1
|
Cao X, Sun K, Luo J, Chen A, Wan Q, Zhou H, Zhou H, Liu Y, Chen X. Enhancing Osteogenesis and Mechanical Properties through Scaffold Design in 3D Printed Bone Substitutes. ACS Biomater Sci Eng 2025; 11:710-729. [PMID: 39818724 DOI: 10.1021/acsbiomaterials.4c01661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
In the context of regenerative medicine, the design of scaffolds to possess excellent osteogenesis and appropriate mechanical properties has gained significant attention in bone tissue engineering. In this review, we categorized materials into metallic, inorganic, nonmetallic, organic polymer, and composite materials. This review provides a more integrated and multidimensional analysis of scaffold design for bone tissue engineering. Unlike previous works that often focus on single aspects, such as material type or fabrication technique, our review takes a broader approach. It analyzes the interaction between scaffold materials, 3D printing techniques, scaffold structural designs, modification methods, porosities, and pore sizes, and the composition of materials (particularly composite materials). Meanwhile, it focuses on their impacts on scaffolds' osteogenic potential and mechanical performance. This review also provides suggested ranges for porosity and pore size for different materials and outlines recommended surface modification methods. This approach not only consolidates current knowledge but also highlights the interdependencies among various factors affecting scaffold efficacy, offering deeper insights into optimization strategies tailored for specific clinical conditions. Furthermore, we introduce recent advancements in innovative 3D printing techniques and novel composite materials, which are rarely addressed in previous reviews, thereby providing a forward-looking perspective that informs future research directions and clinical applications.
Collapse
Affiliation(s)
- Xinyi Cao
- Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha 410008, China
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 201199, China
| | - Kexin Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Junyue Luo
- Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Andi Chen
- Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China
| | - Qi Wan
- Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China
| | - Hongyi Zhou
- Research School of Management, ANU College of Business and Economics, The Australian National University, Canberra, ACT 2601, Australia
| | - Hongbo Zhou
- Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha 410008, China
| | - Yuehua Liu
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 201199, China
| | - Xiaojing Chen
- Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha 410008, China
| |
Collapse
|
2
|
Rios BR, Barbosa S, da Silva WPP, Quirino Louzada MJ, Ervolino E, Kalil EC, Shibli JA, Faverani LP. Polydioxanone Enhances Bone Regeneration After Resection and Reconstruction of Rat Femur with rhBMP2. Tissue Eng Part C Methods 2024; 30:102-112. [PMID: 38271574 DOI: 10.1089/ten.tec.2023.0304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
The aim of this study was to assess the bone regeneration potential of a polydioxanone (PDO) scaffold together with recombinant human bone morphogenetic protein-2 (rhBMP-2) for the reconstruction of large bone defect. In total, 24 male rats (6 months old) were subjected to bilateral femoral stabilization using titanium plates to create a 2 mm gap, and reconstruction using rhBMP-2 (Infuse®; 3.25 μg). The bone defects were covered with PDO (PDO group), or with titanium mesh (Ti group). Animals were euthanized on days 14 and 60. Simultaneously, 16 rats received PDO and Ti in their dorsum for the purpose of biocompatibility analysis at 3, 5, 7, and 10 days postoperatively. X-ray densitometry showed a higher density in the PDO group on day 14. On day 60, coverage of the bone defect with PDO showed a larger quantity of newly formed bone than that found for the Ti group, a lower inflammatory infiltrate value, and a more significant number of blood vessels on day 14. By immunohistochemical assessment, runt-related transcription factor 2 (RUNX2) and osteocalcin (OCN) showed higher labeling on day 14 in the PDO group. On day 60, bone morphogenetic protein-2 (BMP-2) showed higher labeling in the PDO group, whereas Ti showed higher labeling for osteoprotegerin, nuclear factor kappa B ligand-activating receptor, RUNX2, and OCN. Furthermore, biocompatibility analysis showed a higher inflammatory response in the Ti group. The PDO scaffold enhanced bone regeneration when associated with rhBMP-2 in rat femur reconstruction. Impact statement Regeneration of segmental bone defects is a difficult task, and several techniques and materials have been used. Recent advances in the production of synthetic polymers, such as polydioxanone (PDO), produced by three-dimensional printing, have shown distinct characteristics that could improve tissue regeneration even in an important bone defect. The present preclinical study showed that PDO membranes used as scaffolds to carry recombinant human bone morphogenetic protein-2 (rhBMP-2) improved bone tissue regeneration by more than 8-fold when compared with titanium mesh, suggesting that PDO membranes could be a feasible and useful material for use in guided bone regeneration. (In English, viable is only used for living creatures capable of sustaining life.
Collapse
Affiliation(s)
- Barbara Ribeiro Rios
- Division of Oral and Maxillofacial Surgery and Implantology, Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Stéfany Barbosa
- Division of Oral and Maxillofacial Surgery and Implantology, Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - William Phillip Pereira da Silva
- Division of Oral and Maxillofacial Surgery and Implantology, Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | | | - Edilson Ervolino
- Division of Histology, Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Eduardo C Kalil
- Dental Research Division, Department of Periodontology, Guarulhos University, Centro, Guarulhos, Brazil
| | - Jamil Awad Shibli
- Dental Research Division, Department of Periodontology, Guarulhos University, Centro, Guarulhos, Brazil
| | - Leonardo P Faverani
- Division of Oral and Maxillofacial Surgery and Implantology, Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| |
Collapse
|
3
|
Bi Z, Shi X, Liao S, Li X, Sun C, Liu J. Strategies of immobilizing BMP-2 with 3D-printed scaffolds to improve osteogenesis. Regen Med 2023; 18:425-441. [PMID: 37125508 DOI: 10.2217/rme-2022-0222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
The management and definitive treatment of critical-size bone defects in severe trauma, tumor resection and congenital malformation are troublesome for orthopedic surgeons and patients worldwide without recognized good treatment strategies. Researchers and clinicians are working to develop new strategies to treat these problems. This review aims to summarize the techniques used by additive manufacturing scaffolds loaded with BMP-2 to promote osteogenesis and to analyze the current status and trends in relevant clinical translation. Optimize composite scaffold design to enhance bone regeneration through printing technology, material selection, structure design and loading methods of BMP-2 to advance the clinical therapeutic bone repair field.
Collapse
Affiliation(s)
- Zhiguo Bi
- Department of Orthopaedics, The First Hospital of Jilin University, Changchun, Jilin Province, 130021, China
| | - Xiaotong Shi
- Department of Orthopaedics, The First Hospital of Jilin University, Changchun, Jilin Province, 130021, China
| | - Shiyu Liao
- Department of Orthopaedics, The First Hospital of Jilin University, Changchun, Jilin Province, 130021, China
| | - Xiao Li
- Department of Orthopaedics, The First Hospital of Jilin University, Changchun, Jilin Province, 130021, China
| | - Chao Sun
- Department of Orthopaedics, The First Hospital of Jilin University, Changchun, Jilin Province, 130021, China
| | - Jianguo Liu
- Department of Orthopaedics, The First Hospital of Jilin University, Changchun, Jilin Province, 130021, China
| |
Collapse
|
4
|
Kumawat VS, Bandyopadhyay-Ghosh S, Ghosh SB. An overview of translational research in bone graft biomaterials. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:497-540. [PMID: 36124544 DOI: 10.1080/09205063.2022.2127143] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Natural bone healing is often inadequate to treat fractures with critical size bone defects and massive bone loss. Immediate surgical interventions through bone grafts have been found to be essential on such occasions. Naturally harvested bone grafts, although are the preferred choice of the surgeons; they suffer from serious clinical limitations, including disease transmission, donor site morbidity, limited supply of graft etc. Synthetic bone grafts, on the other hand, offer a more clinically appealing approach to decode the pathways of bone repair through use of tissue engineered biomaterials. This article critically retrospects the translational research on various engineered biomaterials towards bringing transformative changes in orthopaedic healthcare. The first section of the article discusses about composition and ultrastructure of bone along with the global perspectives on statistical escalation of bone fracture surgeries requiring use of bone grafts. The next section reviews the types, benefits and challenges of various natural and synthetic bone grafts. An overview of clinically relevant biomaterials from traditionally used metallic, bioceramic, and biopolymeric biomaterials to new generation composites have been summarised. Finally, this narrative review concludes with the discussion on the emerging trends and future perspectives of the promising bone grafts.
Collapse
Affiliation(s)
- Vijay Shankar Kumawat
- Engineered Biomedical Materials Research and Innovation Centre (EnBioMatRIC), Manipal University Jaipur, Jaipur, Rajasthan, India.,Department of Mechanical Engineering, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Sanchita Bandyopadhyay-Ghosh
- Engineered Biomedical Materials Research and Innovation Centre (EnBioMatRIC), Manipal University Jaipur, Jaipur, Rajasthan, India.,Department of Mechanical Engineering, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Subrata Bandhu Ghosh
- Engineered Biomedical Materials Research and Innovation Centre (EnBioMatRIC), Manipal University Jaipur, Jaipur, Rajasthan, India.,Department of Mechanical Engineering, Manipal University Jaipur, Jaipur, Rajasthan, India
| |
Collapse
|
5
|
Si Y, Liu H, Yu H, Jiang X, Sun D. MOF-derived CuO@ZnO modified titanium implant for synergistic antibacterial ability, osteogenesis and angiogenesis. Colloids Surf B Biointerfaces 2022; 219:112840. [PMID: 36113223 DOI: 10.1016/j.colsurfb.2022.112840] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/27/2022] [Accepted: 09/10/2022] [Indexed: 12/17/2022]
Abstract
Surface modification of titanium implants with antibacterial, osteogenic and even angiogenic capabilities are essential to enhance their clinical applicability. Herein, metal-organic framework (MOF) derived CuO@ZnO composite was grafted onto the polydopamine (PDA) modified titanium alloy to achieve vascularized bone regeneration. The CuO@ZnO-coated titanium effectively inhibits the formation of bacterial biofilms and the sterilization rate of Staphylococcus aureus (S. aureus) reaches 99%. Benefitting from the intrinsic porous architecture of MOFs, the Zn2+ and Cu2+ could be controllably released to facilitate the production of excess intracellular reactive oxygen species (ROS) inside the bacteria, which ensures the excellent antibacterial performance of the composite coating. The CuO@ZnO-coated titanium also exhibits good cytocompatibility, effectively promotes the adhesion and proliferation of the human bone marrow mesenchymal stem cells (hBMSCs) and reduces the level of the cell apoptosis. The up-regulated expression of the osteogenesis-related genes and the superior extracellular matrix mineralization reveals that the CuO@ZnO coating possesses fantastic osteoinductive properties. In addition, the transwell and tube formation assays of the human umbilical vein endothelial cells (HUVECs) suggest the superior angiogenesis ability of the CuO@ZnO-coated titanium. The released Cu2+ stimulated the angiogenesis of the HUVECs in vitro by up-regulating the expression of the vascular endothelial growth factor (VEGF). These findings will provide new insight into the development of multifunctional titanium implants for clinical applications.
Collapse
Affiliation(s)
- Yunhui Si
- School of Materials, Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Huanyao Liu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, PR China
| | - Hongying Yu
- School of Materials, Sun Yat-Sen University, Shenzhen 518107, PR China; Innovation Group of Marine Engineering Materials and Corrosion Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, PR China.
| | - Xuzhou Jiang
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, PR China; Nanotechnology Research Center, Sun Yat-sen University, Guangzhou 510275, PR China.
| | - Dongbai Sun
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, PR China; National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, PR China; Innovation Group of Marine Engineering Materials and Corrosion Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, PR China.
| |
Collapse
|
6
|
Jing Z, Zhang T, Xiu P, Cai H, Wei Q, Fan D, Lin X, Song C, Liu Z. Functionalization of 3D-printed titanium alloy orthopedic implants: a literature review. ACTA ACUST UNITED AC 2020; 15:052003. [PMID: 32369792 DOI: 10.1088/1748-605x/ab9078] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Titanium alloy orthopedic implants produced by 3D printing combine the dual advantages of having a complex structure that cannot be manufactured by traditional techniques and the excellent physical and chemical properties of titanium and its alloys; they have been widely used in the field of orthopedics in recent years. The inherent porous structure of 3D-printed implants and the original modification processes for titanium alloys provide conditions for the functionalization of implants. To meet the needs of orthopedic surgeons and patients, functionalized implants with long-term stability and anti-infection or anti-tumor properties have been developed. The various methods of functionalization deserve to be summarized, compared and analyzed. Therefore, in this review, we will collect and discuss existing knowledge on the functionalization of 3D-printed titanium alloy orthopedic implants.
Collapse
Affiliation(s)
- Zehao Jing
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ma S, Song K, Lan J, Ma L. Biological and mechanical property analysis for designed heterogeneous porous scaffolds based on the refined TPMS. J Mech Behav Biomed Mater 2020; 107:103727. [DOI: 10.1016/j.jmbbm.2020.103727] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/12/2020] [Accepted: 03/03/2020] [Indexed: 12/25/2022]
|
8
|
Yu L, Yang Y, Zhang B, Bai X, Fei Q, Zhang L. Rapid human-derived iPSC osteogenesis combined with three-dimensionally printed Ti6Al4V scaffolds for the repair of bone defects. J Cell Physiol 2020; 235:9763-9772. [PMID: 32424865 DOI: 10.1002/jcp.29788] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/30/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022]
Abstract
Human-induced pluripotent stem cells (iPSCs) are an alternative source of mesenchymal stem cells used for bone regeneration. However, the current osteogenically induced methods for iPSCs are slow and complex. We have used retinoic acid (RA) to induce osteogenic iPSCs within 10 days and assess whether a rapid differentiation could improve the osteogenic potential of the three-dimensionally printed Ti6Al4V (3DTi) scaffolds. First, the osteogenic differentiation of iPSCs was induced with RA, and the osteogenic potential of iPSCs was evaluated using standard assays. In addition, a 5-mm mandibular bone defect was generated in rats and was repaired with 3DTi scaffolds that were seeded with iPSC-induced osteoblasts. The capacity of seeded scaffolds for the enhancement of bone regeneration in vivo was assessed. Finally, we tested the potential mechanisms of RA-dependent iPSC bone induction and its effect on the Wnt/β-catenin pathway. The results showed that iPSCs could form osteocytes within 10 days. Animal experiments confirmed that rapid osteo-induced iPSCs could enhance the bone regeneration and osteointegration capacity of the 3DTi scaffolds. Mechanistically, RA could activate the AKT/GSK3β/β-catenin pathway during the process of iPSCs osteogenesis. The rapid osteoinduction of iPSCs combined with 3DTi scaffolds is a safe, effective, and reproducible method for repairing mandibular bone defects.
Collapse
Affiliation(s)
- Lingjia Yu
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yong Yang
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bin Zhang
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, China
| | - Xiaofeng Bai
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, China
| | - Qi Fei
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lei Zhang
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
9
|
Zhang K, Xiao X, Wang X, Fan Y, Li X. Topographical patterning: characteristics of current processing techniques, controllable effects on material properties and co-cultured cell fate, updated applications in tissue engineering, and improvement strategies. J Mater Chem B 2019; 7:7090-7109. [PMID: 31702754 DOI: 10.1039/c9tb01682a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
Topographical patterning has recently attracted lots of attention in regulating cell fate, understanding the mechanism of cell-microenvironment interactions, and solving the great issues of regenerative medicine. The introduced patterns offer topographical cues that can affect the reconstruction of the cytoskeleton or stimulate cell membrane receptors. Numerous studies have focused on these effects on cell behavior including attachment, migration, proliferation, and differentiation. In this review, five aspects of topographical patterning are discussed: (1) the process of typical micro-/nanotechniques and their advantages and limitations; (2) the effects of patterning on the mechanical properties and surface properties of substrates; (3) the influences of micro-/nanopatterns on the behavior of mesenchymal stem cells, as well as the underlying mechanisms; (4) the application of patterns to solve the issues of targeted organs (e.g., skin, nerves, blood vessels, bones, and heart). In the end, future perspectives that would help promote the efficiency of topographical patterning are proposed.
Collapse
Affiliation(s)
- Ke Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Xiongfu Xiao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China and Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
10
|
Kim MG, Kang TW, Park JY, Park SH, Ji YB, Ju HJ, Kwon DY, Kim YS, Kim SW, Lee B, Choi HS, Lee HB, Kim JH, Lee BY, Min BH, Kim MS. An injectable cationic hydrogel electrostatically interacted with BMP2 to enhance in vivo osteogenic differentiation of human turbinate mesenchymal stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109853. [PMID: 31349513 DOI: 10.1016/j.msec.2019.109853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 04/29/2019] [Accepted: 06/01/2019] [Indexed: 01/06/2023]
Abstract
We have designed and characterized an injectable, electrostatically bonded, in situ-forming hydrogel system consisting of a cationic polyelectrolyte [(methoxy)polyethylene glycol-b-(poly(ε-caprolactone)-ran-poly(L-lactic acid)] (MP) copolymer derivatized with an amine group (MP-NH2) and anionic BMP2. To the best of our knowledge, there have been hardly any studies that have investigated electrostatically bonded, in situ-forming hydrogel systems consisting of MP-NH2 and BMP2, with respect to how they promote in vivo osteogenic differentiation of human turbinate mesenchymal stem cells (hTMSCs). Injectable formulations almost immediately formed an electrostatically loaded hydrogel depot containing BMP2, upon injection into mice. The hydrogel features and stability of BMP2 inside the hydrogel were significantly affected by the electrostatic attraction between BMP2 and MP-NH2. Additionally, the time BMP2 spent inside the hydrogel depot was prolonged in vivo, as evidenced by in vivo near-infrared fluorescence imaging. Biocompatibility was demonstrated by the fact that hTMSCs survived in vivo, even after 8 weeks and even though relatively few macrophages were in the hydrogel depot. The osteogenic capacity of the electrostatically loaded hydrogel implants containing BMP2 was higher than that of a hydrogel that was simply loaded with BMP2, as evidenced by Alizarin Red S, von Kossa, and hematoxylin and eosin staining as well as osteonectin, osteopontin, osteocalcin, and type 1α collagen mRNA expression. The results confirmed that our injectable, in situ-forming hydrogel system, electrostatically loaded with BMP2, can enhance in vivo osteogenic differentiation of hTMSCs.
Collapse
Affiliation(s)
- Mal Geum Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Tae Woong Kang
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Joon Yeong Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Seung Hun Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Yun Bae Ji
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Hyeon Jin Ju
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Doo Yeon Kwon
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Young Sik Kim
- The Institute of Biomaterial and Medical Engineering, Cellumed Co., Ltd., Seoul 08589, Republic of Korea
| | - Sung Won Kim
- Department of Otolaryngology-Head and Neck Surgery, The Catholic University of Korea, College of Medicine, Seoul 06591, Republic of Korea
| | - Bong Lee
- Department of Polymer Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Hai Bang Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Jae Ho Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Bun Yeoul Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Byoung Hyun Min
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|