could provide an explanation for the apparent ineffectiveness of innovative contact-dependent bactericidal implant surfaces in patients. In addition, the model points toward air bubbles in tissue, either by inclusion during surgery or by spontaneous gas bubble formation later on, could constitute a key risk factor for clinical implant infections.
Collapse
Affiliation(s)
- Muhammad Imran Rahim
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany; Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany.
| | - Szymon P Szafrański
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany; Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Alexandra Ingendoh-Tsakmakidis
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany; Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Meike Stiesch
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany; Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Peter P Mueller
- Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| |
Collapse
|
26
|
Yang Y, Liu L, Luo H, Zhang D, Lei S, Zhou K. Dual-Purpose Magnesium-Incorporated Titanium Nanotubes for Combating Bacterial Infection and Ameliorating Osteolysis to Realize Better Osseointegration. ACS Biomater Sci Eng 2019; 5:5368-5383. [PMID: 33464078 DOI: 10.1021/acsbiomaterials.9b00938] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Ying Yang
- State Key Laboratory of Powder Metallurgy, Research Institute of Powder Metallurgy, Central South University, Changsha 410083, China
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lihong Liu
- State Key Laboratory of Powder Metallurgy, Research Institute of Powder Metallurgy, Central South University, Changsha 410083, China
- Department of Orthopedic Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Hang Luo
- State Key Laboratory of Powder Metallurgy, Research Institute of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Dou Zhang
- State Key Laboratory of Powder Metallurgy, Research Institute of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Shaorong Lei
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Kechao Zhou
- State Key Laboratory of Powder Metallurgy, Research Institute of Powder Metallurgy, Central South University, Changsha 410083, China
| |
Collapse
|
27
|
Magnesium matrix nanocomposites for orthopedic applications: A review from mechanical, corrosion, and biological perspectives. Acta Biomater 2019; 96:1-19. [PMID: 31181263 DOI: 10.1016/j.actbio.2019.06.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/28/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023]
Abstract
Magnesium (Mg) and some of its alloys have attracted extensive interests for biomedical applications as they exhibit biodegradability and low elastic modulus that is closer to natural bones than the currently used metallic implant materials such as titanium (Ti) and its alloys, stainless steels, and cobalt-chromium (Co-Cr) alloys. However, the rapid degradation of Mg alloys and loss of their mechanical integrity before sufficient bone healing impede their clinical application. Our literature review shows that magnesium matrix nanocomposites (MMNCs) reinforced with nanoparticles possess enhanced strength, high corrosion resistance, and good biocompatibility. This article provides a detailed analysis of the effects of nanoparticle reinforcements on the mechanical properties, corrosion behavior, and biocompatibility of MMNCs as promising biodegradable implant materials. The governing equations to quantitatively predict the mechanical properties and underlying synergistic strengthening mechanisms in MMNCs are elucidated. The potential, recent advances, challenges and future research directions in relation to nanoparticles reinforced MMNCs are highlighted. STATEMENT OF SIGNIFICANCE: Critically reviewing magnesium metal matrix nanocomposites (MMNCs) for the biomedical application. Clear definitions of strengthening mechanisms using reinforcement particle in the magnesium matrix, as there were controversial in governing equations of strengthening parameters. Providing better understanding of the effect of particle size, volume fraction, interfacial bonding, and uniform dispersion of reinforcement particles on MMNCs.
Collapse
|
28
|
Comparison of Bioabsorbable Magnesium versus Titanium Screw Fixation for Modified Distal Chevron Osteotomy in Hallux Valgus. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5242806. [PMID: 30581858 PMCID: PMC6276507 DOI: 10.1155/2018/5242806] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/06/2018] [Indexed: 11/18/2022]
Abstract
Objective The purpose of this retrospective study was to compare the clinical and radiological results of magnesium versus titanium screw fixation for modified distal chevron osteotomy in hallux valgus (HV). Materials and Methods A total of 31 patients who underwent modified distal chevron osteotomy for HV deformity between 2014 and 2017 were reviewed retrospectively. Headless magnesium (Mg) compression screw fixation was applied in 16 patients (17 feet) and headless titanium (Ti) compression screw in 15 patients (17 feet). Patients were followed up for at least 12 months with a mean of 19.0 ± 6.8 months in the Mg screw group and 16.2 ± 6.19 in the Ti screw group, respectively (p: 0.234). Clinical results were evaluated using the American Orthopedic Foot and Ankle Society Hallux metatarsophalangeal-interphalangeal (AOFAS-MTP-IP) scale and a visual analogue scale (VAS). The hallux valgus angle (HVA) and intermetatarsal angle (IMA) were measured before and after surgery. Time to osteotomy union and any complications were recorded and compared between the groups. Results An improvement in the AOFAS-MTP-IP scale and VAS points were recorded in both groups with no statistically significant difference between the groups (p: 0.764 and 0.535, resp.). At the final follow-up examination, HVA and IMA were similar (p: 0.226 and 0.712, resp.). There was no significant loss of correction between the early and final radiographs in respect of HVA and IMA in both groups (p: 0.321 and p: 0.067). Full union of the osteotomy was obtained in all patients. Prolonged (1.5 months) swelling and mild hyperemia around the surgical incision were observed in 1 patient in the Mg group but there was a good response to physical and medical therapy, and the complaints were completely resolved. There were no other significant complications in either group. Conclusion The results of this study showed that bioabsorbable Mg compression screw fixation has similar therapeutic efficacy to Ti screw fixation in respect of functional and radiological outcomes. Bioabsorbable Mg screw is an alternative fixation material that can be safely used for modified distal chevron osteotomy in HV surgery.
Collapse
|
29
|
Bertuola M, Miñán A, Grillo CA, Cortizo MC, Fernández Lorenzo de Mele MA. Corrosion protection of AZ31 alloy and constrained bacterial adhesion mediated by a polymeric coating obtained from a phytocompound. Colloids Surf B Biointerfaces 2018; 172:187-196. [PMID: 30153620 DOI: 10.1016/j.colsurfb.2018.08.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/18/2018] [Accepted: 08/14/2018] [Indexed: 12/14/2022]
Abstract
The prevention of microbial biofilm formation on a biomaterial surface is crucial in avoiding implants failures and the development of antibiotic resistant bacteria. It was reported that biodegradable Mg alloys may show antimicrobial effects due to the alkalinization of the corroding area. However, this issue is controversial and deserves a detailed study, since the processes occurring at the [biodegradable metal/biological medium] interface are complex and varied. Results showed that bacterial adhesion on AZ31 was lower than that of the titanium control and revealed that was dependent on surface composition, depicting some preferential sites for bacterial attachment (C-, P-, O-containing corrosion products) and others that are particularly avoided (active corrosion sites). As a key challenge, a strategy able to improve the performance of Mg alloys by both, reducing the formation of corrosion products and inhibiting bacterial adhesion was subsequently developed. A polymeric layer (polyTOH) was obtained by electropolymerization of thymol (TOH), a phytophenolic compound. The polyTOH can operate as a multifunctional film that improves the surface characteristics of the AZ31 Mg alloy by enhancing corrosion resistance (ions release was reduced to almost the half during the first days) and create an anti-adherent surface (bacterial attachment was 30-fold lower on polyTOH-AZ31 than on non-coated Mg alloy and 200-fold lower than Ti control and was constrained to specific regions). This anti-adherent property implies an additional advantage: enhancement of the efficacy of antibiotic treatments.
Collapse
Affiliation(s)
- M Bertuola
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA, CCT La Plata-CONICET), Facultad de Ciencias Exactas, Departamento de Química, Universidad Nacional de La Plata, Casilla de Correo 16, Sucursal 4, 1900, La Plata, Argentina.
| | - A Miñán
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA, CCT La Plata-CONICET), Facultad de Ciencias Exactas, Departamento de Química, Universidad Nacional de La Plata, Casilla de Correo 16, Sucursal 4, 1900, La Plata, Argentina.
| | - C A Grillo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA, CCT La Plata-CONICET), Facultad de Ciencias Exactas, Departamento de Química, Universidad Nacional de La Plata, Casilla de Correo 16, Sucursal 4, 1900, La Plata, Argentina.
| | - M C Cortizo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA, CCT La Plata-CONICET), Facultad de Ciencias Exactas, Departamento de Química, Universidad Nacional de La Plata, Casilla de Correo 16, Sucursal 4, 1900, La Plata, Argentina; Facultad de Odontología, Universidad Nacional de La Plata, Calle 50 y 1, 1900, La Plata, Argentina.
| | - M A Fernández Lorenzo de Mele
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA, CCT La Plata-CONICET), Facultad de Ciencias Exactas, Departamento de Química, Universidad Nacional de La Plata, Casilla de Correo 16, Sucursal 4, 1900, La Plata, Argentina; Facultad de Ingeniería, Universidad Nacional de La Plata, Calle 47 y 1, 1900, La Plata, Argentina.
| |
Collapse
|
30
|
Advances and Challenges of Biodegradable Implant Materials with a Focus on Magnesium-Alloys and Bacterial Infections. METALS 2018. [DOI: 10.3390/met8070532] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Agarwal S, Riffault M, Hoey D, Duffy B, Curtin J, Jaiswal S. Biomimetic Hyaluronic Acid-Lysozyme Composite Coating on AZ31 Mg Alloy with Combined Antibacterial and Osteoinductive Activities. ACS Biomater Sci Eng 2017; 3:3244-3253. [PMID: 33445367 DOI: 10.1021/acsbiomaterials.7b00527] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This study presents the covalent grafting of a hyaluronic acid-lysozyme (HA-LZ) composite onto corrosion-resistant silane-coated AZ31 Mg alloy via EDC-NHS coupling reactions. The HA-LZ composite coatings created a smooth and hydrophilic surface with the increased concentration of functional lysozyme complexed to the hyaluronic acid. This was confirmed by the measurement of AFM, water contact angle, and quantification of hyaluronic acid and lysozyme. The colonization of S.aureus on HA-LZ composite-coated substrates was significantly reduced as compared to the hyaluronic acid, lysozyme coated and uncoated AZ31 controls. Such activity is due to the enhanced antibacterial activity of lysozyme component as observed from the spread plate assay, propidium iodide staining, and scanning electron microscopy. Furthermore, morphology of the osteoblast cells, alkaline phosphatase activity and DNA quantification studies demonstrated the improved biocompatibility and osteoinductive properties of HA-LZ-coated substrates. This was verified by comparing with the lysozyme coated and uncoated AZ31 substrates in terms of cell adhesion, proliferation, and differentiation of osteoblastic cells. Therefore, such multifunctional composite coatings with antibacterial and osteoinductive properties are promising can be potentially used for the surface modifications of orthopedic implants.
Collapse
Affiliation(s)
- Sankalp Agarwal
- Centre for Research in Engineering and Surface Technology, FOCAS Institute, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland.,School of Food Science and Environmental Health, Dublin Institute of Technology, Cathal Brugha Street, Dublin 1, Ireland
| | - Mathieu Riffault
- Advanced Materials and Bioengineering Research Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland
| | - David Hoey
- Advanced Materials and Bioengineering Research Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland
| | - Brendan Duffy
- Centre for Research in Engineering and Surface Technology, FOCAS Institute, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
| | - James Curtin
- School of Food Science and Environmental Health, Dublin Institute of Technology, Cathal Brugha Street, Dublin 1, Ireland
| | - Swarna Jaiswal
- Centre for Research in Engineering and Surface Technology, FOCAS Institute, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
| |
Collapse
|
32
|
Rahim MI, Babbar A, Lienenklaus S, Pils MC, Rohde M. Degradable magnesium implant-associated infections by bacterial biofilms induce robust localized and systemic inflammatory reactions in a mouse model. Biomed Mater 2017; 12:055006. [DOI: 10.1088/1748-605x/aa7667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
33
|
Influence of the Microstructure and Silver Content on Degradation, Cytocompatibility, and Antibacterial Properties of Magnesium-Silver Alloys In Vitro. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8091265. [PMID: 28717409 PMCID: PMC5498933 DOI: 10.1155/2017/8091265] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/28/2017] [Accepted: 05/08/2017] [Indexed: 11/17/2022]
Abstract
Implantation is a frequent procedure in orthopedic surgery, particularly in the aging population. However, it possesses the risk of infection and biofilm formation at the surgical site. This can cause unnecessary suffering to patients and burden on the healthcare system. Pure Mg, as a promising metal for biodegradable orthopedic implants, exhibits some antibacterial effects due to the alkaline pH produced during degradation. However, this antibacterial effect may not be sufficient in a dynamic environment, for example, the human body. The aim of this study was to increase the antibacterial properties under harsh and dynamic conditions by alloying silver metal with pure Mg as much as possible. Meanwhile, the Mg-Ag alloys should not show obvious cytotoxicity to human primary osteoblasts. Therefore, we studied the influence of the microstructure and the silver content on the degradation behavior, cytocompatibility, and antibacterial properties of Mg-Ag alloys in vitro. The results indicated that a higher silver content can increase the degradation rate of Mg-Ag alloys. However, the degradation rate could be reduced by eliminating the precipitates in the Mg-Ag alloys via T4 treatment. By controlling the microstructure and increasing the silver content, Mg-Ag alloys obtained good antibacterial properties in harsh and dynamic conditions but had almost equivalent cytocompatibility to human primary osteoblasts as pure Mg.
Collapse
|
34
|
Fernández-Calderón MC, Cifuentes SC, Pacha-Olivenza MA, Gallardo-Moreno AM, Saldaña L, González-Carrasco JL, Blanco MT, Vilaboa N, González-Martín ML, Pérez-Giraldo C. Antibacterial effect of novel biodegradable and bioresorbable PLDA/Mg composites. Biomed Mater 2017; 12:015025. [DOI: 10.1088/1748-605x/aa5a14] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
Brooks EK, Ahn R, Tobias ME, Hansen LA, Luke-Marshall NR, Wild L, Campagnari AA, Ehrensberger MT. Magnesium alloy AZ91 exhibits antimicrobial properties in vitro but not in vivo. J Biomed Mater Res B Appl Biomater 2017; 106:221-227. [PMID: 28130825 DOI: 10.1002/jbm.b.33839] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/16/2016] [Accepted: 12/10/2016] [Indexed: 12/31/2022]
Abstract
Magnesium alloys hold great promise for developing orthopedic implants that are biocompatible, biodegradable, and mechanically similar to bone tissue. This study evaluated the in vitro and in vivo antimicrobial properties of magnesium-9%aluminum-1%zinc (AZ91) and commercially pure titanium (cpTi) against Acinetobacter baumannii (Ab307). The in vitro results showed that as compared to cpTi, incubation with AZ91 significantly reduced both the planktonic (cpTi = 3.45e8, AZ91 = 8.97e7, p < 0.001) colony forming units (CFU) and biofilm-associated (cpTi = 3.89e8, AZ91 = 1.78e7, p = 0.01) CFU of Ab307. However, in vivo results showed no significant differences in the CFU enumerated from the cpTi and AZ91 implants following a 1-week implantation in an established rodent model of Ab307 implant associated infection (cpTi = 5.23e3, AZ91 = 2.46e3, p = 0.29). It is proposed that the in vitro results were associated with an increased pH in the bacterial culture as a result of the AZ91 corrosion process. The robust in vivo buffering capacity likely diminished this corrosion associated pH antimicrobial effect. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 221-227, 2018.
Collapse
Affiliation(s)
- Emily K Brooks
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, New York
| | - Richard Ahn
- Department of Orthopedics, State University of New York at Buffalo, Buffalo, New York
| | - Menachem E Tobias
- Department of Orthopedics, State University of New York at Buffalo, Buffalo, New York
| | - Lisa A Hansen
- Department of Microbiology and Immunology, State University of New York at Buffalo, Buffalo, New York
| | - Nicole R Luke-Marshall
- Department of Microbiology and Immunology, State University of New York at Buffalo, Buffalo, New York
| | - Linda Wild
- Department of Pathology and Anatomical Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Anthony A Campagnari
- Department of Microbiology and Immunology, State University of New York at Buffalo, Buffalo, New York
| | - Mark T Ehrensberger
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, New York.,Department of Orthopedics, State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
36
|
Zomorodian A, Ribeiro IA, Fernandes JCS, Matos AC, Santos C, Bettencourt AF, Montemor MF. Biopolymeric coatings for delivery of antibiotic and controlled degradation of bioresorbable Mg AZ31 alloys. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2016.1252347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- A. Zomorodian
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - I. A. Ribeiro
- Research Institute for Medicine (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - J. C. S. Fernandes
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - A. C. Matos
- Research Institute for Medicine (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - C. Santos
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Instituto Politécnico de Setúbal, Mechanical Engineering Department, ESTSetúbal, Setúbal, Portugal
| | - A. F. Bettencourt
- Research Institute for Medicine (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - M. F. Montemor
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
37
|
Orthopedic implant biomaterials with both osteogenic and anti-infection capacities and associated in vivo evaluation methods. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:123-142. [DOI: 10.1016/j.nano.2016.08.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/23/2016] [Accepted: 08/02/2016] [Indexed: 12/30/2022]
|
38
|
Hou P, Zhao C, Cheng P, Wu H, Ni J, Zhang S, Lou T, Wang C, Han P, Zhang X, Chai Y. Reduced antibacterial property of metallic magnesium in vivo. ACTA ACUST UNITED AC 2016; 12:015010. [PMID: 27934788 DOI: 10.1088/1748-605x/12/1/015010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Magnesium and its alloys have drawn interest as antibacterial biomaterials, owing to their ability to alkalize the surrounding medium during degradation. The antibacterial effect of pure Mg and Mg alloys in vitro has previously been reported. However, the antibacterial property of Mg in vivo might be different because of the apparently dissimilar corrosion characteristics. In this study, pure Mg rods were implanted and bacterial suspension were injected into rat femurs to investigate the antibacterial property of Mg in vivo. The results showed that contrary to the high antibacterial rate in vitro, Mg exhibited a dramatic drop in antibacterial effect in vivo. Bacteria proliferated on the surface of the Mg rods as well as in the femur. Inflammatory cells filled cavities in the cortical bone of the femur, which was demonstrated by histological and micro-CT examination after 2 and 4 weeks of implantation. It is suggested that a reduced corrosion rate in vivo would result in insufficient pH value. In addition, the deposition layer would prevent further corrosion of Mg and provide a favorite site for bacteria adhesion. Hence, the dramatically reduced antibacterial property of Mg needs to be noticed when it is used as a biomaterial.
Collapse
Affiliation(s)
- Peng Hou
- Orthopaedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China. These two authors contributed equally
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Li Y, Liu L, Wan P, Zhai Z, Mao Z, Ouyang Z, Yu D, Sun Q, Tan L, Ren L, Zhu Z, Hao Y, Qu X, Yang K, Dai K. Biodegradable Mg-Cu alloy implants with antibacterial activity for the treatment of osteomyelitis: In vitro and in vivo evaluations. Biomaterials 2016; 106:250-63. [DOI: 10.1016/j.biomaterials.2016.08.031] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/13/2016] [Accepted: 08/17/2016] [Indexed: 01/11/2023]
|
40
|
Rahim MI, Weizbauer A, Evertz F, Hoffmann A, Rohde M, Glasmacher B, Windhagen H, Gross G, Seitz JM, Mueller PP. Differential magnesium implant corrosion coat formation and contribution to bone bonding. J Biomed Mater Res A 2016; 105:697-709. [PMID: 27770566 DOI: 10.1002/jbm.a.35943] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 07/20/2016] [Accepted: 10/19/2016] [Indexed: 12/27/2022]
Abstract
Magnesium alloys are presently under investigation as promising biodegradable implant materials with osteoconductive properties. To study the molecular mechanisms involved, the potential contribution of soluble magnesium corrosion products to the stimulation of osteoblastic cell differentiation was examined. However, no evidence for the stimulation of osteoblast differentiation could be obtained when cultured mesenchymal precursor cells were differentiated in the presence of metallic magnesium or in cell culture medium containing elevated magnesium ion levels. Similarly, in soft tissue no bone induction by metallic magnesium or by the corrosion product magnesium hydroxide could be observed in a mouse model. Motivated by the comparatively rapid accumulation solid corrosion products physicochemical processes were examined as an alternative mechanism to explain the stimulation of bone growth by magnesium-based implants. During exposure to physiological solutions a structured corrosion coat formed on magnesium whereby the elements calcium and phosphate were enriched in the outermost layer which could play a role in the established biocompatible behavior of magnesium implants. When magnesium pins were inserted into avital bones, corrosion lead to increases in the pull out force, suggesting that the expanding corrosion layer was interlocking with the surrounding bone. Since mechanical stress is a well-established inducer of bone growth, volume increases caused by the rapid accumulation of corrosion products and the resulting force development could be a key mechanism and provide an explanation for the observed stimulatory effects of magnesium-based implants in hard tissue. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 697-709, 2017.
Collapse
Affiliation(s)
- Muhammad Imran Rahim
- Helmholtz Centre for Infection Research, Inhoffenstrasse 7, Braunschweig, 38124, Germany
| | - Andreas Weizbauer
- CrossBIT, Center for Biocompatibility and Implant-Immunology, Department of Orthopedic Surgery, Hannover Medical School, Feodor-Lynen-Strasse 31, Hannover, 30625, Germany.,Laboratory for Biomechanics and Biomaterials, Department of Orthopedic Surgery, Hannover Medical School, Anna-von-Borries-Strasse 1-7, Hannover, 30625, Germany
| | - Florian Evertz
- Institute for Multiphase Processes, Leibniz University of Hannover, Appelstraße 11, Hannover, 30167, Germany
| | - Andrea Hoffmann
- Helmholtz Centre for Infection Research, Inhoffenstrasse 7, Braunschweig, 38124, Germany.,Laboratory for Biomechanics and Biomaterials, Department of Orthopedic Surgery, Hannover Medical School, Anna-von-Borries-Strasse 1-7, Hannover, 30625, Germany
| | - Manfred Rohde
- Helmholtz Centre for Infection Research, Inhoffenstrasse 7, Braunschweig, 38124, Germany
| | - Birgit Glasmacher
- Institute for Multiphase Processes, Leibniz University of Hannover, Appelstraße 11, Hannover, 30167, Germany
| | - Henning Windhagen
- CrossBIT, Center for Biocompatibility and Implant-Immunology, Department of Orthopedic Surgery, Hannover Medical School, Feodor-Lynen-Strasse 31, Hannover, 30625, Germany.,Laboratory for Biomechanics and Biomaterials, Department of Orthopedic Surgery, Hannover Medical School, Anna-von-Borries-Strasse 1-7, Hannover, 30625, Germany
| | - Gerhard Gross
- Helmholtz Centre for Infection Research, Inhoffenstrasse 7, Braunschweig, 38124, Germany
| | - Jan-Marten Seitz
- Institute for Material Science Leibniz University of Hannover, Callinstrasse 9, Hannover, 30167, Germany.,Department of Materials Science and Engineering, Michigan Technological University, 1400 Townsend Dr, Houghton, Michigan, 49931
| | - Peter P Mueller
- Helmholtz Centre for Infection Research, Inhoffenstrasse 7, Braunschweig, 38124, Germany
| |
Collapse
|
41
|
Rahim MI, Tavares A, Evertz F, Kieke M, Seitz JM, Eifler R, Weizbauer A, Willbold E, Jürgen Maier H, Glasmacher B, Behrens P, Hauser H, Mueller PP. Phosphate conversion coating reduces the degradation rate and suppresses side effects of metallic magnesium implants in an animal model. J Biomed Mater Res B Appl Biomater 2016; 105:1622-1635. [DOI: 10.1002/jbm.b.33704] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 02/05/2016] [Accepted: 04/21/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Muhammad Imran Rahim
- Helmholtz Centre for Infection Research; Inhoffenstrasse 7 38124 Braunschweig Germany
| | - Ana Tavares
- Institute for Multiphase Processes, Leibniz University of Hannover; Appelstrasse 11 30167 Hannover Germany
| | - Florian Evertz
- Institute for Multiphase Processes, Leibniz University of Hannover; Appelstrasse 11 30167 Hannover Germany
| | - Marc Kieke
- Institute for Inorganic Chemistry, Leibniz University of Hannover; Callinstrasse 9 30167 Hannover Germany
| | - Jan-Marten Seitz
- Institute of Materials Science, Leibniz University of Hannover; An der Universität 2 30823 Garbsen Germany
- Department of Materials Science and Engineering; Michigan Technological University; 1400 Townsend Dr. Houghton Michigan 49931
| | - Rainer Eifler
- Institute of Materials Science, Leibniz University of Hannover; An der Universität 2 30823 Garbsen Germany
| | - Andreas Weizbauer
- CrossBIT, Center for Biocompatibility and Implant-Immunology, Department of Orthopedic Surgery, Hannover Medical School; Feodor-Lynen-Strasse 31 30625 Hannover Germany
- Laboratory for Biomechanics and Biomaterials, Department of Orthopedic Surgery; Hannover Medical School; Anna-von-Borries-Strasse 1-7 30625 Hannover Germany
| | - Elmar Willbold
- CrossBIT, Center for Biocompatibility and Implant-Immunology, Department of Orthopedic Surgery, Hannover Medical School; Feodor-Lynen-Strasse 31 30625 Hannover Germany
- Laboratory for Biomechanics and Biomaterials, Department of Orthopedic Surgery; Hannover Medical School; Anna-von-Borries-Strasse 1-7 30625 Hannover Germany
| | - Hans Jürgen Maier
- Institute of Materials Science, Leibniz University of Hannover; An der Universität 2 30823 Garbsen Germany
| | - Birgit Glasmacher
- Institute for Multiphase Processes, Leibniz University of Hannover; Appelstrasse 11 30167 Hannover Germany
| | - Peter Behrens
- Institute for Inorganic Chemistry, Leibniz University of Hannover; Callinstrasse 9 30167 Hannover Germany
| | - Hansjörg Hauser
- Helmholtz Centre for Infection Research; Inhoffenstrasse 7 38124 Braunschweig Germany
| | - Peter P. Mueller
- Helmholtz Centre for Infection Research; Inhoffenstrasse 7 38124 Braunschweig Germany
| |
Collapse
|
42
|
Rais B, Köster M, Rahim MI, Pils M, Seitz JM, Hauser H, Wirth D, Mueller PP. Evaluation of the inflammatory potential of implant materials in a mouse model by bioluminescent imaging of intravenously injected bone marrow cells. J Biomed Mater Res A 2016; 104:2149-58. [DOI: 10.1002/jbm.a.35758] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 04/15/2016] [Accepted: 04/20/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Bushra Rais
- Helmholtz Centre for Infection Research; Inhoffenstrasse 7 Braunschweig 38124 Germany
| | - Mario Köster
- Helmholtz Centre for Infection Research; Inhoffenstrasse 7 Braunschweig 38124 Germany
| | - Muhammad Imran Rahim
- Helmholtz Centre for Infection Research; Inhoffenstrasse 7 Braunschweig 38124 Germany
| | - Marina Pils
- Helmholtz Centre for Infection Research; Inhoffenstrasse 7 Braunschweig 38124 Germany
| | - Jan-Marten Seitz
- Institute of Material Sciences; Leibniz University Hannover; An der Universität 2 Garbsen 30823 Germany
- Department of Materials Science and Engineering; Michigan Technological University; 1400 Townsend Drive Houghton Michigan 49931
| | - Hansjörg Hauser
- Helmholtz Centre for Infection Research; Inhoffenstrasse 7 Braunschweig 38124 Germany
| | - Dagmar Wirth
- Helmholtz Centre for Infection Research; Inhoffenstrasse 7 Braunschweig 38124 Germany
| | - Peter P. Mueller
- Helmholtz Centre for Infection Research; Inhoffenstrasse 7 Braunschweig 38124 Germany
| |
Collapse
|
43
|
Rahim MI, Rohde M, Rais B, Seitz JM, Mueller PP. Susceptibility of metallic magnesium implants to bacterial biofilm infections. J Biomed Mater Res A 2016; 104:1489-99. [DOI: 10.1002/jbm.a.35680] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/29/2016] [Accepted: 02/05/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Muhammad Imran Rahim
- Helmholtz Centre for Infection Research; Inhoffenstrasse 7 Braunschweig 38124 Germany
| | - Manfred Rohde
- Helmholtz Centre for Infection Research; Inhoffenstrasse 7 Braunschweig 38124 Germany
| | - Bushra Rais
- Helmholtz Centre for Infection Research; Inhoffenstrasse 7 Braunschweig 38124 Germany
| | - Jan-Marten Seitz
- Institute of Materials Science, Leibniz University of Hannover; An Der Universität 2 Garbsen 30823 Germany
- Department of Materials Science and Engineering; Michigan Technological University; 1400 Townsend Dr Houghton Michigan 49931
| | - Peter P. Mueller
- Helmholtz Centre for Infection Research; Inhoffenstrasse 7 Braunschweig 38124 Germany
| |
Collapse
|