1
|
Nahle S, Lutet-Toti C, Namikawa Y, Piet MH, Brion A, Peyroche S, Suzuki M, Marin F, Rousseau M. Organic Matrices of Calcium Carbonate Biominerals Improve Osteoblastic Mineralization. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:539-549. [PMID: 38652191 DOI: 10.1007/s10126-024-10316-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024]
Abstract
Many organisms incorporate inorganic solids into their tissues to improve functional and mechanical properties. The resulting mineralized tissues are called biominerals. Several studies have shown that nacreous biominerals induce osteoblastic extracellular mineralization. Among them, Pinctada margaritifera is well known for the ability of its organic matrix to stimulate bone cells. In this context, we aimed to study the effects of shell extracts from three other Pinctada species (Pinctada radiata, Pinctada maxima, and Pinctada fucata) on osteoblastic extracellular matrix mineralization, by using an in vitro model of mouse osteoblastic precursor cells (MC3T3-E1). For a better understanding of the Pinctada-bone mineralization relationship, we evaluated the effects of 4 other nacreous mollusks that are phylogenetically distant and distinct from the Pinctada genus. In addition, we tested 12 non-nacreous mollusks and one extra-group. Biomineral shell powders were prepared, and their organic matrix was partially extracted using ethanol. Firstly, the effect of these powders and extracts was assessed on the viability of MC3T3-E1. Our results indicated that neither the powder nor the ethanol-soluble matrix (ESM) affected cell viability at low concentrations. Then, we evaluated osteoblastic mineralization using Alizarin Red staining and we found a prominent MC3T3-E1 mineralization mainly induced by nacreous biominerals, especially those belonging to the Pinctada genus. However, few non-nacreous biominerals were also able to stimulate the extracellular mineralization. Overall, our findings validate the remarkable ability of CaCO3 biomineral extracts to promote bone mineralization. Nevertheless, further in vitro and in vivo studies are needed to uncover the mechanisms of action of biominerals in bone.
Collapse
Affiliation(s)
- Sarah Nahle
- Jean Monnet University Saint-Étienne, INSERM, Mines Saint Etienne, SAINBIOSE U1059, Saint-Étienne, France
| | - Camille Lutet-Toti
- Biogeosciences Laboratory, UMR CNRS-EPHE 6282, University of Burgundy, Dijon, France
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Yuto Namikawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Marie-Hélène Piet
- UMR 7365 CNRS-University of Lorraine, Molecular Engineering & Articular Pathophysiology (IMoPA), Vandœuvre-lès-Nancy, France
| | - Alice Brion
- Laboratory of Genome Structure and Instability, National Museum of Natural History (MNHN), INSERM, U1154, CNRS UMR7196, Paris, France
| | - Sylvie Peyroche
- Jean Monnet University Saint-Étienne, INSERM, Mines Saint Etienne, SAINBIOSE U1059, Saint-Étienne, France
| | - Michio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Frédéric Marin
- Biogeosciences Laboratory, UMR CNRS-EPHE 6282, University of Burgundy, Dijon, France
| | - Marthe Rousseau
- Jean Monnet University Saint-Étienne, INSERM, Mines Saint Etienne, SAINBIOSE U1059, Saint-Étienne, France.
- UMR5510 MATEIS, CNRS, University of Lyon, INSA-Lyon, Lyon, France.
| |
Collapse
|
2
|
Wilson BJ, Owston HE, Iqbal N, Giannoudis PV, McGonagle D, Pandit H, Philipose Pampadykandathil L, Jones E, Ganguly P. In Vitro Osteogenesis Study of Shell Nacre Cement with Older and Young Donor Bone Marrow Mesenchymal Stem/Stromal Cells. Bioengineering (Basel) 2024; 11:143. [PMID: 38391629 PMCID: PMC10886325 DOI: 10.3390/bioengineering11020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Bone void-filling cements are one of the preferred materials for managing irregular bone voids, particularly in the geriatric population who undergo many orthopedic surgeries. However, bone marrow mesenchymal stem/stromal cells (BM-MSCs) of older-age donors often exhibit reduced osteogenic capacity. Hence, it is crucial to evaluate candidate bone substitute materials with BM-MSCs from the geriatric population to determine the true osteogenic potential, thus simulating the clinical situation. With this concept, we investigated the osteogenic potential of shell nacre cement (SNC), a bone void-filling cement based on shell nacre powder and ladder-structured siloxane methacrylate, using older donor BM-MSCs (age > 55 years) and young donor BM-MSCs (age < 30 years). Direct and indirect cytotoxicity studies conducted with human BM-MSCs confirmed the non-cytotoxic nature of SNC. The standard colony-forming unit-fibroblast (CFU-F) assay and population doubling (PD) time assays revealed a significant reduction in the proliferation potential (p < 0.0001, p < 0.05) in older donor BM-MSCs compared to young donor BM-MSCs. Correspondingly, older donor BM-MSCs contained higher proportions of senescent, β-galactosidase (SA-β gal)-positive cells (nearly 2-fold, p < 0.001). In contrast, the proliferation capacity of older donor BM-MSCs, measured as the area density of CellTrackerTM green positive cells, was similar to that of young donor BM-MSCs following a 7-day culture on SNC. Furthermore, after 14 days of osteoinduction on SNC, scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS) showed that the amount of calcium and phosphorus deposited by young and older donor BM-MSCs on SNC was comparable. A similar trend was observed in the expression of the osteogenesis-related genes BMP2, RUNX2, ALP, COL1A1, OMD and SPARC. Overall, the results of this study indicated that SNC would be a promising candidate for managing bone voids in all age groups.
Collapse
Affiliation(s)
- Bridget Jeyatha Wilson
- Division of Dental Products, Department of Biomaterial Science and Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695 012, India
| | - Heather Elizabeth Owston
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7JT, UK (D.M.); (H.P.)
| | - Neelam Iqbal
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Peter V. Giannoudis
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7JT, UK (D.M.); (H.P.)
- Leeds Orthopaedic & Trauma Sciences, Leeds General Infirmary, University of Leeds, Leeds LS2 9JT, UK
- Leeds Musculoskeletal Biomedical Research Centre, Chapel Allerton Hospital, Leeds LS7 4SA, UK
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7JT, UK (D.M.); (H.P.)
- Leeds Musculoskeletal Biomedical Research Centre, Chapel Allerton Hospital, Leeds LS7 4SA, UK
| | - Hemant Pandit
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7JT, UK (D.M.); (H.P.)
- Leeds Musculoskeletal Biomedical Research Centre, Chapel Allerton Hospital, Leeds LS7 4SA, UK
| | - Lizymol Philipose Pampadykandathil
- Division of Dental Products, Department of Biomaterial Science and Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695 012, India
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7JT, UK (D.M.); (H.P.)
| | - Payal Ganguly
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7JT, UK (D.M.); (H.P.)
| |
Collapse
|
3
|
Iandolo D, Laroche N, Nguyen DK, Normand M, Met C, Zhang G, Vico L, Mainard D, Rousseau M. Preclinical safety study of nacre powder in an intraosseous sheep model. BMJ OPEN SCIENCE 2022; 6:e100231. [PMID: 36387954 PMCID: PMC9644736 DOI: 10.1136/bmjos-2021-100231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 07/25/2022] [Indexed: 12/05/2022] Open
Abstract
Objectives The purpose of this preclinical study was to evaluate the safety, the local tissue effects and bone healing performance (osteoconduction, osseointegration) of nacre powder in a sheep intraosseous implantation model. This represents the first preclinical study to assess nacre safety and efficacy in supporting new bone formation in accordance with the ISO 10993 standard for biomedical devices. Methods The local tissue effects and the material performance were evaluated 8 weeks after implantation by qualitative macroscopic observation and qualitative as well as semiquantitative microscopic analyses of the bone sites. Histopathological characterisations were run to assess local tissue effects. In addition, microarchitectural, histomorphometric and histological characterisations were used to evaluate the effects of the implanted material. Results Nacre powder was shown to cause a moderate inflammatory response in the site where it was implanted compared with the sites left empty. The biomaterial implanted within the generated defects was almost entirely degraded over the investigated time span and resulted in the formation of new bone with a seamless connection with the surrounding tissue. On the contrary, in the empty defects, the formation of a thick compact band of sclerotic bone was observed by both microarchitectural and histological characterisation. Conclusions Nacre powder was confirmed to be a safe biomaterial for bone regeneration applications in vivo, while supporting bone formation.
Collapse
Affiliation(s)
- Donata Iandolo
- U1059 SAINBIOSE, INSERM, Jean Monnet University, University of Lyon, Mines Saint-Etienne, Saint-Priest-en-Jarez, France
- MATEIS, Villeurbanne, Auvergne-Rhône-Alpes, France
| | - Norbert Laroche
- U1059 SAINBIOSE, INSERM, Jean Monnet University, University of Lyon, Mines Saint-Etienne, Saint-Priest-en-Jarez, France
| | - Dung Kim Nguyen
- U1059 SAINBIOSE, INSERM, Jean Monnet University, University of Lyon, Mines Saint-Etienne, Saint-Priest-en-Jarez, France
| | - Miriam Normand
- U1059 SAINBIOSE, INSERM, Jean Monnet University, University of Lyon, Mines Saint-Etienne, Saint-Priest-en-Jarez, France
| | - Christophe Met
- 88, allée de Signes résidence, Sainte-Baume, Plan-d'Aups-Sainte-Baume, France
| | - Ganggang Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Laurence Vico
- U1059 SAINBIOSE, INSERM, Jean Monnet University, University of Lyon, Mines Saint-Etienne, Saint-Priest-en-Jarez, France
| | | | - Marthe Rousseau
- U1059 SAINBIOSE, INSERM, Jean Monnet University, University of Lyon, Mines Saint-Etienne, Saint-Priest-en-Jarez, France
- MATEIS, Villeurbanne, Auvergne-Rhône-Alpes, France
| |
Collapse
|
4
|
The Role of Marine Organic Extract in Bone Regeneration: A Pilot Study. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2925879. [PMID: 32149098 PMCID: PMC7049417 DOI: 10.1155/2020/2925879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/22/2019] [Accepted: 01/07/2020] [Indexed: 11/25/2022]
Abstract
Novel biomaterials capable of accelerating the healing process of skeletal tissues are urgently needed in dentistry. The present in vivo study assessed the osteoconductive and osteoinductive properties of experimental biphasic bioceramics (HA-TCP) modified or not by a nacre extract (marine organic extract, MOE) in a sheep model. Fabrication of MOE involved mixing ground nacre (0.05 g, particle sizes < 0.1 mm) with glacial ethanoic acid (5 mL, pH 7) for 72 hours using external magnetic stirring (25°C). Nonreactive carriers (sterile polythene tubes; 3/animal, radius: 2.5 mm, length: 10.0 mm) pertaining to the control (empty) or experimental groups (HA-TCP or MOE-modified HA-TCP) were implanted intramuscularly into the abdominal segment of the torso in sheep (n = 8, age: 2 years, weight: 45 kg). Euthanization of animals was performed at 3 and 6 months after surgery. Tissues harvested were subjected to macroscopic and radiographic assessments. Specimens were then stained for histological analysis. Both control and experimental animals were capable of inducing the neoformation of fibrous connective tissue at both time points where superior amounts of tissue formation and mineralization were detected for experimental groups (unaltered (at 3 and 6 mos) and MOE-modified HA-TCP (at 3 mos)). Histological results, however, revealed that mature bone formation was only observed for specimens fabricated with MOE-modified HA-TCP in a time-dependent manner. The present study has successfully demonstrated the in vivo utility of experimental biphasic bioceramics modified by MOE in an ectopic grafting sheep model. Promising osteoconductive and osteoinductive properties must be further developed and confirmed by subsequent research.
Collapse
|
5
|
Bonnard M, Boury B, Parrot I. Key Insights, Tools, and Future Prospects on Oyster Shell End-of-Life: A Critical Analysis of Sustainable Solutions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:26-38. [PMID: 31657905 DOI: 10.1021/acs.est.9b03736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Oyster farming represents one of the most developed aquaculture activities, producing delicacies unfortunately related to a direct accumulation of waste shells. Facing what is becoming an environmental issue, chemists are currently developing solutions to add value to this wild source of raw material in line with the principles of sustainable chemistry. An argumentative overview of this question is proposed here with a focus on recent data. Starting with a presentation of the environmental impact of oyster farming, existing and promising applications are then classified according to the type of raw materials derived from the oyster shell, namely the natural oyster shell (NOS), the calcined natural oyster shell (CNOS), and biomolecules of the organic matrix extracted from the oyster shell. Their relevance is discussed in regard to their scalability, originality, and sustainability. This review constitutes the first critical compilation on oyster shell applications, with the aim to provide essential elements to better comprehend the recycling of waste oyster shells.
Collapse
Affiliation(s)
- Michel Bonnard
- Institut des Biomolécules Max Mousseron, CNRS, Université Montpellier, ENSCM, Montpellier 34095, France
- Tarbouriech-Médithau, Marseillan 34340, France
| | - Bruno Boury
- Institut Charles Gerhardt, CNRS, Université Montpellier, ENSCM, Montpellier 34095, France
| | - Isabelle Parrot
- Institut des Biomolécules Max Mousseron, CNRS, Université Montpellier, ENSCM, Montpellier 34095, France
| |
Collapse
|