1
|
Wu X, Zhang Y, Wang J, Qin L, Li Y, He Q, Zhang T, Wang Y, Song L, Ji L, Long B, Wang Q. Role of SIRT1-mediated synaptic plasticity and neurogenesis: Sex-differences in antidepressant-like efficacy of catalpol. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156120. [PMID: 39395323 DOI: 10.1016/j.phymed.2024.156120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/14/2024] [Accepted: 07/01/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND Catalpol, an important compound found in Rehmannia glutinosa (a plant with high nutritional and antidepressant medicinal value), exhibits various biological activities and has the ability to penetrate the blood-brain barrier. Our recent studies revealed a gender difference in the antidepressant activity of Rehmannia glutinosa with females showing better responses than males. Catalpol is likely the key compound responsible for this gender-specific difference, which caters to current clinical observations that the severity and impact of depression are approximately two to three times higher in females than in males. However, the sex-specific mechanism of catalpol's antidepressant effects remains unclear. PURPOSE AND METHODS Our recent molecular network predictions suggest that the gender-specific antidepressant properties of catalpol primarily involve the regulation of SIRT1-mediated synaptic plasticity and neurogenesis. Building on this, the present study used a well-established chronic unpredictable mild stress model of depression in mice to confirm the sex-specific antidepressant characteristics of catalpol over time and intensity. Furthermore, using SIRT1 inhibitors and activators, behavioral tests, hematoxylin & eosin, Nissl, and Golgi staining, western blotting, immunofluorescence, and real-time PCR, we evaluated the key indicators of depressive behavior, synaptic plasticity, and neurogenesis before and after SIRT1 intervention to comprehensively assess whether the sex-specific antidepressant mechanism of catalpol indeed involves SIRT1-mediated synaptic plasticity and neurogenesis. RESULTS The gender-dependent antidepressant effects of catalpol are characterized by a faster onset and stronger effects in females compared to males, with females showing stronger regulation of SIRT1-mediated synaptic plasticity and neurogenesis. Activation of SIRT1 preserved the gender differences in catalpol's effects on depressive behavior, hippocampal synaptic plasticity (including neuronal consolidation, neuronal density, dendritic spines, and PSD95 and SYP gene and protein expression), and neurogenesis (including enhancement of GAP43 and MAP2 expression, activation of c-myc, cyclinD1, Ngn2, and NeuroD1 mRNA levels, and upregulation of the Wnt3a/β-catenin/GSK-3β pathway), while inhibition of SIRT1 abolished these gender differences in the effects of catalpol. CONCLUSIONS Catalpol exhibits higher antidepressant activity in female mice compared to male mice, and the mechanism underlying this gender difference in antidepressant effects may depend on catalpol's higher sensitivity in improving hippocampal SIRT1-mediated synaptic plasticity and neurogenesis in females. The novelty of this study lies in its first-time revelation of the gender-specific phenotypes, targets, and molecular mechanisms of the antidepressant effects of catalpol.
Collapse
Affiliation(s)
- Xiaohui Wu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, China
| | - Yueyue Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Junming Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Lingyu Qin
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yamin Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Qingwen He
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Tianzhu Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yanmei Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Lingling Song
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Lijie Ji
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Bingyu Long
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Qian Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| |
Collapse
|
2
|
Zhang X, Song Y, Gong H, Wu C, Wang B, Chen W, Hu J, Xiang H, Zhang K, Sun M. Neurotoxicity of Titanium Dioxide Nanoparticles: A Comprehensive Review. Int J Nanomedicine 2023; 18:7183-7204. [PMID: 38076727 PMCID: PMC10710240 DOI: 10.2147/ijn.s442801] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
The increasing use of titanium dioxide nanoparticles (TiO2 NPs) across various fields has led to a growing concern regarding their environmental contamination and inevitable human exposure. Consequently, significant research efforts have been directed toward understanding the effects of TiO2 NPs on both humans and the environment. Notably, TiO2 NPs exposure has been associated with multiple impairments of the nervous system. This review aims to provide an overview of the documented neurotoxic effects of TiO2 NPs in different species and in vitro models. Following exposure, TiO2 NPs can reach the brain, although the specific mechanism and quantity of particles that cross the blood-brain barrier (BBB) remain unclear. Exposure to TiO2 NPs has been shown to induce oxidative stress, promote neuroinflammation, disrupt brain biochemistry, and ultimately impair neuronal function and structure. Subsequent neuronal damage may contribute to various behavioral disorders and play a significant role in the onset and progression of neurodevelopmental or neurodegenerative diseases. Moreover, the neurotoxic potential of TiO2 NPs can be influenced by various factors, including exposure characteristics and the physicochemical properties of the TiO2 NPs. However, a systematic comparison of the neurotoxic effects of TiO2 NPs with different characteristics under various exposure conditions is still lacking. Additionally, our understanding of the underlying neurotoxic mechanisms exerted by TiO2 NPs remains incomplete and fragmented. Given these knowledge gaps, it is imperative to further investigate the neurotoxic hazards and risks associated with exposure to TiO2 NPs.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Yuanyuan Song
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Hongyang Gong
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Chunyan Wu
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Binquan Wang
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Wenxuan Chen
- The Second Clinical Medical School, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Jiawei Hu
- The Second Clinical Medical School, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Hanhui Xiang
- The Second Clinical Medical School, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Ke Zhang
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Mingkuan Sun
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
3
|
Mohammadipour A, Abudayyak M. Hippocampal toxicity of metal base nanoparticles. Is there a relationship between nanoparticles and psychiatric disorders? REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:35-44. [PMID: 33770832 DOI: 10.1515/reveh-2021-0006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Metal base nanoparticles are widely produced all over the world and used in many fields and products such as medicine, electronics, cosmetics, paints, ceramics, toys, kitchen utensils and toothpastes. They are able to enter the body through digestive, respiratory, and alimentary systems. These nanoparticles can also cross the blood brain barrier, enter the brain and aggregate in the hippocampus. After entering the hippocampus, they induce oxidative stress, neuro-inflammation, mitochondrial dysfunction, and gene expression alteration in hippocampal cells, which finally lead to neuronal apoptosis. Metal base nanoparticles can also affect hippocampal neurogenesis and synaptic plasticity that both of them play crucial role in memory and learning. On the one hand, hippocampal cells are severely vulnerable due to their high metabolic activity, and on the other hand, metal base nanoparticles have high potential to damage hippocampus through variety of mechanisms and affect its functions. This review discusses, in detail, nanoparticles' detrimental effects on the hippocampus in cellular, molecular and functional levels to reveal that according to the present information, which types of nanoparticles have more potential to induce hippocampal toxicity and psychiatric disorders and which types should be more evaluated in the future studies.
Collapse
Affiliation(s)
- Abbas Mohammadipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Abudayyak
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| |
Collapse
|
4
|
Yang M, Xiao Z, Chen Z, Ru Y, Wang J, Jiang J, Wang X, Wang T. S100A1 is Involved in Myocardial Injury Induced by Exhaustive Exercise. Int J Sports Med 2021; 43:444-454. [PMID: 34688220 DOI: 10.1055/a-1642-8352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Many studies have confirmed that exhaustive exercise has adverse effects on the heart by generating reactive oxygen species (ROS). S100A1 calcium-binding protein A1 (S100A1) is a regulator of myocardial contractility and a protector against myocardial injury. However, few studies have investigated the role of S100A1 in the regulation of myocardial injury induced by exhaustive exercise. In the present study, we suggested that exhaustive exercise led to increased ROS, downregulation of S100a1, and myocardial injury. Downregulation of S100a1 promoted exhaustive exercise-induced myocardial injury and overexpression of S100A1 reversed oxidative stress-induced cardiomyocyte injury, indicating S100A1 is a protective factor against myocardial injury caused by exhaustive exercise. We also found that downregulation of S100A1 promoted damage to critical proteins of the mitochondria by inhibiting the expression of Ant1, Pgc1a, and Tfam under exhaustive exercise. Our study indicated S100A1 as a potential prognostic biomarker or therapeutic target to improve the myocardial damage induced by exhaustive exercise and provided new insights into the molecular mechanisms underlying the myocardial injury effect of exhaustive exercise.
Collapse
Affiliation(s)
- Miaomiao Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.,Tianjin Key Lab of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin 301617, China
| | - Zhigang Xiao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.,School of Materials Science and Engineering,Tianjin University of Technology, Tianjin 300384, China
| | - Zhaoli Chen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yongxin Ru
- Institute of Hematology and Blood Diseases Hospital Peaking Union Medical College, Tianjin 300020, China
| | - Jun Wang
- Air Force Medical Center, Medical Evaluation Department, Beijing 100042, China
| | - Jianhua Jiang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Xinxing Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Tianhui Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.,Tianjin Key Lab of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin 301617, China
| |
Collapse
|
5
|
Cui Y, Che Y, Wang H. Nono-titanium dioxide exposure during the adolescent period induces neurotoxicities in rats: Ameliorative potential of bergamot essential oil. Brain Behav 2021; 11:e02099. [PMID: 33694318 PMCID: PMC8119869 DOI: 10.1002/brb3.2099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/18/2021] [Accepted: 02/18/2021] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION In adolescence, the brain is still maturing, and disorders in maturation may affect the normal development of the brain. Exposure to titanium dioxide nanoparticles (TiO2 NPs) has various potential negative effects on the central nervous system. Bergamot essential oil (BEO) has been found to be effective for neuroprotection. METHODS The rats were injected intraperitoneally with TiO2 NPs (20 mg/kg) and/or BEO (200 mg/kg). The endogenous antioxidant state and inflammatory parameters were estimated using ELISA kits, and then the memory ability and anxiety-like behavior in rats were assessed. RESULTS TiO2 NPs exposure during the adolescent period induced anxiety-like behavior, cognitive impairment, neuroinflammation and oxidative damage in hippocampus, and BEO treatment could significantly ameliorate the neurotoxicities induced by TiO2 NPs exposure. CONCLUSION Our results suggest that the negative effects of TiO2 NPs exposure during the adolescent period on anxiety-like behavior and cognitive function may be related to oxidative stress and neuroinflammation induced by TiO2 NPs exposure. In addition, BEO may ameliorate the neurotoxicities induced by TiO2 NPs exposure in adolescent rats through the antioxidant and anti-inflammatory activity of BEO.
Collapse
Affiliation(s)
- Yonghua Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Medical College, Soochow University, Suzhou, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yi Che
- Medical College, Soochow University, Suzhou, China
| | - Hongxin Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Wuxi, China
| |
Collapse
|
6
|
Quach TT, Stratton HJ, Khanna R, Kolattukudy PE, Honnorat J, Meyer K, Duchemin AM. Intellectual disability: dendritic anomalies and emerging genetic perspectives. Acta Neuropathol 2021; 141:139-158. [PMID: 33226471 PMCID: PMC7855540 DOI: 10.1007/s00401-020-02244-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
Abstract
Intellectual disability (ID) corresponds to several neurodevelopmental disorders of heterogeneous origin in which cognitive deficits are commonly associated with abnormalities of dendrites and dendritic spines. These histological changes in the brain serve as a proxy for underlying deficits in neuronal network connectivity, mostly a result of genetic factors. Historically, chromosomal abnormalities have been reported by conventional karyotyping, targeted fluorescence in situ hybridization (FISH), and chromosomal microarray analysis. More recently, cytogenomic mapping, whole-exome sequencing, and bioinformatic mining have led to the identification of novel candidate genes, including genes involved in neuritogenesis, dendrite maintenance, and synaptic plasticity. Greater understanding of the roles of these putative ID genes and their functional interactions might boost investigations into determining the plausible link between cellular and behavioral alterations as well as the mechanisms contributing to the cognitive impairment observed in ID. Genetic data combined with histological abnormalities, clinical presentation, and transgenic animal models provide support for the primacy of dysregulation in dendrite structure and function as the basis for the cognitive deficits observed in ID. In this review, we highlight the importance of dendrite pathophysiology in the etiologies of four prototypical ID syndromes, namely Down Syndrome (DS), Rett Syndrome (RTT), Digeorge Syndrome (DGS) and Fragile X Syndrome (FXS). Clinical characteristics of ID have also been reported in individuals with deletions in the long arm of chromosome 10 (the q26.2/q26.3), a region containing the gene for the collapsin response mediator protein 3 (CRMP3), also known as dihydropyrimidinase-related protein-4 (DRP-4, DPYSL4), which is involved in dendritogenesis. Following a discussion of clinical and genetic findings in these syndromes and their preclinical animal models, we lionize CRMP3/DPYSL4 as a novel candidate gene for ID that may be ripe for therapeutic intervention.
Collapse
Affiliation(s)
- Tam T Quach
- Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH, 43210, USA
- INSERM U1217/CNRS, UMR5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Rajesh Khanna
- Department of Pharmacology, University of Arizona, Tucson, AZ, 85724, USA
| | | | - Jérome Honnorat
- INSERM U1217/CNRS, UMR5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Lyon, France
- SynatAc Team, Institut NeuroMyoGène, Lyon, France
| | - Kathrin Meyer
- The Research Institute of Nationwide Children Hospital, Columbus, OH, 43205, USA
- Department of Pediatric, The Ohio State University, Columbus, OH, 43210, USA
| | - Anne-Marie Duchemin
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
7
|
Toxic effect of titanium dioxide nanoparticles on corneas in vitro and in vivo. Aging (Albany NY) 2021; 13:5020-5033. [PMID: 33534781 PMCID: PMC7950276 DOI: 10.18632/aging.202412] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are widely used in a variety of areas. However, TiO2 NPs possess cytotoxicity which involves oxidative stress. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key molecule preventing cells from oxidative stress damage. In the current study, we explored the effect of Nrf2 signaling pathway in TiO2 NPs-induced corneal endothelial cell injury. Firstly, we found TiO2 NPs inhibited proliferation and damaged morphology and mitochondria of mouse primary corneal endothelial cells. Moreover, TiO2 NPs-induced oxidative damage of mouse primary corneal endothelial cells was inhibited by antioxidant NAC by evaluating production of reactive oxygen species (ROS), malondialdehyde (MDA), and activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). Next, flow cytometry analysis showed TiO2 NPs promoted apoptosis and cell cycle G2/M phase arrest of mouse primary corneal endothelial cells. Further investigation suggested that Nrf2 signaling pathway activation and the downregulation of ZO-1, β-catenin and Na-K-ATPase were involved in TiO2 NPs-induced mouse primary corneal endothelial cell injury. Our research highlighted the toxic effect of TiO2 NPs on corneas in vitro and in vivo, providing an alternative insight into TiO2 NPs-induced corneal endothelial cell injury.
Collapse
|
8
|
Mu X, Li W, Ze X, Li L, Wang G, Hong F, Ze Y. Molecular mechanism of nanoparticulate TiO 2 induction of axonal development inhibition in rat primary cultured hippocampal neurons. ENVIRONMENTAL TOXICOLOGY 2020; 35:895-905. [PMID: 32329576 DOI: 10.1002/tox.22926] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/16/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Numerous studies have demonstrated the in vitro and in vivo neurotoxicity of nanoparticulate titanium dioxide (nano-TiO2 ), a mass-produced material for a large number of commercial and industrial applications. The mechanism of nano-TiO2 -induced inhibition of axonal development, however, is still unclear. In our study, primary cultured hippocampal neurons of 24-hour-old fetal Sprague-Dawley rats were exposed to 5, 15, or 30 μg/mL nano-TiO2 for 6, 12, and 24 hours, and the toxic effects of nano-TiO2 exposure on the axons development were detected and its molecular mechanism investigated. Nano-TiO2 accumulated in hippocampal neurons and inhibited the development of axons as nano-TiO2 concentrations increased. Increasing time in culture resulted in decreasing axon length by 32.5%, 36.6%, and 53.8% at 6 hours, by 49.4%, 53.8%, and 69.5% at 12 hours, and by 44.5%, 58.2%, and 63.6% at 24 hours, for 5, 15, and 30 μg/mL nano-TiO2 , respectively. Furthermore, nano-TiO2 downregulated expression of Netrin-1, growth-associated protein-43, and Neuropilin-1, and promoted an increase of semaphorin type 3A and Nogo-A. These studies suggest that nano-TiO2 inhibited axonal development in rat primary cultured hippocampal neurons and this phenomenon is related to changes in the expression of axon growth-related factors.
Collapse
Affiliation(s)
- Xu Mu
- Department of Biochemistry and Molecular Biology, School of Basic Medical and Biological Sciences, Soochow University, Suzhou, China
| | - Wuyan Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical and Biological Sciences, Soochow University, Suzhou, China
| | - Xiao Ze
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Lingjuan Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical and Biological Sciences, Soochow University, Suzhou, China
| | - Guoqing Wang
- Department of Physiology and Neurobiology, School of Basic Medical and Biological Sciences, Soochow University, Suzhou, China
| | - Fashui Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huaian, China
- Department of Biotechnology, School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Yuguan Ze
- Department of Biochemistry and Molecular Biology, School of Basic Medical and Biological Sciences, Soochow University, Suzhou, China
| |
Collapse
|
9
|
Wiedmer L, Ducray AD, Frenz M, Stoffel MH, Widmer HR, Mevissen M. Silica nanoparticle-exposure during neuronal differentiation modulates dopaminergic and cholinergic phenotypes in SH-SY5Y cells. J Nanobiotechnology 2019; 17:46. [PMID: 30935413 PMCID: PMC6442417 DOI: 10.1186/s12951-019-0482-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/23/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Silica-ε-polycaprolactone-nanoparticles (SiPCL-NPs) represent a promising tool for laser-tissue soldering in the brain. After release of the SiPCL-NPs in the brain, neuronal differentiation might be modulated. The present study was performed to determine effects of SiPCL-NP-exposure at different stages of neuronal differentiation in neuron-like SH-SY5Y cells. The resulting phenotypes were analyzed quantitatively and signaling pathways involved in neuronal differentiation and degeneration were studied. SH-SY5Y cells were differentiated with all-trans retinoic acid or staurosporine to obtain predominantly cholinergic or dopaminergic neurons. The resulting phenotype was analyzed at the end of differentiation with and without the SiPCL-NPs given at various times during differentiation. RESULTS Exposure to SiPCL-NPs before and during differentiation led to a decreased cell viability of SH-SY5Y cells depending on the differentiation protocol used. SiPCL-NPs co-localized with the neuronal marker β-3-tubulin but did not alter the morphology of these cells. A significant decrease in the number of tyrosine hydroxylase (TH) immunoreactive neurons was found in staurosporine-differentiated cells when SiPCL-NPs were added at the end of the differentiation. TH-protein expression was also significantly downregulated when SiPCL-NPs were applied in the middle of differentiation. Protein expression of the marker for the dopamine active transporter (DAT) was not affected by SiPCL-NPs. SiPCL-NP-exposure predominantly decreased the expression of the high-affinity choline transporter 1 (CHT1) when the NPs were given before the differentiation. Pathways involved in neuronal differentiation, namely Akt, MAP-K, MAP-2 and the neurodegeneration-related markers β-catenin and GSK-3β were not altered by NP-exposure. CONCLUSIONS The decrease in the number of dopaminergic and cholinergic cells may implicate neuronal dysfunction, but the data do not provide evidence that pathways relevant for differentiation and related to neurodegeneration are impaired.
Collapse
Affiliation(s)
- Linda Wiedmer
- Division of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Laenggassstrasse 124, 3012 Bern, Switzerland
| | - Angélique D. Ducray
- Division of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Laenggassstrasse 124, 3012 Bern, Switzerland
| | - Martin Frenz
- Institute of Applied Physics, University of Bern, Bern, Switzerland
| | - Michael H. Stoffel
- Division of Veterinary Anatomy, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Hans-Rudolf Widmer
- Department of Neurosurgery, Research Unit, Inselspital, University of Bern, Bern, Switzerland
| | - Meike Mevissen
- Division of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Laenggassstrasse 124, 3012 Bern, Switzerland
| |
Collapse
|
10
|
Zhu J, Ren J, Tang L. Genistein inhibits invasion and migration of colon cancer cells by recovering WIF1 expression. Mol Med Rep 2018; 17:7265-7273. [PMID: 29568950 DOI: 10.3892/mmr.2018.8760] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 11/07/2017] [Indexed: 11/05/2022] Open
Abstract
Colon cancer is characterized by invasion and migration. DNA methylation of CpG islands in tumor suppressor genes is considered to be an epigenetic mechanism underlying cancer development. Epigenetic silencing of a gene may be reversed by drugs, including genistein. The present study aimed to determine the effect of genistein on Wnt inhibitory factor 1 (WIF1) and invasion, and migration of colon cancer cells. The viability of HT29 colon cancer cells was suppressed by genistein in a dose dependent manner. Following 72 h of treatment with 10, 20 and 60 µmol/l genistein, increased demethylation of WIF1 was induced in a dose‑dependent manner. Additionally, the invasive/migratory abilities of cells treated with genistein decreased in a dose‑dependent manner. Reverse transcription‑quantitative polymerase chain reaction and western blot analyses were performed to identify the mRNA and protein expression levels of invasion/migration‑associated factors. Following treatment with genistein, matrix metalloproteinase (MMP) 2 and MMP9 expression levels decreased, whereas the expression of metalloproteinase inhibitor 1 and E‑cadherin increased significantly. In addition, the expression levels of proto‑oncogene Wnt‑1 (Wnt‑1)/β‑catenin pathway‑associated factors, β‑catenin, c‑Myc proto‑oncogene protein and cyclin D1 decreased in a dose‑dependent manner following treatment with genistein. The invasive/migratory abilities of cells transfected with WIF1‑small interfering (si) RNA, and those transfected with WIF1‑siRNA and treated with genistein, increased notably compared with the control group. The present study demonstrated that genistein was able to inhibit the cell invasion and migration of colon cancer cells by inducing demethylation, and recovering the activity of WIF1 by altering the expression of invasion‑associated factors, and components of the Wnt signaling pathway.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Gastrointestinal Surgery, Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Jun Ren
- Department of Gastrointestinal Surgery, Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Liming Tang
- Department of Gastrointestinal Surgery, Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| |
Collapse
|
11
|
Zhou Y, Hong F, Tian Y, Zhao X, Hong J, Ze Y, Wang L. Nanoparticulate titanium dioxide-inhibited dendritic development is involved in apoptosis and autophagy of hippocampal neurons in offspring mice. Toxicol Res (Camb) 2017; 6:889-901. [PMID: 30090551 PMCID: PMC6062220 DOI: 10.1039/c7tx00153c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/05/2017] [Indexed: 12/24/2022] Open
Abstract
Background: Numerous studies have demonstrated that, upon maternal exposure, nano-TiO2 can cross the placental barrier, accumulate in offspring animals, and cause neurotoxicity. However, the neurotoxic mechanisms are not fully understood. The aim of this study is to determine the effects of nano-TiO2 on the dendritic outgrowth of hippocampal neurons and confirm the role of apoptosis and excessive autophagy in the neurotoxicity of offspring mice caused by nano-TiO2, as well as its molecular mechanisms. Methods: Pregnant mice were intragastrically administered 1, 2, or 3 mg per kg body weight nano-TiO2 consecutively from prenatal day 7 to postpartum day 21. The ultrastructure, mitochondrial membrane potential (MMP), levels of reactive oxygen species (ROS) and peroxides, and ATP contents, along with the expression of apoptosis- and autophagy-related factors, were investigated. Results: The dendritic length of hippocampal neurons was lower in the group treated with nano-TiO2 than in the control group. Apoptosis, excessive autophagy, and nano-TiO2 aggregation in hippocampal neurons resulted from maternal exposure to nano-TiO2. Maternal exposure to nano-TiO2 also resulted in the over-production of ROS, increases in malondialdehyde and protein carbonylation, reductions in MMP and ATP contents, up-regulation of apoptosis- or autophagy-related factors including histone H2AX at serine 139 (γH2AX), cytochrome C (Cyt C), caspase 3, phosphoinositide 3-kinase (PI3K3C), Beclin 1, c-Jun, LC3I, LC3II, JNK and p-JNK expression, and an increase of LC3II/LC3I, as well as down-regulation of Bcl-2 expression in hippocampal neurons of offspring mice. Conclusions: Maternal exposure to nano-TiO2 inhibited the dendritic outgrowth of hippocampal neurons. This effect is closely associated with excessive autophagy, which is related to severe oxidative stress and alterations in the expressions of apoptosis- and autophagy-related factors in the hippocampal neurons of offspring mice, due to maternal exposure to nano-TiO2.
Collapse
Affiliation(s)
- Yingjun Zhou
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection , Huaiyin Normal University , Huaian 223300 , China .
- Laboratory for Food Safety and Nutritional Function , Huaiyin Normal University , Huaian 223300 , China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake , Huaiyin Normal University , Huaian 223300 , China
| | - Fashui Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection , Huaiyin Normal University , Huaian 223300 , China .
- Laboratory for Food Safety and Nutritional Function , Huaiyin Normal University , Huaian 223300 , China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake , Huaiyin Normal University , Huaian 223300 , China
| | - Yusheng Tian
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection , Huaiyin Normal University , Huaian 223300 , China .
- Laboratory for Food Safety and Nutritional Function , Huaiyin Normal University , Huaian 223300 , China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake , Huaiyin Normal University , Huaian 223300 , China
| | - Xiangyu Zhao
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection , Huaiyin Normal University , Huaian 223300 , China .
- Laboratory for Food Safety and Nutritional Function , Huaiyin Normal University , Huaian 223300 , China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake , Huaiyin Normal University , Huaian 223300 , China
| | - Jie Hong
- Medical College of Soochow University , Suzhou 215123 , China
| | - Yuguan Ze
- Medical College of Soochow University , Suzhou 215123 , China
| | - Ling Wang
- Library of Soochow University , Suzhou 215123 , China
| |
Collapse
|