1
|
Buscail E, Le Cosquer G, Gross F, Lebrin M, Bugarel L, Deraison C, Vergnolle N, Bournet B, Gilletta C, Buscail L. Adipose-Derived Stem Cells in the Treatment of Perianal Fistulas in Crohn's Disease: Rationale, Clinical Results and Perspectives. Int J Mol Sci 2021; 22:ijms22189967. [PMID: 34576129 PMCID: PMC8470328 DOI: 10.3390/ijms22189967] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/07/2021] [Accepted: 09/12/2021] [Indexed: 12/16/2022] Open
Abstract
Between 20 to 25% of Crohn’s disease (CD) patients suffer from perianal fistulas, a marker of disease severity. Seton drainage combined with anti-TNFα can result in closure of the fistula in 70 to 75% of patients. For the remaining 25% of patients there is room for in situ injection of autologous or allogenic mesenchymal stem cells such as adipose-derived stem/stromal cells (ADSCs). ADSCs exert their effects on tissues and effector cells through paracrine phenomena, including the secretome and extracellular vesicles. They display anti-inflammatory, anti-apoptotic, pro-angiogenic, proliferative, and immunomodulatory properties, and a homing within the damaged tissue. They also have immuno-evasive properties allowing a clinical allogeneic approach. Numerous clinical trials have been conducted that demonstrate a complete cure rate of anoperineal fistulas in CD ranging from 46 to 90% of cases after in situ injection of autologous or allogenic ADSCs. A pivotal phase III-controlled trial using allogenic ADSCs (Alofisel®) demonstrated that prolonged clinical and radiological remission can be obtained in nearly 60% of cases with a good safety profile. Future studies should be conducted for a better knowledge of the local effect of ADSCs as well as for a standardization in terms of the number of injections and associated procedures.
Collapse
Affiliation(s)
- Etienne Buscail
- Department of Surgery, CHU Toulouse-Rangueil and Toulouse University, UPS, 31059 Toulouse, France;
- IRSD, University of Toulouse, INSERM 1022, INRAe, ENVT, UPS, 31300 Toulouse, France; (C.D.); (N.V.)
| | - Guillaume Le Cosquer
- Department of Gastroenterology and Pancreatology, CHU Toulouse-Rangueil and Toulouse University, UPS, 31059 Toulouse, France; (G.L.C.); (B.B.); (C.G.)
| | - Fabian Gross
- Centre for Clinical Investigation in Biotherapy, CHU Toulouse-Rangueil and INSERM U1436, 31059 Toulouse, France; (F.G.); (M.L.); (L.B.)
| | - Marine Lebrin
- Centre for Clinical Investigation in Biotherapy, CHU Toulouse-Rangueil and INSERM U1436, 31059 Toulouse, France; (F.G.); (M.L.); (L.B.)
| | - Laetitia Bugarel
- Centre for Clinical Investigation in Biotherapy, CHU Toulouse-Rangueil and INSERM U1436, 31059 Toulouse, France; (F.G.); (M.L.); (L.B.)
| | - Céline Deraison
- IRSD, University of Toulouse, INSERM 1022, INRAe, ENVT, UPS, 31300 Toulouse, France; (C.D.); (N.V.)
| | - Nathalie Vergnolle
- IRSD, University of Toulouse, INSERM 1022, INRAe, ENVT, UPS, 31300 Toulouse, France; (C.D.); (N.V.)
| | - Barbara Bournet
- Department of Gastroenterology and Pancreatology, CHU Toulouse-Rangueil and Toulouse University, UPS, 31059 Toulouse, France; (G.L.C.); (B.B.); (C.G.)
| | - Cyrielle Gilletta
- Department of Gastroenterology and Pancreatology, CHU Toulouse-Rangueil and Toulouse University, UPS, 31059 Toulouse, France; (G.L.C.); (B.B.); (C.G.)
| | - Louis Buscail
- Department of Gastroenterology and Pancreatology, CHU Toulouse-Rangueil and Toulouse University, UPS, 31059 Toulouse, France; (G.L.C.); (B.B.); (C.G.)
- Centre for Clinical Investigation in Biotherapy, CHU Toulouse-Rangueil and INSERM U1436, 31059 Toulouse, France; (F.G.); (M.L.); (L.B.)
- Correspondence: ; Tel.: +33-561323055
| |
Collapse
|
2
|
Bilal M, Nunes LV, Duarte MTS, Ferreira LFR, Soriano RN, Iqbal HMN. Exploitation of Marine-Derived Robust Biological Molecules to Manage Inflammatory Bowel Disease. Mar Drugs 2021; 19:md19040196. [PMID: 33808253 PMCID: PMC8067156 DOI: 10.3390/md19040196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 02/05/2023] Open
Abstract
Naturally occurring biological entities with extractable and tunable structural and functional characteristics, along with therapeutic attributes, are of supreme interest for strengthening the twenty-first-century biomedical settings. Irrespective of ongoing technological and clinical advancement, traditional medicinal practices to address and manage inflammatory bowel disease (IBD) are inefficient and the effect of the administered therapeutic cues is limited. The reasonable immune response or invasion should also be circumvented for successful clinical translation of engineered cues as highly efficient and robust bioactive entities. In this context, research is underway worldwide, and researchers have redirected or regained their interests in valorizing the naturally occurring biological entities/resources, for example, algal biome so-called "treasure of untouched or underexploited sources". Algal biome from the marine environment is an immense source of excellence that has also been demonstrated as a source of bioactive compounds with unique chemical, structural, and functional features. Moreover, the molecular modeling and synthesis of new drugs based on marine-derived therapeutic and biological cues can show greater efficacy and specificity for the therapeutics. Herein, an effort has been made to cover the existing literature gap on the exploitation of naturally occurring biological entities/resources to address and efficiently manage IBD. Following a brief background study, a focus was given to design characteristics, performance evaluation of engineered cues, and point-of-care IBD therapeutics of diverse bioactive compounds from the algal biome. Noteworthy potentialities of marine-derived biologically active compounds have also been spotlighted to underlying the impact role of bio-active elements with the related pathways. The current review is also focused on the applied standpoint and clinical translation of marine-derived bioactive compounds. Furthermore, a detailed overview of clinical applications and future perspectives are also given in this review.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
- Correspondence: or (M.B.); (H.M.N.I.)
| | - Leonardo Vieira Nunes
- Department of Medicine, Federal University of Juiz de Fora, Juiz de Fora-MG 36036-900, Brazil;
| | | | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, Aracaju-Sergipe 49032-490, Brazil;
- Institute of Technology and Research (ITP), Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, Aracaju-Sergipe 49032-490, Brazil
| | - Renato Nery Soriano
- Division of Physiology and Biophysics, Department of Basic Life Sciences, Federal University of Juiz de Fora, Governador Valadares-MG 35010-180, Brazil;
| | - Hafiz M. N. Iqbal
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
- Correspondence: or (M.B.); (H.M.N.I.)
| |
Collapse
|
3
|
Guillaume O, Pérez-Köhler B, Schädl B, Keibl C, Saxenhuber N, Heimel P, Priglinger E, Wolbank S, Redl H, Petter-Puchner A, Fortelny R. Stromal vascular fraction cells as biologic coating of mesh for hernia repair. Hernia 2020; 24:1233-1243. [PMID: 32096088 PMCID: PMC7701131 DOI: 10.1007/s10029-020-02135-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/29/2020] [Indexed: 12/19/2022]
Abstract
Background The interest in non-manipulated cells originating from adipose tissue has raised tremendously in the field of tissue engineering and regenerative medicine. The resulting stromal vascular fraction (SVF) cells have been successfully used in numerous clinical applications. The aim of this experimental work is, first to combine a macroporous synthetic mesh with SVF isolated using a mechanical disruption process, and to assess the effect of those cells on the early healing phase of hernia. Methods Human SVF cells combined with fibrin were used to coat commercial titanized polypropylene meshes. In vitro, viability and growth of the SVF cells were assessed using live/dead staining and scanning electron microscopy. The influence of SVF cells on abdominal wall hernia healing was conducted on immunodeficient rats, with a focus on short-term vascularization and fibrogenesis. Results Macroporous meshes were easily coated with SVF using a fibrin gel as temporary carrier. The in vitro experiments showed that the whole process including the isolation of human SVF cells and their coating on PP meshes did not impact on the SVF cells’ viability and on their capacity to attach and to proliferate. In vivo, the SVF cells were well tolerated by the animals, and coating mesh with SVF resulted in a decrease degree of vascularity compared to control group at day 21. Conclusions The utilization of SVF-coated mesh influences the level of angiogenesis during the early onset of tissue healing. Further long-term animal experiments are needed to confirm that this effect correlates with a more robust mesh integration compared to non-SVF-coated mesh.
Collapse
Affiliation(s)
- O Guillaume
- 3D Printing and Biofabrication Group, Institute of Materials Science and Technology, TU Wien, Vienna, Austria. .,Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| | - B Pérez-Köhler
- Department of Medicine and Medical Specialties, University of Alcalá, Madrid, Spain.,Biomedical Networking Research Centre On Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.,Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
| | - B Schädl
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - C Keibl
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - N Saxenhuber
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - P Heimel
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - E Priglinger
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - S Wolbank
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - H Redl
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - A Petter-Puchner
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Department of General, Visceral and Oncologic Surgery, Wilhelminenspital, Vienna, Austria
| | - R Fortelny
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Department of General, Visceral and Oncologic Surgery, Wilhelminenspital, Vienna, Austria
| |
Collapse
|
4
|
Design and characterization of a chitosan-enriched fibrin hydrogel for human dental pulp regeneration. Dent Mater 2019; 35:523-533. [DOI: 10.1016/j.dental.2019.01.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/19/2018] [Accepted: 01/03/2019] [Indexed: 12/12/2022]
|
5
|
Zubillaga V, Salaberria AM, Palomares T, Alonso-Varona A, Kootala S, Labidi J, Fernandes SCM. Chitin Nanoforms Provide Mechanical and Topological Cues to Support Growth of Human Adipose Stem Cells in Chitosan Matrices. Biomacromolecules 2018; 19:3000-3012. [PMID: 29889507 DOI: 10.1021/acs.biomac.8b00570] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The precise role and value of incorporating nanoforms in biologically active matrices for medical applications is not known. In our current work, we incorporate two chitin nanoforms (i.e., nanocrystals or nanofibers) into Genipin-chitosan crosslinked matrices. These materials were studied as 2D films and 3D porous scaffolds to assess their potential as primary support and guidance for stem cells in tissue engineering and regenerative medicine applications. The incorporation of either nanoforms in these 2D and 3D materials reveals significantly better swelling properties and robust mechanical performance in contrast to nanoform-free chitosan matrices. Furthermore, our data shows that these materials, in particular, incorporation of low concentration chitin nanoforms provide specific topological cues to guide the survival, adhesion, and proliferation of human adipose-derived stem cells. These findings demonstrate the potential of Genipin-chitosan crosslinked matrices impregnated with chitin nanoforms as value added materials for stem cell-based biomedical applications.
Collapse
Affiliation(s)
- Verónica Zubillaga
- Department of Cellular Biology and Histology, Faculty of Medicine and Odontology , University of the Basque Country (UPV/EHU) , B Sarriena, s/n , 48940 , Leioa , Spain
| | - Asier M Salaberria
- Biorefinery Processes Research Group, Department of Chemical and Environmental Engineering, Polytechnic School , University of the Basque Country (UPV/EHU) , Pza. Europa 1 , 20018 Donostia-San Sebastian , Spain
| | - Teodoro Palomares
- Department of Cellular Biology and Histology, Faculty of Medicine and Odontology , University of the Basque Country (UPV/EHU) , B Sarriena, s/n , 48940 , Leioa , Spain
| | - Ana Alonso-Varona
- Department of Cellular Biology and Histology, Faculty of Medicine and Odontology , University of the Basque Country (UPV/EHU) , B Sarriena, s/n , 48940 , Leioa , Spain
| | - Sujit Kootala
- CNRS/Université de Pau et des Pays de l'Adour , Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Materiaux, UMR 5254 , 2 Av. Pdt Angot , 64053 Pau , France
| | - Jalel Labidi
- Biorefinery Processes Research Group, Department of Chemical and Environmental Engineering, Polytechnic School , University of the Basque Country (UPV/EHU) , Pza. Europa 1 , 20018 Donostia-San Sebastian , Spain
| | - Susana C M Fernandes
- CNRS/Université de Pau et des Pays de l'Adour , Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Materiaux, UMR 5254 , 2 Av. Pdt Angot , 64053 Pau , France
| |
Collapse
|