1
|
Zheng LX, Yu Q, Peng L, Li Q. Magnetically targeted lidocaine sustained-release microspheres: optimization, pharmacokinetics, and pharmacodynamic radius of effect. Reg Anesth Pain Med 2024:rapm-2024-105634. [PMID: 39223097 DOI: 10.1136/rapm-2024-105634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE This study aimed to optimize the formulation of magnetically targeted lidocaine microspheres, reduce the microsphere particle size, and increase the drug loading and encapsulation rate of lidocaine. The optimized microspheres were characterized, and their pharmacokinetics and effective radii of action were studied. METHODS The preparation of magnetically targeted lidocaine microspheres was optimized using ultrasonic emulsification-solvent evaporation. The Box-Behnken design method and response surface method were used for optimization. The optimized microspheres were characterized and tested for their in vitro release. Blood concentrations were analyzed using a non-compartment model, and the main pharmacokinetic parameters (half-life (t1/2 ), maximum blood concentration, area under the blood concentration-time curve (AUC), time to peak (Tmax ), and mean retention time (MRT) were calculated. Pathological sections were stained to study the safety of the microsphere tissues. A rabbit sciatic nerve model was used to determine the "standard time (t0 )" and effective radius of the microspheres. RESULTS The optimized lidocaine microspheres exhibited significantly reduced particle size and increased drug loading and encapsulation rates. Pharmacokinetic experiments showed that the t1/2 , Tmax , and MRT of magnetically targeted lidocaine microspheres were significantly prolonged in the magnetic field, and the AUC0-48 and AUC0-∞ were significantly decreased. Its pharmacodynamic radius was 31.47 mm. CONCLUSION Magnetically targeted lidocaine microspheres provide sustained long-lasting release, neurotargeting, nerve blocking, and high tissue safety. This preparation has a significantly low blood concentration and a slow release in vivo, which can reduce local anesthetic entry into the blood. This may be a novel and effective method for improving postoperative comfort and treating chronic pain. This provides a countermeasure for exploring the size of the magnetic field for the application of magnetic drug-carrying materials.
Collapse
Affiliation(s)
- Ling-Xi Zheng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
- Department of Anesthesiology, Affiliated Hospital of Southwest Jiaotong University,Chengdu Third People's Hospital of, Chengdu, Sichuan, China
| | - Qian Yu
- Urban Vocational College of Sichuan, Chengdu, Sichuan, China
| | - Lin Peng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
- Department of Anesthesiology, Affiliated Hospital of Southwest Jiaotong University,Chengdu Third People's Hospital of, Chengdu, Sichuan, China
| | - Qiang Li
- Department of Anesthesiology, Affiliated Hospital of Southwest Jiaotong University,Chengdu Third People's Hospital of, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Rana MM, De la Hoz Siegler H. Evolution of Hybrid Hydrogels: Next-Generation Biomaterials for Drug Delivery and Tissue Engineering. Gels 2024; 10:216. [PMID: 38667635 PMCID: PMC11049329 DOI: 10.3390/gels10040216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Hydrogels, being hydrophilic polymer networks capable of absorbing and retaining aqueous fluids, hold significant promise in biomedical applications owing to their high water content, permeability, and structural similarity to the extracellular matrix. Recent chemical advancements have bolstered their versatility, facilitating the integration of the molecules guiding cellular activities and enabling their controlled activation under time constraints. However, conventional synthetic hydrogels suffer from inherent weaknesses such as heterogeneity and network imperfections, which adversely affect their mechanical properties, diffusion rates, and biological activity. In response to these challenges, hybrid hydrogels have emerged, aiming to enhance their strength, drug release efficiency, and therapeutic effectiveness. These hybrid hydrogels, featuring improved formulations, are tailored for controlled drug release and tissue regeneration across both soft and hard tissues. The scientific community has increasingly recognized the versatile characteristics of hybrid hydrogels, particularly in the biomedical sector. This comprehensive review delves into recent advancements in hybrid hydrogel systems, covering the diverse types, modification strategies, and the integration of nano/microstructures. The discussion includes innovative fabrication techniques such as click reactions, 3D printing, and photopatterning alongside the elucidation of the release mechanisms of bioactive molecules. By addressing challenges, the review underscores diverse biomedical applications and envisages a promising future for hybrid hydrogels across various domains in the biomedical field.
Collapse
Affiliation(s)
- Md Mohosin Rana
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada;
- Centre for Blood Research, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Hector De la Hoz Siegler
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
3
|
Mohanty S, Swarup J, Priya S, Jain R, Singhvi G. Exploring the potential of polysaccharide-based hybrid hydrogel systems for their biomedical and therapeutic applications: A review. Int J Biol Macromol 2024; 256:128348. [PMID: 38007021 DOI: 10.1016/j.ijbiomac.2023.128348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Hydrogels are a versatile category of biomaterials that have been widely applied in the fields of biomedicine for the last several decades. The three-dimensional polymeric crosslinked hydrophilic structures of the hydrogel can proficiently hold drugs, nanoparticles, and cells, making them a potential delivery system. However, disadvantages like low mechanical strength, poor biocompatibility, and unusual in-vivo biodegradation are associated with conventional hydrogels. To overcome these hurdles, hybrid hydrogels are designed using two or more structurally different polymeric units. Polysaccharides, characterized by their innate biocompatibility, biodegradability, and abundance, establish an ideal foundation for the development of these hybrid hydrogels. This review aims to discuss the studies that have utilized naturally occurring polysaccharides to prepare hybrid systems, which were aimed for various biomedical applications such as tissue engineering, bone and cartilage regeneration, wound healing, skin cancer treatment, antimicrobial therapy, osteoarthritis treatment, and drug delivery. Furthermore, this review extensively examines the properties of the employed polysaccharides within hydrogel matrices, emphasizing the advantageous characteristics that make them a preferred choice. Furthermore, the challenges associated with the commercial implementation of these systems are explored alongside an assessment of the current patent landscape.
Collapse
Affiliation(s)
- Shambo Mohanty
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India
| | - Jayanti Swarup
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India
| | - Sakshi Priya
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India
| | - Rupesh Jain
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
4
|
Asghari Lalami Z, Tafvizi F, Naseh V, Salehipour M. Fabrication, optimization, and characterization of pH-responsive PEGylated nanoniosomes containing gingerol for enhanced treatment of breast cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3867-3886. [PMID: 37368028 DOI: 10.1007/s00210-023-02579-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
Multiple potential drug delivery strategies have emerged as a result of recent advances in nanotechnology and nanomedicine. The aim of this research was to prepare an optimized system of PEGylated gingerol-loaded niosomes (Nio-Gin@PEG) as an excellent candidate for the treatment of human breast cancer cells. The preparation procedure was modified by adjusting the drug concentration, lipid content, and Span60/Tween60 ratio, resulting in high encapsulation efficacy (EE%), rapid release rate, and reduced size. The Nio-Gin@PEG exhibited significantly improved storage stability compared to the gingerol-loaded niosomes formulation (Nio-Gin), with minimal changes in EE%, release profile, and size during storage. Furthermore, Nio-Gin@PEG demonstrated pH-dependent release behavior, with delayed drug diffusion at physiological pH and significant drug diffusion under acidic conditions (pH = 5.4), making it a promising option for cancer treatment. Cytotoxicity tests indicated that Nio-Gin@PEG possessed excellent biocompatibility with human fibroblast cells while exerting a remarkable inhibitory effect on MCF-7 and SKBR3 breast cancer cells, attributed to the presence of gingerol and the PEGylated structure in the preparation. Nio-Gin@PEG also exhibited the ability to modulate the expression of target genes. We observed statistically significant down-regulation of the expression of BCL2, MMP2, MMP9, HER2, CCND1, CCNE1, BCL2, CDK4, and VEGF genes, along with up-regulation of the expression of BAX, CASP9, CASP3, and P21 genes. Flow cytometry results revealed that Nio-Gin@PEG could induce a higher rate of apoptosis in both cancerous cells compared to gingerol and Nio-Gin, owing to the optimal encapsulation and efficient drug release from the formulation, as confirmed by cell cycle tests. ROS generation demonstrated the superior antioxidant effect of Nio-Gin@PEG compared to other prepared formulations. The results of this study emphasize the potential of formulating highly biocompatible niosomes in the future of nanomedicine, enabling more precise and effective treatment of cancers.
Collapse
Affiliation(s)
| | - Farzaneh Tafvizi
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran.
| | - Vahid Naseh
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Masoud Salehipour
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| |
Collapse
|
5
|
Zhao L, Zhou Y, Zhang J, Liang H, Chen X, Tan H. Natural Polymer-Based Hydrogels: From Polymer to Biomedical Applications. Pharmaceutics 2023; 15:2514. [PMID: 37896274 PMCID: PMC10610124 DOI: 10.3390/pharmaceutics15102514] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Hydrogels prepared from natural polymer have attracted extensive attention in biomedical fields such as drug delivery, wound healing, and regenerative medicine due to their good biocompatibility, degradability, and flexibility. This review outlines the commonly used natural polymer in hydrogel preparation, including cellulose, chitosan, collagen/gelatin, alginate, hyaluronic acid, starch, guar gum, agarose, and dextran. The polymeric structure and process/synthesis of natural polymers are illustrated, and natural polymer-based hydrogels including the hydrogel formation and properties are elaborated. Subsequently, the biomedical applications of hydrogels based on natural polymer in drug delivery, tissue regeneration, wound healing, and other biomedical fields are summarized. Finally, the future perspectives of natural polymers and hydrogels based on them are discussed. For natural polymers, novel technologies such as enzymatic and biological methods have been developed to improve their structural properties, and the development of new natural-based polymers or natural polymer derivatives with high performance is still very important and challenging. For natural polymer-based hydrogels, novel hydrogel materials, like double-network hydrogel, multifunctional composite hydrogels, and hydrogel microrobots have been designed to meet the advanced requirements in biomedical applications, and new strategies such as dual-cross-linking, microfluidic chip, micropatterning, and 3D/4D bioprinting have been explored to fabricate advanced hydrogel materials with designed properties for biomedical applications. Overall, natural polymeric hydrogels have attracted increasing interest in biomedical applications, and the development of novel natural polymer-based materials and new strategies/methods for hydrogel fabrication are highly desirable and still challenging.
Collapse
Affiliation(s)
- Lingling Zhao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Yifan Zhou
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Jiaying Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
- Center for Child Care and Mental Health (CCCMH), Shenzhen Children’s Hospital, Shenzhen 518038, China
| | - Hongze Liang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Xianwu Chen
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315211, China
| | - Hui Tan
- Center for Child Care and Mental Health (CCCMH), Shenzhen Children’s Hospital, Shenzhen 518038, China
| |
Collapse
|
6
|
Chopra H, Mohanta YK, Rauta PR, Ahmed R, Mahanta S, Mishra PK, Panda P, Rabaan AA, Alshehri AA, Othman B, Alshahrani MA, Alqahtani AS, AL Basha BA, Dhama K. An Insight into Advances in Developing Nanotechnology Based Therapeutics, Drug Delivery, Diagnostics and Vaccines: Multidimensional Applications in Tuberculosis Disease Management. Pharmaceuticals (Basel) 2023; 16:581. [PMID: 37111338 PMCID: PMC10145450 DOI: 10.3390/ph16040581] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 04/29/2023] Open
Abstract
Tuberculosis (TB), one of the deadliest contagious diseases, is a major concern worldwide. Long-term treatment, a high pill burden, limited compliance, and strict administration schedules are all variables that contribute to the development of MDR and XDR tuberculosis patients. The rise of multidrug-resistant strains and a scarcity of anti-TB medications pose a threat to TB control in the future. As a result, a strong and effective system is required to overcome technological limitations and improve the efficacy of therapeutic medications, which is still a huge problem for pharmacological technology. Nanotechnology offers an interesting opportunity for accurate identification of mycobacterial strains and improved medication treatment possibilities for tuberculosis. Nano medicine in tuberculosis is an emerging research field that provides the possibility of efficient medication delivery using nanoparticles and a decrease in drug dosages and adverse effects to boost patient compliance with therapy and recovery. Due to their fascinating characteristics, this strategy is useful in overcoming the abnormalities associated with traditional therapy and leads to some optimization of the therapeutic impact. It also decreases the dosing frequency and eliminates the problem of low compliance. To develop modern diagnosis techniques, upgraded treatment, and possible prevention of tuberculosis, the nanoparticle-based tests have demonstrated considerable advances. The literature search was conducted using Scopus, PubMed, Google Scholar, and Elsevier databases only. This article examines the possibility of employing nanotechnology for TB diagnosis, nanotechnology-based medicine delivery systems, and prevention for the successful elimination of TB illnesses.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Yugal Kishore Mohanta
- Nanobiotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, 9th Mile, Ri-Bhoi, Baridua 793101, Meghalaya, India
| | | | - Ramzan Ahmed
- Nanobiotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, 9th Mile, Ri-Bhoi, Baridua 793101, Meghalaya, India
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Saurov Mahanta
- National Institute of Electronics and Information Technology (NIELIT), Guwahati Centre, Guwahati 781008, Assam, India
| | | | - Paramjot Panda
- School of Biological Sciences, AIPH University, Bhubaneswar 754001, Odisha, India
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Ahmad A. Alshehri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Basim Othman
- Department of Public Health, Faculty of Applied Medical Sciences, Albaha University, Albaha 65779, Saudi Arabia
| | - Mohammed Abdulrahman Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Ali S. Alqahtani
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Khalid University, Abha 61481, Saudi Arabia
| | - Baneen Ali AL Basha
- Laboratory Department, King Fahad Specialist Hospital, Dammam 32253, Saudi Arabia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| |
Collapse
|
7
|
Donkey Dung–Mediated Synthesis of Silver Nanoparticles and Evaluation of Their Antibacterial, Antifungal, Anticancer, and DNA Cleavage Activities. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-00979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Nabi B, Rehman S, Aggarwal S, Baboota S, Ali J. Nano-based anti-tubercular drug delivery: an emerging paradigm for improved therapeutic intervention. Drug Deliv Transl Res 2021; 10:1111-1121. [PMID: 32418158 PMCID: PMC7229880 DOI: 10.1007/s13346-020-00786-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tuberculosis (TB) classified as one of the most fatal contagious diseases is of prime concern globally. Mycobacterium tuberculosis is the causative agent that ingresses within the host cells. The approved conventional regimen, though the only viable option available, is unfavorably impacting the quality of life of the affected individual. Despite newer antibiotics gaining light, there is an unending demand for more therapeutic alternatives. Therefore, substantial continuous endeavors are been undertaken to come up with novel strategies to curb the disease, the stepping stone being nanotechnology. This approach is instrumental in overcoming the anomalies associated with conventional therapy owing to their intriguing attributes and leads to optimization of the therapeutic effect to a certain extent. This review focusses on the different types of nanocarrier systems that are being currently explored by the researchers for the delivery of anti-tubercular drugs, the outcomes achieved by them, and their prospects. Graphical abstract ![]()
Collapse
Affiliation(s)
- Bushra Nabi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Saleha Rehman
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Sumit Aggarwal
- Division of ECD, Indian Council of Medical Research, New Delhi, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| |
Collapse
|
9
|
Eshaghi Malekshah R, Fahimirad B, Khaleghian A. Synthesis, Characterization, Biomedical Application, Molecular Dynamic Simulation and Molecular Docking of Schiff Base Complex of Cu(II) Supported on Fe 3O 4/SiO 2/APTS. Int J Nanomedicine 2020; 15:2583-2603. [PMID: 32368042 PMCID: PMC7182715 DOI: 10.2147/ijn.s231062] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 03/29/2020] [Indexed: 01/21/2023] Open
Abstract
INTRODUCTION Over the past several years, nano-based therapeutics were an effective cancer drug candidate in order to overcome the persistence of deadliest diseases and prevalence of multiple drug resistance (MDR). METHODS The main objective of our program was to design organosilane-modified Fe3O4/SiO2/APTS(~NH2) core magnetic nanocomposites with functionalized copper-Schiff base complex through the use of (3-aminopropyl)triethoxysilane linker as chemotherapeutics to cancer cells. The nanoparticles were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), TEM, and vibrating sample magnetometer (VSM) techniques. All analyses corroborated the successful synthesis of the nanoparticles. In the second step, all compounds of magnetic nanoparticles were validated as antitumor drugs through the conventional MTT assay against K562 (myelogenous leukemia cancer) and apoptosis study by Annexin V/PI and AO/EB. The molecular dynamic simulations of nanoparticles were further carried out; afterwards, the optimization was performed using MM+, semi-empirical (AM1) and Ab Initio (STO-3G), ForciteGemo Opt, Forcite Dynamics, Forcite Energy and CASTEP in Materials studio 2017. RESULTS The results showed that the anti-cancer activity was barely reduced after modifying the surface of the Fe3O4/SiO2/APTS nanoparticles with 2-hydroxy-3-methoxybenzaldehyde as Schiff base and then Cu(II) complex. The apoptosis study by Annexin V/PI and AO/EB stained cell nuclei was performed that apoptosis percentage of the nanoparticles increased upon increasing the thickness of Fe3O4 shell on the magnetite core. The docking studies of the synthesized compounds were conducted towards the DNA and Topoisomerase II via AutoDock 1.5.6 (The Scripps Research Institute, La Jolla, CA, USA). CONCLUSION Results of biology activities and computational modeling demonstrate that nanoparticles were targeted drug delivery system in cancer treatment.
Collapse
Affiliation(s)
| | - Bahareh Fahimirad
- Department of Chemistry, College of Science, Semnan University, Semnan, Iran
| | - Ali Khaleghian
- Biochemistry Department, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
10
|
Ayyanaar S, Kesavan MP, Sivaraman G, Raja RP, Vijayakumar V, Rajesh J, Rajagopal G. Reactive oxygen species (ROS)-responsive microspheres for targeted drug delivery of camptothecin. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.05.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Ayyanaar S, Kesavan MP, Sivaraman G, Maddiboyina B, Annaraj J, Rajesh J, Rajagopal G. A novel curcumin-loaded PLGA micromagnetic composite system for controlled and pH-responsive drug delivery. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.04.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Wang S, Zhang B, Su L, Nie W, Han D, Han G, Zhang H, Chong C, Tan J. Subcellular distributions of iron oxide nanoparticles in rat brains affected by different surface modifications. J Biomed Mater Res A 2019; 107:1988-1998. [PMID: 31067350 DOI: 10.1002/jbm.a.36711] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 03/07/2019] [Accepted: 05/02/2019] [Indexed: 12/31/2022]
Abstract
The impact of the surface modification on the subcellular distribution of nanoparticles in the brain remains elusive. The nanoparticles prepared by conjugating polyethylene glycol and maleic anhydride-coated superparamagnetic iron oxide nanoparticles (Mal-SPIONs) with bovine serum albumin (BSA/Mal-SPIONs) and with Arg-Gly-Asp peptide (RGD/Mal-SPIONs) were injected into the rat substantia nigra. Observation of transmission electron microscopy (TEM) samples obtained 24 h after perfusion showed that abundant RGD/Mal-SPIONs accumulated in the myelin sheath, dendrites, axon terminals and mitochondria, and on cell membranes in the brain tissue near the injection site. For rats injected with BSA/Mal-SPIONs, a few nanoparticles accumulated in the myelin sheath, axon terminals, endoplasmic reticulum, mitochondria, Golgi, and lysosomes of neurons and glial cells while least SPIONs in rats injected with Mal-SPIONs were found. TEM pictures showed some Mal-SPIONs were expelled out of the brain. RGD/Mal-SPIONs diffused extensively to the thalamus, frontal cortex, temporal lobe, olfactory bulb, and brain stem after injection. Only a few BSA/Mal-SPIONs diffused to the afore-mentioned brain areas. This work reveals different surface modifications on the iron oxide nanoparticles play crucial roles in their distribution and diffusion in the rat brains.
Collapse
Affiliation(s)
- Sheng Wang
- Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin, China.,Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin, China
| | - Baolin Zhang
- Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin, China.,Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin, China
| | - Lichao Su
- Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin, China.,Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin, China
| | - Wan Nie
- Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin, China.,Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin, China
| | - Dong Han
- Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin, China.,Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin, China
| | - Guihua Han
- Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin, China.,Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin, China
| | - Hao Zhang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
| | - Chuangang Chong
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
| | - Jie Tan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
| |
Collapse
|
13
|
Oh Y, Lee KM, Jung D, Chae JA, Kim HJ, Chang M, Park JJ, Kim H. Sustainable, Naringenin-Based Thermosets Show Reversible Macroscopic Shape Changes and Enable Modular Recycling. ACS Macro Lett 2019; 8:239-244. [PMID: 35650823 DOI: 10.1021/acsmacrolett.9b00008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A sustainable biobased thermoset exhibiting shape-memory behavior and modular recycling capabilities has been developed herein. The prepared thermoset consists of naringenin and biocompatible polymer components. Naringenin, which has three phenolic moieties, has been converted to a multifunctional monomer containing glycidyl groups and readily formed a thermosetting network via epoxide ring opening reaction with a poly(ethylene glycol) diacid under solvent-free conditions. The resulting material is malleable yet as strong as articular cartilage and selectively absorbs water when compared with n-dodecane oil. Moreover, the thermoset can be physically reused. After being crumpled, stretched, or coiled, the initial shape of the material is restored in response to heat or water. Furthermore, the material is amenable to chemical recycling in a bulk state via transesterification, and its components can be recovered on a molecular level after degradation under benign conditions, as was confirmed using a model compound.
Collapse
Affiliation(s)
- Yuree Oh
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - Kyoung Min Lee
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
- Department of Materials Science and Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Doyoung Jung
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - Ji Ae Chae
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - Hea Ji Kim
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - Mincheol Chang
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - Jong-Jin Park
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - Hyungwoo Kim
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| |
Collapse
|
14
|
Dastidar P, Roy R, Parveen R, Sarkar K. Supramolecular Synthon Approach in Designing Molecular Gels for Advanced Therapeutics. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800061] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Parthasarathi Dastidar
- School of Chemical Sciences; Indian Association for the Cultivation of Science (IACS); 2A and 2B, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 West Bengal India
| | - Rajdip Roy
- School of Chemical Sciences; Indian Association for the Cultivation of Science (IACS); 2A and 2B, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 West Bengal India
| | - Rumana Parveen
- School of Chemical Sciences; Indian Association for the Cultivation of Science (IACS); 2A and 2B, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 West Bengal India
| | - Koushik Sarkar
- School of Chemical Sciences; Indian Association for the Cultivation of Science (IACS); 2A and 2B, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 West Bengal India
| |
Collapse
|
15
|
Magnetic solid lipid nanoparticles co-loaded with albendazole as an anti-parasitic drug: Sonochemical preparation, characterization, and in vitro drug release. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.06.116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
16
|
Alosmanov RM, Szuwarzyński M, Schnelle-Kreis J, Matuschek G, Magerramov AM, Azizov AA, Zimmermann R, Zapotoczny S. Magnetic nanocomposites based on phosphorus-containing polymers-structural characterization and thermal analysis. NANOTECHNOLOGY 2018; 29:135708. [PMID: 29375054 DOI: 10.1088/1361-6528/aaaaee] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fabrication of magnetic nanocomposites containing iron oxide nanoparticles formed in situ within a phosphorus-containing polymer matrix as well as its structural characterization and its thermal degradation is reported here. Comparative structural studies of the parent polymer and nanocomposites were performed using FTIR spectroscopy, x-ray diffraction, and atomic force microscopy. The results confirmed the presence of dispersed iron oxide magnetic nanoparticles in the polymer matrix. The formed composite combines the properties of porous polymer carriers and magnetic particles enabling easy separation and reapplication of such polymeric carriers used in, for example, catalysis or environmental remediation. Studies on thermal degradation of the composites revealed that the process proceeds in three stages while a significant influence of the embedded magnetic particles on that process was observed in the first two stages. Magnetic force microscopy studies revealed that nanocomposites and its calcinated form have strong magnetic properties. The obtained results provide a comprehensive characterization of magnetic nanocomposites and the products of their calcination that are important for their possible applications as sorbents (regeneration conditions, processing temperature, disposal, etc).
Collapse
Affiliation(s)
- R M Alosmanov
- Baku State University, Chemistry Department, Z. Khalilov str., 23, Baku, AZ1148 Azerbaijan. Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Krakow, Poland
| | | | | | | | | | | | | | | |
Collapse
|