1
|
Zhao Y, Su J, Xu CY, Li YB, Hu T, Li Y, Yang L, Zhao Q, Zhang WY. Establishment of a mandible defect model in rabbits infected with multiple bacteria and bioinformatics analysis. Front Bioeng Biotechnol 2024; 12:1350024. [PMID: 38282893 PMCID: PMC10811100 DOI: 10.3389/fbioe.2024.1350024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/04/2024] [Indexed: 01/30/2024] Open
Abstract
Objective: A model of chronic infectious mandibular defect (IMD) caused by mixed infection with Staphylococcus aureus and Pseudomonas aeruginosa was established to explore the occurrence and development of IMD and identify key genes by transcriptome sequencing and bioinformatics analysis. Methods: S. aureus and P. aeruginosa were diluted to 3 × 108 CFU/mL, and 6 × 3 × 3 mm defects lateral to the Mandibular Symphysis were induced in 28 New Zealand rabbits. Sodium Morrhuate (0.5%) and 50 μL bacterial solution were injected in turn. The modeling was completed after the bone wax closed; the effects were evaluated through postoperative observations, imaging and histological analyses. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and protein‒protein interaction (PPI) network analyses were performed to investigate the function of the differentially expressed genes (DEGs). Results: All rabbits showed characteristics of infection. The bacterial cultures were positive, and polymerase chain reaction (PCR) was used to identify S. aureus and P. aeruginosa. Cone beam CT and histological analyses showed inflammatory cell infiltration, pus formation in the medullary cavity, increased osteoclast activity in the defect area, and blurring at the edge of the bone defect. Bioinformatics analysis showed 1,804 DEGs, 743 were upregulated and 1,061 were downregulated. GO and KEGG analyses showed that the DEGs were enriched in immunity and osteogenesis inhibition, and the core genes identified by the PPI network were enriched in the Hedgehog pathway, which plays a role in inflammation and tissue repair; the MEF2 transcription factor family was predicted by IRegulon. Conclusion: By direct injection of bacterial solution into the rabbit mandible defect area, the rabbit chronic IMD model was successfully established. Based on the bioinformatics analysis, we speculate that the Hedgehog pathway and the MEF2 transcription factor family may be potential intervention targets for repairing IMD.
Collapse
Affiliation(s)
- Yuan Zhao
- Department of Stomatology, 920th Hospital of Joint Logistics Support Force of People’s Liberation Army of China, Kunming, China
- Postgraduate Research Institute, Kunming Medical University, Kunming, China
| | - Jun Su
- Department of Stomatology, 920th Hospital of Joint Logistics Support Force of People’s Liberation Army of China, Kunming, China
| | - Chong-yan Xu
- Department of Stomatology, 920th Hospital of Joint Logistics Support Force of People’s Liberation Army of China, Kunming, China
- Postgraduate Research Institute, Kunming Medical University, Kunming, China
| | - Yan-bo Li
- Postgraduate Research Institute, Kunming Medical University, Kunming, China
| | - Tong Hu
- Department of Stomatology, 920th Hospital of Joint Logistics Support Force of People’s Liberation Army of China, Kunming, China
- Postgraduate Research Institute, Kunming Medical University, Kunming, China
| | - Yi Li
- Department of Stomatology, 920th Hospital of Joint Logistics Support Force of People’s Liberation Army of China, Kunming, China
- Postgraduate Research Institute, Kunming Medical University, Kunming, China
| | - Li Yang
- Department of Stomatology, 920th Hospital of Joint Logistics Support Force of People’s Liberation Army of China, Kunming, China
| | - Qiang Zhao
- Department of Stomatology, 920th Hospital of Joint Logistics Support Force of People’s Liberation Army of China, Kunming, China
| | - Wen-yun Zhang
- Department of Stomatology, 920th Hospital of Joint Logistics Support Force of People’s Liberation Army of China, Kunming, China
| |
Collapse
|
2
|
Slavin BV, Nayak VV, Boczar D, Bergamo ET, Slavin BR, Yarholar LM, Torroni A, Coelho PG, Witek L. Bone Tissue Engineering (BTE) of the Craniofacial Skeleton, Part II: Translational Potential of 3D-Printed Scaffolds for Defect Repair. J Craniofac Surg 2024; 35:261-267. [PMID: 37622526 PMCID: PMC10836599 DOI: 10.1097/scs.0000000000009635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/06/2023] [Indexed: 08/26/2023] Open
Abstract
Computer-aided design/computer-aided manufacturing and 3-dimensional (3D) printing techniques have revolutionized the approach to bone tissue engineering for the repair of craniomaxillofacial skeletal defects. Ample research has been performed to gain a fundamental understanding of the optimal 3D-printed scaffold design and composition to facilitate appropriate bone formation and healing. Benchtop and preclinical, small animal model testing of 3D-printed bioactive ceramic scaffolds augmented with pharmacological/biological agents have yielded promising results given their potential combined osteogenic and osteoinductive capacity. However, other factors must be evaluated before newly developed constructs may be considered analogous alternatives to the "gold standard" autologous graft for defect repair. More specifically, the 3D-printed bioactive ceramic scaffold's long-term safety profile, biocompatibility, and resorption kinetics must be studied. The ultimate goal is to successfully regenerate bone that is comparable in volume, density, histologic composition, and mechanical strength to that of native bone. In vivo studies of these newly developed bone tissue engineering in translational animal models continue to make strides toward addressing regulatory and clinically relevant topics. These include the use of skeletally immature animal models to address the challenges posed by craniomaxillofacial defect repair in pediatric patients. This manuscript reviews the most recent preclinical animal studies seeking to assess 3D-printed ceramic scaffolds for improved repair of critical-sized craniofacial bony defects.
Collapse
Affiliation(s)
| | - Vasudev V Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL
| | - Daniel Boczar
- Department of Surgery, University of Washington, Seattle, WA
| | - Edmara Tp Bergamo
- Department of Prosthodontics and Periodontology, University of São Paulo, Bauru School of Dentistry, Bauru, SP, Brazil
- Biomaterials Division, NYU College of Dentistry, New York, NY
| | - Benjamin R Slavin
- DeWitt Daughtry Family Department of Surgery, Division of Plastic Surgery, University of Miami Miller School of Medicine, Miami, FL
| | - Lauren M Yarholar
- DeWitt Daughtry Family Department of Surgery, Division of Plastic Surgery, University of Miami Miller School of Medicine, Miami, FL
| | - Andrea Torroni
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York
| | - Paulo G Coelho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL
- DeWitt Daughtry Family Department of Surgery, Division of Plastic Surgery, University of Miami Miller School of Medicine, Miami, FL
| | - Lukasz Witek
- Biomaterials Division, NYU College of Dentistry, New York, NY
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY
| |
Collapse
|
3
|
Huang S, Wen J, Zhang Y, Bai X, Cui ZK. Choosing the right animal model for osteomyelitis research: Considerations and challenges. J Orthop Translat 2023; 43:47-65. [PMID: 38094261 PMCID: PMC10716383 DOI: 10.1016/j.jot.2023.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 03/22/2024] Open
Abstract
Osteomyelitis is a debilitating bone disorder characterized by an inflammatory process involving the bone marrow, bone cortex, periosteum, and surrounding soft tissue, which can ultimately result in bone destruction. The etiology of osteomyelitis can be infectious, caused by various microorganisms, or noninfectious, such as chronic nonbacterial osteomyelitis (CNO) and chronic recurrent multifocal osteomyelitis (CRMO). Researchers have turned to animal models to study the pathophysiology of osteomyelitis. However, selecting an appropriate animal model that accurately recapitulates the human pathology of osteomyelitis while controlling for multiple variables that influence different clinical presentations remains a significant challenge. In this review, we present an overview of various animal models used in osteomyelitis research, including rodent, rabbit, avian/chicken, porcine, minipig, canine, sheep, and goat models. We discuss the characteristics of each animal model and the corresponding clinical scenarios that can provide a basic rationale for experimental selection. This review highlights the importance of selecting an appropriate animal model for osteomyelitis research to improve the accuracy of the results and facilitate the development of novel treatment and management strategies.
Collapse
Affiliation(s)
| | | | - Yiqing Zhang
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaochun Bai
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhong-Kai Cui
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
4
|
Zhang Q, Inagaki NF, Ito T. Recent advances in micro-sized oxygen carriers inspired by red blood cells. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2223050. [PMID: 37363800 PMCID: PMC10288928 DOI: 10.1080/14686996.2023.2223050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/22/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
Supplementing sufficient oxygen to cells is always challenging in biomedical engineering fields such as tissue engineering. Originating from the concept of a 'blood substitute', nano-sized artificial oxygen carriers (AOCs) have been studied for a long time for the optimization of the oxygen supplementation and improvement of hypoxia environments in vitro and in vivo. When circulating in our bodies, micro-sized human red blood cells (hRBCs) feature a high oxygen capacity, a unique biconcave shape, biomechanical and rheological properties, and low frictional surfaces, making them efficient natural oxygen carriers. Inspired by hRBCs, recent studies have focused on evolving different AOCs into microparticles more feasibly able to achieve desired architectures and morphologies and to obtain the corresponding advantages. Recent micro-sized AOCs have been developed into additional categories based on their principal oxygen-carrying or oxygen-releasing materials. Various biomaterials such as lipids, proteins, and polymers have also been used to prepare oxygen carriers owing to their rapid oxygen transfer, high oxygen capacity, excellent colloidal stability, biocompatibility, suitable biodegradability, and long storage. In this review, we concentrated on the fabrication techniques, applied biomaterials, and design considerations of micro-sized AOCs to illustrate the advances in their performances. We also compared certain recent micro-sized AOCs with hRBCs where applicable and appropriate. Furthermore, we discussed existing and potential applications of different types of micro-sized AOCs.
Collapse
Affiliation(s)
- Qiming Zhang
- Department of Chemical System Engineering, The University of Tokyo, Tokyo, Japan
| | - Natsuko F. Inagaki
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo, Japan
| | - Taichi Ito
- Department of Chemical System Engineering, The University of Tokyo, Tokyo, Japan
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Feng Z, Su X, Wang T, Sun X, Yang H, Guo S. The Role of Microsphere Structures in Bottom-Up Bone Tissue Engineering. Pharmaceutics 2023; 15:pharmaceutics15020321. [PMID: 36839645 PMCID: PMC9964570 DOI: 10.3390/pharmaceutics15020321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
Bone defects have caused immense healthcare concerns and economic burdens throughout the world. Traditional autologous allogeneic bone grafts have many drawbacks, so the emergence of bone tissue engineering brings new hope. Bone tissue engineering is an interdisciplinary biomedical engineering method that involves scaffold materials, seed cells, and "growth factors". However, the traditional construction approach is not flexible and is unable to adapt to the specific shape of the defect, causing the cells inside the bone to be unable to receive adequate nourishment. Therefore, a simple but effective solution using the "bottom-up" method is proposed. Microspheres are structures with diameters ranging from 1 to 1000 µm that can be used as supports for cell growth, either in the form of a scaffold or in the form of a drug delivery system. Herein, we address a variety of strategies for the production of microspheres, the classification of raw materials, and drug loading, as well as analyze new strategies for the use of microspheres in bone tissue engineering. We also consider new perspectives and possible directions for future development.
Collapse
Affiliation(s)
- Ziyi Feng
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang 110002, China; (Z.F.); (X.S.); (T.W.)
| | - Xin Su
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang 110002, China; (Z.F.); (X.S.); (T.W.)
| | - Ting Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang 110002, China; (Z.F.); (X.S.); (T.W.)
| | - Xiaoting Sun
- School of Forensic Medicine, China Medical University, No. 77, Puhe Road, Shenyang 110122, China
- Correspondence: (X.S.); (S.G.)
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, No. 77, Puhe Road, Shenyang 110122, China;
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang 110002, China; (Z.F.); (X.S.); (T.W.)
- Correspondence: (X.S.); (S.G.)
| |
Collapse
|
6
|
Chen P, Liu Y, Liu W, Wang Y, Liu Z, Rong M. Impact of High-Altitude Hypoxia on Bone Defect Repair: A Review of Molecular Mechanisms and Therapeutic Implications. Front Med (Lausanne) 2022; 9:842800. [PMID: 35620712 PMCID: PMC9127390 DOI: 10.3389/fmed.2022.842800] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/15/2022] [Indexed: 11/23/2022] Open
Abstract
Reaching areas at altitudes over 2,500–3,000 m above sea level has become increasingly common due to commerce, military deployment, tourism, and entertainment. The high-altitude environment exerts systemic effects on humans that represent a series of compensatory reactions and affects the activity of bone cells. Cellular structures closely related to oxygen-sensing produce corresponding functional changes, resulting in decreased tissue vascularization, declined repair ability of bone defects, and longer healing time. This review focuses on the impact of high-altitude hypoxia on bone defect repair and discusses the possible mechanisms related to ion channels, reactive oxygen species production, mitochondrial function, autophagy, and epigenetics. Based on the key pathogenic mechanisms, potential therapeutic strategies have also been suggested. This review contributes novel insights into the mechanisms of abnormal bone defect repair in hypoxic environments, along with therapeutic applications. We aim to provide a foundation for future targeted, personalized, and precise bone regeneration therapies according to the adaptation of patients to high altitudes.
Collapse
Affiliation(s)
- Pei Chen
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yushan Liu
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Wenjing Liu
- Department of Prosthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yarong Wang
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Ziyi Liu
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Mingdeng Rong
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Shibli JA, Nagay BE, Suárez LJ, Urdániga Hung C, Bertolini M, Barão VAR, Souza JGS. Bone Tissue Engineering Using Osteogenic Cells: From the Bench to the Clinical Application. Tissue Eng Part C Methods 2022; 28:179-192. [PMID: 35166162 DOI: 10.1089/ten.tec.2022.0021] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The use of tissue engineering to restore and to build new bone tissue is under active research at present. The following review summarizes the latest studies and clinical trials related to the use of osteogenic cells, biomaterials, and scaffolds to regenerate bone defects in the human jaws. Bone tissue engineering (BTE) combined with scaffolds have provided a range of advantages not only to transport the target cells to their desired destination but also to support the early phases of the mineralization process. The mechanical, chemical, and physical properties of scaffolds have been evaluated as they affect the quantity of bone regeneration, particularly in the oral cavity. This review also highlighted the mechanisms underlying bone homeostasis, including the key transcription factors and signaling pathways responsible for regulating the differentiation of osteoblast lineage. Furthering understanding of the mechanisms of cellular signaling in skeletal remodeling with the use of mesenchymal stem cells and the proper scaffold properties are key-factors to enable the incorporation of new and effective treatment methods into clinical practice for bone tissue regeneration using BTE. Impact Statement The use of mesenchymal stem cells able to differentiate in osteoblast lineage for bone tissue engineering (BTE) remains a major challenge. Viable cells and signaling pathways play an essential role in bone repair and regeneration of critical size defects. Recent advances in scaffolds and biological factors such as growth factors (e.g., cytokines and hormones) controlling the osteogenic signaling cascade are now becoming new players affecting the osteogenic potential of cells. Such techniques will significantly impact the maxillofacial bone tissue replacement, repair, and regeneration for patients without having to rely on donor banks or other surgical sites.
Collapse
Affiliation(s)
- Jamil Awad Shibli
- Dental Research Division, Department of Periodontology, Guarulhos University, Praça Tereza Cristina, Guarulhos, Brazil
| | - Bruna Egumi Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Brazil
| | - Lina J Suárez
- Dental Research Division, Department of Periodontology, Guarulhos University, Praça Tereza Cristina, Guarulhos, Brazil.,Departamento de Ciencias Básicas y Medicina Oral, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Celeste Urdániga Hung
- Dental Research Division, Department of Periodontology, Guarulhos University, Praça Tereza Cristina, Guarulhos, Brazil
| | - Martinna Bertolini
- Department of Periodontics and Preventive Dentistry, University of Pittsburgh School of Dental Medicine, Pittsburgh, Pennsylvania, USA
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Brazil
| | - João Gabriel S Souza
- Dental Research Division, Department of Periodontology, Guarulhos University, Praça Tereza Cristina, Guarulhos, Brazil.,Dental Science School (Faculdade de Ciências Odontológicas-FCO), Montes Claros, Brazil
| |
Collapse
|
8
|
Billings C, Anderson DE. Role of Animal Models to Advance Research of Bacterial Osteomyelitis. Front Vet Sci 2022; 9:879630. [PMID: 35558882 PMCID: PMC9087578 DOI: 10.3389/fvets.2022.879630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Osteomyelitis is an inflammatory bone disease typically caused by infectious microorganisms, often bacteria, which causes progressive bone destruction and loss. The most common bacteria associated with chronic osteomyelitis is Staphylococcus aureus. The incidence of osteomyelitis in the United States is estimated to be upwards of 50,000 cases annually and places a significant burden upon the healthcare system. There are three general categories of osteomyelitis: hematogenous; secondary to spread from a contiguous focus of infection, often from trauma or implanted medical devices and materials; and secondary to vascular disease, often a result of diabetic foot ulcers. Independent of the route of infection, osteomyelitis is often challenging to diagnose and treat, and the effect on the patient's quality of life is significant. Therapy for osteomyelitis varies based on category and clinical variables in each case. Therapeutic strategies are typically reliant upon protracted antimicrobial therapy and surgical interventions. Therapy is most successful when intensive and initiated early, although infection may recur months to years later. Also, treatment is accompanied by risks such as systemic toxicity, selection for antimicrobial drug resistance from prolonged antimicrobial use, and loss of form or function of the affected area due to radical surgical debridement or implant removal. The challenges of diagnosis and successful treatment, as well as the negative impacts on patient's quality of life, exemplify the need for improved strategies to combat bacterial osteomyelitis. There are many in vitro and in vivo investigations aimed toward better understanding of the pathophysiology of bacterial osteomyelitis, as well as improved diagnostic and therapeutic strategies. Here, we review the role of animal models utilized for the study of bacterial osteomyelitis and their critically important role in understanding and improving the management of bacterial osteomyelitis.
Collapse
|
9
|
Krafft MP, Riess JG. Therapeutic oxygen delivery by perfluorocarbon-based colloids. Adv Colloid Interface Sci 2021; 294:102407. [PMID: 34120037 DOI: 10.1016/j.cis.2021.102407] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/18/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
After the protocol-related indecisive clinical trial of Oxygent, a perfluorooctylbromide/phospholipid nanoemulsion, in cardiac surgery, that often unduly assigned the observed untoward effects to the product, the development of perfluorocarbon (PFC)-based O2 nanoemulsions ("blood substitutes") has come to a low. Yet, significant further demonstrations of PFC O2-delivery efficacy have continuously been reported, such as relief of hypoxia after myocardial infarction or stroke; protection of vital organs during surgery; potentiation of O2-dependent cancer therapies, including radio-, photodynamic-, chemo- and immunotherapies; regeneration of damaged nerve, bone or cartilage; preservation of organ grafts destined for transplantation; and control of gas supply in tissue engineering and biotechnological productions. PFC colloids capable of augmenting O2 delivery include primarily injectable PFC nanoemulsions, microbubbles and phase-shift nanoemulsions. Careful selection of PFC and other colloid components is critical. The basics of O2 delivery by PFC nanoemulsions will be briefly reminded. Improved knowledge of O2 delivery mechanisms has been acquired. Advanced, size-adjustable O2-delivering nanoemulsions have been designed that have extended room-temperature shelf-stability. Alternate O2 delivery options are being investigated that rely on injectable PFC-stabilized microbubbles or phase-shift PFC nanoemulsions. The latter combine prolonged circulation in the vasculature, capacity for penetrating tumor tissues, and acute responsiveness to ultrasound and other external stimuli. Progress in microbubble and phase-shift emulsion engineering, control of phase-shift activation (vaporization), understanding and control of bubble/ultrasound/tissue interactions is discussed. Control of the phase-shift event and of microbubble size require utmost attention. Further PFC-based colloidal systems, including polymeric micelles, PFC-loaded organic or inorganic nanoparticles and scaffolds, have been devised that also carry substantial amounts of O2. Local, on-demand O2 delivery can be triggered by external stimuli, including focused ultrasound irradiation or tumor microenvironment. PFC colloid functionalization and targeting can help adjust their properties for specific indications, augment their efficacy, improve safety profiles, and expand the range of their indications. Many new medical and biotechnological applications involving fluorinated colloids are being assessed, including in the clinic. Further uses of PFC-based colloidal nanotherapeutics will be briefly mentioned that concern contrast diagnostic imaging, including molecular imaging and immune cell tracking; controlled delivery of therapeutic energy, as for noninvasive surgical ablation and sonothrombolysis; and delivery of drugs and genes, including across the blood-brain barrier. Even when the fluorinated colloids investigated are designed for other purposes than O2 supply, they will inevitably also carry and deliver a certain amount of O2, and may thus be considered for O2 delivery or co-delivery applications. Conversely, O2-carrying PFC nanoemulsions possess by nature a unique aptitude for 19F MR imaging, and hence, cell tracking, while PFC-stabilized microbubbles are ideal resonators for ultrasound contrast imaging and can undergo precise manipulation and on-demand destruction by ultrasound waves, thereby opening multiple theranostic opportunities.
Collapse
Affiliation(s)
- Marie Pierre Krafft
- University of Strasbourg, Institut Charles Sadron (CNRS), 23 rue du Loess, 67034 Strasbourg, France.
| | - Jean G Riess
- Harangoutte Institute, 68160 Ste Croix-aux-Mines, France
| |
Collapse
|
10
|
Hassan S, Cecen B, Peña-Garcia R, Marciano FR, Miri AK, Fattahi A, Karavasili C, Sebastian S, Zaidi H, Lobo AO. Survival and Proliferation under Severely Hypoxic Microenvironments Using Cell-Laden Oxygenating Hydrogels. J Funct Biomater 2021; 12:jfb12020030. [PMID: 34063270 PMCID: PMC8167601 DOI: 10.3390/jfb12020030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/18/2021] [Accepted: 04/27/2021] [Indexed: 12/22/2022] Open
Abstract
Different strategies have been employed to provide adequate nutrients for engineered living tissues. These have mainly revolved around providing oxygen to alleviate the effects of chronic hypoxia or anoxia that result in necrosis or weak neovascularization, leading to failure of artificial tissue implants and hence poor clinical outcome. While different biomaterials have been used as oxygen generators for in vitro as well as in vivo applications, certain problems have hampered their wide application. Among these are the generation and the rate at which oxygen is produced together with the production of the reaction intermediates in the form of reactive oxygen species (ROS). Both these factors can be detrimental for cell survival and can severely affect the outcome of such studies. Here we present calcium peroxide (CPO) encapsulated in polycaprolactone as oxygen releasing microparticles (OMPs). While CPO releases oxygen upon hydrolysis, PCL encapsulation ensures that hydrolysis takes place slowly, thereby sustaining prolonged release of oxygen without the stress the bulk release can endow on the encapsulated cells. We used gelatin methacryloyl (GelMA) hydrogels containing these OMPs to stimulate survival and proliferation of encapsulated skeletal myoblasts and optimized the OMP concentration for sustained oxygen delivery over more than a week. The oxygen releasing and delivery platform described in this study opens up opportunities for cell-based therapeutic approaches to treat diseases resulting from ischemic conditions and enhance survival of implants under severe hypoxic conditions for successful clinical translation.
Collapse
Affiliation(s)
- Shabir Hassan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA; (B.C.); (A.K.M.); (A.F.); (C.K.); (S.S.); (H.Z.)
- Correspondence: (S.H.); (A.O.L.)
| | - Berivan Cecen
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA; (B.C.); (A.K.M.); (A.F.); (C.K.); (S.S.); (H.Z.)
| | - Ramon Peña-Garcia
- Materials Science and Engineering Graduate Program, UFPI-Federal University of Piaui, Teresina 64049-55, PI, Brazil; (R.P.-G.); (F.R.M.)
- Academic Unit of Cabo de Santo Agostinho, Federal Rural University of Pernambuco, Cabo de Santo Agostinho 52171-900, PE, Brazil
| | - Fernanda Roberta Marciano
- Materials Science and Engineering Graduate Program, UFPI-Federal University of Piaui, Teresina 64049-55, PI, Brazil; (R.P.-G.); (F.R.M.)
- Department of Physics, Federal University of Piaui, Teresina 64049-550, PI, Brazil
| | - Amir K. Miri
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA; (B.C.); (A.K.M.); (A.F.); (C.K.); (S.S.); (H.Z.)
- Biofabrication Lab, Department of Mechanical Engineering, Rowan University, Engineering Hall, Glassboro, NJ 08028, USA
| | - Ali Fattahi
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA; (B.C.); (A.K.M.); (A.F.); (C.K.); (S.S.); (H.Z.)
- Center for Applied NanoBioscience and Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA
| | - Christina Karavasili
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA; (B.C.); (A.K.M.); (A.F.); (C.K.); (S.S.); (H.Z.)
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Shikha Sebastian
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA; (B.C.); (A.K.M.); (A.F.); (C.K.); (S.S.); (H.Z.)
| | - Hamza Zaidi
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA; (B.C.); (A.K.M.); (A.F.); (C.K.); (S.S.); (H.Z.)
| | - Anderson Oliveira Lobo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA; (B.C.); (A.K.M.); (A.F.); (C.K.); (S.S.); (H.Z.)
- Materials Science and Engineering Graduate Program, UFPI-Federal University of Piaui, Teresina 64049-55, PI, Brazil; (R.P.-G.); (F.R.M.)
- LIMAV-Interdisciplinary Laboratory for Advanced Materials, UFPI-Federal University of Piaui, Teresina 64049-550, PI, Brazil
- Correspondence: (S.H.); (A.O.L.)
| |
Collapse
|
11
|
Eltawila AM, Hassan MN, Safaan SM, Abd El-Fattah A, Zakaria O, El-Khordagui LK, Kandil S. Local treatment of experimental mandibular osteomyelitis with an injectable biomimetic gentamicin hydrogel using a new rabbit model. J Biomed Mater Res B Appl Biomater 2021; 109:1677-1688. [PMID: 33749111 DOI: 10.1002/jbm.b.34824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/27/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
Mandibular osteomyelitis (OM) is a challenging disease. Our objective was to assess a new OM model in rabbits induced by arsenic trioxide and to assess the efficacy of local treatment of OM using injectable gentamicin-collagen hydrogels (GNT-COLL). OM was induced unilaterally by controlled confinement of arsenic trioxide paste to the root canal of lower incisors of rabbits, while OM progression was characterized for 16 weeks. On the other hand, two injectable COLL hydrogels functionalized with GNT were prepared and characterized for physicochemical properties; a simple GNT-COLL and a nanohydroxyapatite (nHA)- loaded hydrogel (GNT-COLL/nHA). The two hydrogels were evaluated to treat OM model, while a multidose intramuscular GNT solution served as positive control. Outcomes were assessed by standard methods at 4 and 12 weeks post-surgery. The clinical, radiographical, and histopathological findings provided evidence for the validity of the arsenic-induced OM. The results demonstrated that a single intra-lesional injection of the two hydrogels was more suppressive to OM compared to multidose systemic GNT. The composite GNT-COLL/nHA hydrogel proved to induce early preservation of alveolar bone (ridge) length and higher amount of bone area\total area at 4 weeks (40.53% ± 2.34) followed by GNT-COLL (32.21% ± 0.72). On the other hand, the positive control group revealed the least ridge length and bone area\total area (26.22% ± 1.32) at 4 weeks. Both hydrogels successfully arrested OM with no signs of recurrence for up to 12 weeks. Therefore, results support the greater advantages of the composite hydrogel as an osteogenic/antibiotic delivery system in OM treatment.
Collapse
Affiliation(s)
- Ahmed Maher Eltawila
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.,Dental Biomaterials Department, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Egypt
| | - Mohamad Nageeb Hassan
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.,Department of Dental Biomaterials, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.,Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Shimaa Mohamed Safaan
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Ahmed Abd El-Fattah
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.,Department of Chemistry, College of Science, University of Bahrain, Sakhir, Kingdom of Bahrain
| | - Osama Zakaria
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Labiba K El-Khordagui
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Sherif Kandil
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
12
|
Niermeyer WL, Rodman C, Li MM, Chiang T. Tissue engineering applications in otolaryngology-The state of translation. Laryngoscope Investig Otolaryngol 2020; 5:630-648. [PMID: 32864434 PMCID: PMC7444782 DOI: 10.1002/lio2.416] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/06/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
While tissue engineering holds significant potential to address current limitations in reconstructive surgery of the head and neck, few constructs have made their way into routine clinical use. In this review, we aim to appraise the state of head and neck tissue engineering over the past five years, with a specific focus on otologic, nasal, craniofacial bone, and laryngotracheal applications. A comprehensive scoping search of the PubMed database was performed and over 2000 article hits were returned with 290 articles included in the final review. These publications have addressed the hallmark characteristics of tissue engineering (cellular source, scaffold, and growth signaling) for head and neck anatomical sites. While there have been promising reports of effective tissue engineered interventions in small groups of human patients, the majority of research remains constrained to in vitro and in vivo studies aimed at furthering the understanding of the biological processes involved in tissue engineering. Further, differences in functional and cosmetic properties of the ear, nose, airway, and craniofacial bone affect the emphasis of investigation at each site. While otolaryngologists currently play a role in tissue engineering translational research, continued multidisciplinary efforts will likely be required to push the state of translation towards tissue-engineered constructs available for routine clinical use. LEVEL OF EVIDENCE NA.
Collapse
Affiliation(s)
| | - Cole Rodman
- The Ohio State University College of MedicineColumbusOhioUSA
| | - Michael M. Li
- Department of Otolaryngology—Head and Neck SurgeryThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Tendy Chiang
- Department of OtolaryngologyNationwide Children's HospitalColumbusOhioUSA
- Department of Otolaryngology—Head and Neck SurgeryThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| |
Collapse
|