1
|
Li X, Zhu L, Che Z, Liu T, Yang C, Huang L. Progress of research on the surface functionalization of tantalum and porous tantalum in bone tissue engineering. Biomed Mater 2024; 19:042009. [PMID: 38838694 DOI: 10.1088/1748-605x/ad5481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Tantalum and porous tantalum are ideal materials for making orthopedic implants due to their stable chemical properties and excellent biocompatibility. However, their utilization is still affected by loosening, infection, and peripheral inflammatory reactions, which sometimes ultimately lead to implant removal. An ideal bone implant should have exceptional biological activity, which can improve the surrounding biological microenvironment to enhance bone repair. Recent advances in surface functionalization have produced various strategies for developing compatibility between either of the two materials and their respective microenvironments. This review provides a systematic overview of state-of-the-art strategies for conferring biological functions to tantalum and porous tantalum implants. Furthermore, the review describes methods for preparing active surfaces and different bioactive substances that are used, summarizing their functions. Finally, this review discusses current challenges in the development of optimal bone implant materials.
Collapse
Affiliation(s)
- Xudong Li
- The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Liwei Zhu
- The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Zhenjia Che
- The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Tengyue Liu
- The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Chengzhe Yang
- The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Lanfeng Huang
- The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| |
Collapse
|
2
|
Yang KR, Hong MH. Improved Biocompatibility and Osseointegration of Nanostructured Calcium-Incorporated Titanium Implant Surface Treatment (XPEED ®). MATERIALS (BASEL, SWITZERLAND) 2024; 17:2707. [PMID: 38893971 PMCID: PMC11173531 DOI: 10.3390/ma17112707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
Surface treatment of implants facilitates osseointegration, with nanostructured surfaces exhibiting accelerated peri-implant bone regeneration. This study compared bone-to-implant contact (BIC) in implants with hydroxyapatite (HA), sand-blasted and acid-etched (SLA), and SLA with calcium (Ca)-coated (XPEED®) surfaces. Seventy-five disk-shaped grade 4 Ti specimens divided into three groups were prepared, with 16 implants per group tested in New Zealand white rabbits. Surface characterization was performed using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), digital microscopy, and a contact angle analyzer. Cell viability, proliferation, and adhesion were assessed using MC3T3-E1 cells. Apatite formation was evaluated using modified simulated body fluid (m-SBF) incubation. After 4 weeks of healing, the outcomes reviewed were BIC, bone area (BA), removal torque tests, and histomorphometric evaluation. A microstructure analysis revealed irregular pores across all groups, with the XPEED group exhibiting a nanostructured Ca-coated surface. Surface characterization showed a crystalline CaTiO3 layer on XPEED surfaces, with evenly distributed Ca penetrating the implants. All surfaces provided excellent environments for cell growth. The XPEED and SLA groups showed significantly higher cell density and viability with superior osseointegration than HA (p < 0.05); XPEED exhibited the highest absorbance values. Thus, XPEED surface treatment improved implant performance, biocompatibility, stability, and osseointegration.
Collapse
Affiliation(s)
- Kyung Ran Yang
- Daegu Mir Dental Hospital, Jung-gu, Daegu 41934, Republic of Korea;
| | - Min-Ho Hong
- Department of Dental Laboratory Science, College of Health Sciences, Catholic University of Pusan, 57 Oryundae-ro, Geumjeong-gu, Busan 46252, Republic of Korea
| |
Collapse
|
3
|
Nogueira DMB, Rosso MPDO, Buchaim DV, Zangrando MSR, Buchaim RL. Update on the use of 45S5 bioactive glass in the treatment of bone defects in regenerative medicine. World J Orthop 2024; 15:204-214. [PMID: 38596193 PMCID: PMC10999964 DOI: 10.5312/wjo.v15.i3.204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/15/2024] [Accepted: 02/01/2024] [Indexed: 03/15/2024] Open
Abstract
Bone regeneration is a critical area in regenerative medicine, particularly in orthopedics, demanding effective biomedical materials for treating bone defects. 45S5 bioactive glass (45S5 BG) is a promising material because of its osteoconductive and bioactive properties. As research in this field continues to advance, keeping up-to-date on the latest and most successful applications of this material is imperative. To achieve this, we conducted a comprehensive search on PubMed/MEDLINE, focusing on English articles published in the last decade. Our search used the keywords "bioglass 45S5 AND bone defect" in combination. We found 27 articles, and after applying the inclusion criteria, we selected 15 studies for detailed examination. Most of these studies compared 45S5 BG with other cement or scaffold materials. These comparisons demonstrate that the addition of various composites enhances cellular biocompatibility, as evidenced by the cells and their osteogenic potential. Moreover, the use of 45S5 BG is enhanced by its antimicrobial properties, opening avenues for additional investigations and applications of this biomaterial.
Collapse
Affiliation(s)
- Dayane Maria Braz Nogueira
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil
| | | | - Daniela Vieira Buchaim
- Medical School, University Center of Adamantina, Adamantina 17800-000, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marília, Marília 17525-902, Brazil
| | | | - Rogério Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil
| |
Collapse
|
4
|
Deering J, Mahmoud D, Rier E, Lin Y, do Nascimento Pereira AC, Titotto S, Fang Q, Wohl GR, Deng F, Grandfield K, Elbestawi MA, Chen J. Osseointegration of functionally graded Ti6Al4V porous implants: Histology of the pore network. BIOMATERIALS ADVANCES 2023; 155:213697. [PMID: 37979439 DOI: 10.1016/j.bioadv.2023.213697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/11/2023] [Accepted: 11/05/2023] [Indexed: 11/20/2023]
Abstract
The additive manufacturing of titanium into porous geometries offers a means to generate low-stiffness endosseous implants with a greater surface area available for osseointegration. In this work, selective laser melting was used to produce gyroid-based scaffolds with a uniform pore size of 300 μm or functionally graded pore size from 600 μm to 300 μm. Initial in vitro assessment with Saos-2 cells showed favourable cell proliferation at pore sizes of 300 and 600 μm. Following implantation into rabbit tibiae, early histological observations at four weeks indicated some residual inflammation alongside neovessel infiltration into the scaffold interior and some early apposition of mineralized bone tissue. At twelve weeks, both scaffolds were filled with a mixture of adipocyte-rich marrow, micro-capillaries, and mineralized bone tissue. X-ray microcomputed tomography showed a higher bone volume fraction (BV/TV) and percentage of bone-implant contact (BIC) in the implants with 300 μm pores than in the functionally graded specimens. In functionally graded specimens, localized BV/TV measurement was observed to be higher in the innermost region containing smaller pores (estimated at 300-400 μm) than in larger pores at the implant exterior. The unit cell topology of the porous implant was also observed to guide the direction of bone ingrowth by conducting along the implant struts. These results suggest that in vivo experimentation is necessary alongside parametric optimization of functionally graded porous implants to predict short-term and long-term bone apposition.
Collapse
Affiliation(s)
- Joseph Deering
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON, Canada
| | - Dalia Mahmoud
- Department of Mechanical Engineering, McMaster University, Hamilton, ON, Canada; Production Engineering Department, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt
| | - Elyse Rier
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | - Yujing Lin
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Anna Cecilia do Nascimento Pereira
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC (UFABC), Santo André, Brazil; 4D Printing and Biomimetics' (4DB) Research Group, Federal University of ABC (UFABC), Santo André, Brazil
| | - Silvia Titotto
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC (UFABC), Santo André, Brazil; 4D Printing and Biomimetics' (4DB) Research Group, Federal University of ABC (UFABC), Santo André, Brazil
| | - Qiyin Fang
- Department of Engineering Physics, McMaster University, Hamilton, ON, Canada
| | - Gregory R Wohl
- Department of Mechanical Engineering, McMaster University, Hamilton, ON, Canada; School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada; Brockhouse Institute for Materials Research, McMaster University, Hamilton, ON, Canada
| | - Feilong Deng
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Kathryn Grandfield
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON, Canada; School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada; Brockhouse Institute for Materials Research, McMaster University, Hamilton, ON, Canada.
| | - Mohamed A Elbestawi
- Department of Mechanical Engineering, McMaster University, Hamilton, ON, Canada.
| | - Jianyu Chen
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
5
|
Saha S, Roy S. Metallic Dental Implants Wear Mechanisms, Materials, and Manufacturing Processes: A Literature Review. MATERIALS (BASEL, SWITZERLAND) 2022; 16:ma16010161. [PMID: 36614500 PMCID: PMC9821388 DOI: 10.3390/ma16010161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/29/2022] [Accepted: 12/13/2022] [Indexed: 06/12/2023]
Abstract
OBJECTIVES From the treatment of damaged teeth to replacing missing teeth, dental biomaterials cover the scientific interest of many fields. Dental biomaterials are one of the implants whose effective life depends vastly on their material and manufacturing techniques. The purpose of this review is to summarize the important aspects for metallic dental implants from biomedical, mechanical and materials science perspectives. The review article will focus on five major aspects as mentioned below. Tooth anatomy: Maximizing the implant performance depends on proper understanding of human tooth anatomy and the failure behavior of the implants. Major parts from tooth anatomy including saliva characteristics are explored in this section. Wear mechanisms: The prominent wear mechanisms having a high impact on dental wear are abrasive, adhesive, fatigue and corrosion wear. To imitate the physiological working condition of dental implants, reports on the broad range of mastication force and various composition of artificial saliva have been included in this section, which can affect the tribo-corrosion behavior of dental implants. Dental implants classifications: The review paper includes a dedicated discussion on major dental implants types and their details for better understanding their applicability and characteristics. Implant materials: As of today, the most established dental implant materials are SS316L, cobalt chrome alloy and titanium. Detailed discussion on their material properties, microstructures, phase transformations and chemical compositions have been discussed here. Manufacturing techniques: In terms of different production methods, the lost wax casting method as traditional manufacturing is considered. Selective Laser Melting (SLM) and Directed Energy Deposition (DED) as additive manufacturing techniques (AM) have been discussed. For AM, the relationships between process-property-performance details have been explored briefly. The effectiveness of different manufacturing techniques was compared based on porosity distribution, mechanical and biomechanical properties. SUMMARY Despite having substantial research available on dental implants, there is a lack of systematic reviews to present a holistic viewpoint combining state-of-the-art from biomedical, mechanical, materials science and manufacturing perspectives. This review article attempts to combine a wide variety of analyzing approaches from those interdisciplinary fields to deliver deeper insights to researchers both in academia and industry to develop next-generation dental implants.
Collapse
|
6
|
Alipour S, Nour S, Attari SM, Mohajeri M, Kianersi S, Taromian F, Khalkhali M, Aninwene GE, Tayebi L. A review on in vitro/ in vivo response of additively manufactured Ti-6Al-4V alloy. J Mater Chem B 2022; 10:9479-9534. [PMID: 36305245 DOI: 10.1039/d2tb01616h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Bone replacement using porous and solid metallic implants, such as Ti-alloy implants, is regarded as one of the most practical therapeutic approaches in biomedical engineering. The bone is a complex tissue with various mechanical properties based on the site of action. Patient-specific Ti-6Al-4V constructs may address the key needs in bone treatment for having customized implants that mimic the complex structure of the natural tissue and diminish the risk of implant failure. This review focuses on the most promising methods of fabricating such patient-specific Ti-6Al-4V implants using additive manufacturing (AM) with a specific emphasis on the popular subcategory, which is powder bed fusion (PBF). Characteristics of the ideal implant to promote optimized tissue-implant interactions, as well as physical, mechanical/chemical treatments and modifications will be discussed. Accordingly, such investigations will be classified into 3B-based approaches (Biofunctionality, Bioactivity, and Biostability), which mainly govern native body response and ultimately the success in implantation.
Collapse
Affiliation(s)
- Saeid Alipour
- Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Shirin Nour
- Tissue Engineering Group, Department of Biomedical Engineering, University of Melbourne, VIC 3010, Australia.,Polymer Science Group, Department of Chemical Engineering, University of Melbourne, VIC 3010, Australia
| | - Seyyed Morteza Attari
- Department of Material Science and Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Mohammad Mohajeri
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, TX, USA
| | - Sogol Kianersi
- CÚRAM, SFI Centre for Research in Medical Devices, Biomedical Sciences, University of Galway, Galway, Ireland
| | - Farzaneh Taromian
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Mohammadparsa Khalkhali
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - George E Aninwene
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, California, USA.,Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, California, USA.,California NanoSystems Institute (CNSI), University of California-Los Angeles, Los Angeles, California, USA
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, Wisconsin, USA.
| |
Collapse
|
7
|
Aubry C, Drouet C, Azaïs T, Kim HJ, Oh JM, Karacan I, Chou J, Ben-Nissan B, Camy S, Cazalbou S. Bio-Activation of HA/β-TCP Porous Scaffolds by High-Pressure CO 2 Surface Remodeling: A Novel "Coating-from" Approach. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7306. [PMID: 36295371 PMCID: PMC9610974 DOI: 10.3390/ma15207306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Biphasic macroporous Hydroxyapatite/β-Tricalcium Phosphate (HA/β-TCP) scaffolds (BCPs) are widely used for bone repair. However, the high-temperature HA and β-TCP phases exhibit limited bioactivity (low solubility of HA, restricted surface area, low ion release). Strategies were developed to coat such BCPs with biomimetic apatite to enhance bioactivity. However, this can be associated with poor adhesion, and metastable solutions may prove difficult to handle at the industrial scale. Alternative strategies are thus desirable to generate a highly bioactive surface on commercial BCPs. In this work, we developed an innovative "coating from" approach for BCP surface remodeling via hydrothermal treatment under supercritical CO2, used as a reversible pH modifier and with industrial scalability. Based on a set of complementary tools including FEG-SEM, solid state NMR and ion exchange tests, we demonstrate the remodeling of macroporous BCP surface with the occurrence of dissolution-reprecipitation phenomena involving biomimetic CaP phases. The newly precipitated compounds are identified as bone-like nanocrystalline apatite and octacalcium phosphate (OCP), both known for their high bioactivity character, favoring bone healing. We also explored the effects of key process parameters, and showed the possibility to dope the remodeled BCPs with antibacterial Cu2+ ions to convey additional functionality to the scaffolds, which was confirmed by in vitro tests. This new process could enhance the bioactivity of commercial BCP scaffolds via a simple and biocompatible approach.
Collapse
Affiliation(s)
- Clémentine Aubry
- Centre Inter-Universitaire de Recherche et d’Ingénierie des Matériaux, CNRS/UT3/INP, Université de Toulouse, 31030 Toulouse, France
- Laboratoire de Génie Chimique, CNRS/UT3/INP, Université de Toulouse, 31030 Toulouse, France
- ARN: Régulation Naturelle et Artificielle, INSERM U1212, CNRS, Université de Bordeaux, 33076 Bordeaux, France
| | - Christophe Drouet
- Centre Inter-Universitaire de Recherche et d’Ingénierie des Matériaux, CNRS/UT3/INP, Université de Toulouse, 31030 Toulouse, France
| | - Thierry Azaïs
- Laboratoire de Chimie de la Matière Condensée de Paris-UMR 7574, CNRS, Sorbonne Université, 75005 Paris, France
| | - Hyoung-Jun Kim
- Department Energy and Materials Engineering, Dongguk University, Seoul 04620, Korea
- Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Jae-Min Oh
- Department Energy and Materials Engineering, Dongguk University, Seoul 04620, Korea
| | - Ipek Karacan
- University of Technology Sydney, Ultimo 2007, Australia
| | - Joshua Chou
- University of Technology Sydney, Ultimo 2007, Australia
| | | | - Séverine Camy
- Laboratoire de Génie Chimique, CNRS/UT3/INP, Université de Toulouse, 31030 Toulouse, France
| | - Sophie Cazalbou
- Centre Inter-Universitaire de Recherche et d’Ingénierie des Matériaux, CNRS/UT3/INP, Université de Toulouse, 31030 Toulouse, France
| |
Collapse
|
8
|
Wang X, Liu W, Yu X, Wang B, Xu Y, Yan X, Zhang X. Advances in surface modification of tantalum and porous tantalum for rapid osseointegration: A thematic review. Front Bioeng Biotechnol 2022; 10:983695. [PMID: 36177183 PMCID: PMC9513364 DOI: 10.3389/fbioe.2022.983695] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
After bone defects reach a certain size, the body can no longer repair them. Tantalum, including its porous form, has attracted increasing attention due to good bioactivity, biocompatibility, and biomechanical properties. After a metal material is implanted into the body as a medical intervention, a series of interactions occurs between the material’s surface and the microenvironment. The interaction between cells and the surface of the implant mainly depends on the surface morphology and chemical composition of the implant’s surface. In this context, appropriate modification of the surface of tantalum can guide the biological behavior of cells, promote the potential of materials, and facilitate bone integration. Substantial progress has been made in tantalum surface modification technologies, especially nano-modification technology. This paper systematically reviews the progress in research on tantalum surface modification for the first time, including physicochemical properties, biological performance, and surface modification technologies of tantalum and porous tantalum.
Collapse
Affiliation(s)
- Xi Wang
- Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Wentao Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Xinding Yu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Biyao Wang
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yan Xu
- The Comprehensive Department of Shenyang Stomatological Hospital, Shenyang, China
| | - Xu Yan
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
- *Correspondence: Xu Yan, ; Xinwen Zhang,
| | - Xinwen Zhang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
- *Correspondence: Xu Yan, ; Xinwen Zhang,
| |
Collapse
|
9
|
Cruz MB, Silva N, Marques JF, Mata A, Silva FS, Caramês J. Biomimetic Implant Surfaces and Their Role in Biological Integration-A Concise Review. Biomimetics (Basel) 2022; 7:74. [PMID: 35735590 PMCID: PMC9220941 DOI: 10.3390/biomimetics7020074] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The increased use of dental implants in oral rehabilitation has been followed by the development of new biomaterials as well as improvements in the performance of biomaterials already in use. This triggers the need for appropriate analytical approaches to assess the biological and, ultimately, clinical benefits of these approaches. AIMS To address the role of physical, chemical, mechanical, and biological characteristics in order to determine the critical parameters to improve biological responses and the long-term effectiveness of dental implant surfaces. DATA SOURCES AND METHODS Web of Science, MEDLINE and Lilacs databases were searched for the last 30 years in English, Spanish and Portuguese idioms. RESULTS Chemical composition, wettability, roughness, and topography of dental implant surfaces have all been linked to biological regulation in cell interactions, osseointegration, bone tissue and peri-implant mucosa preservation. CONCLUSION Techniques involving subtractive and additive methods, especially those involving laser treatment or embedding of bioactive nanoparticles, have demonstrated promising results. However, the literature is heterogeneous regarding study design and methodology, which limits comparisons between studies and the definition of the critical determinants of optimal cell response.
Collapse
Affiliation(s)
- Mariana Brito Cruz
- Universidade de Lisboa, Faculdade de Medicina Dentária, Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), Rua Professora Teresa Ambrósio, 1600-277 Lisboa, Portugal; (J.F.M.); (A.M.)
| | - Neusa Silva
- Universidade de Lisboa, Faculdade de Medicina Dentária, Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), LIBPhys-FTC UID/FIS/04559/2013, Rua Professora Teresa Ambrósio, 1600-277 Lisboa, Portugal;
| | - Joana Faria Marques
- Universidade de Lisboa, Faculdade de Medicina Dentária, Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), Rua Professora Teresa Ambrósio, 1600-277 Lisboa, Portugal; (J.F.M.); (A.M.)
| | - António Mata
- Universidade de Lisboa, Faculdade de Medicina Dentária, Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), Rua Professora Teresa Ambrósio, 1600-277 Lisboa, Portugal; (J.F.M.); (A.M.)
- Cochrane Portugal, Instituto de Saúde Baseada na Evidência (ISBE), Faculdade de Medicina Dentária, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Felipe Samuel Silva
- Center for Microelectromechanical Systems (CMEMS), Department of Mechanical Engineering, University of Minho, 4800-058 Guimarães, Portugal;
| | - João Caramês
- Bone Physiology Research Group, Faculdade de Medicina Dentária, Universidade de Lisboa, Rua Professora Teresa Ambrósio, 1600-277 Lisboa, Portugal;
| |
Collapse
|
10
|
Biodegradable Poly(D-L-lactide-co-glycolide) (PLGA)-Infiltrated Bioactive Glass (CAR12N) Scaffolds Maintain Mesenchymal Stem Cell Chondrogenesis for Cartilage Tissue Engineering. Cells 2022; 11:cells11091577. [PMID: 35563883 PMCID: PMC9100331 DOI: 10.3390/cells11091577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 12/11/2022] Open
Abstract
Regeneration of articular cartilage remains challenging. The aim of this study was to increase the stability of pure bioactive glass (BG) scaffolds by means of solvent phase polymer infiltration and to maintain cell adherence on the glass struts. Therefore, BG scaffolds either pure or enhanced with three different amounts of poly(D-L-lactide-co-glycolide) (PLGA) were characterized in detail. Scaffolds were seeded with primary porcine articular chondrocytes (pACs) and human mesenchymal stem cells (hMSCs) in a dynamic long-term culture (35 days). Light microscopy evaluations showed that PLGA was detectable in every region of the scaffold. Porosity was greater than 70%. The biomechanical stability was increased by polymer infiltration. PLGA infiltration did not result in a decrease in viability of both cell types, but increased DNA and sulfated glycosaminoglycan (sGAG) contents of hMSCs-colonized scaffolds. Successful chondrogenesis of hMSC-colonized scaffolds was demonstrated by immunocytochemical staining of collagen type II, cartilage proteoglycans and the transcription factor SOX9. PLGA-infiltrated scaffolds showed a higher relative expression of cartilage related genes not only of pAC-, but also of hMSC-colonized scaffolds in comparison to the pure BG. Based on the novel data, our recommendation is BG scaffolds with single infiltrated PLGA for cartilage tissue engineering.
Collapse
|
11
|
Accioni F, Vázquez J, Merinero M, Begines B, Alcudia A. Latest Trends in Surface Modification for Dental Implantology: Innovative Developments and Analytical Applications. Pharmaceutics 2022; 14:455. [PMID: 35214186 PMCID: PMC8876580 DOI: 10.3390/pharmaceutics14020455] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 12/27/2022] Open
Abstract
An increase in the world population and its life expectancy, as well as the ongoing concern about our physical appearance, have elevated the relevance of dental implantology in recent decades. Engineering strategies to improve the survival rate of dental implants have been widely investigated, focusing on implant material composition, geometry (usually guided to reduce stiffness), and interface surrounding tissues. Although efforts to develop different implant surface modifications are being applied in commercial dental prostheses today, the inclusion of surface coatings has gained special interest, as they can be tailored to efficiently enhance osseointegration, as well as to reduce bacterial-related infection, minimizing peri-implantitis appearance and its associated risks. The use of biomaterials to replace teeth has highlighted the need for the development of reliable analytical methods to assess the therapeutic benefits of implants. This literature review considers the state-of-the-art strategies for surface modification or coating and analytical methodologies for increasing the survival rate for teeth restoration.
Collapse
Affiliation(s)
- Francesca Accioni
- Departamento de Química Orgánica y Farmacéutica, Universidad de Sevilla, 41012 Seville, Spain; (F.A.); (M.M.)
| | - Juan Vázquez
- Departamento de Química Orgánica, Universidad de Sevilla, 41012 Seville, Spain;
| | - Manuel Merinero
- Departamento de Química Orgánica y Farmacéutica, Universidad de Sevilla, 41012 Seville, Spain; (F.A.); (M.M.)
- Departamento de Citología e Histología Normal y Patológica, Universidad de Sevilla, 41012 Seville, Spain
| | - Belén Begines
- Departamento de Química Orgánica y Farmacéutica, Universidad de Sevilla, 41012 Seville, Spain; (F.A.); (M.M.)
| | - Ana Alcudia
- Departamento de Química Orgánica y Farmacéutica, Universidad de Sevilla, 41012 Seville, Spain; (F.A.); (M.M.)
| |
Collapse
|
12
|
Biomaterials and osteoradionecrosis of the jaw: Review of the literature according to the SWiM methodology. Eur Ann Otorhinolaryngol Head Neck Dis 2021; 139:208-215. [PMID: 34210630 DOI: 10.1016/j.anorl.2021.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To systematically present and interpret the current literature on research and treatment perspectives for mandibular osteoradionecrosis (mORN) in the field of biomaterials. MATERIAL AND METHODS A systematic review of the literature using the "Synthesis without meta-analysis" (SWiM) methodology was performed on PubMed, Embase and Cochrane, focusing on the implantation of synthetic biomaterials for bone reconstruction in mORN in humans and/or animal models. The primary endpoints were the composition, efficacy on mORN and tolerance of the implanted synthetic biomaterials. RESULTS Forty-seven references were obtained and evaluated in full-text by two assessors. Ten (8 in humans and 2 in animal models) met the eligibility criteria and were included for analysis. Materials most often comprised support plates or metal mesh (5 of 10 cases) in combination with grafts or synthetic materials (phosphocalcic ceramics, glutaraldehyde). Other ceramic/polymer composites were also implanted. In half of the selected reports, active compounds (molecules, growth factors, lysates) and/or cells were associated with the reconstruction material. The number of articles referring to implantation of biomaterials for the treatment of mORN was small, and the properties of the implanted biomaterials were generally poorly described, thus limiting a thorough understanding of their role. CONCLUSION In preventing the morbidity associated with some reconstructive surgeries, basic research has benefitted from recent advances in tissue engineering and biomaterials to repair limited bone loss.
Collapse
|
13
|
Agour M, Abdal-hay A, Hassan MK, Bartnikowski M, Ivanovski S. Alkali-Treated Titanium Coated with a Polyurethane, Magnesium and Hydroxyapatite Composite for Bone Tissue Engineering. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1129. [PMID: 33925403 PMCID: PMC8145718 DOI: 10.3390/nano11051129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 11/17/2022]
Abstract
The aim of this study was to form a functional layer on the surface of titanium (Ti) implants to enhance their bioactivity. Layers of polyurethane (PU), containing hydroxyapatite (HAp) nanoparticles (NPs) and magnesium (Mg) particles, were deposited on alkali-treated Ti surfaces using a cost-effective dip-coating approach. The coatings were assessed in terms of morphology, chemical composition, adhesion strength, interfacial bonding, and thermal properties. Additionally, cell response to the variably coated Ti substrates was investigated using MC3T3-E1 osteoblast-like cells, including assessment of cell adhesion, cell proliferation, and osteogenic activity through an alkaline phosphatase (ALP) assay. The results showed that the incorporation of HAp NPs enhanced the interfacial bonding between the coating and the alkali-treated Ti surface. Furthermore, the presence of Mg and HAp particles enhanced the surface charge properties as well as cell attachment, proliferation, and differentiation. Our results suggest that the deposition of a bioactive composite layer containing Mg and HAp particles on Ti implants may have the potential to induce bone formation.
Collapse
Affiliation(s)
- Mahmoud Agour
- Department of Production Engineering and Design, Faculty of Engineering, Minia University, Minia 61112, Egypt; (M.A.); (M.K.H.)
| | - Abdalla Abdal-hay
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, Herston Campus, The University of Queensland, 288 Herston Road, Herston, QLD 4006, Australia;
- Department of Engineering Materials and Mechanical Design, Faculty of Engineering, South Valley University, Qena 83523, Egypt
| | - Mohamed K. Hassan
- Department of Production Engineering and Design, Faculty of Engineering, Minia University, Minia 61112, Egypt; (M.A.); (M.K.H.)
- Department of Mechanical Engineering, College of Engineering, Umm Al-Qura University (UQU), Mecca 24381, Saudi Arabia
| | - Michal Bartnikowski
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, Herston Campus, The University of Queensland, 288 Herston Road, Herston, QLD 4006, Australia;
| | - Sašo Ivanovski
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, Herston Campus, The University of Queensland, 288 Herston Road, Herston, QLD 4006, Australia;
| |
Collapse
|
14
|
Sutthavas P, Habibovic P, van Rijt SH. The shape-effect of calcium phosphate nanoparticle based films on their osteogenic properties. Biomater Sci 2021; 9:1754-1766. [PMID: 33433541 DOI: 10.1039/d0bm01494j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calcium phosphates (CaPs) in the form of hydroxyapatite (HA) have been extensively studied in the context of bone regeneration due to their chemical similarity to natural bone mineral. While HA is known to promote osteogenic differentiation, the structural properties of the ceramic have been shown to affect the extent of this effect; several studies have suggested that nanostructured HA can improve the bioactivity. However, the role shape plays in the osteogenic potential is more elusive. Here we studied the effect of HA nanoparticle shape on the ability to induce osteogenesis in human mesenchymal stromal cells (hMSCs) by developing nanoparticle films using needle-, rice- and spherical-shaped HA. We showed that the HA films made from all three shapes of nanoparticles induced increased levels of osteogenic markers (i.e. runt-related transcription factor 2 (RUNX2), bone morphogenetic protein 2 (BMP2), alkaline phosphatase (ALP), osteopontin (OPN), osteocalcin (OCN) on protein and gene level in comparison to hMSCs cultured on cover glass slides. Furthermore, their expression levels and profiles differed significantly as a function of nanoparticle shape. We also showed that nanoparticle films were more efficient in inducing osteogenic gene expression in hMSCs compared to adding nanoparticles to hMSCs in culture media. Finally, we demonstrated that hMSC morphology upon adhesion to the HA nanoparticle films is dependent on nanoparticle shape, with hMSCs exhibiting a more spread morphology on needle-shaped nanoparticle films compared to hMSCs seeded on rice- and spherical-shaped nanoparticle films. Our data suggests that HA nanoparticle films are efficient in inducing hMSC osteogenesis in basic cell culture conditions and that nanoparticle shape plays a vital role in cell adhesion and morphology and extent of induction of osteogenic differentiation.
Collapse
Affiliation(s)
- Pichaporn Sutthavas
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Pamela Habibovic
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Sabine H van Rijt
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
15
|
In Vivo Assessment of Synthetic and Biological-Derived Calcium Phosphate-Based Coatings Fabricated by Pulsed Laser Deposition: A Review. COATINGS 2021. [DOI: 10.3390/coatings11010099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The aim of this review is to present the state-of-the art achievements reported in the last two decades in the field of pulsed laser deposition (PLD) of biocompatible calcium phosphate (CaP)-based coatings for medical implants, with an emphasis on their in vivo biological performances. There are studies in the dedicated literature on the in vivo testing of CaP-based coatings (especially hydroxyapatite, HA) synthesized by many physical vapor deposition methods, but only a few of them addressed the PLD technique. Therefore, a brief description of the PLD technique, along with some information on the currently used substrates for the synthesis of CaP-based structures, and a short presentation of the advantages of using various animal and human implant models will be provided. For an in-depth in vivo assessment of both synthetic and biological-derived CaP-based PLD coatings, a special attention will be dedicated to the results obtained by standardized and micro-radiographies, (micro) computed tomography and histomorphometry, tomodensitometry, histology, scanning and transmission electron microscopies, and mechanical testing. One main specific result of the in vivo analyzed studies is related to the demonstrated superior osseointegration characteristics of the metallic (generally Ti) implants functionalized with CaP-based coatings when compared to simple (control) Ti ones, which are considered as the “gold standard” for implantological applications. Thus, all such important in vivo outcomes were gathered, compiled and thoroughly discussed both to clearly understand the current status of this research domain, and to be able to advance perspectives of these synthetic and biological-derived CaP coatings for future clinical applications.
Collapse
|
16
|
Ahmed A, Al-Rasheed A, Badwelan M, Alghamdi HS. Peri-Implant bone response around porous-surface dental implants: A preclinical meta-analysis. Saudi Dent J 2020; 33:239-247. [PMID: 34194186 PMCID: PMC8236543 DOI: 10.1016/j.sdentj.2020.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/09/2022] Open
Abstract
Introduction This meta-analysis of relevant animal studies was conducted to assess whether the use of porous-surface implants improves osseointegration compared to the use of non-porous-surface implants. Material and methods An electronic search of PubMed (MEDLINE) resulted in the selection of ten animal studies (out of 865 publications) for characterization and quality assessment. Risk of bias assessment indicated poor reporting for the majority of studies. The results for bone-implant contact (BIC%) and peri-implant bone formation (BF%) were extracted from the eligible studies and used for the meta-analysis. Data for porous-surface implants were compared to those for non-porous-surface implants, which were considered as the controls. Results The random-effects meta-analysis showed that the use of porous-surface implants did not significantly increase overall BIC% (mean difference or MD: 3.63%; 95% confidence interval or 95% CI: −1.66 to 8.91; p = 0.18), whereas it significantly increased overall BF% (MD: 5.43%; CI: 2.20 to 8.67; p = 0.001), as compared to the controls. Conclusion Porous-surface implants promote osseointegration with increase in BF%. However, their use shows no significant effect on BIC%. Further preclinical and clinical investigations are required to find conclusive evidence on the effect of porous-surface implants.
Collapse
Affiliation(s)
- Abeer Ahmed
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz Al-Rasheed
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Badwelan
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, Riyadh, Saudi Arabia.,Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Aden University, Aden, Yemen
| | - Hamdan S Alghamdi
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
17
|
Lovati AB, Lopa S, Bottagisio M, Talò G, Canciani E, Dellavia C, Alessandrino A, Biagiotti M, Freddi G, Segatti F, Moretti M. Peptide-Enriched Silk Fibroin Sponge and Trabecular Titanium Composites to Enhance Bone Ingrowth of Prosthetic Implants in an Ovine Model of Bone Gaps. Front Bioeng Biotechnol 2020; 8:563203. [PMID: 33195126 PMCID: PMC7604365 DOI: 10.3389/fbioe.2020.563203] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis frequently requires arthroplasty. Cementless implants are widely used in clinics to replace damaged cartilage or missing bone tissue. In cementless arthroplasty, the risk of aseptic loosening strictly depends on implant stability and bone–implant interface, which are fundamental to guarantee the long-term success of the implant. Ameliorating the features of prosthetic materials, including their porosity and/or geometry, and identifying osteoconductive and/or osteoinductive coatings of implant surfaces are the main strategies to enhance the bone-implant contact surface area. Herein, the development of a novel composite consisting in the association of macro-porous trabecular titanium with silk fibroin (SF) sponges enriched with anionic fibroin-derived polypeptides is described. This composite is applied to improve early bone ingrowth into the implant mesh in a sheep model of bone defects. The composite enables to nucleate carbonated hydroxyapatite and accelerates the osteoblastic differentiation of resident cells, inducing an outward bone growth, a feature that can be particularly relevant when applying these implants in the case of poor osseointegration. Moreover, the osteoconductive properties of peptide-enriched SF sponges support an inward bone deposition from the native bone towards the implants. This technology can be exploited to improve the biological functionality of various prosthetic materials in terms of early bone fixation and prevention of aseptic loosening in prosthetic surgery.
Collapse
Affiliation(s)
- Arianna B Lovati
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Milan, Italy
| | - Silvia Lopa
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Milan, Italy
| | - Marta Bottagisio
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Clinical Chemistry and Microbiology, Milan, Italy
| | - Giuseppe Talò
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Milan, Italy
| | - Elena Canciani
- Ground Sections Laboratory, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Claudia Dellavia
- Ground Sections Laboratory, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | | | | | | | | | - Matteo Moretti
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Milan, Italy.,Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale, Lugano, Switzerland
| |
Collapse
|
18
|
In Vivo Assessment of Bone Enhancement in the Case of 3D-Printed Implants Functionalized with Lithium-Doped Biological-Derived Hydroxyapatite Coatings: A Preliminary Study on Rabbits. COATINGS 2020. [DOI: 10.3390/coatings10100992] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We report on biological-derived hydroxyapatite (HA, of animal bone origin) doped with lithium carbonate (Li-C) and phosphate (Li-P) coatings synthesized by pulsed laser deposition (PLD) onto Ti6Al4V implants, fabricated by the additive manufacturing (AM) technique. After being previously validated by in vitro cytotoxicity tests, the Li-C and Li-P coatings synthesized onto 3D Ti implants were preliminarily investigated in vivo, by insertion into rabbits’ femoral condyles. The in vivo experimental model for testing the extraction force of 3D metallic implants was used for this study. After four and nine weeks of implantation, all structures were mechanically removed from bones, by tensile pull-out tests, and coatings’ surfaces were investigated by scanning electron microscopy. The inferred values of the extraction force corresponding to functionalized 3D implants were compared with controls. The obtained results demonstrated significant and highly significant improvement of functionalized implants’ attachment to bone (p-values ≤0.05 and ≤0.00001), with respect to controls. The correct placement and a good integration of all 3D-printed Ti implants into the surrounding bone was demonstrated by performing computed tomography scans. This is the first report in the dedicated literature on the in vivo assessment of Li-C and Li-P coatings synthesized by PLD onto Ti implants fabricated by the AM technique. Their improved mechanical characteristics, along with a low fabrication cost from natural, sustainable resources, should recommend lithium-doped biological-derived materials as viable substitutes of synthetic HA for the fabrication of a new generation of metallic implant coatings.
Collapse
|
19
|
Zafar MS, Amin F, Fareed MA, Ghabbani H, Riaz S, Khurshid Z, Kumar N. Biomimetic Aspects of Restorative Dentistry Biomaterials. Biomimetics (Basel) 2020; 5:E34. [PMID: 32679703 PMCID: PMC7557867 DOI: 10.3390/biomimetics5030034] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
Biomimetic has emerged as a multi-disciplinary science in several biomedical subjects in recent decades, including biomaterials and dentistry. In restorative dentistry, biomimetic approaches have been applied for a range of applications, such as restoring tooth defects using bioinspired peptides to achieve remineralization, bioactive and biomimetic biomaterials, and tissue engineering for regeneration. Advancements in the modern adhesive restorative materials, understanding of biomaterial-tissue interaction at the nano and microscale further enhanced the restorative materials' properties (such as color, morphology, and strength) to mimic natural teeth. In addition, the tissue-engineering approaches resulted in regeneration of lost or damaged dental tissues mimicking their natural counterpart. The aim of the present article is to review various biomimetic approaches used to replace lost or damaged dental tissues using restorative biomaterials and tissue-engineering techniques. In addition, tooth structure, and various biomimetic properties of dental restorative materials and tissue-engineering scaffold materials, are discussed.
Collapse
Affiliation(s)
- Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah 41311, Saudi Arabia;
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan
| | - Faiza Amin
- Science of Dental Materials Department, Dow Dental College, Dow University of Health Sciences, Karachi 74200, Pakistan;
| | - Muhmmad Amber Fareed
- Adult Restorative Dentistry, Dental Biomaterials and Prosthodontics Oman Dental College, Muscat 116, Sultanate of Oman;
| | - Hani Ghabbani
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah 41311, Saudi Arabia;
| | - Samiya Riaz
- School of Dental Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Zohaib Khurshid
- Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al-Ahsa 31982, Saudia Arabia;
| | - Naresh Kumar
- Department of Science of Dental Materials, Dow University of Health Sciences, Karachi 74200, Pakistan;
| |
Collapse
|
20
|
Abstract
Dental implants are frequently used to support fixed or removable dental prostheses to replace missing teeth. The clinical success of titanium dental implants is owed to the exceptional biocompatibility and osseointegration with the bone. Therefore, the enhanced therapeutic effectiveness of dental implants had always been preferred. Several concepts for implant coating and local drug delivery had been developed during the last decades. A drug is generally released by diffusion-controlled, solvent-controlled, and chemical controlled methods. Although a range of surface modifications and coatings (antimicrobial, bioactive, therapeutic drugs) have been explored for dental implants, it is still a long way from designing sophisticated therapeutic implant surfaces to achieve the specific needs of dental patients. The present article reviews various interdisciplinary aspects of surface coatings on dental implants from the perspectives of biomaterials, coatings, drug release, and related therapeutic effects. Additionally, the various types of implant coatings, localized drug release from coatings, and how released agents influence the bone–implant surface interface characteristics are discussed. This paper also highlights several strategies for local drug delivery and their limitations in dental implant coatings as some of these concepts are yet to be applied in clinical settings due to the specific requirements of individual patients.
Collapse
|
21
|
Jarolimova P, Voltrova B, Blahnova V, Sovkova V, Pruchova E, Hybasek V, Fojt J, Filova E. Mesenchymal stem cell interaction with Ti 6Al 4V alloy pre-exposed to simulated body fluid. RSC Adv 2020; 10:6858-6872. [PMID: 35493900 PMCID: PMC9049760 DOI: 10.1039/c9ra08912h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/13/2020] [Indexed: 11/21/2022] Open
Abstract
Titanium and its alloys are widely used for substitution of hard tissues, especially in orthopaedic and dental surgery. Despite the benefit of the use of titanium for such applications, there are still questions which must be sorted out. Surface properties are crucial for cell adhesion, proliferation and differentiation. Mainly, micro/nanostructured surfaces positively influence osteogenic differentiation of human mesenchymal stem cells. Ti6Al4V is a biocompatible α + β alloy which is widely used in orthopaedics. The aim of this study was to investigate the interaction of the nanostructured and ground Ti6Al4V titanium alloys with simulated body fluid complemented by the defined precipitation of hydroxyapatite-like coating and to study the cytotoxicity and differentiation capacity of cells with such a modified titanium alloy. Nanostructures were fabricated using electrochemical oxidation. Human mesenchymal stem cells (hMSC) were used to evaluate cell adhesion, metabolic activity and proliferation on the specimens. The differentiation potential of the samples was investigated using PCR and specific staining of osteogenic markers collagen type I and osteocalcin. Our results demonstrate that both pure Ti6Al4V, nanostructured samples, and hydroxyapatite-like coating supported hMSC growth and metabolic activity. Nanostructured samples improved collagen type I synthesis after 14 days, while both nanostructured and hydroxyapatite-like coated samples enhanced collagen synthesis on day 21. Osteocalcin synthesis was the most enhanced by hydroxyapatite-like coating on the nanostructured surfaces. Our results indicate that hydroxyapatite-like coating is a useful tool guiding hMSC osteogenic differentiation.
Collapse
Affiliation(s)
- Petra Jarolimova
- Department of Metals and Corrosion Engineering, Faculty of Chemical Technology, University of Chemistry and Technology Technická 5 166 28 Prague Czech Republic
| | - Barbora Voltrova
- Department of Tissue Engineering, Institute of Experimental Medicine of the Czech Academy of Sciences Vídeňská 1083 Prague 4 142 20 Czech Republic
- Faculty of Science, Charles University in Prague Albertov 2038/6 128 00 Prague Czech Republic
| | - Veronika Blahnova
- Department of Tissue Engineering, Institute of Experimental Medicine of the Czech Academy of Sciences Vídeňská 1083 Prague 4 142 20 Czech Republic
- Second Faculty of Medicine, Charles University in Prague V Úvalu 84 150 06 Prague Czech Republic
- University Centre for Energy Efficient Buildings, Czech Technical University in Prague Třinecká 1024 273 43 Buštěhrad Czech Republic
| | - Vera Sovkova
- Department of Tissue Engineering, Institute of Experimental Medicine of the Czech Academy of Sciences Vídeňská 1083 Prague 4 142 20 Czech Republic
- University Centre for Energy Efficient Buildings, Czech Technical University in Prague Třinecká 1024 273 43 Buštěhrad Czech Republic
| | - Eva Pruchova
- Department of Metals and Corrosion Engineering, Faculty of Chemical Technology, University of Chemistry and Technology Technická 5 166 28 Prague Czech Republic
| | - Vojtech Hybasek
- Department of Metals and Corrosion Engineering, Faculty of Chemical Technology, University of Chemistry and Technology Technická 5 166 28 Prague Czech Republic
| | - Jaroslav Fojt
- Department of Metals and Corrosion Engineering, Faculty of Chemical Technology, University of Chemistry and Technology Technická 5 166 28 Prague Czech Republic
| | - Eva Filova
- Department of Tissue Engineering, Institute of Experimental Medicine of the Czech Academy of Sciences Vídeňská 1083 Prague 4 142 20 Czech Republic
- Second Faculty of Medicine, Charles University in Prague V Úvalu 84 150 06 Prague Czech Republic
| |
Collapse
|
22
|
Characterization of Nano-Scale Hydroxyapatite Coating Synthesized from Eggshells Through Hydrothermal Reaction on Commercially Pure Titanium. COATINGS 2020. [DOI: 10.3390/coatings10020112] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Commercially pure titanium (c.p. Ti) is often used in biomedical implants, but its surface cannot usually combine with the living bone. A coating of hydroxyapatite (HA) on the surface of titanium implants provides excellent mechanical properties and has good biological activity and biocompatibility. For optimal osteocompatibility, the structure, size, and composition of HA crystals should be closer to those of biological apatite. Our results show that the surface of c.p. Ti was entirely covered by rod-like HA nanoparticles after alkali treatment and subsequent hydrothermal treatment at 150 °C for 48 h. Nano-sized apatite aggregates began to nucleate on HA-coated c.p. Ti surfaces after immersion in simulated body fluid (SBF) for 6 h, while no obvious precipitation was found on the uncoated sample. Higher apatite-forming ability (bioactivity) could be acquired by the samples after HA coating. The HA coating featured bone-like nanostructure, high crystallinity, and carbonate substitution. It can be expected that HA coatings synthesized from eggshells on c.p. Ti through a hydrothermal reaction could be used in dental implant applications in the future.
Collapse
|
23
|
The effect of strontium and silicon substituted hydroxyapatite electrochemical coatings on bone ingrowth and osseointegration of selective laser sintered porous metal implants. PLoS One 2020; 15:e0227232. [PMID: 31923253 PMCID: PMC6953817 DOI: 10.1371/journal.pone.0227232] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/13/2019] [Indexed: 11/20/2022] Open
Abstract
Additive manufactured, porous bone implants have the potential to improve osseointegration and reduce failure rates of orthopaedic devices. Substantially porous implants are increasingly used in a number of orthopaedic applications. HA plasma spraying-a line of sight process-cannot coat the inner surfaces of substantially porous structures, whereas electrochemical deposition of calcium phosphate can fully coat the inner surfaces of porous implants for improved bioactivity, but the osseous response of different types of hydroxyapatite (HA) coatings with ionic substitutions has not been evaluated for implants in the same in vivo model. In this study, laser sintered Ti6Al4V implants with pore sizes of Ø 700 μm and Ø 1500 μm were electrochemically coated with HA, silicon-substituted HA (SiHA), and strontium-substituted HA (SrHA), and implanted in ovine femoral condylar defects. Implants were retrieved after 6 weeks and histological and histomorphometric evaluation were compared to electrochemically coated implants with uncoated and HA plasma sprayed controls. The HA, SiHA and SrHA coatings had Ca:P, Ca:(P+Si) and (Ca+Sr):P ratios of 1.53, 1.14 and 1.32 respectively. Electrochemically coated implants significantly promoted bone attachment to the implant surfaces of the inner pores and displayed improved osseointegration compared to uncoated scaffolds for both pore sizes (p<0.001), whereas bone ingrowth was restricted to the surface for HA plasma coated or uncoated implants. Electrochemically coated HA implants achieved the highest osseointegration, followed by SrHA coated implants, and both coatings exhibited significantly more bone growth than plasma sprayed groups (p≤0.01 for all 4 cases). SiHA had significantly more osseointegration when compared against the uncoated control, but no significant difference compared with other coatings. There was no significant difference in ingrowth or osseointegration between pore sizes, and the bone-implant-contact was significantly higher in the electrochemical HA than in SiHA or SrHA. These results suggest that osseointegration is insensitive to pore size, whereas surface modification through the presence of an osteoconductive coating plays an important role in improving osseointegration, which may be critically important for extensively porous implants.
Collapse
|
24
|
Cai B, Jiang N, Tan P, Hou Y, Li Y, Zhang L, Zhu S. The custom making of hierarchical micro/nanoscaled titanium phosphate coatings and their formation mechanism analysis. RSC Adv 2019; 9:41311-41318. [PMID: 35540057 PMCID: PMC9076429 DOI: 10.1039/c9ra08168b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/28/2019] [Indexed: 02/05/2023] Open
Abstract
In this study, a series of hierarchical micro/nanoscaled titanium phosphate (TiP) coatings possessing various surface morphologies were successfully fabricated on titanium (Ti) discs. The hydrothermal reactions of Ti discs in hydrogen peroxide (H2O2) and phosphoric acid (H3PO4) mixed solution yield diverse topographies such as hemispheric clump, cylindrical rod, spherical walnut, micro/nano grass, micro/nano sheet, and fibrous network. And their crystal structures were mainly composed of Ti(HPO4)2·0.5H2O, (TiO)2P2O7, H2TiP2O8, Ti(HPO4)2 and TiO2. The morphology and crystal shape of the TiP coatings depend strongly on the mass ratio of H2O2/H3PO4, reaction temperature and water content. Besides, the formation mechanism of TiP coatings with diverse morphologies was explored from the perspective of energetics and crystallography. The mechanism exploration paved the way for custom-making TiP coatings with desirable micro/nanoscaled morphologies to meet specific application purposes. The in vitro cytological performances of TiP coatings were also evaluated by co-culturing with rat bone marrow stromal cells (BMSCs), demonstrating a positive prospect for their use in bone tissue engineering.
Collapse
Affiliation(s)
- Bianyun Cai
- Analytical & Testing Center, Sichuan University Chengdu 610065 China
| | - Nan Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University Chengdu 610065 China
| | - Peijie Tan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University Chengdu 610065 China
| | - Yi Hou
- Analytical & Testing Center, Sichuan University Chengdu 610065 China
| | - Yubao Li
- Analytical & Testing Center, Sichuan University Chengdu 610065 China
| | - Li Zhang
- Analytical & Testing Center, Sichuan University Chengdu 610065 China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University Chengdu 610065 China
| |
Collapse
|
25
|
Asensio G, Vázquez-Lasa B, Rojo L. Achievements in the Topographic Design of Commercial Titanium Dental Implants: Towards Anti-Peri-Implantitis Surfaces. J Clin Med 2019; 8:E1982. [PMID: 31739615 PMCID: PMC6912779 DOI: 10.3390/jcm8111982] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/04/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
Titanium and its alloys constitute the gold standard materials for oral implantology in which their performance is mainly conditioned by their osseointegration capacity in the host's bone. We aim to provide an overview of the advances in surface modification of commercial dental implants analyzing and comparing the osseointegration capacity and the clinical outcome exhibited by different surfaces. Besides, the development of peri-implantitis constitutes one of the most common causes of implant loss due to bacteria colonization. Thus, a synergic response from industry and materials scientists is needed to provide reliable technical and commercial solutions to this issue. The second part of the review focuses on an update of the recent findings toward the development of new materials with osteogenic and antibacterial capacity that are most likely to be marketed, and their correlation with implant geometry, biomechanical behavior, biomaterials features, and clinical outcomes.
Collapse
Affiliation(s)
- Gerardo Asensio
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas, CSIC, 28006 Madrid, Spain; (G.A.); (B.V.-L.)
| | - Blanca Vázquez-Lasa
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas, CSIC, 28006 Madrid, Spain; (G.A.); (B.V.-L.)
- Consorcio Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28029 Madrid, Spain
| | - Luis Rojo
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas, CSIC, 28006 Madrid, Spain; (G.A.); (B.V.-L.)
- Consorcio Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28029 Madrid, Spain
| |
Collapse
|
26
|
Nguyen TDT, Jang YS, Kim YK, Kim SY, Lee MH, Bae TS. Osteogenesis-Related Gene Expression and Guided Bone Regeneration of a Strontium-Doped Calcium-Phosphate-Coated Titanium Mesh. ACS Biomater Sci Eng 2019; 5:6715-6724. [PMID: 33423489 DOI: 10.1021/acsbiomaterials.9b01042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Guided bone regeneration using a perforated titanium membrane is actively used in oral and orthopedic surgeries to provide space for the subsequent filling of a new bone in the case of bone defects and to achieve proper bone augmentation and reconstruction. The surface modification of a titanium membrane using a strontium-substituted calcium phosphate coating has become a popular trend to provide better bioactivity and biocompatibility on the membrane for improving the bone regeneration because strontium can stimulate not only the differentiation of osteoblasts but also inhibit the differentiation of osteoclasts. The strontium-doped calcium phosphate coating on the titanium mesh was formed by the cyclic precalcification method, and its effects on bone regeneration were evaluated by in vitro analysis of osteogenesis-related gene expression and in vivo evaluation of osteogenesis of the titanium mesh using the rat calvarial defect model in this study. It was identified that the strontium-doped calcium phosphate-treated mesh showed a higher expression of all genes related to osteogenesis in the osteoblast cells and resulted in new bone formation with better osseointegration with the mesh in the rat calvarial defect, in comparison with the results of untreated and calcium phosphate-treated meshes.
Collapse
Affiliation(s)
- Thuy-Duong Thi Nguyen
- Faculty of Odonto-Stomatology, Hue University of Medicine and Pharmacy, Hue University, 06 Ngo Quyen Street, Hue City, Thua Thien Hue 530000, Vietnam
| | - Yong-Seok Jang
- Department of Dental Biomaterials and Institute of Biodegradable Material, Institute of Oral Bioscience, BK21 Plus Project, School of Dentistry, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju 54896, Jeollabuk-do, South Korea
| | - Yu-Kyoung Kim
- Department of Dental Biomaterials and Institute of Biodegradable Material, Institute of Oral Bioscience, BK21 Plus Project, School of Dentistry, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju 54896, Jeollabuk-do, South Korea
| | - Seo-Young Kim
- Department of Dental Biomaterials and Institute of Biodegradable Material, Institute of Oral Bioscience, BK21 Plus Project, School of Dentistry, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju 54896, Jeollabuk-do, South Korea
| | - Min-Ho Lee
- Department of Dental Biomaterials and Institute of Biodegradable Material, Institute of Oral Bioscience, BK21 Plus Project, School of Dentistry, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju 54896, Jeollabuk-do, South Korea
| | - Tae-Sung Bae
- Department of Dental Biomaterials and Institute of Biodegradable Material, Institute of Oral Bioscience, BK21 Plus Project, School of Dentistry, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju 54896, Jeollabuk-do, South Korea
| |
Collapse
|
27
|
Bretschneider H, Mettelsiefen J, Rentsch C, Gelinsky M, Link HD, Günther K, Lode A, Hofbauer C. Evaluation of topographical and chemical modified TiAl6V4 implant surfaces in a weight‐bearing intramedullary femur model in rabbit. J Biomed Mater Res B Appl Biomater 2019; 108:1117-1128. [PMID: 31407488 DOI: 10.1002/jbm.b.34463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 07/04/2019] [Accepted: 07/24/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Henriette Bretschneider
- University Centre for Orthopaedics and Trauma SurgeryUniversity Hospital Carl Gustav Carus Dresden Dresden Germany
- Centre for Translational Bone, Joint and Soft Tissue ResearchUniversity Hospital Carl Gustav Carus and Faculty of Medicine of Technische Universität Dresden Dresden Germany
| | - Jan Mettelsiefen
- University Centre for Orthopaedics and Trauma SurgeryUniversity Hospital Carl Gustav Carus Dresden Dresden Germany
| | - Claudia Rentsch
- University Centre for Orthopaedics and Trauma SurgeryUniversity Hospital Carl Gustav Carus Dresden Dresden Germany
- Centre for Translational Bone, Joint and Soft Tissue ResearchUniversity Hospital Carl Gustav Carus and Faculty of Medicine of Technische Universität Dresden Dresden Germany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue ResearchUniversity Hospital Carl Gustav Carus and Faculty of Medicine of Technische Universität Dresden Dresden Germany
| | | | - Klaus‐Peter Günther
- University Centre for Orthopaedics and Trauma SurgeryUniversity Hospital Carl Gustav Carus Dresden Dresden Germany
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue ResearchUniversity Hospital Carl Gustav Carus and Faculty of Medicine of Technische Universität Dresden Dresden Germany
| | - Christine Hofbauer
- University Centre for Orthopaedics and Trauma SurgeryUniversity Hospital Carl Gustav Carus Dresden Dresden Germany
| |
Collapse
|
28
|
Current Status on Pulsed Laser Deposition of Coatings from Animal-Origin Calcium Phosphate Sources. COATINGS 2019. [DOI: 10.3390/coatings9050335] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The aim of this paper is to present the current status on animal-origin hydroxyapatite (HA) coatings synthesized by Pulsed Laser Deposition (PLD) technique for medical implant applications. PLD as a thin film synthesis method, although limited in terms of surface covered area, still gathers interest among researchers due to its advantages such as stoichiometric transfer, thickness control, film adherence, and relatively simple experimental set-up. While animal-origin HA synthesized by bacteria or extracted from animal bones, eggshells, and clams was tested in the form of thin films or scaffolds as a bioactive agent before, the reported results on PLD coatings from HA materials extracted from natural sources were not gathered and compared until the present study. Since natural apatite contains trace elements and new functional groups, such as CO32− and HPO42− in its complex molecules, physical-chemical results on the transfer of animal-origin HA by PLD are extremely interesting due to the stoichiometric transfer possibilities of this technique. The points of interest of this paper are the origin of HA from various sustainable resources, the extraction methods employed, the supplemental functional groups, and ions present in animal-origin HA targets and coatings as compared to synthetic HA, the coatings’ morphology function of the type of HA, and the structure and crystalline status after deposition (where properties were superior to synthetic HA), and the influence of various dopants on these properties. The most interesting studies published in the last decade in scientific literature were compared and morphological, elemental, structural, and mechanical data were compiled and interpreted. The biological response of different types of animal-origin apatites on a variety of cell types was qualitatively assessed by comparing MTS assay data of various studies, where the testing conditions were possible. Antibacterial and antifungal activity of some doped animal-origin HA coatings was also discussed.
Collapse
|
29
|
Ding X, Liu X, Chen J, Chen S. [Research progress of porous tantalum in bone tissue engineering]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2019; 32:753-757. [PMID: 29905056 DOI: 10.7507/1002-1892.201711040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To review the basical research progress of porous tantalum in bone tissue engineering. Methods The related basical research in fabrication, cytobiology, and surface modification of porous tantalum was reviewed and analyzed. Results The outstanding physiochemical properties of porous tantalum granted its excellent performance in biocompatibility and osteointegration, as well as promoting cartilage and tendon tissue restoration. However, the clinical utilization of porous tantalum is somehow greatly limited by the complex and rigid commercial fabrication methods and extraordinary high cost. Along with the publication of novel fabrication and surface modification technology, the application of porous tantalum will be more extensive, the promotion in bone tissue regeneration will be more prominent. Conclusion Porous tantalum has advantage in bone defect restoration, and significant breakthrough technology is needed in fabrication methods and surface modification.
Collapse
Affiliation(s)
- Xiaoquan Ding
- Department of Sports Medicine and Arthroscopy, Huashan Hospital, Fudan University, Shanghai, 200040, P.R.China
| | - Xingwang Liu
- Department of Sports Medicine and Arthroscopy, Huashan Hospital, Fudan University, Shanghai, 200040, P.R.China
| | - Jun Chen
- Department of Sports Medicine and Arthroscopy, Huashan Hospital, Fudan University, Shanghai, 200040, P.R.China
| | - Shiyi Chen
- Department of Sports Medicine and Arthroscopy, Huashan Hospital, Fudan University, Shanghai, 200040,
| |
Collapse
|
30
|
Mas-Moruno C, Su B, Dalby MJ. Multifunctional Coatings and Nanotopographies: Toward Cell Instructive and Antibacterial Implants. Adv Healthc Mater 2019; 8:e1801103. [PMID: 30468010 DOI: 10.1002/adhm.201801103] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/15/2018] [Indexed: 01/02/2023]
Abstract
In biomaterials science, it is nowadays well accepted that improving the biointegration of dental and orthopedic implants with surrounding tissues is a major goal. However, implant surfaces that support osteointegration may also favor colonization of bacterial cells. Infection of biomaterials and subsequent biofilm formation can have devastating effects and reduce patient quality of life, representing an emerging concern in healthcare. Conversely, efforts toward inhibiting bacterial colonization may impair biomaterial-tissue integration. Therefore, to improve the long-term success of medical implants, biomaterial surfaces should ideally discourage the attachment of bacteria without affecting eukaryotic cell functions. However, most current strategies seldom investigate a combined goal. This work reviews recent strategies of surface modification to simultaneously address implant biointegration while mitigating bacterial infections. To this end, two emerging solutions are considered, multifunctional chemical coatings and nanotopographical features.
Collapse
Affiliation(s)
- Carlos Mas-Moruno
- Biomaterials, Biomechanics and Tissue Engineering Group; Department of Materials Science and Engineering & Center in Multiscale Science and Engineering; Universitat Politècnica de Catalunya (UPC); Barcelona 08019 Spain
| | - Bo Su
- Bristol Dental School; University of Bristol; Bristol BS1 2LY UK
| | - Matthew J. Dalby
- Centre for Cell Engineering; University of Glasgow; Glasgow G12 UK
| |
Collapse
|
31
|
Rasouli R, Barhoum A, Uludag H. A review of nanostructured surfaces and materials for dental implants: surface coating, patterning and functionalization for improved performance. Biomater Sci 2018; 6:1312-1338. [PMID: 29744496 DOI: 10.1039/c8bm00021b] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The emerging field of nanostructured implants has enormous scope in the areas of medical science and dental implants. Surface nanofeatures provide significant potential solutions to medical problems by the introduction of better biomaterials, improved implant design, and surface engineering techniques such as coating, patterning, functionalization and molecular grafting at the nanoscale. This review is of an interdisciplinary nature, addressing the history and development of dental implants and the emerging area of nanotechnology in dental implants. After a brief introduction to nanotechnology in dental implants and the main classes of dental implants, an overview of different types of nanomaterials (i.e. metals, metal oxides, ceramics, polymers and hydrides) used in dental implant together with their unique properties, the influence of elemental compositions, and surface morphologies and possible applications are presented from a chemical point of view. In the core of this review, the dental implant materials, physical and chemical fabrication techniques and the role of nanotechnology in achieving ideal dental implants have been discussed. Finally, the critical parameters in dental implant design and available data on the current dental implant surfaces that use nanotopography in clinical dentistry have been discussed.
Collapse
Affiliation(s)
- Rahimeh Rasouli
- Department of Medical Nanotechnology, International Campus, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | |
Collapse
|
32
|
Cheong VS, Fromme P, Mumith A, Coathup MJ, Blunn GW. Novel adaptive finite element algorithms to predict bone ingrowth in additive manufactured porous implants. J Mech Behav Biomed Mater 2018; 87:230-239. [PMID: 30086415 DOI: 10.1016/j.jmbbm.2018.07.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 06/04/2018] [Accepted: 07/10/2018] [Indexed: 11/30/2022]
Abstract
Bone loss caused by stress shielding of metallic implants is a concern, as it can potentially lead to long-term implant failure. Surface coating and reducing structural stiffness of implants are two ways to improve bone ingrowth and osteointegration. Additive manufacturing, through selective laser sintering (SLS) or electron beam melting (EBM) of metallic alloys, can produce porous implants with bone ingrowth regions that enhance osteointegration and improve clinical outcomes. Histology of porous Ti6Al4V plugs of two pore sizes with and without electrochemically deposited hydroxyapatite coating, implanted in ovine condyles, showed that bone formation did not penetrate deep into the porous structure, whilst significantly increased bone growth along coated pore surfaces (osteointegration) was observed. Finite Element simulations, combining new algorithms to model bone ingrowth and the effect of surface modification on osteoconduction, were verified with the histology results. The results showed stress shielding of porous implants made from conventional titanium alloy due to material stiffness and implant geometry, limiting ingrowth and osteointegration. Simulations for reduced implant material stiffness predicted increased bone ingrowth. For low modulus Titanium-tantalum alloy (Ti-70%Ta), reduced stress shielding and enhanced bone ingrowth into the porous implant was found, leading to improved mechanical interlock. Algorithms predicted osteoconductive coating to promote both osteointegration and bone ingrowth into the inner pores when they were coated. These new Finite Element algorithms show that using implant materials with lower elastic modulus, osteoconductive coatings or improved implant design could lead to increased bone remodelling that optimises tissue regeneration, fulfilling the potential of enhanced porosity and complex implant designs made possible by additive layer manufacturing techniques.
Collapse
Affiliation(s)
- Vee San Cheong
- John Scales Centre for Biomedical Engineering, Institute of Orthopaedics and Musculoskeletal Science, University College London, Royal National Orthopaedics Hospital, Stanmore HA7 4LP, UK; Department of Mechanical Engineering, University College London, London WC1E 7JE, UK.
| | - Paul Fromme
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
| | - Aadil Mumith
- John Scales Centre for Biomedical Engineering, Institute of Orthopaedics and Musculoskeletal Science, University College London, Royal National Orthopaedics Hospital, Stanmore HA7 4LP, UK
| | - Melanie J Coathup
- John Scales Centre for Biomedical Engineering, Institute of Orthopaedics and Musculoskeletal Science, University College London, Royal National Orthopaedics Hospital, Stanmore HA7 4LP, UK
| | - Gordon W Blunn
- John Scales Centre for Biomedical Engineering, Institute of Orthopaedics and Musculoskeletal Science, University College London, Royal National Orthopaedics Hospital, Stanmore HA7 4LP, UK; School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| |
Collapse
|
33
|
Wang F, Wang L, Feng Y, Yang X, Ma Z, Shi L, Ma X, Wang J, Ma T, Yang Z, Wen X, Zhang Y, Lei W. Evaluation of an artificial vertebral body fabricated by a tantalum-coated porous titanium scaffold for lumbar vertebral defect repair in rabbits. Sci Rep 2018; 8:8927. [PMID: 29895937 PMCID: PMC5997693 DOI: 10.1038/s41598-018-27182-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/25/2018] [Indexed: 11/09/2022] Open
Abstract
Tantalum (Ta)-coated porous Ti-6A1-4V scaffolds have better bioactivity than Ti-6A1-4V scaffolds; however, their bioperformance as an artificial vertebral body (AVB) is unknown. In the present study, we combined a Ta-coated Ti-6A1-4V scaffold with rabbit bone marrow stromal cells (BMSCs) for tissue-engineered AVB (TEAVB) construction and evaluated the healing and fusion efficacy of this scaffold in lumbar vertebral defects after corpectomy in rabbits. The results showed that BMSCs on the surface of the Ta-coated Ti scaffolds proliferated better than BMSCs on Ti scaffolds. Histomorphometry showed better bone formation when using Ta-coated TEAVBs than that with Ti TEAVBs at both 8 and 12 weeks after implantation. In addition, the vertical and rotational stiffness results showed that, compared with uncoated TEAVBs, Ta-coated TEAVBs enhanced rabbit lumbar vertebral defect repair. Our findings demonstrate that Ta-coated TEAVBs have better healing and fusion efficacy than Ti TEAVBs in rabbit lumbar vertebral defects, which indicates their good prospects for clinical application.
Collapse
Affiliation(s)
- Faqi Wang
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Lin Wang
- Department of orthopedic surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yafei Feng
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiaojiang Yang
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhensheng Ma
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Lei Shi
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiangyu Ma
- The 463 hospital of Chinese Peoples' Liberation Army, Shenyang, China
| | - Jian Wang
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | | | - Zhao Yang
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xinxin Wen
- The 463 hospital of Chinese Peoples' Liberation Army, Shenyang, China
| | - Yang Zhang
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| | - Wei Lei
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
34
|
Liu J, Zhou X, Wang H, Yang H, Ruan J. In vitro
cell response and in vivo
primary osteointegration of highly porous Ta-Nb alloys as implant materials. J Biomed Mater Res B Appl Biomater 2018; 107:573-581. [DOI: 10.1002/jbm.b.34149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/29/2018] [Accepted: 04/17/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Jue Liu
- State Key Laboratory of Powder Metallurgy; Central South University; Changsha 410083 People's Republic of China
| | - Xiongwen Zhou
- Department of Anesthesiology; The Second Xiang Ya Hospital, Central South University; Changsha 410011 People's Republic of China
| | - Huifeng Wang
- State Key Laboratory of Powder Metallurgy; Central South University; Changsha 410083 People's Republic of China
| | - Hailin Yang
- State Key Laboratory of Powder Metallurgy; Central South University; Changsha 410083 People's Republic of China
| | - Jianming Ruan
- State Key Laboratory of Powder Metallurgy; Central South University; Changsha 410083 People's Republic of China
| |
Collapse
|
35
|
Bioinspired surface functionalization of metallic biomaterials. J Mech Behav Biomed Mater 2018; 77:90-105. [DOI: 10.1016/j.jmbbm.2017.08.035] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 08/23/2017] [Accepted: 08/29/2017] [Indexed: 12/31/2022]
|
36
|
Functionalized biomimetic calcium phosphates for bone tissue repair. J Appl Biomater Funct Mater 2017; 15:e313-e325. [PMID: 28574097 DOI: 10.5301/jabfm.5000367] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2017] [Indexed: 12/17/2022] Open
Abstract
The design and development of novel materials for biomineralized tissues is an extremely attractive field of research where calcium phosphates (CaPs)-based materials for biomedical applications play a leading role. The biological performance of these compounds can be enhanced through functionalization with biologically active ions and molecules. This review reports on some important recent achievements in creating functionalized biomimetic CaP materials for applications in the musculoskeletal field. Particular attention is focused on the modifications of these inorganic compounds with bioactive ions, growth factors and drugs, as well as on recent trends in some important CaP applications as biomaterials - namely, as bone cements, coatings of metallic implants and scaffolds for regenerative medicine.
Collapse
|
37
|
Hsu HC, Wu SC, Hsu SK, Liao YH, Ho WF. Effect of different post-treatments on the bioactivity of alkali-treated Ti–5Si alloy. Biomed Mater Eng 2017; 28:503-514. [DOI: 10.3233/bme-171693] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Hsueh-Chuan Hsu
- Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, Taiwan, ROC
| | - Shih-Ching Wu
- Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, Taiwan, ROC
| | - Shih-Kuang Hsu
- Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, Taiwan, ROC
| | - Yi-Hang Liao
- Department of Materials Science and Engineering, Da-Yeh University, Taiwan, ROC
| | - Wen-Fu Ho
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan, ROC. E-mail:
| |
Collapse
|
38
|
Zhu W, Xu C, Ma BP, Zheng ZB, Li YL, Ma Q, Wu GL, Weng XS. Three-dimensional Printed Scaffolds with Gelatin and Platelets Enhance In vitro Preosteoblast Growth Behavior and the Sustained-release Effect of Growth Factors. Chin Med J (Engl) 2017; 129:2576-2581. [PMID: 27779164 PMCID: PMC5125336 DOI: 10.4103/0366-6999.192770] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background: Three-dimensional (3D) printing technology holds great promise for treating diseases or injuries that affect human bones with enhanced performance over traditional techniques. Different patterns of design can lead to various mechanical properties and biocompatibility to various degrees. However, there is still a long way to go before we can fully take advantage of 3D printing technologies. Methods: This study tailored 3D printed scaffolds with gelatin and platelets to maximize bone regeneration. The scaffolds were designed with special internal porous structures that can allow bone tissue and large molecules to infiltrate better into the scaffolds. They were then treated with gelatin and platelets via thermo-crosslinking and freeze-drying, respectively. Vascular endothelial growth factor (VEGF) and transforming growth factor (TGF)-β1 were measured at different time points after the scaffolds had been made. Cell proliferation and cytotoxicity were determined via cell counting kit-8 (CCK-8) assay. Results: There was a massive boost in the level of VEGF and TGF-β1 released by the scaffolds with gelatin and platelets compared to that of scaffolds with only gelatin. After 21 days of culture, the CCK-8 cell counts of the control group and treated group were significantly higher than that of the blank group (P < 0.05). The cytotoxicity test also indicated the safety of the scaffolds. Conclusions: Our experiments confirmed that the 3D printed scaffolds we had designed could provide a sustained-release effect for growth factors and improve the proliferation of preosteoblasts with little cytotoxicity in vitro. They may hold promise as bone graft substitute materials in the future.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Chi Xu
- Department of Clinical Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Bu-Peng Ma
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Zhi-Bo Zheng
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Yu-Long Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Qi Ma
- Department of Clinical Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Guo-Liang Wu
- Department of Clinical Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xi-Sheng Weng
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| |
Collapse
|
39
|
Abstract
Growth factors are essential orchestrators of the normal bone fracture healing response. For non-union defects, delivery of exogenous growth factors to the injured site significantly improves healing outcomes. However, current clinical methods for scaffold-based growth factor delivery are fairly rudimentary, and there is a need for greater spatial and temporal regulation to increase their in vivo efficacy. Various approaches used to provide spatiotemporal control of growth factor delivery from bone tissue engineering scaffolds include physical entrapment, chemical binding, surface modifications, biomineralization, micro- and nanoparticle encapsulation, and genetically engineered cells. Here, we provide a brief review of these technologies, describing the fundamental mechanisms used to regulate release kinetics. Examples of their use in pre-clinical studies are discussed, and their capacities to provide tunable, growth factor delivery are compared. These advanced scaffold systems have the potential to provide safer, more effective therapies for bone regeneration than the systems currently employed in the clinic.
Collapse
|
40
|
Queiroz TP, de Molon RS, Souza FÁ, Margonar R, Thomazini AHA, Guastaldi AC, Hochuli-Vieira E. In vivo evaluation of cp Ti implants with modified surfaces by laser beam with and without hydroxyapatite chemical deposition and without and with thermal treatment: topographic characterization and histomorphometric analysis in rabbits. Clin Oral Investig 2016; 21:685-699. [DOI: 10.1007/s00784-016-1936-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 08/05/2016] [Indexed: 11/24/2022]
|
41
|
Kämmerer TA, Palarie V, Schiegnitz E, Topalo V, Schröter A, Al-Nawas B, Kämmerer PW. A biphasic calcium phosphate coating for potential drug delivery affects early osseointegration of titanium implants. J Oral Pathol Med 2016; 46:61-66. [PMID: 27272434 DOI: 10.1111/jop.12464] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Calcium phosphate (CaP) surface coatings may accelerate osseointegration and serve as a drug delivery system for mineral-binding biomolecules. In a pilot study, the impact of a commercially available, thin CaP coating on early osseous bone remodeling was compared with a modern, subtractive-treated rough surface (SLA-like) in an animal trial. METHODS In 16 rabbits, 32 endosseous implants (CaP; n = 16, SLA-like; n = 16) were bilaterally inserted in the proximal tibia after randomization. After 2 and 4 weeks, bone-implant contact (BIC;%) in the cortical (cBIC) and the trabecular bone (sBIC) as well as volume of bone within the screw thread with the highest amount of new-formed bone (area;%) were analyzed. RESULTS After 2 weeks, cBIC was significantly higher for CaP when compared with SLA-like (58 ± 7% versus 40.4 ± 18%; P = 0.021). sBIC for CaP was 14.7 ± 8% and for SLA-like 7.2 ± 7.8% (P = 0.081). For area, the mean volumes were 82.8 ± 10.8% for CaP and 73.6 ± 22% for SLA-like (P = 0.311). After 4 weeks, cBIC was 42.9 ± 13% for the CaP and 46.5 ± 29.1% for the SLA-like group (P = 0.775). An sBIC of 6.9 ± 9.3% was calculated for CaP and of 12.3 ± 4.8% for SLA-like (P = 0.202). The values for area were 62.3 ± 24.1% for CaP and 50.1 ± 25.9% for SLA-like (P = 0.379). CONCLUSIONS The CaP coating has putative additional advantages in the early osseoconduction phases. It seems suitable for a feasible and clinical applicable bioactivation.
Collapse
Affiliation(s)
- Till A Kämmerer
- Department of Oral, Maxillofacial and Plastic Surgery, University Medical Center Mainz, Mainz, Germany
| | - Victor Palarie
- Laboratory of Tissue Engineering, State University of Medicine and Pharmacy "N. Testemitanu", Chisinau, Moldova
| | - Eik Schiegnitz
- Department of Oral, Maxillofacial and Plastic Surgery, University Medical Center Mainz, Mainz, Germany
| | - Valentin Topalo
- Clinic for Oral & Maxillofacial Surgery, State University of Medicine and Pharmacy "N. Testemitanu", Chisinau, Moldova
| | | | - Bilal Al-Nawas
- Department of Oral, Maxillofacial and Plastic Surgery, University Medical Center Mainz, Mainz, Germany
| | - Peer W Kämmerer
- Department of Oral, Maxillofacial and Plastic Surgery, University Medical Center Rostock, Rostock, Germany
| |
Collapse
|
42
|
van Oirschot BA, Eman RM, Habibovic P, Leeuwenburgh SC, Tahmasebi Z, Weinans H, Alblas J, Meijer GJ, Jansen JA, van den Beucken JJ. Osteophilic properties of bone implant surface modifications in a cassette model on a decorticated goat spinal transverse process. Acta Biomater 2016; 37:195-205. [PMID: 27019145 DOI: 10.1016/j.actbio.2016.03.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/21/2016] [Accepted: 03/24/2016] [Indexed: 11/26/2022]
Abstract
UNLABELLED This study comparatively evaluated the osteophilic capacity of 17 different surface modifications (i.e. fourteen different chemical modifications via ceramic coatings and three different physical modifications via surface roughness) for titanium (Ti) surfaces. All surface modifications were subjected to physico-chemical analyses and immersion in simulated body fluid (SBF) for coating stability assessment. Subsequently, a bone conduction chamber cassette model on the goat transverse process was used for comparative in vivo analysis based on bone responses to these different surface modifications after twelve weeks. Histological and histomorphometrical analyses in terms of longitudinal bone-to-implant contact percentage (BIC%), relative bone area (BA%) were investigated within each individual channel and maximum bone height (BH). Characterization of the surface modifications showed significant differences in surface chemistry and surface roughness among the surface modifications. Generally, immersion of the coatings in SBF showed net uptake of calcium by thick coatings (>50μm; plasma-sprayed and biomimetic coatings) and no fluctuations in the SBF for thin coatings (<50μm). The histomorphometrical data set demonstrated that only plasma-sprayed CaP coatings performed superiorly regarding BIC%, BA% and BH compared to un-coated surfaces, irrespective of surface roughness of the latter. In conclusion, this study demonstrated that the deposition of plasma-sprayed CaP coating with high roughness significantly improves the osteophilic capacity of titanium surfaces in a chamber cassette model. STATEMENT OF SIGNIFICANCE For the bone implant market, a large number of surface modifications are available on different types of (dental and orthopedic) bone implants. As the implant surface provides the interface at which the biomaterial interacts with the surrounding (bone) tissue, it is of utmost importance to know what surface modification has optimal osteophilic properties. In contrast to numerous earlier studies on bone implant surface modifications with limited number of comparison surfaces, the manuscript by van Oirschot et al. describes the data of in vivo experiments using a large animal model that allows for direct and simultaneous comparison of a large variety of surface modifications, which included both commercially available and experimental surface modifications for bone implants. These data clearly show the superiority of plasma-sprayed hydroxyapatite coatings regarding bone-to-implant contact, bone amount, and bone height.
Collapse
|
43
|
van Oirschot BAJA, Bronkhorst EM, van den Beucken JJJP, Meijer GJ, Jansen JA, Junker R. A systematic review on the long-term success of calcium phosphate plasma-spray-coated dental implants. Odontology 2016; 104:347-56. [PMID: 26886570 DOI: 10.1007/s10266-015-0230-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 11/01/2015] [Indexed: 01/29/2023]
Abstract
The objectives of the current review were (1) to systematically appraise, and (2) to evaluate long-term success data of calcium phosphate (CaP) plasma-spray-coated dental implants in clinical trials with at least 5 years of follow-up. To describe the long-term efficacy of functional implants, the outcome variables were (a) percentage annual complication rate (ACR) and (b) cumulative success rate (CSR), as presented in the selected articles. The electronic search yielded 645 titles. On the basis of the inclusion criteria, 8 studies were finally included. The percentage of implants in function after the first year was estimated to be 98.4 % in the maxilla and 99.2 % in the mandible. The estimates of the weighted mean ACR-percentage increased over the years up to 2.6 (SE 0.7) during the fifth year of function for the maxilla and to 9.4 (SE 8.4) for the mandible in the tenth year of function. After 10 years, the mean percentage of successful implants was estimated to be 71.1 % in the maxilla and 72.2 % in the mandible. The estimates seem to confirm the proposed, long-term progressive bone loss pattern of CaP-ceramic-coated dental implants. Within the limits of this meta-analytic approach to the literature, we conclude that: (1) published long-term success data for calcium phosphate plasma-spray-coated dental implants are limited, (2) comparison of the data is difficult due to differences in success criteria among the studies, and (3) long-term CSRs demonstrate very weak evidence for progressive complications around calcium phosphate plasma-spray-coated dental implants.
Collapse
Affiliation(s)
- B A J A van Oirschot
- Department of Biomaterials, College of Dental Sciences, Radboudumc, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - E M Bronkhorst
- Department of Preventive and Curative Dentistry, Radboudumc, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - J J J P van den Beucken
- Department of Biomaterials, College of Dental Sciences, Radboudumc, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - G J Meijer
- Department of Implantology and Periodontology, Radboudumc, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - J A Jansen
- Department of Biomaterials, College of Dental Sciences, Radboudumc, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - R Junker
- Department of Prosthodontics and Biomaterials, Danube Private University, Krems a.d. Donau, Austria
| |
Collapse
|
44
|
Schiegnitz E, Palarie V, Nacu V, Al-Nawas B, Kämmerer PW. Vertical osteoconductive characteristics of titanium implants with calcium-phosphate-coated surfaces - a pilot study in rabbits. Clin Implant Dent Relat Res 2016; 16:194-201. [PMID: 23675992 DOI: 10.1111/j.1708-8208.2012.00469.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Osteoconductive characteristics of different implant surface coatings are in the focus of current interest. The aim of the present study was to compare the vertical osteoconductivity at the implant shoulder of supracrestal inserted calcium-phosphate coated implants (SLA-CaP) with conventional sand-blasted/acid-etched (SLA) implants in a rabbit model. MATERIALS AND METHODS SLA-CaP and SLA implants were inserted bilaterally in the mandible of four rabbits in a split-mouth design. The implants were placed 2 mm supracrestal. After 3 weeks, at the left and right implant shoulder, the percentage of linear bone fill (PLF) as well as bone-implant contact (BIC-D) were determined. RESULTS After 3 weeks, newly formed woven bone could be found at the shoulder of the most of both surface-treated implants (75%). PLF was significantly higher in SLA-CaP implants (11.2% vs. 46.5%; n = 8, p = .008). BIC-D was significantly increased in the SLA-CaP implants (13.0% vs. 71.4%; n = 8, p < .001) as well. CONCLUSION The results of this study show for the first time that calcium-phosphate coated surfaces on supracrestal inserted implants have vertical osteoconductive characteristics and increase the bone-implant contact at the implant shoulder significantly in a rabbit model. In clinical long-term settings, these implants may contribute to a better vertical bone height.
Collapse
Affiliation(s)
- Eik Schiegnitz
- Department of Oral and Maxillofacial Surgery, Plastic Surgery, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; State Medical and Pharmaceutical University "Nicolae Testemitanu", Chisinau, Moldova, Clinic for Oral & Maxillofacial Surgery, Chisinau, Moldova; State Medical and Pharmaceutical University "Nicolae Testemitanu," Chisinau, Moldova, Clinic for Oral & Maxillofacial Surgery, Chisinau, Moldova; Department of Oral and Maxillofacial Surgery, Plastic Surgery, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Department of Oral and Maxillofacial Surgery, Plastic Surgery, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | | | | | | | | |
Collapse
|
45
|
Borkowski L, Sroka-Bartnicka A, Drączkowski P, Ptak A, Zięba E, Ślósarczyk A, Ginalska G. The comparison study of bioactivity between composites containing synthetic non-substituted and carbonate-substituted hydroxyapatite. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:260-7. [PMID: 26952422 DOI: 10.1016/j.msec.2016.01.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 01/12/2016] [Accepted: 01/23/2016] [Indexed: 11/17/2022]
Abstract
Apatite forming ability of hydroxyapatite (HAP) and carbonate hydroxyapatite (CHAP) containing composites was compared. Two composite materials, intended for filling bone defects, were made of polysaccharide polymer and one of two types of hydroxyapatite. The bioactivity of the composites was evaluated in vitro by soaking in a simulated body fluid (SBF), and the formation of the apatite layer was determined by scanning electron microscopy with energy-dispersive spectrometer and Raman spectroscopy. The results showed that both the composites induced the formation of apatite layer on their surface after soaking in SBF. In addition, the sample weight changes and the ion concentration of the SBF were scrutinized. The results showed the weight increase for both materials after SBF treatment, higher weight gain and higher uptake of calcium ions by HAP containing scaffolds. SBF solution analysis indicated loss of calcium and phosphorus ions during experiment. All these results indicate apatite forming ability of both biomaterials and suggest comparable bioactive properties of composite containing pure hydroxyapatite and carbonate-substituted one.
Collapse
Affiliation(s)
- Leszek Borkowski
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland.
| | - Anna Sroka-Bartnicka
- Department of Biopharmacy, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Piotr Drączkowski
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Agnieszka Ptak
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Emil Zięba
- SEM Laboratory, Department of Zoology and Ecology, John Paul II Catholic University of Lublin, Al. Kraśnicka 102, 20-718 Lublin, Poland
| | - Anna Ślósarczyk
- Faculty of Materials Science and Ceramics, AGH-University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland
| | - Grażyna Ginalska
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| |
Collapse
|
46
|
Shen X, Ma P, Hu Y, Xu G, Xu K, Chen W, Ran Q, Dai L, Yu Y, Mu C, Cai K. Alendronate-loaded hydroxyapatite-TiO2 nanotubes for improved bone formation in osteoporotic rabbits. J Mater Chem B 2016; 4:1423-1436. [DOI: 10.1039/c5tb01956g] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alendronate-loaded hydroxyapatite-TiO2 nanotubes were fabricated for locally improving new bone formation at the bone–implant interface in osteoporotic rabbits.
Collapse
Affiliation(s)
- Xinkun Shen
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education, College of Bioengineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Pingping Ma
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education, College of Bioengineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education, College of Bioengineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Gaoqiang Xu
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education, College of Bioengineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Kui Xu
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education, College of Bioengineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Weizhen Chen
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education, College of Bioengineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Qichun Ran
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education, College of Bioengineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Liangliang Dai
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education, College of Bioengineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Yonglin Yu
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education, College of Bioengineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Caiyun Mu
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education, College of Bioengineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education, College of Bioengineering
- Chongqing University
- Chongqing 400044
- P. R. China
| |
Collapse
|
47
|
Keceli HG, Akman AC, Bayram C, Nohutcu RM. Tissue engineering applications and nanobiomaterials in periodontology and implant dentistry. NANOBIOMATERIALS IN DENTISTRY 2016:337-387. [DOI: 10.1016/b978-0-323-42867-5.00013-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
48
|
Agarwal R, García AJ. Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair. Adv Drug Deliv Rev 2015; 94:53-62. [PMID: 25861724 DOI: 10.1016/j.addr.2015.03.013] [Citation(s) in RCA: 444] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 02/08/2015] [Accepted: 03/17/2015] [Indexed: 12/11/2022]
Abstract
Bone tissue has a remarkable ability to regenerate and heal itself. However, large bone defects and complex fractures still present a significant challenge to the medical community. Current treatments center on metal implants for structural and mechanical support and auto- or allo-grafts to substitute long bone defects. Metal implants are associated with several complications such as implant loosening and infections. Bone grafts suffer from donor site morbidity, reduced bioactivity, and risk of pathogen transmission. Surgical implants can be modified to provide vital biological cues, growth factors and cells in order to improve osseointegration and repair of bone defects. Here we review strategies and technologies to engineer metal surfaces to promote osseointegration with the host tissue. We also discuss strategies for modifying implants for cell adhesion and bone growth via integrin signaling and growth factor and cytokine delivery for bone defect repair.
Collapse
|
49
|
Jing W, Zhang M, Jin L, Zhao J, Gao Q, Ren M, Fan Q. Assessment of osteoinduction using a porous hydroxyapatite coating prepared by micro-arc oxidation on a new titanium alloy. Int J Surg 2015; 24:51-6. [PMID: 26306772 DOI: 10.1016/j.ijsu.2015.08.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 07/16/2015] [Accepted: 08/05/2015] [Indexed: 11/19/2022]
Abstract
Surface modification and material improvement is now an important way to improve the osseointegration between bone and uncemented prothesis. The purpose of this study was to investigate the bone ingrowth potential of porous hydroxyapatite (HA) coatings prepared by micro-arc oxidation (MAO) on Ti-3Zr-2Sn-3Mo-25Nb, a new titanium alloy. HA-coated specimens were implanted in the left proximal femoral medullary canal of beagles for 4, 12, and 24 weeks, and uncoated specimens were implanted in the right as a control. The surface morphology and phase composition were investigated with environmental scanning electron microscopy and X-ray diffractometry. The bone ingrowth was assessed by histomorphometry. A pull-out test was performed to assess the mechanical performance of the bone-implant interface. A porous coating was well prepared on the new titanium alloy by using the MAO method. The bone-to-implant contact was significantly higher for the HA-coated group compared to that in the uncoated group. Mechanical tests showed that the HA-coated group had significantly higher maximum force at the bone-implant interface compared to the uncoated specimens. MAO is a suitable coating approach for this new titanium alloy. The HA coating prepared by this approach can significantly promote bone ingrowth and the mechanical performance of the bone-implant interface.
Collapse
Affiliation(s)
- Wensen Jing
- Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, Shanxi, China
| | - Minghua Zhang
- Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, Shanxi, China
| | - Lei Jin
- Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, Shanxi, China
| | - Jian Zhao
- Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, Shanxi, China
| | - Qing Gao
- Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, Shanxi, China
| | - Min Ren
- Research Institute for Strength of Metals, Xi'an Jiaotong University, Xi'an 710049, Shanxi, China
| | - Qingyu Fan
- Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, Shanxi, China.
| |
Collapse
|
50
|
Agarwal R, González-García C, Torstrick B, Guldberg RE, Salmerón-Sánchez M, García AJ. Simple coating with fibronectin fragment enhances stainless steel screw osseointegration in healthy and osteoporotic rats. Biomaterials 2015; 63:137-45. [PMID: 26100343 DOI: 10.1016/j.biomaterials.2015.06.025] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/09/2015] [Accepted: 06/12/2015] [Indexed: 01/27/2023]
Abstract
Metal implants are widely used to provide structural support and stability in current surgical treatments for bone fractures, spinal fusions, and joint arthroplasties as well as craniofacial and dental applications. Early implant-bone mechanical fixation is an important requirement for the successful performance of such implants. However, adequate osseointegration has been difficult to achieve especially in challenging disease states like osteoporosis due to reduced bone mass and strength. Here, we present a simple coating strategy based on passive adsorption of FN7-10, a recombinant fragment of human fibronectin encompassing the major cell adhesive, integrin-binding site, onto 316-grade stainless steel (SS). FN7-10 coating on SS surfaces promoted α5β1 integrin-dependent adhesion and osteogenic differentiation of human mesenchymal stem cells. FN7-10-coated SS screws increased bone-implant mechanical fixation compared to uncoated screws by 30% and 45% at 1 and 3 months, respectively, in healthy rats. Importantly, FN7-10 coating significantly enhanced bone-screw fixation by 57% and 32% at 1 and 3 months, respectively, and bone-implant ingrowth by 30% at 3 months compared to uncoated screws in osteoporotic rats. These coatings are easy to apply intra-operatively, even to implants with complex geometries and structures, facilitating the potential for rapid translation to clinical settings.
Collapse
Affiliation(s)
- Rachit Agarwal
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Cristina González-García
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA; Biomedical Engineering Research Division, University of Glasgow, Glasgow, UK
| | - Brennan Torstrick
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Robert E Guldberg
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Andrés J García
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|