1
|
Fareez IM, Liew FF, Widera D, Mayeen NF, Mawya J, Abu Kasim NH, Haque N. Application of Platelet-Rich Plasma as a Stem Cell Treatment - an Attempt to Clarify a Common Public Misconception. Curr Mol Med 2024; 24:689-701. [PMID: 37171013 DOI: 10.2174/1566524023666230511152646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 05/13/2023]
Abstract
In recent years, there has been a significant increase in the practice of regenerative medicine by health practitioners and direct-to-consumer businesses globally. Among different tools of regenerative medicine, platelet-rich plasma (PRP) and stem cell-based therapies have received considerable attention. The use of PRP, in particular, has gained popularity due to its easy access, simple processing techniques, and regenerative potential. However, it is important to address a common misconception amongst the general public equating to PRP and stem cells due to the demonstrated efficacy of PRP in treating musculoskeletal and dermatological disorders. Notably, PRP promotes regeneration by providing growth factors or other paracrine factors only. Therefore, it cannot replenish or replace the lost cells in conditions where a large number of cells are required to regenerate tissues and/or organs. In such cases, cellbased therapies are the preferred option. Additionally, other tools of regenerative medicine, such as bioprinting, organoids, and mechanobiology also rely on stem cells for their success. Hence, healthcare and commercial entities offering direct-to-customer regenerative therapies should not mislead the public by claiming that the application of PRP is a stem cell-based therapy. Furthermore, it is important for regulatory bodies to strictly monitor these profit-driven entities to prevent them from providing unregulated regenerative treatments and services that claim a broad variety of benefits with little proof of efficacy, safety concerns, and obscure scientific justification.
Collapse
Affiliation(s)
- Ismail M Fareez
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, 40450, Selangor, Malaysia
| | - Fong Fong Liew
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Selangor, 42610, Malaysia
| | - Darius Widera
- Stem Cell Biology and Regenerative Medicine Group, School of Pharmacy, University of Reading, Reading, UK
| | - Naiyareen Fareeza Mayeen
- Faculty of Biology, Ludwig-Maximilians-University of Munich, Planegg- Martinsried, 82152, Germany
- TotiCell Limited, Dhaka, 1209, Bangladesh
| | | | - Noor Hayaty Abu Kasim
- Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
- Faculty of Dentistry, University Kebangsaan Malaysia, Kuala Lumpur, 50300, Malaysia
| | | |
Collapse
|
2
|
Pan Z, Sun W, Chen Y, Tang H, Lin W, Chen J, Chen C. Extracellular Vesicles in Tissue Engineering: Biology and Engineered Strategy. Adv Healthc Mater 2022; 11:e2201384. [PMID: 36053562 DOI: 10.1002/adhm.202201384] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/07/2022] [Indexed: 01/28/2023]
Abstract
Extracellular vesicles (EVs), acting as an important ingredient of intercellular communication through paracrine actions, have gained tremendous attention in the field of tissue engineering (TE). Moreover, these nanosized extracellular particles (30-140 nm) can be incorporated into biomaterials according to different principles to facilitate signal delivery in various regenerative processes directly or indirectly. Bioactive biomaterials as the carrier will extend the retention time and realize the controlled release of EVs, which further enhance their therapeutic efficiency in tissue regeneration. Herein, the basic biological characteristics of EVs are first introduced, and then their outstanding performance in exerting direct impacts on target cells in tissue regeneration as well as indirect effects on promoting angiogenesis and regulating the immune environment, due to specific functional components of EVs (nucleic acid, protein, lipid, etc.), is emphasized. Furthermore, different design ideas for suitable EV-loaded biomaterials are also demonstrated. In the end, this review also highlights the engineered strategies, which aim at solving the problems related to natural EVs such as highly heterogeneous functions, inadequate tissue targeting capabilities, insufficient yield and scalability, etc., thus promoting the therapeutic pertinence and clinical potential of EV-based approaches in TE.
Collapse
Affiliation(s)
- Ziyin Pan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School Of Medicine, Shanghai, 200092, China.,Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Weiyan Sun
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School Of Medicine, Shanghai, 200092, China.,Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Yi Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School Of Medicine, Shanghai, 200092, China.,Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Hai Tang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School Of Medicine, Shanghai, 200092, China.,Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Weikang Lin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School Of Medicine, Shanghai, 200092, China.,Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Jiafei Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School Of Medicine, Shanghai, 200092, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School Of Medicine, Shanghai, 200092, China.,Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| |
Collapse
|
3
|
Hypoxia, a dynamic tool to amplify the gingival mesenchymal stem cells potential for neurotrophic factor secretion. Saudi J Biol Sci 2022; 29:3568-3576. [PMID: 35844419 PMCID: PMC9280216 DOI: 10.1016/j.sjbs.2022.02.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/05/2022] [Accepted: 02/23/2022] [Indexed: 12/27/2022] Open
Abstract
Gingival mesenchymal stem cells (GMSCs) have significant regenerative potential. Their potential applications range from the treatment of inflammatory diseases, wound healing, and oral disorders. Preconditioning these stem cells can optimize their biological properties. Hypoxia preconditioning of MSCs improves stem cell properties like proliferation, survival, and differentiation potential. This research explored the possible impact of hypoxia on the pluripotent stem cell properties that GMSCs possess. We evaluated the morphology, stemness, neurotrophic factors, and stemness-related genes. We compared the protein levels of secreted neurotrophic factors between normoxic and hypoxic GMSC-conditioned media (GMSC-CM). Results revealed that hypoxic cultured GMSC’s had augmented expression of neurotrophic factors BDNF, GDNF, VEGF, and IGF1 and stemness-related gene NANOG. Hypoxic GMSCs showed decreased expression of the OCT4 gene. In hypoxic GMSC-CM, the neurotrophic factors secretions were significantly higher than normoxic GMSC-CM. Our data demonstrate that culturing of GMSCs in hypoxia enhances the secretion of neurotrophic factors that can lead to neuronal lineage differentiation.
Collapse
|
4
|
Junaid R, Wahid M, Waseem FS, Habib R, Hasan A. Effect of glucose mediated oxidative stress on apoptotic gene expression in gingival mesenchymal stem cells. BMC Oral Health 2021; 21:653. [PMID: 34922513 PMCID: PMC8684132 DOI: 10.1186/s12903-021-02007-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/01/2021] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Diabetes is a common disease that causes gingival and periodontal problems. Stem cells isolated from dental sources are an emerging area of research with a potential to facilitate regenerative medicine. The stem cells retain the property of self-renewal and the ones isolated from dental sources are mainly multipotent mesenchymal stem cells that have the ability to self-renew as well as differentiation towards multiple lineages.
Objectives
We aimed to isolate and characterize gingival mesenchymal stem cells by pluripotency markers and investigated the effect of oxidative stress on growth kinetics and apoptotic gene expression of gingival cells exposed to glucose mediated oxidative stress.
Methods
In this study, we isolated gingival mesenchymal stem cells from gingiva. This was followed by morphologic analysis using inverted phase contrast microscopy and molecular profiling of these cells for the mRNA expression of specific genes. The isolated cells were cultured till passage 3 and then exposed to oxidative stress (high glucose concentration). We measured the apoptotic gene expression and compared their growth kinetics.
Results
The results showed that oxidative stress produced by glucose reduced growth kinetics and increased apoptotic gene expression in gingival mesenchymal stem cells. According to the genetic results, glucose activated TNF family to initiate apoptosis.
Conclusion
In conclusion, the present study demonstrated that high glucose obliterated cellular proliferation testified by evaluating growth kinetics and induced apoptotic gene expression in gingival mesenchymal stem cells. This initiated extrinsic apoptotic pathway mediated by TNF family. Therefore, in diabetes oral health condition is compromised and periodontal disease is common.
Collapse
|
5
|
Enhanced Extracellular Matrix Deposition on Titanium Implant Surfaces: Cellular and Molecular Evidences. Biomedicines 2021; 9:biomedicines9111710. [PMID: 34829938 PMCID: PMC8615957 DOI: 10.3390/biomedicines9111710] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023] Open
Abstract
The surface structure of the titanium dental implants can modulate the activity of mesenchymal stem cells in order to promote the upregulation of osteoblastic related genes and the release of extracellular matrix (ECM) components. The present work was focused on the in vitro evaluation of the interaction of human periodontal ligament stem cells (hPDLSCs) and two different implant titanium surfaces topography (CTRL and TEST). This study was aimed at analyzing the cytotoxicity of the dental implant surfaces, the cellular adhesion capacity, and the improvement in the release of ECM molecules in an in vitro model. These parameters were carried out by means of the microscopic evaluation, viability assays, immunofluorescence, Western blot and RT-PCR investigations. The knowledge of the cell/implant interaction is essential for implant healing in order to obtain a more performing surfaces that promote the ECM release and provide the starting point to initiate the osseointegration process.
Collapse
|
6
|
Transcriptomic analysis revealed increased expression of genes involved in keratinization in the tears of COVID-19 patients. Sci Rep 2021; 11:19817. [PMID: 34615949 PMCID: PMC8494911 DOI: 10.1038/s41598-021-99344-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 09/23/2021] [Indexed: 01/08/2023] Open
Abstract
Recent studies have focused their attention on conjunctivitis as one of the symptoms of coronavirus disease 2019 (COVID-19). Therefore, tear samples were taken from COVID-19 patients and the presence of SARS-CoV-2 was evidenced using Real Time reverse transcription polymerase chain reaction. The main aim of this study was to analyze mRNA expression in the tears of patients with COVID-19 compared with healthy subjects using Next Generation Sequencing (NGS). The functional evaluation of the transcriptome highlighted 25 genes that differ statistically between healthy individuals and patients affected by COVID-19. In particular, the NGS analysis identified the presence of several genes involved in B cell signaling and keratinization. In particular, the genes involved in B cell signaling were downregulated in the tears of COVID-19 patients, while those involved in keratinization were upregulated. The results indicated that SARS-CoV-2 may induce a process of ocular keratinization and a defective B cell response.
Collapse
|
7
|
Wang W, Zhang B, Zhao L, Li M, Han Y, Wang L, Zhang Z, Li J, Zhou C, Liu L. Fabrication and properties of PLA/nano-HA composite scaffolds with balanced mechanical properties and biological functions for bone tissue engineering application. NANOTECHNOLOGY REVIEWS 2021. [DOI: 10.1515/ntrev-2021-0083] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
Repair of critical bone defects is a challenge in the orthopedic clinic. 3D printing is an advanced personalized manufacturing technology that can accurately shape internal structures and external contours. In this study, the composite scaffolds of polylactic acid (PLA) and nano-hydroxyapatite (n-HA) were manufactured by the fused deposition modeling (FDM) technique. Equal mass PLA and n-HA were uniformly mixed to simulate the organic and inorganic phases of natural bone. The suitability of the composite scaffolds was evaluated by material characterization, mechanical property, and in vitro biocompatibility, and the osteogenesis induction in vitro was further tested. Finally, the printed scaffold was implanted into the rabbit femoral defect model to evaluate the osteogenic ability in vivo. The results showed that the composite scaffold had sufficient mechanical strength, appropriate pore size, and biocompatibility. Most importantly, the osteogenic induction performance of the composite scaffold was significantly better than that of the pure PLA scaffold. In conclusion, the PLA/n-HA scaffold is a promising composite biomaterial for bone defect repair and has excellent clinical transformation potential.
Collapse
Affiliation(s)
- Wenzhao Wang
- Orthopedic Research Institute, Department of Orthopedics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University , Chengdu 610041 , China
| | - Boqing Zhang
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064 , China
- College of Biomedical Engineering, Sichuan University , Chengdu 610064 , China
| | - Lihong Zhao
- Orthopedic Research Institute, Department of Orthopedics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University , Chengdu 610041 , China
| | - Mingxin Li
- Orthopedic Research Institute, Department of Orthopedics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University , Chengdu 610041 , China
| | - Yanlong Han
- Department of Orthopedics, The People’s Hospital of Xinjiang Uygur Autonomous Region , Urumqi 830001 , China
| | - Li Wang
- Department of Orthopedics, The People’s Hospital of Xinjiang Uygur Autonomous Region , Urumqi 830001 , China
| | - Zhengdong Zhang
- Orthopedic Research Institute, Department of Orthopedics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University , Chengdu 610041 , China
- Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College , Chengdu , Sichuan , China
| | - Jun Li
- Orthopedic Research Institute, Department of Orthopedics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University , Chengdu 610041 , China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064 , China
- College of Biomedical Engineering, Sichuan University , Chengdu 610064 , China
| | - Lei Liu
- Orthopedic Research Institute, Department of Orthopedics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University , Chengdu 610041 , China
| |
Collapse
|
8
|
Pizzicannella J, Marconi GD, Guarnieri S, Fonticoli L, Della Rocca Y, Konstantinidou F, Rajan TS, Gatta V, Trubiani O, Diomede F. Role of ascorbic acid in the regulation of epigenetic processes induced by Porphyromonas gingivalis in endothelial-committed oral stem cells. Histochem Cell Biol 2021; 156:423-436. [PMID: 34370052 PMCID: PMC8604817 DOI: 10.1007/s00418-021-02014-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 12/18/2022]
Abstract
Periodontitis is a common inflammatory disease that affects the teeth-supporting tissue and causes bone and tooth loss. Moreover, in a worldwide population, periodontal disease is often associated with cardiovascular diseases. Emerging studies have reported that one of the major pathogens related to periodontitis is Porphyromonas gingivalis (P. gingivalis), which triggers the inflammatory intracellular cascade. Here, we hypothesized a possible protective effect of ascorbic acid (AA) in the restoration of the physiological molecular pathway after exposure to lipopolysaccharide derived from P. gingivalis (LPS-G). In particular, human gingiva-derived mesenchymal stem cells (hGMSCs) and endothelial-differentiated hGMSCs (e-hGMSCs) exposed to LPS-G showed upregulation of p300 and downregulation of DNA methyltransferase 1 (DNMT1), proteins associated with DNA methylation and histone acetylation. The co-treatment of AA and LPS-G showed a physiological expression of p300 and DNMT1 in hGMSCs and e-hGMSCs. Moreover, the inflammatory process triggered by LPS-G was demonstrated by evaluation of reactive oxygen species (ROS) and their intracellular localization. AA exposure re-established the physiological ROS levels. Despite the limitations of in vitro study, these findings collectively expand our knowledge regarding the molecular pathways involved in periodontal disease, and suggest the involvement of epigenetic modifications in the development of periodontitis.
Collapse
Affiliation(s)
- Jacopo Pizzicannella
- "Ss. Annunziata" Hospital, ASL 02 Lanciano-Vasto-Chieti, Via dei Vestini, 29, Chieti, 66100, Italy
| | - Guya Diletta Marconi
- Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, 31, Chieti, 66100, Italy
| | - Simone Guarnieri
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, 31, Chieti, 66100, Italy.,Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" Chieti-Pescara, Via Luigi Polacchi,19, Chieti, 66100, Italy
| | - Luigia Fonticoli
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, 31, Chieti, 66100, Italy
| | - Ylenia Della Rocca
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, 31, Chieti, 66100, Italy
| | - Fani Konstantinidou
- Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" Chieti-Pescara, Via Luigi Polacchi,19, Chieti, 66100, Italy.,Department of Psychological, Health and Territorial Sciences, University "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, 31, Chieti, 66100, Italy
| | - Thangavelu Soundara Rajan
- Department of Biotechnology, Karpagam Academy of Higher Education, Pollachi Main Road, Eachanari Post, Coimbatore, 641021, Tamil Nadu, India
| | - Valentina Gatta
- Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" Chieti-Pescara, Via Luigi Polacchi,19, Chieti, 66100, Italy.,Department of Psychological, Health and Territorial Sciences, University "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, 31, Chieti, 66100, Italy
| | - Oriana Trubiani
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, 31, Chieti, 66100, Italy
| | - Francesca Diomede
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, 31, Chieti, 66100, Italy.
| |
Collapse
|
9
|
Diomede F, Fonticoli L, Guarnieri S, Della Rocca Y, Rajan TS, Fontana A, Trubiani O, Marconi GD, Pizzicannella J. The Effect of Liposomal Curcumin as an Anti-Inflammatory Strategy on Lipopolysaccharide e from Porphyromonas gingivalis Treated Endothelial Committed Neural Crest Derived Stem Cells: Morphological and Molecular Mechanisms. Int J Mol Sci 2021; 22:7534. [PMID: 34299157 PMCID: PMC8305631 DOI: 10.3390/ijms22147534] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/03/2021] [Accepted: 07/11/2021] [Indexed: 12/25/2022] Open
Abstract
Curcumin, a yellow polyphenol extracted from the turmeric root is used as a diet supplement. It exhibits anti-inflammatory, antioxidant, and antitumor properties by modulating different intracellular mechanisms. Due to their low solubility in water, the curcumin molecules must be encapsulated into liposomes to improve the bioavailability and biomedical potential. For the periodontal tissue and systemic health, it is essential to regulate the local inflammatory response. In this study, the possible beneficial effect of liposomes loaded with curcumin (CurLIP) in neural crest-derived human periodontal ligament stem cells (hPDLSCs) and in endothelial-differentiated hPDLSCs (e-hPDLSCs) induced with an inflammatory stimulus (lipopolysaccharide obtained from Porphyromonas gingivalis, LPS-G) was evaluated. The CurLIP formulation exhibited a significant anti-inflammatory effect by the downregulation of Toll-like receptor-4 (TLR4)/Myeloid differentiation primary response 88 (MyD88)/nuclear factor kappa light chain enhancer of activated B cells (NFkB)/NLR Family Pyrin Domain Containing 3 (NLRP3)/Caspase-1/Interleukin (IL)-1β inflammation cascade and reactive oxygen species (ROS) formation. Moreover, the exposure to LPS-G caused significant alterations in the expression of epigenetic modifiers, such as DNA Methyltransferase 1 (DNMT1) and P300, while the CurLIP treatment showed physiological expression. Overall, our in vitro study provides novel mechanistic insights into the intracellular pathway exert by CurLIP in the regulation of inflammation and epigenetic modifications.
Collapse
Affiliation(s)
- Francesca Diomede
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (L.F.); (Y.D.R.); (O.T.)
| | - Luigia Fonticoli
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (L.F.); (Y.D.R.); (O.T.)
| | - Simone Guarnieri
- Department of Neuroscience, Imaging and Clinical Sciences, Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy;
| | - Ylenia Della Rocca
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (L.F.); (Y.D.R.); (O.T.)
| | | | - Antonella Fontana
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy;
| | - Oriana Trubiani
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (L.F.); (Y.D.R.); (O.T.)
| | - Guya Diletta Marconi
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy;
| | | |
Collapse
|
10
|
Sta. Agueda JRH, Chen Q, Maalihan RD, Ren J, da Silva ÍGM, Dugos NP, Caldona EB, Advincula RC. 3D printing of biomedically relevant polymer materials and biocompatibility. MRS COMMUNICATIONS 2021; 11:197-212. [PMID: 33936866 PMCID: PMC8075026 DOI: 10.1557/s43579-021-00038-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/08/2021] [Indexed: 05/06/2023]
Abstract
ABSTRACT Research on polymer materials for additive manufacturing technology in biomedical applications is as promising as it is numerous, but biocompatibility of printable materials still remains a big challenge. Changes occurring during the 3D-printing processes itself may have adverse effects on the compatibility of the completed print. This prospective will put emphasis on the different additives and processes that can have a direct impact on biocompatibility during and after 3D printing of polymer materials. GRAPHIC ABSTRACT
Collapse
Affiliation(s)
- Joseph Rey H. Sta. Agueda
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
- Department of Manufacturing Engineering and Management, De La Salle University, 1004 Manila, Philippines
- Department of Chemical Engineering, De La Salle University, 1004 Manila, Philippines
| | - Qiyi Chen
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
- Center for Nanophase Materials and Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| | - Reymark D. Maalihan
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
- Department of Chemical and Food Engineering and Material Testing and Calibration Center, Batangas State University, 4200 Batangas City, Philippines
| | - Jingbo Ren
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Ítalo G. M. da Silva
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
- Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-909 Brazil
| | - Nathaniel P. Dugos
- Department of Chemical Engineering, De La Salle University, 1004 Manila, Philippines
| | - Eugene B. Caldona
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
- Department of Chemical and Biomolecular Engineering and Joint Institute for Advanced Materials, University of Tennessee, Knoxville, TN 37996 USA
| | - Rigoberto C. Advincula
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
- Department of Chemical and Biomolecular Engineering and Joint Institute for Advanced Materials, University of Tennessee, Knoxville, TN 37996 USA
- Center for Nanophase Materials and Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| |
Collapse
|
11
|
Lei T, Wang J, Liu Y, Chen P, Zhang Z, Zhang X, Wang X, Li Q, Du H. Calreticulin as a special marker to distinguish dental pulp stem cells from gingival mesenchymal stem cells. Int J Biol Macromol 2021; 178:229-239. [PMID: 33647340 DOI: 10.1016/j.ijbiomac.2021.02.126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/26/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022]
Abstract
The construction of protein abundance profiles helps to interpret the clinical applications of stem cells. Dental pulp stem cells (DPSCs) and gingival mesenchymal stem cells (GMSCs) can be isolated from teeth and used as a highly convenient clinical potential material. Here, we aimed to explore commonalities and differences of DPSCs and GMSCs at the protein level. TMT-based quantitative proteomics and two-dimensional gel electrophoresis technology were used in combination to describe the protein profile of DPSCs and GMSCs extracted from the same donor. A total of 2821 proteins were identified by LC-MS/MS, of which 248 differentially abundant proteins (DAPs) were highly expressed in GMSCs while 782 proteins were highly expressed in DPSCs. The biological functions and molecular pathways of DAPs were annotated with GO enrichment and KEGG analysis. The relationship between molecular abundance and cell characteristics including source, proliferation, angiogenesis and inflammation were connected by WGCNA. Special markers, including Calreticulin (CALR), Annexin A5 (ANXA5) and Rho GDP dissociation inhibitor alpha (GDIR1), were proposed to distinguish DPSCs from GMSCs. Our results provide a molecular basis for in-depth understanding of the protein composition and special functions of dental stem cells, and promote the potential clinical application.
Collapse
Affiliation(s)
- Tong Lei
- 112 Lab, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jian Wang
- 112 Lab, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yanyan Liu
- 112 Lab, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Peng Chen
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Dongcheng District, Beijing 100700, China
| | - Zhihui Zhang
- Stomatology Department, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Xiaoshuang Zhang
- 112 Lab, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiao Wang
- Stomatology Department, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China.
| | - Quanhai Li
- Cell Therapy Laboratory, the First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, China; Department of Immunology, Basic Medical College, Hebei Medical University, Shijiazhuang, Hebei 050017, China.
| | - Hongwu Du
- 112 Lab, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
12
|
Ascorbic Acid: A New Player of Epigenetic Regulation in LPS- gingivalis Treated Human Periodontal Ligament Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6679708. [PMID: 33542783 PMCID: PMC7840256 DOI: 10.1155/2021/6679708] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/21/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022]
Abstract
Periodontitis is usually sustained from microorganism of oral cavity, like Porphyromonas gingivalis (P. gingivalis). Periodontal disease is an infectious disease that afflicts a large number of people. Researches are investigating on the mesenchymal stem cells (MSCs) response to inflammatory events in combination with antioxidant substances. In particular, ascorbic acid (AA) increased cell proliferation, upregulated the cells pluripotency marker expression, provide a protection from inflammation, and induced the regeneration of periodontal ligament tissue. The purpose of the present research was to investigate the effects of AA in primary culture of human periodontal ligament stem cells (hPDLSCs) exposed to P. gingivalis lipopolysaccharide (LPS-G). The effect of AA on hPDLSCs exposed to LPS-G was determined through the cell proliferation assay. The molecules involved in the inflammatory pathway and epigenetic regulation have been identified using immunofluorescence and Western blot analyses. miR-210 level was quantified by qRT-PCR, and the ROS generation was finally studied. Cells co-treated with LPS-G and AA showed a restoration in terms of cell proliferation. The expression of NFκB, MyD88, and p300 was upregulated in LPS-G exposed cells, while the expression was attenuated in the co-treatment with AA. DNMT1 expression is attenuated in the cells exposed to the inflammatory stimulus. The level of miR-210 was reduced in stimulated cells, while the expression was evident in the hPDLSCs co-treated with LPS-G and AA. In conclusion, the AA could enhance a protective effect in in vitro periodontitis model, downregulating the inflammatory pathway and ROS generation and modulating the miR-210 level.
Collapse
|
13
|
Vasanthan J, Gurusamy N, Rajasingh S, Sigamani V, Kirankumar S, Thomas EL, Rajasingh J. Role of Human Mesenchymal Stem Cells in Regenerative Therapy. Cells 2020; 10:E54. [PMID: 33396426 PMCID: PMC7823630 DOI: 10.3390/cells10010054] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/27/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells which can proliferate and replace dead cells in the body. MSCs also secrete immunomodulatory molecules, creating a regenerative microenvironment that has an excellent potential for tissue regeneration. MSCs can be easily isolated and grown in vitro for various applications. For the past two decades, MSCs have been used in research, and many assays and tests have been developed proving that MSCs are an excellent cell source for therapy. This review focusses on quality control parameters required for applications of MSCs including colony formation, surface markers, differentiation potentials, and telomere length. Further, the specific mechanisms of action of MSCs under various conditions such as trans-differentiation, cell fusion, mitochondrial transfer, and secretion of extracellular vesicles are discussed. This review aims to underline the applications and benefits of MSCs in regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Jayavardini Vasanthan
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (J.V.); (N.G.); (S.R.); (V.S.); (S.K.); (E.L.T.)
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai 600036, India
| | - Narasimman Gurusamy
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (J.V.); (N.G.); (S.R.); (V.S.); (S.K.); (E.L.T.)
| | - Sheeja Rajasingh
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (J.V.); (N.G.); (S.R.); (V.S.); (S.K.); (E.L.T.)
| | - Vinoth Sigamani
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (J.V.); (N.G.); (S.R.); (V.S.); (S.K.); (E.L.T.)
| | - Shivaani Kirankumar
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (J.V.); (N.G.); (S.R.); (V.S.); (S.K.); (E.L.T.)
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai 600036, India
| | - Edwin L. Thomas
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (J.V.); (N.G.); (S.R.); (V.S.); (S.K.); (E.L.T.)
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Johnson Rajasingh
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (J.V.); (N.G.); (S.R.); (V.S.); (S.K.); (E.L.T.)
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
14
|
Gao X, Cao Z. Gingiva-derived Mesenchymal Stem Cells and Their Potential Applications in Oral and Maxillofacial Diseases. Curr Stem Cell Res Ther 2020; 15:43-53. [PMID: 31702517 DOI: 10.2174/1574888x14666191107100311] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/02/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Stem cells are undifferentiated cells with multilineage differentiation potential. They can be collected from bone marrow, fat, amniotic fluid, and teeth. Stem cell-based therapies have been widely used to treat multiple diseases, such as cardiac disease, and hematological disorders. The cells may also be beneficial for controlling the disease course and promoting tissue regeneration in oral and maxillofacial diseases. Oral-derived gingival mesenchymal stem cells are easy to access and the donor sites heal rapidly without a scar. Such characteristics demonstrate the beneficial role of GMSCs in oral and maxillofacial diseases. OBJECTIVE We summarize the features of GMSCs, including their self-renewal, multipotent differentiation, immunomodulation, and anti-inflammation properties. We also discuss their applications in oral and maxillofacial disease treatment and tissue regeneration. CONCLUSION GMSCs are easily harvestable adult stem cells with outstanding proliferation, differentiation, and immunomodulation characteristics. A growing body of evidence indicates that GMSCs have strong potential use in accelerating wound healing and promoting the regeneration of bone defects, periodontium, oral neoplasms, salivary glands, peri-implantitis, and nerves. Moreover, alginate, polylactic acid and polycaprolactone can be used as biodegradable scaffolds for GMSC encapsulation. Various growth factors can be applied to the corresponding scaffolds to obtain the desired GMSC differentiation and phenotypes. Three-dimensional spheroid culture systems could optimize GMSC properties and improve the performance of the cells in tissue engineering. The immunomodulatory property of GMSCs in controlling oral and maxillofacial inflammation needs further research.
Collapse
Affiliation(s)
- Xudong Gao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengguo Cao
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Marconi GD, Diomede F, Pizzicannella J, Fonticoli L, Merciaro I, Pierdomenico SD, Mazzon E, Piattelli A, Trubiani O. Enhanced VEGF/VEGF-R and RUNX2 Expression in Human Periodontal Ligament Stem Cells Cultured on Sandblasted/Etched Titanium Disk. Front Cell Dev Biol 2020; 8:315. [PMID: 32478069 PMCID: PMC7240029 DOI: 10.3389/fcell.2020.00315] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
Bone formation, in skeletal development or in osseointegration processes, is the result of interaction between angiogenesis and osteogenesis. To establish osseointegration, cells must attach to the implant in a direct way without any deposition of soft tissue. Structural design and surface topography of dental implants enhance the cell attachment and can affect the biological response. The aim of the study was to evaluate the cytocompatibility, osteogenic and angiogenic markers involved in bone differentiation of human periodontal ligament stem cells (hPDLSCs) on different titanium disks surfaces. The hPDLSCs were cultured on pure titanium surfaces modified with two different procedures, sandblasted (Control—CTRL) and sandblasted/etched (Test—TEST) as experimental titanium surfaces. After 1 and 8 weeks of culture VEGF, VEGF-R, and RUNX2 expression was evaluated under confocal laser scanning microscopy. To confirm the obtained data, RT-PCR and WB analyses were performed in order to evaluate the best implant surface performance. TEST surfaces compared to CTRL titanium surfaces enhanced cell adhesion and increased VEGF and RUNX2 expression. Moreover, titanium TEST surfaces showed a different topographic morphology that promoted cell adhesion, proliferation, and osteogenic/angiogenic commitment. To conclude, TEST surfaces performed more efficiently than CTRL surfaces; furthermore, TEST surface results showed them to be more biocompatible, better tolerated, and appropriate for allowing hPDLSC growth and proliferation. This fact could also lead to more rapid bone–titanium integration.
Collapse
Affiliation(s)
- Guya Diletta Marconi
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Francesca Diomede
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | | | - Luigia Fonticoli
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Ilaria Merciaro
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Sante D Pierdomenico
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | | | - Adriano Piattelli
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Oriana Trubiani
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
16
|
Khavinson V, Diomede F, Mironova E, Linkova N, Trofimova S, Trubiani O, Caputi S, Sinjari B. AEDG Peptide (Epitalon) Stimulates Gene Expression and Protein Synthesis during Neurogenesis: Possible Epigenetic Mechanism. Molecules 2020; 25:molecules25030609. [PMID: 32019204 PMCID: PMC7037223 DOI: 10.3390/molecules25030609] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/23/2020] [Accepted: 01/29/2020] [Indexed: 01/07/2023] Open
Abstract
It was shown that AEDG peptide (Ala-Glu-Asp-Gly, Epitalon) regulates the function of the pineal gland, the retina, and the brain. AEDG peptide increases longevity in animals and decreases experimental cancerogenesis. AEDG peptide induces neuronal cell differentiation in retinal and human periodontal ligament stem cells. The aim of the study was to investigate the influence of AEDG peptide on neurogenic differentiation gene expression and protein synthesis in human gingival mesenchymal stem cells, and to suggest the basis for the epigenetic mechanism of this process. AEDG peptide increased the synthesis of neurogenic differentiation markers: Nestin, GAP43, β Tubulin III, Doublecortin in hGMSCs. AEDG peptide increased Nestin, GAP43, β Tubulin III and Doublecortin mRNA expression by 1.6–1.8 times in hGMSCs. Molecular modelling method showed, that AEDG peptide preferably binds with H1/6 and H1/3 histones in His-Pro-Ser-Tyr-Met-Ala-His-Pro-Ala-Arg-Lys and Tyr-Arg-Lys-Thr-Gln sites, which interact with DNA. These results correspond to previous experimental data. AEDG peptide and histones H1/3, H1/6 binding may be one of the mechanisms which provides an increase of Nestin, GAP43, β Tubulin III, and Doublecortin neuronal differentiation gene transcription. AEDG peptide can epigenetically regulate neuronal differentiation gene expression and protein synthesis in human stem cells.
Collapse
Affiliation(s)
- Vladimir Khavinson
- Saint Petersburg Institute of Bioregulation and Gerontology, Dynamo Ave., 3, 197110 St. Petersburg, Russia; (V.K.); (E.M.); (S.T.)
- Pavlov Institute of Physiology Russian Academy of Sciences, Makarova Emb., 6, 199034 St. Petersburg, Russia
| | - Francesca Diomede
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (F.D.); (O.T.); (S.C.); (B.S.)
| | - Ekaterina Mironova
- Saint Petersburg Institute of Bioregulation and Gerontology, Dynamo Ave., 3, 197110 St. Petersburg, Russia; (V.K.); (E.M.); (S.T.)
| | - Natalia Linkova
- Saint Petersburg Institute of Bioregulation and Gerontology, Dynamo Ave., 3, 197110 St. Petersburg, Russia; (V.K.); (E.M.); (S.T.)
- Academy of postgraduate education under FSBU FSCC of FMBA of Russia, Volokolamskaya r., 91, 125371 Moscow, Russia
- Correspondence: ; Tel.: +7-921-311-4210
| | - Svetlana Trofimova
- Saint Petersburg Institute of Bioregulation and Gerontology, Dynamo Ave., 3, 197110 St. Petersburg, Russia; (V.K.); (E.M.); (S.T.)
- Academy of postgraduate education under FSBU FSCC of FMBA of Russia, Volokolamskaya r., 91, 125371 Moscow, Russia
| | - Oriana Trubiani
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (F.D.); (O.T.); (S.C.); (B.S.)
| | - Sergio Caputi
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (F.D.); (O.T.); (S.C.); (B.S.)
| | - Bruna Sinjari
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (F.D.); (O.T.); (S.C.); (B.S.)
| |
Collapse
|
17
|
Silvestro S, Chiricosta L, Gugliandolo A, Pizzicannella J, Diomede F, Bramanti P, Trubiani O, Mazzon E. Extracellular Vesicles Derived from Human Gingival Mesenchymal Stem Cells: A Transcriptomic Analysis. Genes (Basel) 2020; 11:genes11020118. [PMID: 31973135 PMCID: PMC7073771 DOI: 10.3390/genes11020118] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/08/2020] [Accepted: 01/18/2020] [Indexed: 02/06/2023] Open
Abstract
Human gingival mesenchymal stem cells (hGMSCs) have outstanding characteristics of proliferation and are able to differentiate into osteogenic, chondrogenic, adipogenic, and neurogenic cell lineages. The extracellular vesicles (EVs) secreted by hGMSCs contain proteins, lipids, mRNA and microRNA have emerged as important mediators of cell-to-cell communication. In this study, we analyzed the transcriptome of hGMSCs-derived EVs using Next Generation Sequencing (NGS). The functional evaluation of the transcriptome highlighted 26 structural protein classes and the presence of "non-coding RNAs". Our results showed that EVs contain several growth factors such as Transforming Growth Factor-β (TGF-β), Fibroblast Growth Factor (FGF), and Vascular Endothelial Growth Factors (VEGF) implicated in osteoblast differentiation and in angiogenetic process. Furthermore, the transcriptomic analysis showed the presence of glial cell-derived neurotrophic factor (GDNF) family ligands and neurotrophins involved in neuronal development. The NGS analysis also identified the presence of several interleukins among which some with anti-inflammatory action. Moreover, the transcriptome profile of EVs contained members of the Wnt family, involved in several biological processes, such as cellular proliferation and tissue regeneration. In conclusion, the huge amount of growth factors included in the hGMSCs-derived EVs could make them a big resource in regenerative medicine.
Collapse
Affiliation(s)
- Serena Silvestro
- IRCCS Centro Neurolesi “Bonino-Pulejo”, 98124 Messina, Italy; (S.S.); (L.C.); (A.G.); (P.B.)
| | - Luigi Chiricosta
- IRCCS Centro Neurolesi “Bonino-Pulejo”, 98124 Messina, Italy; (S.S.); (L.C.); (A.G.); (P.B.)
| | - Agnese Gugliandolo
- IRCCS Centro Neurolesi “Bonino-Pulejo”, 98124 Messina, Italy; (S.S.); (L.C.); (A.G.); (P.B.)
| | | | - Francesca Diomede
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (F.D.); (O.T.)
| | - Placido Bramanti
- IRCCS Centro Neurolesi “Bonino-Pulejo”, 98124 Messina, Italy; (S.S.); (L.C.); (A.G.); (P.B.)
| | - Oriana Trubiani
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (F.D.); (O.T.)
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, 98124 Messina, Italy; (S.S.); (L.C.); (A.G.); (P.B.)
- Correspondence: ; Tel.: +39-090-60-12-8172
| |
Collapse
|
18
|
A Novel Role of Ascorbic Acid in Anti-Inflammatory Pathway and ROS Generation in HEMA Treated Dental Pulp Stem Cells. MATERIALS 2019; 13:ma13010130. [PMID: 31892218 PMCID: PMC6981406 DOI: 10.3390/ma13010130] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/10/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022]
Abstract
Resin (co)monomers issued from restorative dental materials are able to distribute in the dental pulp or the gingiva, to get to the saliva and to the flowing blood. Many authors have recently shown that methacrylate-based resins, in particular 2-hydroxyethylmethacrylate (HEMA), are responsible of inflammatory and autophagic processes in human dental pulp stem cells (hDPSCs) while ascorbic acid (AS), an antioxidant molecule, can assume a protective role in cell homeostasis. The purpose of the current work was to study if 50 µg/mL AS can affect the inflammatory status induced by 2 mM HEMA in hDPSCs, a tissue–specific cell population. Cell proliferation, cytokine release, morphological arrangement and reactive oxygen species (ROS) formation were determined respectively by MTT, ELISA, morphological analysis and dichlorofluorescein assay. The hDPSCs exposed to HEMA let to an increment of ROS formation and in the expression of high levels of inflammatory mediators such as nuclear factor-κB (NFkB), inflammatory cytokines such as interleukin IL6, IL8, interferon (IFN)ɣ and monocyte chemoattractant protein (MCP)1. Moreover, HEMA induced the up-regulation of pospho-extracellular signal–regulated kinases (pERK)/ERK signaling pathway associated to the nuclear translocation. AS treatment significantly down-regulated the levels of pro-inflammatory mediators. Then, the natural product AS reduced the detrimental result promoted by methacrylates in clinical dentistry, in fact restore cell proliferation, reduce the pro-inflammatory cytokine, downregulate ROS production and of NFkB/pERK/ERK signaling path. In synthesis, AS, could improve the quality of dental care and play a strategic role as innovative endodontic compound easy to use and with reasonable cost.
Collapse
|
19
|
Farshadi M, Johari B, Erfani Ezadyar E, Gholipourmalekabadi M, Azami M, Madanchi H, Haramshahi SMA, Yari A, Karimizade A, Nekouian R, Samadikuchaksaraei A. Nanocomposite scaffold seeded with mesenchymal stem cells for bone repair. Cell Biol Int 2019; 43:1379-1392. [PMID: 30811084 DOI: 10.1002/cbin.11124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/23/2019] [Indexed: 01/24/2023]
Abstract
The mechanical property of bone tissue scaffolds is one of the most important aspects in bone tissue engineering that has remained problematic. In our previous study, we fabricated a three-dimensional scaffold from nano-hydroxyapatite/gelatin (nHA/Gel) and investigated its efficiency in promoting bone regeneration both in vitro and in vivo. In the present study, the effect of adding silicon carbide (SiC) on the mechanical and biological behaviors of the nHA/Gel/SiC and bone regeneration in vivo were determined. nHA and SiC were synthesized and characterized by the X-ray diffraction pattern and transmission electron microscope image. Layer solvent casting, freeze drying, and lamination techniques were applied to prepare these scaffolds. Then, the biocompatibility and cell adhesion behavior of the synthesized nHA/Gel/SiC scaffolds were investigated. For in vivo studies, rats were categorized into three groups: blank defect, blank scaffold, and rat bone marrow mesenchymal stem cells (rBM-MSCs)/scaffold. After 1, 4, and 12 weeks post-injury, the rats were sacrificed and the calvaria were harvested. Sections with a thickness of 5 µm thickness were prepared and stained with hematoxylin-eosin and Masson's Trichrome, and immunohistochemistry was performed. Our results showed that SiC effectively increased the mechanical properties of the nHA/Gel/SiC scaffold. No significant differences were observed in biocompatibility, cell adhesion, and cytotoxicity of the nHA/Gel/SiC in comparison with the nHA/Gel nanocomposite. Based on histological and immunohistochemical studies, both osteogenesis and collagenization were significantly higher in the rBM-MSCs/scaffold group, quantitatively and qualitatively. The present study strongly suggests the potential of SiC as an alternative strategy to improve the mechanical and biological properties of bone tissue engineering scaffolds, and shows that the pre-seeded nHA/Gel/SiC scaffold with rBM-MSCs improves osteogenesis in the engineered bone implant.
Collapse
Affiliation(s)
- Maryam Farshadi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behrooz Johari
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Elham Erfani Ezadyar
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Madanchi
- Department of Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Seyed Mohammad Amin Haramshahi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abazar Yari
- Department of Anatomy, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Ayoob Karimizade
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Nekouian
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.,Pediatrics Growth and Development Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Science, Tehran, Iran
| | - Ali Samadikuchaksaraei
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Sinjari B, Diomede F, Khavinson V, Mironova E, Linkova N, Trofimova S, Trubiani O, Caputi S. Short Peptides Protect Oral Stem Cells from Ageing. Stem Cell Rev Rep 2019; 16:159-166. [DOI: 10.1007/s12015-019-09921-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Peng Y, Liou B, Inskeep V, Blackwood R, Mayhew CN, Grabowski GA, Sun Y. Intravenous infusion of iPSC-derived neural precursor cells increases acid β-glucosidase function in the brain and lessens the neuronopathic phenotype in a mouse model of Gaucher disease. Hum Mol Genet 2019; 28:3406-3421. [PMID: 31373366 PMCID: PMC6891072 DOI: 10.1093/hmg/ddz184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/12/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023] Open
Abstract
Gaucher disease (GD) is caused by GBA1 mutations leading to functional deficiency of acid-β-glucosidase (GCase). No effective treatment is available for neuronopathic GD (nGD). A subclass of neural stem and precursor cells (NPCs) expresses VLA4 (integrin α4β1, very late antigen-4) that facilitates NPC entry into the brain following intravenous (IV) infusion. Here, the therapeutic potential of IV VLA4+NPCs was assessed for nGD using wild-type mouse green fluorescent protein (GFP)-positive multipotent induced pluripotent stem cell (iPSC)-derived VLA4+NPCs. VLA4+NPCs successfully engrafted in the nGD (4L;C*) mouse brain. GFP-positive cells differentiated into neurons, astrocytes and oligodendrocytes in the brainstem, midbrain and thalamus of the transplanted mice and significantly improved sensorimotor function and prolonged life span compared to vehicle-treated 4L;C* mice. VLA4+NPC transplantation significantly decreased levels of CD68 and glial fibrillary acidic protein, as well as TNFα mRNA levels in the brain, indicating reduced neuroinflammation. Furthermore, decreased Fluoro-Jade C and NeuroSilver staining suggested inhibition of neurodegeneration. VLA4+NPC-engrafted 4L;C* midbrains showed 35% increased GCase activity, reduced substrate [glucosylceramide (GC, -34%) and glucosylsphingosine (GS, -11%)] levels and improved mitochondrial oxygen consumption rates in comparison to vehicle-4L;C* mice. VLA4+NPC engraftment in 4L;C* brain also led to enhanced expression of neurotrophic factors that have roles in neuronal survival and the promotion of neurogenesis. This study provides evidence that iPSC-derived NPC transplantation has efficacy in an nGD mouse model and provides proof of concept for autologous NPC therapy in nGD.
Collapse
Affiliation(s)
- Yanyan Peng
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Benjamin Liou
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Venette Inskeep
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Rachel Blackwood
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Christopher N Mayhew
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Gregory A Grabowski
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ying Sun
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
22
|
Trubiani O, Marconi GD, Pierdomenico SD, Piattelli A, Diomede F, Pizzicannella J. Human Oral Stem Cells, Biomaterials and Extracellular Vesicles: A Promising Tool in Bone Tissue Repair. Int J Mol Sci 2019; 20:E4987. [PMID: 31600975 PMCID: PMC6834314 DOI: 10.3390/ijms20204987] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/26/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022] Open
Abstract
Tissue engineering and/or regenerative medicine are fields of life science exploiting both engineering and biological fundamentals to originate new tissues and organs and to induce the regeneration of damaged or diseased tissues and organs. In particular, de novo bone tissue regeneration requires a mechanically competent osteo-conductive/inductive 3D biomaterial scaffold that guarantees the cell adhesion, proliferation, angiogenesis and differentiation into osteogenic lineage. Cellular components represent a key factor in tissue engineering and bone growth strategies take advantage from employment of mesenchymal stem cells (MSCs), an ideal cell source for tissue repair. Recently, the application of extracellular vesicles (EVs), isolated from stem cells, as cell-free therapy has emerged as a promising therapeutic strategy. This review aims at summarizing the recent and representative research on the bone tissue engineering field using a 3D scaffold enriched with human oral stem cells and their derivatives, EVs, as a promising therapeutic potential in the reconstructing of bone tissue defects.
Collapse
Affiliation(s)
- Oriana Trubiani
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy.
| | - Guya D Marconi
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy.
| | - Sante D Pierdomenico
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy.
| | - Adriano Piattelli
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy.
| | - Francesca Diomede
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy.
| | - Jacopo Pizzicannella
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy.
- ASL02 Lanciano-Vasto-Chieti, Ss. Annunziata Hospital, 66100 Chieti, Italy.
| |
Collapse
|
23
|
Pizzicannella J, Marconi GD, Pierdomenico SD, Cavalcanti MFXB, Diomede F, Trubiani O. Bovine pericardium membrane, gingival stem cells, and ascorbic acid: a novel team in regenerative medicine. Eur J Histochem 2019; 63:3064. [PMID: 31696691 PMCID: PMC6767323 DOI: 10.4081/ejh.2019.3064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/13/2019] [Indexed: 02/07/2023] Open
Abstract
Recently, the development and the application of 3D scaffold able to promote stem cell differentiation represented an essential field of interest in regenerative medicine. In particular, functionalized scaffolds improve bone tissue formation and promote bone defects repair. This research aims to evaluate the role of ascorbic acid (AS) supplementation in an in vitro model, in which a novel 3D-scaffold, bovine pericardium collagen membrane called BioRipar (BioR) was functionalized with human Gingival Mesenchymal Stem Cells (hGMSCs). As extensively reported in the literature, AS is an essential antioxidant molecule involved in the extracellular matrix secretion and in the osteogenic induction. Specifically, hGMSCs were seeded on BioR and treated with 60 and 90 μg/mL of AS in order to assess their growth behavior, the expression of bone specific markers involved in osteogenesis (runt-related transcription factor 2, RUNX2; collagen1A1, COL1A1; osteopontin, OPN; bone morphogenetic protein2/4, BMP2/4), and de novo deposition of calcium. The expression of COL1A1, RUNX2, BMP2/4 and OPN was evaluated by RT-PCR, Western blotting and immunocytochemistry, and proved to be upregulated. Our results demonstrate that after three weeks of treatment AS at 60 and 90 μg/mL operates as an osteogenic inductor in hGMSCs. These data indicate that the AS supplementation produces an enhancement of osteogenic phenotype commitment in an in vitro environment. For this reason, AS could represent a valid support for basic and translational research in tissue engineering and regenerative medicine.
Collapse
|
24
|
Chiricosta L, Gugliandolo A, Diomede F, Pizzicannella J, Trubiani O, Iori R, Tardiolo G, Guarnieri S, Bramanti P, Mazzon E. Moringin Pretreatment Inhibits the Expression of Genes Involved in Mitophagy in the Stem Cell of the Human Periodontal Ligament. Molecules 2019; 24:molecules24183217. [PMID: 31487916 PMCID: PMC6767209 DOI: 10.3390/molecules24183217] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/28/2019] [Accepted: 09/03/2019] [Indexed: 12/14/2022] Open
Abstract
Moringin [4-(α-L-rhamnosyloxy) benzyl isothiocyanate] is an isothiocyanate extracted from Moringa oleifera seeds. It is an antioxidant known for several biological properties useful in the treatment of neurodegenerative diseases. Several neurodegenerative disorders such as Parkinson’s and Alzheimer’s diseases are linked to dysfunctional mitochondria due to the resulting increase of Reactive Oxygen Species (ROS). Stem cell-based therapeutic treatments in neurodegenerative diseases provide an alternative strategy aimed to replace the impaired tissue. In this study were investigated the deregulated genes involved in mitophagy in the human periodontal ligament stem cells pretreated with moringin. The RNA-seq study reveals the downregulation of PINK1, with a fold change (FC) of −0.56, such as the genes involved in the phagophore formation (MAP1LC3B FC: −0.73, GABARAP FC: −0.52, GABARAPL1 FC: −0.70, GABARAPL2 FC: −0.39). The moringin pretreatment downregulates the pro−apoptotic gene BAX (−0.66) and upregulates the anti-apoptotic genes BCL2L12 (FC: 1.35) and MCL1 (FC: 0.36). The downregulation of the most of the caspases (CASP1 FC: −1.43, CASP4 FC: −0.18, CASP6 FC: −1.34, CASP7 FC: −0.46, CASP8 FC: −0.65) implies the inactivation of the apoptotic process. Our results suggest that mitochondrial dysfunctions induced by oxidative stress can be inhibited by moringin pretreatment in human periodontal ligament stem cells (hPDLSCs).
Collapse
Affiliation(s)
- Luigi Chiricosta
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - Agnese Gugliandolo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - Francesca Diomede
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy.
| | - Jacopo Pizzicannella
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy.
| | - Oriana Trubiani
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy.
| | - Renato Iori
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di ricerca Agricoltura e Ambiente (CREA-AA), Via di Corticella 133, 40128 Bologna, Italy.
| | - Giuseppe Tardiolo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - Simone Guarnieri
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio", Chieti-Pescara, 66100 Chieti, Italy.
- Center on Aging Science and Translational Medicine (Ce.S.I.-Me.T.), University "G. d'Annunzio", Chieti-Pescara, 66100 Chieti, Italy.
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| |
Collapse
|
25
|
Diomede F, Tripodi D, Trubiani O, Pizzicannella J. HEMA Effects on Autophagy Mechanism in Human Dental Pulp Stem Cells. MATERIALS 2019; 12:ma12142285. [PMID: 31315300 PMCID: PMC6678148 DOI: 10.3390/ma12142285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/08/2019] [Accepted: 07/12/2019] [Indexed: 12/18/2022]
Abstract
Autophagy is a complex mechanism that permits the degradation of cellular components in order to enhance cell homeostasis, recycling the damaged, dysfunctional, or unnecessary components. In restorative dentistry practice, free resin monomers of 2-hydroxyethyl methacrylate (HEMA) can be released. The aim of this study was to investigate the effect of HEMA on proliferation and autophagy in human dental pulp stem cells (hDPSCs). Human DPSCs were treated with different concentrations of HEMA (3 and 5 mmol L−1). To evaluate the proliferation rate, MTT and trypan blue assays were used. Autophagic markers such as microtubule-associated protein 1 light chain 3 (LC3-I/II) and ubiquitin-binding protein (p62) were analyzed through immunofluorescence observations. Beclin1, LC3-I/II, and p62 were evaluated by means of Western blotting detection. Considering that activity of extracellular signal–regulated kinase (ERK) and its phosphorylated form (pERK) mediates several cellular processes, such as apoptosis, autophagy, and senescence, the involvement of ERK/pERK signaling was also evaluated. Obtained results showed a decreased cell proliferation associated with morphological changes in HEMA-treated cells. The Western blot results showed that the expression levels of Beclin1, LC3-I/II, and ERK were significantly elevated in HEMA-treated cells and in cells co-treated with rapamycin, an autophagic promoter. The expression levels of p62 were significantly reduced compared to the untreated samples. Protein levels to the autophagic process, observed at confocal microscopy confirmed the data obtained from the Western blot. The up-regulation of ERK and pERK levels, associated with nuclear translocation, revealed that ERK pathway signaling could act as a promoter of autophagy in dental pulp stem cells treated with HEMA.
Collapse
Affiliation(s)
- Francesca Diomede
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy
| | - Domenico Tripodi
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy
| | - Oriana Trubiani
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy.
| | | |
Collapse
|
26
|
3D Human Periodontal Stem Cells and Endothelial Cells Promote Bone Development in Bovine Pericardium-Based Tissue Biomaterial. MATERIALS 2019; 12:ma12132157. [PMID: 31284396 PMCID: PMC6651787 DOI: 10.3390/ma12132157] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/24/2019] [Accepted: 06/30/2019] [Indexed: 12/20/2022]
Abstract
Bone defects repair represents a public and urgent problem in clinical practice, in fact, every year, more than two million patients required new treatments for bone injuries. Today a complete vascularization is strategic in bone formation, representing a new frontier for clinical application. Aim of this research has been developed a three-dimensional (3D) coculture platform using a bovine pericardium collagen membrane (BioR) loaded with human periodontal ligament stem cells (hPDLSCs) and endothelial differentiated cells from hPDLSCs (E-hPDLSCs) able to undergo toward osteoangiogenesis differentiation process. First, we have characterized at confocal laser scanning microscopy (CLSM) level the E-hPDLSCs phenotype profile, through CD31 and CD34 markers expression and the ability to tube vessel formation. Real Time-Polimerase Chain Reaction (RT-PCR) and western blotting analyses revealed the upregulation of Runt-related transcription factor 2 (RUNX2), Collagen 1A1 (COL1A1), Vascular Endothelial Growth Factor-A (VEGF-A) genes and proteins in the living construct composed by hPDLSCs + E-hPDSCs/BioR. Human PDLSCs + E-hPDLSCs/BioR construct showed also an enhacement of de novo synthesis of osteocalcin. Given that, the extracellular-signal-regulated kinase (ERK)/mitogen activated protein kinase (MAPK) transduction signaling was involved in the osteogenesis and angiogenesis process, the ERK1/2 protein level at biochemical level, in our experimental model, has been investigated. Our results evidenced an upregulation of ERK1/2 proteins level born in the living construct. In conclusion, we believe that the use of the hPDLSCs and E-hPDLSCs coculture togheter with BioR as substrate, could represent an efficient model able to activate through ERK1/2 signaling pathway the osteoangiogenesis process, and then representing a new potential engineered platform for surgeons during the repair and the healing of bone defects.
Collapse
|
27
|
3D Printing PLA/Gingival Stem Cells/ EVs Upregulate miR-2861 and -210 during Osteoangiogenesis Commitment. Int J Mol Sci 2019; 20:ijms20133256. [PMID: 31269731 PMCID: PMC6651609 DOI: 10.3390/ijms20133256] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/14/2019] [Accepted: 06/27/2019] [Indexed: 02/07/2023] Open
Abstract
Bone tissue regeneration strategies require approaches that provide an osteogenic and angiogenic microenvironment able to drive the bone growth. Recently, the development of 3D printing biomaterials, including poly(lactide) (3D-PLA), enriched with mesenchymal stem cells (MSCs) and/or their derivatives, such as extracellular vesicles (EVs) has been achieving promising results. In this study, in vitro results showed an increased expression of osteogenic and angiogenic markers, as RUNX2, VEGFA, OPN and COL1A1 in the living construct 3D-PLA/human Gingival MSCs (hGMSCs)/EVs. Considering that EVs carry and transfer proteins, mRNA and microRNA into target cells, we evaluated miR-2861 and miR-210 expression related to osteoangiogenesis commitment. Histological examination of rats implanted with 3D-PLA/hGMSCs/EVs evidenced the activation of bone regeneration and of the vascularization process, confirmed also by MicroCT. In synthesis, an upregulation of miR-2861 and -210 other than RUNX2, VEGFA, OPN and COL1A1 was evident in cells cultured in the presence of the biomaterial and EVs. Then, these results evidenced that EVs may enhance bone regeneration in calvaria defects, in association with an enhanced vascularization offering a novel regulatory system in the osteoangiogenesis evolution. The application of new strategies to improve biomaterial engraftment is of great interest in the regenerative medicine and can represent a way to promote bone regeneration.
Collapse
|
28
|
Sinjari B, Pizzicannella J, D'Aurora M, Zappacosta R, Gatta V, Fontana A, Trubiani O, Diomede F. Curcumin/Liposome Nanotechnology as Delivery Platform for Anti-inflammatory Activities via NFkB/ERK/pERK Pathway in Human Dental Pulp Treated With 2-HydroxyEthyl MethAcrylate (HEMA). Front Physiol 2019; 10:633. [PMID: 31244665 PMCID: PMC6579913 DOI: 10.3389/fphys.2019.00633] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/06/2019] [Indexed: 01/21/2023] Open
Abstract
Curcumin, primary component of the spice turmeric extracted from the rhizomes of Curcuma longa, represents the major anti-oxidant and anti-inflammatory substance found in turmeric, acting thought various mechanisms not completely understood. Curcumin modulates cytokines, growth factors, transcription factors, inflammatory molecules and cell signaling pathways. During restorative dentistry practice, free resin monomers of 2-hydroxyethyl methacrylate (HEMA) propagate through dentin micro-channel and pulp into the bloodstream affecting cellular integrity. The study highlights the significance of application of curcumin bioactive component into liposomal formulations (CurLIP) to restore the homeostasis of dental pulp stem cells (hDPSCs) in response to 3 and 5 mmol L–1 HEMA treatment. Cell proliferation in combination with changes of the morphological features, proinflammatory cytokines secretion as Interleukin (IL) 6, IL8, Monocyte Chemoattractant Protein-1 (MCP1) and Interferon-gamma (IFNγ) were assayed along with the nuclear factor (NF)-kB, an inducible transcription factor involved in the activation of several cell processes associated to extracellular signal-regulated kinases (ERK) and posphorylated (p-) ERK pathway. Our results showed a decreased cell proliferation, morphological changes and upregulation of IL6, IL8, MCP1 and IFNγ in presence of 3 and 5 mmol L–1 HEMA treatment. CurLIP therapy in hDPSCs provokes an increase in cell proliferation and the block of inflammatory cytokines secretion through the inhibitory regulation of NFkB/ERK and pERK signaling cascade. The natural nanocarrier CurLIP influences numerous biochemical and molecular cascades causing anti-inflammatory properties in response to HEMA treatment in human dental pulp stem cells, representing an innovative endodontic formulation able to improve the quality of dental care with a major human community impact.
Collapse
Affiliation(s)
- Bruna Sinjari
- Department of Medical Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti, Italy
| | - Jacopo Pizzicannella
- Department of Medical Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti, Italy.,ASL02 Lanciano-Vasto-Chieti, "Ss. Annunziata" Hospital, Chieti, Italy
| | - Marco D'Aurora
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio", Chieti, Italy
| | | | - Valentina Gatta
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio", Chieti, Italy
| | | | - Oriana Trubiani
- Department of Medical Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti, Italy
| | - Francesca Diomede
- Department of Medical Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti, Italy
| |
Collapse
|
29
|
Caputi S, Trubiani O, Sinjari B, Trofimova S, Diomede F, Linkova N, Diatlova A, Khavinson V. Effect of short peptides on neuronal differentiation of stem cells. Int J Immunopathol Pharmacol 2019; 33:2058738419828613. [PMID: 30791821 PMCID: PMC6376556 DOI: 10.1177/2058738419828613] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
It has been demonstrated that short peptides play an important role in the transmission of biological information, modulation of transcription, and restoring genetically conditioned alterations occurring with age. Peptidergic regulation of homeostasis occupies an important place in physiological processes, which lead to the aging of cells, tissues, and organs, consisting in the involution of major regulatory systems-the nervous, the endocrine, and the immune. The effect of AED (Ala-Glu-Asp), KED (Lys-Glu-Asp), KE (Lys-Glu), AEDG (Ala-Glu-Asp-Gly) peptides and their compound on neuronal differentiation of human periodontal ligament stem cells (hPDLSCs) was studied by immunofluorescence and western blot analysis. Growth-Associated Protein 43 (GAP43), which implements neurotransmission mechanisms and neuroplasticity, demonstrated an increased expression in hPDLSCs cultured with a compound of all studied peptides and with KED alone. The peptide compound and KED, increase the expression of Nestin (neurofilament protein), expressed in early neuronal precursors in hPDLSCs cultures. Thus, the compound of peptides AEDG, KE, AED, and KED could promote the neuronal differentiation of hPDLSCs and be a promising tool for the study of peptides as a modulator of neurogenesis in neurodegenerative diseases studied in animal models.
Collapse
Affiliation(s)
- Sergio Caputi
- 1 Laboratory of Stem Cells and Regenerative Medicine, Department of Medical, Oral and Biotechnological Sciences, School of Medicine and Health Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Oriana Trubiani
- 1 Laboratory of Stem Cells and Regenerative Medicine, Department of Medical, Oral and Biotechnological Sciences, School of Medicine and Health Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Bruna Sinjari
- 1 Laboratory of Stem Cells and Regenerative Medicine, Department of Medical, Oral and Biotechnological Sciences, School of Medicine and Health Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Svetlana Trofimova
- 2 Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, Saint Petersburg, Russia
| | - Francesca Diomede
- 1 Laboratory of Stem Cells and Regenerative Medicine, Department of Medical, Oral and Biotechnological Sciences, School of Medicine and Health Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Natalia Linkova
- 2 Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, Saint Petersburg, Russia.,3 Department of Medical Physic, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Anastasia Diatlova
- 2 Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, Saint Petersburg, Russia.,3 Department of Medical Physic, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Vladimir Khavinson
- 2 Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, Saint Petersburg, Russia.,4 Group of Peptide Regulation of Ageing, Pavlov Institute of Physiology of RAS, Saint Petersburg, Russia
| |
Collapse
|
30
|
Trubiani O, Pizzicannella J, Caputi S, Marchisio M, Mazzon E, Paganelli R, Paganelli A, Diomede F. Periodontal Ligament Stem Cells: Current Knowledge and Future Perspectives. Stem Cells Dev 2019; 28:995-1003. [PMID: 31017047 DOI: 10.1089/scd.2019.0025] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Teeth represent a fascinating area of study in regenerative medicine, because of their unique and complex developmental origin. Several types of mesenchymal stem cells (MSCs) have been characterized in the oral cavity, and those derived from the periodontal ligament (PDL) first isolated by our group in 2005, can be expanded in a xeno-free medium preserving morphological features and markers associated with pluripotency. These postnatal MSCs can be easily recovered by noninvasive procedures and cultured. This could facilitate the use of adult stem cells in human clinical regeneration therapy. In this review we summarize the results of our studies describing morphofunctional features, surface markers, and multilineage differentiation capacity in vitro of PDL MSCs obtained in our laboratories. In vivo characterization of PDL stem cell (PDLSC) location and heterogeneity are still lacking. However, we describe studies exploring the potential use of PDLSC to treat both periodontal diseases and regeneration of other tissues. These MSCs may have an advantage in possessing also angiogenetic, immunoregulatory, and anti-inflammatory properties. The secretome of such cells contains several interesting molecules mimicking the effects of the producer cells. We describe some recent studies from our group on the use of conditioned medium from PDL MSCs, and purified extracellular vesicles therein contained, in animal models of experimental autoimmune encephalomyelitis and their potential application to human disease.
Collapse
Affiliation(s)
- Oriana Trubiani
- 1Department of Medical, Oral and Biotechnological Sciences and Stem Tech Group, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Jacopo Pizzicannella
- 1Department of Medical, Oral and Biotechnological Sciences and Stem Tech Group, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy.,2ASL02, "Ss. Annunziata" Hospital, Chieti, Italy
| | - Sergio Caputi
- 1Department of Medical, Oral and Biotechnological Sciences and Stem Tech Group, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Marco Marchisio
- 3Department of Medicine and Aging Sciences, Stem Tech Group, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | | | - Roberto Paganelli
- 3Department of Medicine and Aging Sciences, Stem Tech Group, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Alessia Paganelli
- 5Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Diomede
- 1Department of Medical, Oral and Biotechnological Sciences and Stem Tech Group, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| |
Collapse
|
31
|
Pizzicannella J, Gugliandolo A, Orsini T, Fontana A, Ventrella A, Mazzon E, Bramanti P, Diomede F, Trubiani O. Engineered Extracellular Vesicles From Human Periodontal-Ligament Stem Cells Increase VEGF/VEGFR2 Expression During Bone Regeneration. Front Physiol 2019; 10:512. [PMID: 31114512 PMCID: PMC6503111 DOI: 10.3389/fphys.2019.00512] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/11/2019] [Indexed: 01/15/2023] Open
Abstract
Bone regeneration represents still a challenge, in particular for calvarium defects. Recently, the development of biomaterials with the addiction of stem cells is giving promising results for the treatment of bone defects. In particular, it was demonstrated that scaffolds enriched with mesenchymal stem cells (MSCs) and/or their derivatives, such as conditioned medium (CM) and extracellular vesicles (EVs), may improve bone regeneration. Moreover, given the deep link between osteogenesis and angiogenesis, a successful approach must also take into consideration the development of vascularization. In this work we evaluated the bone regeneration capacity of a collagen membrane (3D-COL) enriched with human periodontal-ligament stem cells (hPDLSCs) and CM or EVs or EVs engineered with polyethylenimine (PEI-EVs) in rats subjected to a calvarial defect. We evaluated also their capacity to induce angiogenic factors. At first, in vitro results showed an increased expression of osteogenic markers in hPDLSCs cultured with the 3D-COL and PEI-EVs, associated also with the increased protein levels of Vascular endothelial growth factor (VEGF) and VEGF receptor 2 (VEGFR2). The increased expression of these proteins was confirmed also in vivo in rats implanted with the 3D-COL enriched with hPDLSCs and PEI-EVs. Moreover, histological examination evidenced in this group of rats the activation of bone regeneration and of the vascularization process. Also MicroCT imaging with morphometric analysis confirmed in rats transplanted with 3D-COL enriched with hPDLSCs and PEI-EVs an important regenerative process and a better integration level. All together, these results evidenced that the 3D-COL enriched with hPDLSCs and PEI-EVs may promote bone regeneration of calvaria defects, associated also with an increased vascularization.
Collapse
Affiliation(s)
- Jacopo Pizzicannella
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | | | - Tiziana Orsini
- Institute of Cell Biology and Neurobiology, National Research Council, Rome, Italy
| | - Antonella Fontana
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Alessia Ventrella
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | | | | | - Francesca Diomede
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Oriana Trubiani
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
32
|
Physiological Expression of Ion Channel Receptors in Human Periodontal Ligament Stem Cells. Cells 2019; 8:cells8030219. [PMID: 30845727 PMCID: PMC6468776 DOI: 10.3390/cells8030219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/19/2019] [Accepted: 03/01/2019] [Indexed: 02/06/2023] Open
Abstract
The etiopathogenesis of neurodegenerative diseases is characterized by the death of neurons. Human periodontal ligament stem cells (hPDLSCs), coming from neuronal crest, can potentially become neuronal cells because of their embryologic origin. In this study, we performed an RNA-seq analysis of hPDLSCs in order to determine whether their transcriptomic profile revealed genes encoded for ion channel receptors. Next, each found gene was enriched by the information of pathways stored in the Reactome database. Our results show that the hPDLSCs express GABBR1 and GABBR2, CHRNA1, GRINA genes, respectively associated with GABAB, NMDA and nACh receptors. In particular, the two subunits of GABAB receptor are expressed in hPDLSCs. Further, the proteic extract for GABABR1, GABABR2 and AChRα1 confirmed their expression in hPDLSCs. Our results show that hPDLSCs express physiologically genes associated with ion channel receptors maintaining multipotent features which are useful for neurogenesis.
Collapse
|
33
|
Gugliandolo A, Diomede F, Scionti D, Bramanti P, Trubiani O, Mazzon E. The Role of Hypoxia on the Neuronal Differentiation of Gingival Mesenchymal Stem Cells: A Transcriptional Study. Cell Transplant 2019; 28:538-552. [PMID: 30642188 PMCID: PMC7103605 DOI: 10.1177/0963689718814470] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are widely used in stem cell therapy for regenerative
purposes. Oral-derived MSCs, such as gingival MSCs (GMSCs), deriving from the neural crest
seem more suitable to differentiate toward the neuronal lineage. In addition, the
preconditioning of MSCs may improve their beneficial effects. Since it is known that
hypoxia may influence stem cell properties, we were interested in evaluating the effects
of hypoxia preconditioning on the neuronal differentiation of GMSCs. With this aim, we
evaluated the transcriptional profile of GMSCs exposed to basal and neuroinductive medium
both in normoxia and in cells preconditioned for 48 h in hypoxia. We compared their
transcriptional profile using Next Generation Sequencing. At first we observed that
hypoxia did not alter cell morphology compared with the GMSCs cultured in a normoxic
condition. In order to understand hypoxia preconditioning effects on neuronal
differentiation, we screened genes with Log2 fold change ≥2 using the database Cortecon,
that collects gene expression data set of in vitro corticogenesis. We observed that
hypoxia preconditioning induced the expression of more genes associated with different
stages of cortical development. The common genes, expressed both in normoxia and hypoxia
preconditioning, were involved in developmental and neuronal processes. Interestingly, a
larger number of genes associated with development biology and neuronal process was
expressed in GMSCs differentiated after hypoxia preconditioning compared with those in
normoxia. In addition, hypoxic-preconditioned differentiated GMSCs showed a higher
expression of nestin, PAX6, and GAP43. Our data demonstrated that hypoxia preconditioning
enhanced the differentiation potential of GMSCs and induced the activation of a higher
number of genes associated with neuronal development. In conclusion, hypoxia may be used
to improve MSCs’ properties for stem cell therapy.
Collapse
Affiliation(s)
| | - Francesca Diomede
- 2 Department of medical, oral and biotechnological sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | | | | | - Oriana Trubiani
- 2 Department of medical, oral and biotechnological sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | | |
Collapse
|
34
|
MicroRNA 210 Mediates VEGF Upregulation in Human Periodontal Ligament Stem Cells Cultured on 3DHydroxyapatite Ceramic Scaffold. Int J Mol Sci 2018; 19:ijms19123916. [PMID: 30563289 PMCID: PMC6320762 DOI: 10.3390/ijms19123916] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 12/19/2022] Open
Abstract
The aim of the present research was the evaluation of the behavior of human periodontal ligament stem cells (hPDLSCs), cultured in presence of Endobon® Xenograft Granules (G), a fully deproteinated hydroxyapatite ceramic scaffold derived from cancellous bovine bone. hPDLSCs were seeded with and without G for 24 h to 1 week. The cell growth, morphological features, adhesiveness, differentiation ability, modulation of miR-210 and Vascular Endothelial Growth Factor (VEGF) secretion were analyzed by means of MTT assay, Scanning Electron Microscopy (SEM), Confocal Laser Scanning Microscopy (CLSM), Alizarin Red S assay, RT-PCR and ELISA test, respectively. hPDLSCs grown on the biomaterial showed the ability to form focal adhesion on the substrate, as demonstrated by vinculin expression. These data were supported by SEM analysis showing that an adhesiveness process associated to cell growth occurs between cells and biomaterials. The osteogenic differentiation, evaluated by morphological, biochemical, and RT-PCR analysis, was pronounced in the hPDLSCs grown in the three-dimensional inorganic bovine bone substitute in the presence of osteoinductive conditions. In addition, an upregulation of miR-210 and VEGF was evident in cells cultured in presence of the biomaterial. Our results inspire us to consider granules not only an adequate biocompatible three-dimensional biomaterial, but also an effective inductor of miR-210 and VEGF; in fact, the involvement of miR-210 in VEGF secretion could offer a novel regulatory system in the early steps of the bone-regeneration process.
Collapse
|
35
|
Marques CR, Marote A, Mendes-Pinheiro B, Teixeira FG, Salgado AJ. Cell secretome based approaches in Parkinson’s disease regenerative medicine. Expert Opin Biol Ther 2018; 18:1235-1245. [DOI: 10.1080/14712598.2018.1546840] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Cláudia R. Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Marote
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bárbara Mendes-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Fábio G. Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
36
|
Lanza Cariccio V, Scionti D, Raffa A, Iori R, Pollastro F, Diomede F, Bramanti P, Trubiani O, Mazzon E. Treatment of Periodontal Ligament Stem Cells with MOR and CBD Promotes Cell Survival and Neuronal Differentiation via the PI3K/Akt/mTOR Pathway. Int J Mol Sci 2018; 19:ijms19082341. [PMID: 30096889 PMCID: PMC6121255 DOI: 10.3390/ijms19082341] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 12/31/2022] Open
Abstract
Periodontal ligament mesenchymal stem cells (hPDLSCs), as well as all mesenchymal stem cells, show self-renewal, clonogenicity, and multi-tissue differentiation proprieties and can represent a valid support for regenerative medicine. We treated hPDLSCs with a combination of Moringin (MOR) and Cannabidiol (CBD), in order to understand if treatment could improve their survival and their in vitro differentiation capacity. Stem cells survival is fundamental to achieve a successful therapy outcome in the re-implanted tissue of patients. Through NGS transcriptome analysis, we found that combined treatment increased hPDLSCs survival, by inhibition of apoptosis as demonstrated by enhanced expression of anti-apoptotic genes and reduction of pro-apoptotic ones. Moreover, we investigated the possible involvement of PI3K/Akt/mTOR pathway, emphasizing a differential gene expression between treated and untreated cells. Furthermore, hPDLSCs were cultured for 48 h in the presence or absence of CBD and MOR and, after confirming the cellular viability through MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazoliumbromide) assay, we examined the presence of neuronal markers, through immunofluorescence analysis. We found an increased expression of Nestin and GAP43 (growth associated protein 43) in treated cells. In conclusion, hPDLSCs treated with Moringin and Cannabidiol showed an improved survival capacity and neuronal differentiation potential.
Collapse
Affiliation(s)
- Veronica Lanza Cariccio
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - Domenico Scionti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - Antonio Raffa
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - Renato Iori
- Consiglio per la Ricerca in Agricoltura e L'analisi Dell'economia Agraria, Centro di Ricerca Agricoltura e Ambiente (CREA-AA), Via di Corticella 133, 40128 Bologna, Italy.
| | - Federica Pollastro
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy.
| | - Francesca Diomede
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy.
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - Oriana Trubiani
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy.
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| |
Collapse
|
37
|
Diomede F, D'Aurora M, Gugliandolo A, Merciaro I, Ettorre V, Bramanti A, Piattelli A, Gatta V, Mazzon E, Fontana A, Trubiani O. A novel role in skeletal segment regeneration of extracellular vesicles released from periodontal-ligament stem cells. Int J Nanomedicine 2018; 13:3805-3825. [PMID: 29988728 PMCID: PMC6029600 DOI: 10.2147/ijn.s162836] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Purpose The combination of oral derived stem cells and 3-D scaffolds is considered advantageous in bone repair. In particular, collagen membranes possess ideal biological properties and can support infiltration and proliferation of osteoblasts, promoting bone regeneration. Our study aimed to develop a new biocompatible osteogenic construct composed of a commercially available collagen membrane (Evolution [Evo]), human periodontal-ligament stem cells (hPDLSCs) enriched with extracellular vesicles (EVs), or polyethylenimine (PEI)-engineered EVs (PEI-EVs). Methods Osteogenic ability and expression of osteogenic genes were evaluated in vitro in hPDLSCs cultured with or without Evo, with Evo and EVs, or PEI-EVs. In addition, the bone-regeneration capacity of Evo, Evo enriched with hPDLSCs, Evo enriched with hPDLSCs and EVs/PEI-EVs was investigated in rats subjected to calvarial defects. Results Our results showed that Evo enriched with EVs and PEI-EVs showed high biocompatibility and osteogenic properties in vitro and in vivo. In addition, quantitative reverse-transcription polymerase chain reaction demonstrated the upregulation of osteogenic genes, such as TGFB1, MMP8, TUFT1, TFIP11, BMP2, and BMP4, in the presence of PEI-EVs. Upregulation of BMP2/4 was confirmed for Evo enriched with PEI-EVs and hPDLSCs both in vitro by Western blot and in vivo by immunofluorescence. Conclusion Our results indicated that Evo enriched with hPDLSCs and PEI-EVs is able to promote a bone-regeneration process for the treatment of calvarium and ossification defects caused by accidental or surgery trauma. In particular, PEI-EVs had a significant role in activation of the osteogenic process.
Collapse
Affiliation(s)
- Francesca Diomede
- Department of Medical, Oral, and Biotechnological Sciences, University "G. d'Annunzio", Chieti, Italy
| | - Marco D'Aurora
- Department of Psychological, Health, and Territorial Sciences, University "G. d'Annunzio", Chieti, Italy
| | - Agnese Gugliandolo
- Department of Experimental Neurology, IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy,
| | - Ilaria Merciaro
- Department of Medical, Oral, and Biotechnological Sciences, University "G. d'Annunzio", Chieti, Italy
| | - Valeria Ettorre
- Department of Pharmacy, University "G. d'Annunzio", Chieti, Italy
| | - Alessia Bramanti
- Department of Experimental Neurology, IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy, .,Eduardo Caianiello Institute of Applied Science and Intelligent Systems (ISASI), National Research Council, Messina, Italy
| | - Adriano Piattelli
- Department of Medical, Oral, and Biotechnological Sciences, University "G. d'Annunzio", Chieti, Italy
| | - Valentina Gatta
- Department of Psychological, Health, and Territorial Sciences, University "G. d'Annunzio", Chieti, Italy
| | - Emanuela Mazzon
- Department of Experimental Neurology, IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy,
| | | | - Oriana Trubiani
- Department of Medical, Oral, and Biotechnological Sciences, University "G. d'Annunzio", Chieti, Italy
| |
Collapse
|
38
|
Diomede F, Gugliandolo A, Cardelli P, Merciaro I, Ettorre V, Traini T, Bedini R, Scionti D, Bramanti A, Nanci A, Caputi S, Fontana A, Mazzon E, Trubiani O. Three-dimensional printed PLA scaffold and human gingival stem cell-derived extracellular vesicles: a new tool for bone defect repair. Stem Cell Res Ther 2018; 9:104. [PMID: 29653587 PMCID: PMC5899396 DOI: 10.1186/s13287-018-0850-0] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/27/2018] [Accepted: 03/19/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The role of bone tissue engineering in the field of regenerative medicine has been a main research topic over the past few years. There has been much interest in the use of three-dimensional (3D) engineered scaffolds (PLA) complexed with human gingival mesenchymal stem cells (hGMSCs) as a new therapeutic strategy to improve bone tissue regeneration. These devices can mimic a more favorable endogenous microenvironment for cells in vivo by providing 3D substrates which are able to support cell survival, proliferation and differentiation. The present study evaluated the in vitro and in vivo capability of bone defect regeneration of 3D PLA, hGMSCs, extracellular vesicles (EVs), or polyethyleneimine (PEI)-engineered EVs (PEI-EVs) in the following experimental groups: 3D-PLA, 3D-PLA + hGMSCs, 3D-PLA + EVs, 3D-PLA + EVs + hGMSCs, 3D-PLA + PEI-EVs, 3D-PLA + PEI-EVs + hGMSCs. METHODS The structural parameters of the scaffold were evaluated using both scanning electron microscopy and nondestructive microcomputed tomography. Nanotopographic surface features were investigated by means of atomic force microscopy. Scaffolds showed a statistically significant mass loss along the 112-day evaluation. RESULTS Our in vitro results revealed that both 3D-PLA + EVs + hGMSCs and 3D-PLA + PEI-EVs + hGMSCs showed no cytotoxicity. However, 3D-PLA + PEI-EVs + hGMSCs exhibited greater osteogenic inductivity as revealed by morphological evaluation and transcriptomic analysis performed by next-generation sequencing (NGS). In addition, in vivo results showed that 3D-PLA + PEI-EVs + hGMSCs and 3D-PLA + PEI-EVs scaffolds implanted in rats subjected to cortical calvaria bone tissue damage were able to improve bone healing by showing better osteogenic properties. These results were supported also by computed tomography evaluation that revealed the repair of bone calvaria damage. CONCLUSION The re-establishing of the integrity of the bone lesions could be a promising strategy in the treatment of accidental or surgery trauma, especially for cranial bones.
Collapse
Affiliation(s)
- Francesca Diomede
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti, Italy
| | | | - Paolo Cardelli
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti, Italy
| | - Ilaria Merciaro
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti, Italy
| | - Valeria Ettorre
- Department of Pharmacy, University "G. d'Annunzio", Chieti, Italy
| | - Tonino Traini
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti, Italy
| | - Rossella Bedini
- National Centre of Innovative Technologies in Public Health, Italian National Institute of Health, Rome, Italy
| | | | - Alessia Bramanti
- IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy.,Institute of Applied Science and Intelligent Systems "ISASI Eduardo Caianiello", CNR, Messina, Italy
| | - Antonio Nanci
- Laboratory for the study of Calcified Tissues and Biomaterials, Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, Québec, Canada
| | - Sergio Caputi
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti, Italy
| | | | | | - Oriana Trubiani
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Via dei Vestini, 66100, Chieti, Italy.
| |
Collapse
|
39
|
Diomede F, D'Aurora M, Gugliandolo A, Merciaro I, Orsini T, Gatta V, Piattelli A, Trubiani O, Mazzon E. Biofunctionalized Scaffold in Bone Tissue Repair. Int J Mol Sci 2018; 19:E1022. [PMID: 29596323 PMCID: PMC5979468 DOI: 10.3390/ijms19041022] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/15/2018] [Accepted: 03/26/2018] [Indexed: 01/02/2023] Open
Abstract
Bone tissue engineering is based on bone grafting to repair bone defects. Bone graft substitutes can contribute to the addition of mesenchymal stem cells (MSCs) in order to enhance the rate and the quality of defect regeneration. The stem cell secretome contains many growth factors and chemokines, which could affect cellular characteristics and behavior. Conditioned medium (CM) could be used in tissue regeneration avoiding several problems linked to the direct use of MSCs. In this study, we investigated the effect of human periodontal ligament stem cells (hPDLSCs) and their CM on bone regeneration using a commercially available membrane scaffold Evolution (EVO) implanted in rat calvarias. EVO alone or EVO + hPDLSCs with or without CM were implanted in Wistar male rats subjected to calvarial defects. The in vivo results revealed that EVO membrane enriched with hPDLSCs and CM showed a better osteogenic ability to repair the calvarial defect. These results were confirmed by acquired micro-computed tomography (CT) images and the increased osteopontin levels. Moreover, RT-PCR in vitro revealed the upregulation of three genes (Collagen (COL)5A1, COL16A1 and transforming growth factor (TGF)β1) and the down regulation of 26 genes involved in bone regeneration. These results suggest a promising potential application of CM from hPDLSCs and scaffolds for bone defect restoration and in particular for calvarial repair in case of trauma.
Collapse
Affiliation(s)
- Francesca Diomede
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti-Pescara, via dei Vestini, 31, 66100 Chieti, Italy.
| | - Marco D'Aurora
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio", Chieti-Pescara, via dei Vestini, 31, 66100 Chieti, Italy.
| | | | - Ilaria Merciaro
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti-Pescara, via dei Vestini, 31, 66100 Chieti, Italy.
| | - Tiziana Orsini
- CNR-National Research Council, Institute of Cell Biology and Neurobiology (IBCN), via Ramarini 32, Monterotondo, 00015 Roma, Italy.
| | - Valentina Gatta
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio", Chieti-Pescara, via dei Vestini, 31, 66100 Chieti, Italy.
| | - Adriano Piattelli
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti-Pescara, via dei Vestini, 31, 66100 Chieti, Italy.
| | - Oriana Trubiani
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti-Pescara, via dei Vestini, 31, 66100 Chieti, Italy.
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino Pulejo", 98124 Messina, Italy.
| |
Collapse
|
40
|
Biotherapeutic Effect of Gingival Stem Cells Conditioned Medium in Bone Tissue Restoration. Int J Mol Sci 2018; 19:ijms19020329. [PMID: 29360771 PMCID: PMC5855551 DOI: 10.3390/ijms19020329] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 12/13/2022] Open
Abstract
Bone tissue engineering is one of the main branches of regenerative medicine. In this field, the use of a scaffold, which supported bone development, in combination with mesenchymal stem cells (MSCs), has promised better outcomes for bone regeneration. In particular, human gingival mesenchymal stem cells (hGMSCs) may present advantages compared to other MSCs, including the easier isolation. However, MSCs’ secretome has attracted much attention for its potential use in tissue regeneration, such as conditioned medium (CM) that contains different soluble factors proved to be useful for the regenerative purposes. In this study, we evaluated the osteogenic capacity of a poly-(lactide) (3D-PLA) scaffold enriched with hGMSCs and hGMSCs derived CM and its ability to regenerate bone defects in rat calvarias. 3D-PLA alone, 3D-PLA + CM or 3D-PLA + hGMSCs with/without CM were implanted in Wistar male rats subjected to calvarial defects. We observed that 3D-PLA scaffold enriched with hGMSCs and CM showed a better osteogenic capacity, being able to repair the calvarial defect as revealed in vivo by morphological evaluation. Moreover, transcriptomic analysis in vitro revealed the upregulation of genes involved in ossification and regulation of ossification in the 3D-PLA + CM + hGMSCs group. All of these results indicate the great osteogenic ability of 3D-PLA + CM + hGMSCs supporting its use in bone regenerative medicine, in particular in the repair of cranial bone defects. Especially, hGMSCs derived CM played a key role in the induction of the osteogenic process and in bone regeneration.
Collapse
|