1
|
Darshna, Dkhar DS, Srivastava P, Chandra P. Nano-fibers fabrication using biological macromolecules: Application in biosensing and biomedicine. Int J Biol Macromol 2025; 306:141508. [PMID: 40020816 DOI: 10.1016/j.ijbiomac.2025.141508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
Nanofibers, a type of nanomaterial, have been widely use in a variety of fields, both research and commercial applications. They are a material of choice in a diverse range of applications due to their characteristics and unique physicochemical properties. Nanofibers have cross-sectional dimeters varying between 1 nm and 100 nm, the nano range dimensions providing them characteristics such as high surface area-to-volume ratio, highly porous as well as interconnected networks. There are various types of materials which have been used to synthesize nanofibers both biological (namely, hyaluronic acid, chitosan, alginate, fibrin, collagen, gelatin, silk fibroin, gums, and cellulose) as well as synthetic (namely, poly(lactic acid), poly(1-caprolactone), poly(vinyl alcohol), and polyurethane) polymers which have been briefly discussed in the present review. The review also explores various fabrication techniques for producing nanofibers, such as physical/chemical/biological techniques as well as electrospinning/non-spinning techniques. Due to their distinctive physicochemical qualities, nanofibers have become intriguing one-dimensional nanomaterials with applications in a wide range of biomedical fields. In line with this, the review discusses about various applications of nanofibers, namely, wound dressing, drug delivery, implants, diagnostic devices, tissue engineering, and biosensing. Furthermore, having an insight of the distinctive characteristics of nanofibers materials which could have immense potential in various biosensing applications, this review emphasizes on application of nanofibrous materials in the field of biosensing. However, despite these advances, there remain some challenges that need to be addressed before nanofiber technology can be widely adopted for its commercial use in biomedical as well as biosensing applications.
Collapse
Affiliation(s)
- Darshna
- School of Biochemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Daphika S Dkhar
- School of Biochemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Pradeep Srivastava
- School of Biochemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India.
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
2
|
Kang D, Zhang Y, Yu DG, Kim I, Song W. Integrating synthetic polypeptides with innovative material forming techniques for advanced biomedical applications. J Nanobiotechnology 2025; 23:101. [PMID: 39939886 PMCID: PMC11823111 DOI: 10.1186/s12951-025-03166-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/25/2025] [Indexed: 02/14/2025] Open
Abstract
Polypeptides are highly valued in biomedical science for their biocompatibility and biodegradability, making them valuable in drug delivery, tissue engineering, and antibacterial dressing. The diverse design of polymer chains and self-assembly techniques allow different side chains and secondary structures, enhancing their biomedical potential. However, the traditional solid powder form of polypeptides presents challenges in skin applications, shipping, and recycling, limiting their practical utility. Recent advancements in material forming methods and polypeptide synthesis have produced biomaterials with uniform, distinct shapes, improving usability. This review outlines the progress in polypeptide synthesis and material-forming methods over the past decade. The main synthesis techniques include solid-phase synthesis and ring-opening polymerization of N-carboxyanhydrides while forming methods like electrospinning, 3D printing, and coating are explored. Integrating structural design with these methods is emphasized, leading to diverse polypeptide materials with unique shapes. The review also identifies research hotspots using VOSviewer software, which are visually presented in circular packing images. It further discusses emerging applications such as drug delivery, wound healing, and tissue engineering, emphasizing the crucial role of material shape in enhancing performance. The review concludes by exploring future trends in developing distinct polypeptide shapes for advanced biomedical applications, encouraging further research.
Collapse
Affiliation(s)
- Dandan Kang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Yu Zhang
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, P. R. China.
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Il Kim
- School of Chemical Engineering, Pusan National University, Busan, 46241, Republic of Korea.
| | - Wenliang Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China.
| |
Collapse
|
3
|
Wang Z, Lin Z, Mei X, Cai L, Lin KC, Rodríguez JF, Ye Z, Parraguez XS, Guajardo EM, García Luna PC, Zhang JYJ, Zhang YS. Engineered Living Systems Based on Gelatin: Design, Manufacturing, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2416260. [PMID: 39910847 DOI: 10.1002/adma.202416260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/26/2024] [Indexed: 02/07/2025]
Abstract
Engineered living systems (ELSs) represent purpose-driven assemblies of living components, encompassing cells, biomaterials, and active agents, intricately designed to fulfill diverse biomedical applications. Gelatin and its derivatives have been used extensively in ELSs owing to their mature translational pathways, favorable biological properties, and adjustable physicochemical characteristics. This review explores the intersection of gelatin and its derivatives with fabrication techniques, offering a comprehensive examination of their synergistic potential in creating ELSs for various applications in biomedicine. It offers a deep dive into gelatin, including its structures and production, sources, processing, and properties. Additionally, the review explores various fabrication techniques employing gelatin and its derivatives, including generic fabrication techniques, microfluidics, and various 3D printing methods. Furthermore, it discusses the applications of ELSs based on gelatin in regenerative engineering as well as in cell therapies, bioadhesives, biorobots, and biosensors. Future directions and challenges in gelatin fabrication are also examined, highlighting emerging trends and potential areas for improvements and innovations. In summary, this comprehensive review underscores the significance of gelatin-based ELSs in advancing biomedical engineering and lays the groundwork for guiding future research and developments within the field.
Collapse
Affiliation(s)
- Zhenwu Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Zeng Lin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Xuan Mei
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Ling Cai
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Ko-Chih Lin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Jimena Flores Rodríguez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Zixin Ye
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Ximena Salazar Parraguez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Emilio Mireles Guajardo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Pedro Cortés García Luna
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Jun Yi Joey Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| |
Collapse
|
4
|
Shanto PC, Tae H, Ali MY, Jahan N, Jung HI, Lee BT. Dual-layer nanofibrous PCL/gelatin membrane as a sealant barrier to prevent postoperative pancreatic leakage. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025; 36:333-350. [PMID: 39292636 DOI: 10.1080/09205063.2024.2402135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/22/2024] [Indexed: 09/20/2024]
Abstract
Post-operative pancreatic leakage is a severe surgical complication that can cause internal bleeding, infections, multiple organ damage, and even death. To prevent pancreatic leakage and enhance the protection of the suture lining and tissue regeneration, a dual-layer nanofibrous membrane composed of synthetic polymer polycaprolactone (PCL) and biopolymer gelatin was developed. The fabrication of this dual-layer (PGI-PGO) membrane was achieved through the electrospinning technique, with the inner layer (PGI) containing 2% PCL (w/v) and 10% gelatin (w/v), and the outer layer (PGO) containing 10% PCL (w/v) and 10% gelatin (w/v) in mixing ratios of 2:1 and 1:1, respectively. Experimental results indicated that a higher gelatin content reduced fiber diameter enhanced the hydrophilicity of the PGI layer compared to the PGO layer, improved the membrane's biodegradability, and increased its adhesive properties. In vitro biocompatibility assessments with L929 fibroblast cells showed enhanced cell proliferation in the PGI-PGO membrane. In vivo studies confirmed that the PGI-PGO membrane effectively protected the suture line without any instances of leakage and promoted wound healing within four weeks post-surgery. In conclusion, the nanofibrous PGI-PGO membrane demonstrates a promising therapeutic potential to prevent postoperative pancreatic leakage.
Collapse
Affiliation(s)
- Prayas Chakma Shanto
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Heyjin Tae
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Md Yousuf Ali
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Nusrat Jahan
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Hae Il Jung
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, Republic of Korea
- Department of General Surgery, Soonchunhyang University Hospital, Cheonan, Republic of Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, Republic of Korea
| |
Collapse
|
5
|
Iurilli M, Porrelli D, Turco G, Lagatolla C, Camurri Piloni A, Medagli B, Nicolin V, Papa G. Electrospun Collagen-Coated Nanofiber Membranes Functionalized with Silver Nanoparticles for Advanced Wound Healing Applications. MEMBRANES 2025; 15:39. [PMID: 39997665 PMCID: PMC11857158 DOI: 10.3390/membranes15020039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/11/2025] [Accepted: 01/17/2025] [Indexed: 02/26/2025]
Abstract
Complex wounds pose a significant healthcare challenge due to their susceptibility to infections and delayed healing. This study focuses on developing electrospun polycaprolactone (PCL) nanofiber membranes coated with Type I collagen derived from bovine skin and functionalized with silver nanoparticles (AgNPs) to address these issues. The collagen coating enhances biocompatibility, while AgNPs synthesized through chemical reduction with sodium citrate provide broad-spectrum antimicrobial properties. The physical properties of the membranes were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Results showed the formation of nanofibers without defects and the uniform distribution of AgNPs. A swelling test and contact angle measurements confirmed that the membranes provided an optimal environment for wound healing. In vitro biological assays with murine 3T3 fibroblasts revealed statistically significant (p ≤ 0.05) differences in cell viability among the membranes at 24 h (p = 0.0002) and 72 h (p = 0.022), demonstrating the biocompatibility of collagen-coated membranes and the minimal cytotoxicity of AgNPs. Antibacterial efficacy was evaluated against Staphylococcus aureus (SA), Pseudomonas aeruginosa (PA), and Vancomycin-resistant Enterococcus (VRE), with the significant inhibition of biofilm formation observed for VRE (p = 0.006). Overall, this novel combination of collagen-coated electrospun PCL nanofibers with AgNPs offers a promising strategy for advanced wound dressings, providing antimicrobial benefits. Future in vivo studies are warranted to further validate its clinical and regenerative potential.
Collapse
Affiliation(s)
- Martin Iurilli
- Plastic and Reconstructive Surgery Unit, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy; (M.I.); (G.P.)
- Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, Strada di Fiume, 447, 34149 Trieste, Italy
| | - Davide Porrelli
- Department of Life Sciences, University of Trieste, Via Alexander Fleming 31/B, 34127 Trieste, Italy
| | - Gianluca Turco
- Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy; (G.T.); (A.C.P.); (B.M.); (V.N.)
| | - Cristina Lagatolla
- Department of Life Sciences, University of Trieste, Via Alexander Fleming 22, 34127 Trieste, Italy;
| | - Alvise Camurri Piloni
- Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy; (G.T.); (A.C.P.); (B.M.); (V.N.)
| | - Barbara Medagli
- Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy; (G.T.); (A.C.P.); (B.M.); (V.N.)
| | - Vanessa Nicolin
- Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy; (G.T.); (A.C.P.); (B.M.); (V.N.)
| | - Giovanni Papa
- Plastic and Reconstructive Surgery Unit, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy; (M.I.); (G.P.)
- Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, Strada di Fiume, 447, 34149 Trieste, Italy
| |
Collapse
|
6
|
Li D, Xu T, Wang X, Xiao Q, Zhang W, Li F, Zhang H, Feng B, Zhang Y. Enhanced osteo-angiogenic coupling by a bioactive cell-free fat extract (CEFFE) delivered through electrospun fibers. J Mater Chem B 2025; 13:1100-1117. [PMID: 39659270 DOI: 10.1039/d4tb01394h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Regeneration of functional bone tissue relies heavily on achieving adequate vascularization in engineered bone constructs following implantation. This process requires the close integration of osteogenesis and angiogenesis. Cell-free fat extract (CEFFE or FE), a recently emerging acellular fat extract containing abundant growth factors, holds significant potential for regulating osteo-angiogenic coupling and promoting regeneration of vascularized bone tissue. However, its specific role in modulating the coupling between angiogenesis and osteogenesis remains unclear. Our previous research demonstrated that FE-decorated electrospun fibers of polycaprolactone/gelatin (named FE-PDA@PCL/GT) exhibited pro-vasculogenic capabilities both in vitro and in vivo (D. Li, Q. Li, T. Xu, X. Guo, H. Tang, W. Wang, W. Zhang and Y. Zhang, Pro-vasculogenic fibers by PDA-mediated surface functionalization using cell-free fat extract (CEFFE), Biomacromolecules 2024, 25, 1550-1562). Herein, we firstly demonstrated that the FE-PDA@PCL/GT fibers also significantly stimulated osteogenesis in a mouse calvaria osteoblast-like cell line MC3T3-E1 cells, as evidenced by the increased production of alkaline phosphatase (ALP), mineral deposits, and collagen I, as well as the upregulated expression of osteogenic marker genes in the osteoblasts. Using a transwell co-culture system, we further demonstrated that the release of FE from the FE-PDA@PCL/GT fibers not only promoted osteogenesis and angiogenesis but also markedly enhanced the paracrine functions and reciprocal communications between endothelial cells and osteoblasts. This dynamic interaction played a key role in the observed enhancement of osteo-angiogenic coupling. With the confirmed pro-osteogenic and pro-angiogenic properties of FE-PDA@PCL/GT, it is envisaged that these newly engineered bioactive fibers can be used to develop highly biomimicking bone constructs. These constructs are designed to promote native-like cell-scaffold and cell-cell interactions, which are essential for the effective regeneration of defected bone tissue with adequate vasculature.
Collapse
Affiliation(s)
- Donghong Li
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Tingting Xu
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Xiaoli Wang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Qiong Xiao
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Wenjie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Fen Li
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Hao Zhang
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Bei Feng
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Yanzhong Zhang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| |
Collapse
|
7
|
Swapnil SI, Shoudho MTH, Rahman A, Ahmed T, Arafat MT. DOTAGEL: a hydrogen and amide bonded, gelatin based, tunable, antibacterial, and high strength adhesive synthesized in an unoxidized environment. J Mater Chem B 2024; 12:11025-11041. [PMID: 39355893 DOI: 10.1039/d4tb00608a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
The development of bioadhesives that concurrently exhibit high adhesion strength, biocompatibility, and tunable properties and involve simple fabrication processes continues to be a significant challenge. In this study, a novel bioadhesive named DOTAGEL is synthesized by crosslinking gelatin (GA), dopamine (DA), and tannic acid (TA) in an unoxidized environment due to the advantage of controlling the degree of protonation in GA and TA, as well as controlling the degree of intermolecular amide and hydrogen bonding in the acidic medium. DOTAGEL (DA + TA + GA) shows superior adhesion strengths of 104.6 ± 46 kPa on dry skin and 35.6 ± 4.5 kPa on wet skin, up to 13 attachment-detachment cycles, retains adhesion strength under water for up to 10 days and is capable of joining two cut parts of internal organs of mice. Moreover, DOTAGEL shows strong antibacterial properties, self-healing, and biocompatibility since it contains TA, a natural and antibacterial cross-linker with abundant hydroxyl groups and the capability of forming non-covalent bonds in an unoxidized environment, and dopamine hydrochloride, a mussel inspired biomaterial containing both the amine and catechol groups for amide bonding and hydrogen bonding with TA and GA. The cross-linking among 20% (w/v) GA, 0.2% (w/v) DA, and 20% (w/v) TA is done by the centrifugation process at room temperature. Two different acids, hydrochloric acid and acetic acid, were used for tuning the pH of the medium, which led to two different samples named DOTAGEL/AA and DOTAGEL/HCL. The degree of cross-linking and mechanical and biochemical properties, like adhesion strength, degradation rate, antibacterial properties, stickiness, etc., are tuned by adjusting the pH of the medium. DOTAGEL/HCL showed 6.5 times faster degradation in 10 days, a faster release rate in the antibacterial study, 2 times adhesion strength in a dry medium, and more stickiness. The novelty lies not only in increased adhesion strength but also in the single-step fabrication process of the adhesive in the acidic medium. This research proposes the formation of a tunable antibacterial adhesive that is capable of working on wet surfaces within the body and that has the potential to become a successful tissue adhesive with a wide range of possibilities in controlled drug delivery at wound sites and other biomedical applications.
Collapse
Affiliation(s)
- Soham Irtiza Swapnil
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh.
| | - Md Tashdid Hossain Shoudho
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh.
| | - Abdur Rahman
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh.
| | - Tahmed Ahmed
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh.
| | - M Tarik Arafat
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh.
| |
Collapse
|
8
|
Conner AA, David D, Yim EKF. The Effects of Biomimetic Surface Topography on Vascular Cells: Implications for Vascular Conduits. Adv Healthc Mater 2024; 13:e2400335. [PMID: 38935920 DOI: 10.1002/adhm.202400335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/04/2024] [Indexed: 06/29/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide and represent a pressing clinical need. Vascular occlusions are the predominant cause of CVD and necessitate surgical interventions such as bypass graft surgery to replace the damaged or obstructed blood vessel with a synthetic conduit. Synthetic small-diameter vascular grafts (sSDVGs) are desired to bypass blood vessels with an inner diameter <6 mm yet have limited use due to unacceptable patency rates. The incorporation of biophysical cues such as topography onto the sSDVG biointerface can be used to mimic the cellular microenvironment and improve outcomes. In this review, the utility of surface topography in sSDVG design is discussed. First, the primary challenges that sSDVGs face and the rationale for utilizing biomimetic topography are introduced. The current literature surrounding the effects of topographical cues on vascular cell behavior in vitro is reviewed, providing insight into which features are optimal for application in sSDVGs. The results of studies that have utilized topographically-enhanced sSDVGs in vivo are evaluated. Current challenges and barriers to clinical translation are discussed. Based on the wealth of evidence detailed here, substrate topography offers enormous potential to improve the outcome of sSDVGs and provide therapeutic solutions for CVDs.
Collapse
Affiliation(s)
- Abigail A Conner
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Dency David
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Evelyn K F Yim
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- Center for Biotechnology and Bioengineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
9
|
Cui D, Guo W, Chang J, Fan S, Bai X, Li L, Yang C, Wang C, Li M, Fei J. Polydopamine-coated polycaprolactone/carbon nanotube fibrous scaffolds loaded with basic fibroblast growth factor for wound healing. Mater Today Bio 2024; 28:101190. [PMID: 39221197 PMCID: PMC11364907 DOI: 10.1016/j.mtbio.2024.101190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/18/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Image 1.
Collapse
Affiliation(s)
- Dapeng Cui
- Hepatobiliary Surgery Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, 075000, China
| | - Wei Guo
- Emergency Department, Peking University People's Hospital, Beijing, 100044, China
| | - Jing Chang
- Trauma Medicine Center, National Center for Trauma Medicine, Key Laboratory of Trauma and Neural Regeneration (Peking University, Ministry of Education), Peking University People's Hospital, Beijing, 100044, China
| | - Shuang Fan
- Hepatobiliary Surgery Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, 075000, China
| | - Xiaochen Bai
- Hepatobiliary Surgery Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, 075000, China
| | - Lei Li
- Hepatobiliary Surgery Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, 075000, China
| | - Chen Yang
- Hepatobiliary Surgery Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, 075000, China
| | - Chuanlin Wang
- Trauma Medicine Center, National Center for Trauma Medicine, Key Laboratory of Trauma and Neural Regeneration (Peking University, Ministry of Education), Peking University People's Hospital, Beijing, 100044, China
| | - Ming Li
- Trauma Medicine Center, National Center for Trauma Medicine, Key Laboratory of Trauma and Neural Regeneration (Peking University, Ministry of Education), Peking University People's Hospital, Beijing, 100044, China
| | - Jiandong Fei
- Hepatobiliary Surgery Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, 075000, China
| |
Collapse
|
10
|
Larue L, Michely L, Grande D, Belbekhouche S. Design of Collagen and Gelatin-based Electrospun Fibers for Biomedical Purposes: An Overview. ACS Biomater Sci Eng 2024; 10:5537-5549. [PMID: 39092811 DOI: 10.1021/acsbiomaterials.4c00948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Collagen and gelatin are essential natural biopolymers commonly utilized in biomaterials and tissue engineering because of their excellent physicochemical and biocompatibility properties. They can be used either in combination with other biomacromolecules or particles or even exclusively for the enhancement of bone regeneration or for the development of biomimetic scaffolds. Collagen or gelatin derivatives can be transformed into nanofibrous materials with porous micro- or nanostructures and superior mechanical properties and biocompatibility using electrospinning technology. Specific attention was recently paid to electrospun mats of such biopolymers, due to their high ratio of surface area to volume, as well as their biocompatibility, biodegradability, and low immunogenicity. The fiber mats with submicro- and nanometer scale can replicate the extracellular matrix structure of human tissues and organs, making them highly suitable for use in tissue engineering due to their exceptional bioaffinity. The drawbacks may include rapid degradation and complete dissolution in aqueous media. The use of gelatin/collagen electrospun nanofibers in this form is thus greatly restricted for biomedicine. Therefore, the cross-linking of these fibers is necessary for controlling their aqueous solubility. This led to enhanced biological characteristics of the fibers, rendering them excellent options for various biomedical uses. The objective of this review is to highlight the key research related to the electrospinning of collagen and gelatin, as well as their applications in the biomedical field. The review features a detailed examination of the electrospinning fiber mats, showcasing their varying structures and performances resulting from diverse solvents, electrospinning processes, and cross-linking methods. Judiciously selected examples from literature will be presented to demonstrate major advantages of such biofibers. The current developments and difficulties in this area of research are also being addressed.
Collapse
Affiliation(s)
- Laura Larue
- Université Paris Est Creteil, CNRS, Institut de Chimie et des Matériaux Paris-Est (ICMPE), UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| | - Laurent Michely
- Université Paris Est Creteil, CNRS, Institut de Chimie et des Matériaux Paris-Est (ICMPE), UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| | - Daniel Grande
- Université Paris Est Creteil, CNRS, Institut de Chimie et des Matériaux Paris-Est (ICMPE), UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| | - Sabrina Belbekhouche
- Université Paris Est Creteil, CNRS, Institut de Chimie et des Matériaux Paris-Est (ICMPE), UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| |
Collapse
|
11
|
Gharibshahian M, Salehi M, Kamalabadi-Farahani M, Alizadeh M. Magnesium-oxide-enhanced bone regeneration: 3D-printing of gelatin-coated composite scaffolds with sustained Rosuvastatin release. Int J Biol Macromol 2024; 266:130995. [PMID: 38521323 DOI: 10.1016/j.ijbiomac.2024.130995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/11/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
Critical-size bone defects are one of the main challenges in bone tissue regeneration that determines the need to use angiogenic and osteogenic agents. Rosuvastatin (RSV) is a class of cholesterol-lowering drugs with osteogenic potential. Magnesium oxide (MgO) is an angiogenesis component affecting apatite formation. This study aims to evaluate 3D-printed Polycaprolactone/β-tricalcium phosphate/nano-hydroxyapatite/ MgO (PCL/β-TCP/nHA/MgO) scaffolds as a carrier for MgO and RSV in bone regeneration. For this purpose, PCL/β-TCP/nHA/MgO scaffolds were fabricated with a 3D-printing method and coated with gelatin and RSV. The biocompatibility and osteogenicity of scaffolds were examined with MTT, ALP, and Alizarin red staining. Finally, the scaffolds were implanted in a bone defect of rat's calvaria, and tissue regeneration was investigated after 3 months. Our results showed that the simultaneous presence of RSV and MgO improved biocompatibility, wettability, degradation rate, and ALP activity but decreased mechanical strength. PCL/β-TCP/nHA/MgO/gelatin-RSV scaffolds produced sustained release of MgO and RSV within 30 days. CT images showed that PCL/β-TCP/nHA/MgO/gelatin-RSV scaffolds filled approximately 86.83 + 4.9 % of the defects within 3 months and improved angiogenesis, woven bone, and osteogenic genes expression. These results indicate the potential of PCL/β-TCP/nHA/MgO/gelatin-RSV scaffolds as a promising tool for bone regeneration and clinical trials.
Collapse
Affiliation(s)
- Maliheh Gharibshahian
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Majid Salehi
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohammad Kamalabadi-Farahani
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
12
|
Kole GE, Hasirci V, Yucel D. Development of a Tri-Layered Vascular Construct and In Vitro Evaluation of Endothelization. Macromol Biosci 2024; 24:e2300369. [PMID: 38134246 DOI: 10.1002/mabi.202300369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/18/2023] [Indexed: 12/24/2023]
Abstract
Advances in the development of vascular substitutes for small-sized arteries are ongoing because the present grafts do not entirely meet the requirements of native equivalents and are suboptimal in clinical performance. This study aims to develop a tri-layered vascular construct mimicking natural tissue using polyester blends and to investigate its endothelization through in vitro studies as a potential small-caliber vascular graft. The innermost layer is obtained by dip coating as a tubular porous film with a lumen diameter of 3 mm and a pore size of ≤8 µm. Circumferentially aligned electrospun fiber (diameter 100-800 nm) with a deviation angle of 15° are deposited over the porous film forming the intermediate layer. The random electrospun fibers (diameter 100-1100 nm) deviating at different angles are wrapped as the outermost layer. The mechanical properties of the tri-layered vascular construct are determined to be 44.80 ± 14.80 MPa for Young's modulus and 4.25 ± 0.75 MPa for ultimate tensile strength. MTS and cell behavior studies show that the isolated human umbilical cord vein endothelial cells proliferate and line the lumen of the vascular substitute. The vascular construct developed, with its biomimetic architecture, mechanical features, size, and endothelization, can be tested with in vivo studies.
Collapse
Affiliation(s)
- Gozde E Kole
- Graduate School of Health Sciences, Department of Medical Biotechnology, Acıbadem Mehmet Ali Aydınlar University (ACU), Istanbul, 34752, Turkey
- ACU Biomaterials A &R Center, Acıbadem Mehmet Ali Aydınlar University (ACU), Istanbul, 34752, Turkey
| | - Vasif Hasirci
- ACU Biomaterials A &R Center, Acıbadem Mehmet Ali Aydınlar University (ACU), Istanbul, 34752, Turkey
- Faculty of Engineering and Natural Sciences, Department of Biomedical Engineering, Acıbadem Mehmet Ali Aydınlar University (ACU), Istanbul, 34752, Turkey
- Graduate School of Natural and Applied Sciences, Department of Biomaterials, Acıbadem Mehmet Ali Aydınlar University (ACU), Istanbul, 34752, Turkey
- Middle East Technical University, BIOMATEN Center of Excellence in Biomaterials and Tissue Engineering, Ankara, 06800, Turkey
| | - Deniz Yucel
- Graduate School of Health Sciences, Department of Medical Biotechnology, Acıbadem Mehmet Ali Aydınlar University (ACU), Istanbul, 34752, Turkey
- ACU Biomaterials A &R Center, Acıbadem Mehmet Ali Aydınlar University (ACU), Istanbul, 34752, Turkey
- Graduate School of Natural and Applied Sciences, Department of Biomaterials, Acıbadem Mehmet Ali Aydınlar University (ACU), Istanbul, 34752, Turkey
- School of Medicine, Department of Histology and Embryology, Acıbadem Mehmet Ali Aydınlar University (ACU), Istanbul, 34752, Turkey
| |
Collapse
|
13
|
Li D, Li Q, Xu T, Guo X, Tang H, Wang W, Zhang W, Zhang Y. Pro-vasculogenic Fibers by PDA-Mediated Surface Functionalization Using Cell-Free Fat Extract (CEFFE). Biomacromolecules 2024; 25:1550-1562. [PMID: 38411008 DOI: 10.1021/acs.biomac.3c01124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Formation of adequate vascular network within engineered three-dimensional (3D) tissue substitutes postimplantation remains a major challenge for the success of biomaterials-based tissue regeneration. To better mimic the in vivo angiogenic and vasculogenic processes, nowadays increasing attention is given to the strategy of functionalizing biomaterial scaffolds with multiple bioactive agents. Aimed at engineering electrospun biomimicking fibers with pro-vasculogenic capability, this study was proposed to functionalize electrospun fibers of polycaprolactone/gelatin (PCL/GT) by cell-free fat extract (CEFFE or FE), a newly emerging natural "cocktail" of cytokines and growth factors extracted from human adipose tissue. This was achieved by having the electrospun PCL/GT fiber surface coated with polydopamine (PDA) followed by PDA-mediated immobilization of FE to generate the pro-vasculogenic fibers of FE-PDA@PCL/GT. It was found that the PDA-coated fibrous mat of PCL/GT exhibited a high FE-loading efficiency (∼90%) and enabled the FE to be released in a highly sustained manner. The engineered FE-PDA@PCL/GT fibers possess improved cytocompatibility, as evidenced by the enhanced cellular proliferation, migration, and RNA and protein expressions (e.g., CD31, vWF, VE-cadherin) in the human umbilical vein endothelial cells (huvECs) used. Most importantly, the FE-PDA@PCL/GT fibrous scaffolds were found to enormously stimulate tube formation in vitro, microvascular development in the in ovo chick chorioallantoic membrane (CAM) assay, and vascularization of 3D construct in a rat subcutaneous embedding model. This study highlights the potential of currently engineered pro-vasculogenic fibers as a versatile platform for engineering vascularized biomaterial constructs for functional tissue regeneration.
Collapse
Affiliation(s)
- Donghong Li
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Qinglin Li
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Tingting Xu
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Xuran Guo
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Han Tang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Wenbo Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Wenjie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yanzhong Zhang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| |
Collapse
|
14
|
Sen RK, Prabhakar P, Shruti, Verma P, Vikram A, Mishra A, Dwivedi A, Gowri VS, Chaurasia JP, Mondal DP, Srivastava AK, Dwivedi N, Dhand C. Smart Nanofibrous Hydrogel Wound Dressings for Dynamic Infection Diagnosis and Control: Soft but Functionally Rigid. ACS APPLIED BIO MATERIALS 2024; 7:999-1016. [PMID: 38198289 DOI: 10.1021/acsabm.3c01000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Chronic wounds, such as burns and diabetic foot ulcers, pose significant challenges to global healthcare systems due to prolonged hospitalization and increased costs attributed to susceptibility to bacterial infections. The conventional use of antibiotic-loaded and metal-impregnated dressings exacerbates concerns related to multidrug resistance and skin argyrosis. In response to these challenges, our research introduces a unique approach utilizing antibiotic-free smart hydrogel wound dressings with integrated infection eradication and diagnostic capabilities. Electrospinning stands out as a method capable of producing hydrogel nanofibrous materials possessing favorable characteristics for treating wounds and detecting infections under conditions utilizing sustainable materials. In this study, innovative dressings are fabricated through electrospinning polycaprolactone (PCL)/gelatin (GEL) hybrid hydrogel nanofibers, incorporating pDA as a cross-linker, εPL as a broad-spectrum antimicrobial agent, and anthocyanin as a pH-responsive probe. The developed dressings demonstrate exceptional antioxidant (>90% radical scavenging) and antimicrobial properties (95-100% killing). The inclusion of polyphenols/flavonoids and εPL leads to absolute bacterial eradication, and in vitro assessments using HaCaT cells indicate increased cell proliferation, decreased reactive oxygen species (ROS) production, and enhanced cell viability (100% Cell viability). The dressings display notable alterations in color that correspond to different wound conditions. Specifically, they exhibit a red/violet hue under healthy wound conditions (pH 4-6.5) and a green/blue color under unhealthy wound conditions (pH > 6.5). These distinctive color changes provide valuable insights into the versatile applications of the dressings in the care and management of wounds. Our findings suggest that these antibiotic-free smart hydrogel wound dressings hold promise as an effective and sustainable solution for chronic wounds, providing simultaneous infection control and diagnostic monitoring. This research contributes to advancing the field of wound care, offering a potential paradigm shift in the development of next-generation wound dressings.
Collapse
Affiliation(s)
- Raj Kumar Sen
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal 462026, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priyanka Prabhakar
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal 462026, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shruti
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal 462026, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priya Verma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Apeksha Vikram
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Aradhana Mishra
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Ashish Dwivedi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Vijay Sorna Gowri
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal 462026, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jamuna Prasad Chaurasia
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal 462026, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dehi Pada Mondal
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal 462026, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Avanish Kumar Srivastava
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal 462026, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neeraj Dwivedi
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal 462026, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chetna Dhand
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal 462026, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
15
|
Raghavan A, Ghosh S. Influence of Graphene-Based Nanocomposites in Neurogenesis and Neuritogenesis: A Brief Summary. ACS APPLIED BIO MATERIALS 2024; 7:711-726. [PMID: 38265040 DOI: 10.1021/acsabm.3c00852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Graphene is a prospective candidate for various biomedical applications, including drug transporters, bioimaging agents, and scaffolds for tissue engineering, thanks to its superior electrical conductivity and biocompatibility. The clinical issue of nerve regeneration and rehabilitation still has a major influence on people's lives. Nanomaterials based on graphene have been exploited extensively to promote nerve cell differentiation and proliferation. Their high electrical conductivity and mechanical robustness make them appropriate for nerve tissue engineering. Combining graphene with other substances, such as biopolymers, may transmit biochemical signals that support brain cell division, proliferation, and regeneration. The utilization of nanocomposites based on graphene in neurogenesis and neuritogenesis is the primary emphasis of this review. Here are some examples of the many synthetic strategies used. For neuritogenesis and neurogenesis, it has also been explored to combine electrical stimulation with graphene-based materials.
Collapse
Affiliation(s)
- Akshaya Raghavan
- Polymers & Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sutapa Ghosh
- Polymers & Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
16
|
Kazemi MH, Sajadimajd S, Gorgin Karaji Z. In vitro investigation of wound healing performance of PVA/chitosan/silk electrospun mat loaded with deferoxamine and ciprofloxacin. Int J Biol Macromol 2023; 253:126602. [PMID: 37652316 DOI: 10.1016/j.ijbiomac.2023.126602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Electrospinning is an advanced method used for developing wound dressings. Biopolymer-based electrospun mats have been extensively studied in tissue engineering due to their similarity to the extracellular matrix. In this study, electrospun poly(vinyl alcohol)/chitosan/silk fibroin (PChS) mat demonstrated improved mechanical properties, including tensile strength, strain at break, and Young's modulus, compared to electrospun poly(vinyl alcohol) and poly(vinyl alcohol)/chitosan mats. Similarly, the swelling capability, thermal stability, and hydrophilicity were higher in the PChS mat compared to the other ones. Hence, the PChS mat was selected for further investigation. Ciprofloxacin (CIP) was added to the PChS electrospinning solution at 5 % and 10 % concentration, and deferoxamine (DFO) was immobilized on CIP-loaded mats at 1 and 2 g/L concentration using a polydopamine linker. Evaluating mats with the dimensions of 1 × 1 cm2 showed that those containing 5 % and 10 % CIP exhibited bactericidal activity against Escherichia coli and Staphylococcus aureus. Moreover, Human dermal fibroblast cells were compatible with the fabricated mats, as confirmed by the MTT assay. Finally, drug-loaded mats had a positive effect on wound healing in a scratch test, and mats with 10 % CIP and 2 g/L DFO showed the highest effect on promoting wound healing, indicating potential for use as a wound dressing.
Collapse
Affiliation(s)
- Mohammad Hossein Kazemi
- Department of Mechanical Engineering, Faculty of Engineering, Kermanshah University of Technology, Kermanshah 67156-85420, Iran
| | - Soraya Sajadimajd
- Department of Biology, Faculty of Science, Razi University, Kermanshah 67141-15111, Iran
| | - Zahra Gorgin Karaji
- Department of Mechanical Engineering, Faculty of Engineering, Kermanshah University of Technology, Kermanshah 67156-85420, Iran.
| |
Collapse
|
17
|
Khan R, Haider S, Khan MUA, Haider A, Razak SIA, Hasan A, Khan R, Wahit MU. Fabrication of amine-functionalized and multi-layered PAN-(TiO 2)-gelatin nanofibrous wound dressing: In-vitro evaluation. Int J Biol Macromol 2023; 253:127169. [PMID: 37783243 DOI: 10.1016/j.ijbiomac.2023.127169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/16/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023]
Abstract
The development of advanced multifunctional wound dressings remains a major challenge. Herein, a novel multilayer (ML) electrospun nanofibers (NFs) wound dressing based on diethylenetriamine (DETA) functionalized polyacrylonitrile (PAN), TiO2 nanoparticles (NPs) coating (Ct), and bioderived gelatin (Gel) was developed for potential applications in wound healing. The ML PAN-DETA-Ct-Gel membrane was developed by combining electrospinning, chemical functionalization, synthesis, and electrospray techniques, using a layer-by-layer method. The ML PAN-DETA-Ct-Gel membrane is comprised of an outer layer of PAN-DETA as a barrier to external microorganisms and structural support, an interlayer TiO2 NPs (Ct) as antibacterial function, and a contact layer (Gel) to improve biocompatibility and cell viability. The NFs membranes were characterized by scanning electron microscopy (SEM), surface profilometry, BET analysis, and water contact angle techniques to investigate their morphology, surface roughness, porosity, and wettability. The ML PAN-DETA-Ct-Gel wound dressing exhibited good surface roughness, porosity, and better wettability. Cell morphology, proliferation, and viability were determined using fibroblasts (3T3), and antibacterial assays were performed against six pathogens. The ML PAN-DETA-Ct-Gel NFs membrane showed good cell morphology, proliferation, viability, and antibacterial activity compared with other membranes. This new class of ML NFs membranes offers a multifunctional architecture with adequate biocompatibility, cell viability, and antibacterial activity.
Collapse
Affiliation(s)
- Rawaiz Khan
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 UTM Skudai, Johor Bahru, Johor, Malaysia
| | - Sajjad Haider
- Department of Chemical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia; King Salman Center for Disability Research, Riyadh 11614, Saudi Arabia.
| | - Muhammad Umar Aslam Khan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Adnan Haider
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Punjab, Pakistan
| | - Saiful Izwan Abd Razak
- Sports Innovation & Technology Centre, Institute of Human Centred Engineering, Universiti Teknologi Malaysia, 81300 Skudai, Johor, Malaysia; BioInspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, 81300 Skudai, Johor, Malaysia.
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Raees Khan
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Punjab, Pakistan
| | - Mat Uzir Wahit
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 UTM Skudai, Johor Bahru, Johor, Malaysia; Center for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia (UTM), 81310 UTM Skudai, Johor Bahru, Johor, Malaysia
| |
Collapse
|
18
|
Cui Y, Li L, Liu C, Wang Y, Sun M, Jia B, Shen Z, Sheng X, Deng Y. Water-Responsive 3D Electronics for Smart Biological Interfaces. NANO LETTERS 2023; 23:11693-11701. [PMID: 38018768 DOI: 10.1021/acs.nanolett.3c03394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Three-dimensional (3D) electronic systems with their potential for enhanced functionalities often require complex fabrication processes. This paper presents a water-based, stimuli-responsive approach for creating self-assembled 3D electronic systems, particularly suited for biorelated applications. We utilize laser scribing to programmatically shape a water-responsive bilayer, resulting in smart 3D electronic substrates. Control over the deformation direction, actuation time, and surface curvature of rolling structures is achieved by adjusting laser-scribing parameters, as validated through experiments and numerical simulations. Additionally, self-locking structures maintain the integrity of the 3D systems. This methodology enables the implementation of spiral twining electrodes for electrophysiological signal monitoring in plants. Furthermore, the integration of self-rolling electrodes onto peripheral nerves in a rodent model allows for stimulation and recording of in vivo neural activities with excellent biocompatibility. These innovations provide viable paths to next-generation 3D biointegrated electronic systems for life science studies and medical applications.
Collapse
Affiliation(s)
- Yuanyuan Cui
- Research Institute for Frontier Science, Beihang University, Beijing 100191, China
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou 310051, China
| | - Lizhu Li
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Changbo Liu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou 310051, China
| | - Yuqi Wang
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Mengwei Sun
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Ben Jia
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Zhangming Shen
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Yuan Deng
- Research Institute for Frontier Science, Beihang University, Beijing 100191, China
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou 310051, China
| |
Collapse
|
19
|
Ghafouri Azar M, Wiesnerova L, Dvorakova J, Chocholata P, Moztarzadeh O, Dejmek J, Babuska V. Optimizing PCL/PLGA Scaffold Biocompatibility Using Gelatin from Bovine, Porcine, and Fish Origin. Gels 2023; 9:900. [PMID: 37998990 PMCID: PMC10670940 DOI: 10.3390/gels9110900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/07/2023] [Accepted: 11/11/2023] [Indexed: 11/25/2023] Open
Abstract
This research introduces a novel approach by incorporating various types of gelatins, including bovine, porcine, and fish skin, into polycaprolactone and poly (lactic-co-glycolic acid) using a solvent casting method. The films are evaluated for morphology, mechanical properties, thermal stability, biodegradability, hemocompatibility, cell adhesion, proliferation, and cytotoxicity. The results show that the incorporation of gelatins into the films alters their mechanical properties, with a decrease in tensile strength but an increase in elongation at break. This indicates that the films become more flexible with the addition of gelatin. Gelatin incorporation has a limited effect on the thermal stability of the films. The composites with the gelatin show higher biodegradability with the highest weight loss in the case of fish gelatin. The films exhibit high hemocompatibility with minimal hemolysis observed. The gelatin has a dynamic effect on cell behavior and promotes long-term cell proliferation. In addition, all composite films reveal exceptionally low levels of cytotoxicity. The combination of the evaluated parameters shows the appropriate level of biocompatibility for gelatin-based samples. These findings provide valuable insights for future studies involving gelatin incorporation in tissue engineering applications.
Collapse
Affiliation(s)
- Mina Ghafouri Azar
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic; (M.G.A.); (L.W.); (J.D.); (P.C.)
| | - Lucie Wiesnerova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic; (M.G.A.); (L.W.); (J.D.); (P.C.)
| | - Jana Dvorakova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic; (M.G.A.); (L.W.); (J.D.); (P.C.)
| | - Petra Chocholata
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic; (M.G.A.); (L.W.); (J.D.); (P.C.)
| | - Omid Moztarzadeh
- Department of Stomatology, University Hospital Pilsen, Faculty of Medicine in Pilsen, Charles University, alej Svobody 80, 304 60 Pilsen, Czech Republic;
| | - Jiri Dejmek
- Department of Biophysics, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic;
| | - Vaclav Babuska
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic; (M.G.A.); (L.W.); (J.D.); (P.C.)
| |
Collapse
|
20
|
Wu X, Ni S, Dai T, Li J, Shao F, Liu C, Wang J, Fan S, Tan Y, Zhang L, Jiang Q, Zhao H. Biomineralized tetramethylpyrazine-loaded PCL/gelatin nanofibrous membrane promotes vascularization and bone regeneration of rat cranium defects. J Nanobiotechnology 2023; 21:423. [PMID: 37964381 PMCID: PMC10644548 DOI: 10.1186/s12951-023-02155-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023] Open
Abstract
Conventional electrospinning produces nanofibers with smooth surfaces that limit biomineralization ability. To overcome this disadvantage, we fabricated a tetramethylpyrazine (TMP)-loaded matrix-mimicking biomineralization in PCL/Gelatin composite electrospun membranes with bubble-shaped nanofibrous structures. PCL/Gelatin membranes (PG), PCL/Gelatin membranes containing biomineralized hydroxyapatite (HA) (PGH), and PCL/Gelatin membranes containing biomineralized HA and loaded TMP (PGHT) were tested. In vitro results indicated that the bubble-shaped nanofibrous surface increased the surface roughness of the nanofibers and promoted mineralization. Furthermore, sustained-release TMP had an excellent drug release efficiency. Initially released vigorously, it reached stabilization at day 7, and the slow-release rate stabilized at 61.0 ± 1.8% at 28 days. All membranes revealed an intact cytoskeleton, cell viability, and superior adhesion and proliferation when stained with Ghost Pen Cyclic Peptide, CCK-8, cell adhesion, and EdU. In PGHT membranes, the osteogenic and vascularized gene expression of BMSCs and human vascular endothelial cells was significantly upregulated compared with that in other groups, indicating the PGHT membranes exhibited an effective vascularization role. Subsequently, the membranes were implanted in a rat cranium defect model for 4 and 8 weeks. Micro-CT and histological analysis results showed that the PGHT membranes had better bone regenerative patterns. Additionally, the levels of CD31 and VEGF significantly increased in the PGHT membrane compared with those in other membranes. Thus, PGHT membranes could accelerate the repair of cranium defects in vivo via HA and TMP synergistic effects.
Collapse
Affiliation(s)
- Xiaoyu Wu
- Laboratory of 3D Printing and Regeneration Medicine, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213164, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213164, China
| | - Su Ni
- Laboratory of 3D Printing and Regeneration Medicine, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213164, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213164, China
| | - Ting Dai
- Laboratory of 3D Printing and Regeneration Medicine, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213164, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213164, China
| | - Jingyan Li
- Laboratory of 3D Printing and Regeneration Medicine, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213164, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213164, China
| | - Fang Shao
- Laboratory of 3D Printing and Regeneration Medicine, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213164, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213164, China
| | - Chun Liu
- Laboratory of 3D Printing and Regeneration Medicine, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213164, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213164, China
| | - Jiafeng Wang
- Laboratory of 3D Printing and Regeneration Medicine, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213164, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213164, China
| | - Shijie Fan
- Laboratory of 3D Printing and Regeneration Medicine, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213164, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213164, China
| | - Yadong Tan
- Laboratory of 3D Printing and Regeneration Medicine, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213164, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213164, China
| | - Linxiang Zhang
- Laboratory of 3D Printing and Regeneration Medicine, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213164, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213164, China
- Orthopedic Center of Nanjing Jiangbei Hospital, Nanjiang, 210048, China
| | - Qiting Jiang
- Orthopedic Center of Nanjing Jiangbei Hospital, Nanjiang, 210048, China.
| | - Hongbin Zhao
- Laboratory of 3D Printing and Regeneration Medicine, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213164, China.
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213164, China.
| |
Collapse
|
21
|
Doostmohammadi M, Niknezhad SV, Forootanfar H, Ghasemi Y, Jafari E, Adeli-Sardou M, Amirsadeghi A, Ameri A. Development of Ag NPs/allantoin loaded PCL/GEL electrospun nanofibers for topical wound treatment. J Biomater Appl 2023; 38:692-706. [PMID: 37905355 DOI: 10.1177/08853282231212605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
In the present study, the allantoin and silver nanoparticle (Ag NPs) loaded poly caprolactone/gelatin (PCL/GEL) nanofibers produced using electrospinning technique and their cyto-compatibility and wound healing activity were evaluated in vitro and in vivo. The SEM imaging revealed diameters of 278.8 ± 10 and 240.6 ± 12 nm for PCL/GEL/Ag NPs and PCL/GEL/Ag NPs/allantoin scaffolds. The Ag NPs entrapment into scaffolds was evaluated by FTIR analysis and EDX mapping. Both scaffolds containing Ag NPs and Ag NPs/allantoin exhibited valuable wound healing activity in Wistar rat animal model. The profound granulation tissue formation, high collagen deposition in coordination with low level of edema and inflammatory cells in Ag NPs/allantoin loaded scaffolds resulted in complete and mature re-epithelialization in giving the healing score (12 out of 12) equal to positive control group to the wounds treated with these scaffolds. It was concluded that the Ag NPs/allantoin loaded scaffolds regarding to their good antibacterial activity and excellent wound healing activity could be introduced as new effective wound dressing materials.
Collapse
Affiliation(s)
- Mohsen Doostmohammadi
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyyed Vahid Niknezhad
- Department of Cell and Tissue Biology, Program in Craniofacial Biology, University of California, San Francisco, CA, USA
| | - Hamid Forootanfar
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Jafari
- Department of Pathology, Pathology and Stem Cell Research Center, School of Medicine, Kerman University of Medical Science, Kerman, Iran
| | - Mahboubeh Adeli-Sardou
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Armin Amirsadeghi
- Department of Cell and Tissue Biology, Program in Craniofacial Biology, University of California, San Francisco, CA, USA
| | - Alieh Ameri
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
22
|
Singh D, Arora S, Arora V. A Short Appraisal of Biomimetic Hydrogels to Improve Penetration of Poorly Permeable Drugs. Assay Drug Dev Technol 2023; 21:374-384. [PMID: 38010949 DOI: 10.1089/adt.2023.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Effective drug delivery to target sites is critical for achieving desired therapeutic outcomes. However, the poor permeability of certain drugs poses significant challenges in achieving adequate drug concentrations at the desired locations. Biomimetic hydrogels have emerged as a promising approach to enhance the penetration of poorly permeable drugs. These hydrogels, designed to mimic natural biological systems, offer unique properties and functionalities that enable improved drug permeation. In this review, we provide a comprehensive appraisal of the role of biomimetic hydrogels in enhancing drug penetration. We discuss the design principles, properties, and mechanisms by which these hydrogels facilitate drug permeation. Specifically, we explore the applications and benefits of biomimetic hydrogels in controlled drug release, mimicking extracellular matrix microenvironments, promoting cell-mimetic interactions, and enabling targeted drug delivery. Through an examination of key studies and advancements, we highlight the potential of biomimetic hydrogels in enhancing drug penetration and their implications for therapeutic interventions. This review contributes to a deeper understanding of biomimetic hydrogels as a promising strategy for overcoming drug penetration challenges and advancing drug delivery systems, ultimately leading to improved therapeutic efficacy.
Collapse
Affiliation(s)
- Dilpreet Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, India
| | - Sahil Arora
- School of Medical and Allied Sciences, GD Goenka University, Sohna, India
| | - Vimal Arora
- University Institute of Pharma Sciences, Chandigarh University, Mohali, India
| |
Collapse
|
23
|
Bai BMY, Wang TT, Chen XA, Wu CC. Pathogen inhibition and indication by gelatin nonwoven mats with incorporation of polyphenol derivatives. RSC Adv 2023; 13:31602-31615. [PMID: 37908665 PMCID: PMC10613854 DOI: 10.1039/d3ra05905g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
There is a need for non-pharmaceutical intervention methods that can prevent and indicate the risk of airborne disease spread. In this study, we developed a nonwoven mat based on the polyphenol gallic acid, which can inhibit pathogens growth and also indicate pathogen levels in the surrounding environment. Using nuclear magnetic resonance, Fourier-transform infrared spectroscopy, and high-performance liquid chromatography, we characterized this novel gelatin-based nonwoven mat and investigated the mechanism governing its ability to indicate pathogen levels. We demonstrated that the incorporation of gallic acid serves a vital role in indicating the presence of bacteria, causing the nonwoven mat to change in color from white to brown. We have proposed a plausible mechanism for this color change behavior based on a reaction of gallic acid with components excreted by bacteria, including glutamate, valine, and leucine. The concentrations of these components reflect the bacterial counts, enabling a real-time indication of pathogen levels in the surrounding air. In summary, the nonwoven mat presented herein can serve as an excellent antibacterial agent and as an indicator of nearby bacteria for fabricating personal protection equipment like filtration mask.
Collapse
Affiliation(s)
- By Meng-Yi Bai
- Graduate Institute of Biomedical Engineering and Biomedical Engineering Program, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology TR-917, AAEON Building, No. 43, Keelung Rd., Sec. 4, Da'an Dist. Taipei City 10607 Taiwan Republic of China
- Adjunct Appointment to the National Defense Medical Center Taipei 11490 Taiwan Republic of China
| | - Ting-Teng Wang
- Graduate Institute of Biomedical Engineering and Biomedical Engineering Program, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology TR-917, AAEON Building, No. 43, Keelung Rd., Sec. 4, Da'an Dist. Taipei City 10607 Taiwan Republic of China
| | - Xin-An Chen
- Institute of Prevention Medicine, National Defense Medical Center Taipei 11490 Taiwan Republic of China
| | - Chia-Chun Wu
- Institute of Prevention Medicine, National Defense Medical Center Taipei 11490 Taiwan Republic of China
| |
Collapse
|
24
|
Ghaedamini S, Karbasi S, Hashemibeni B, Honarvar A, Rabiei A. PCL/Agarose 3D-printed scaffold for tissue engineering applications: fabrication, characterization, and cellular activities. Res Pharm Sci 2023; 18:566-579. [PMID: 37842514 PMCID: PMC10568963 DOI: 10.4103/1735-5362.383711] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/10/2023] [Accepted: 07/15/2023] [Indexed: 10/17/2023] Open
Abstract
Background and purpose Biomaterials, scaffold manufacturing, and design strategies with acceptable mechanical properties are the most critical challenges facing tissue engineering. Experimental approach In this study, polycaprolactone (PCL) scaffolds were fabricated through a novel three-dimensional (3D) printing method. The PCL scaffolds were then coated with 2% agarose (Ag) hydrogel. The 3D-printed PCL and PCL/Ag scaffolds were characterized for their mechanical properties, porosity, hydrophilicity, and water absorption. The construction and morphology of the printed scaffolds were evaluated via Fourier-Transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The attachment and proliferation of L929 cells cultured on the scaffolds were investigated through MTT assay on the cell culture study upon the 1st, 3rd, and 7th days. Findings/Results The incorporation of Ag hydrogel with PCL insignificantly decreased the mechanical strength of the scaffold. The presence of Ag enhanced the hydrophilicity and water absorption of the scaffolds, which could positively influence their cell behavior compared to the PCL scaffolds. Regarding cell morphology, the cells on the PCL scaffolds had a more rounded shape and less cell spreading, representing poor cell attachment and cell-scaffold interaction due to the hydrophobic nature of PCL. Conversely, the cells on the PCL/Ag scaffolds were elongated with a spindle-shaped morphology indicating a positive cell-scaffold interaction. Conclusion and implications PCL/Ag scaffolds can be considered appropriate for tissue-engineering applications.
Collapse
Affiliation(s)
- Sho’leh Ghaedamini
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeed Karbasi
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Batool Hashemibeni
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Honarvar
- Cellular and Molecular Research Center, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Abbasali Rabiei
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
25
|
Mahmoud AH, Han Y, Dal-Fabbro R, Daghrery A, Xu J, Kaigler D, Bhaduri SB, Malda J, Bottino MC. Nanoscale β-TCP-Laden GelMA/PCL Composite Membrane for Guided Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2023; 15:32121-32135. [PMID: 37364054 PMCID: PMC10982892 DOI: 10.1021/acsami.3c03059] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Major advances in the field of periodontal tissue engineering have favored the fabrication of biodegradable membranes with tunable physical and biological properties for guided bone regeneration (GBR). Herein, we engineered innovative nanoscale beta-tricalcium phosphate (β-TCP)-laden gelatin methacryloyl/polycaprolactone (GelMA/PCL-TCP) photocrosslinkable composite fibrous membranes via electrospinning. Chemo-morphological findings showed that the composite microfibers had a uniform porous network and β-TCP particles successfully integrated within the fibers. Compared with pure PCL and GelMA/PCL, GelMA/PCL-TCP membranes led to increased cell attachment, proliferation, mineralization, and osteogenic gene expression in alveolar bone-derived mesenchymal stem cells (aBMSCs). Moreover, our GelMA/PCL-TCP membrane was able to promote robust bone regeneration in rat calvarial critical-size defects, showing remarkable osteogenesis compared to PCL and GelMA/PCL groups. Altogether, the GelMA/PCL-TCP composite fibrous membrane promoted osteogenic differentiation of aBMSCs in vitro and pronounced bone formation in vivo. Our data confirmed that the electrospun GelMA/PCL-TCP composite has a strong potential as a promising membrane for guided bone regeneration.
Collapse
Affiliation(s)
- Abdel H Mahmoud
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yuanyuan Han
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, 999077 Hong Kong, China
| | - Renan Dal-Fabbro
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Arwa Daghrery
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Restorative Dental Sciences, School of Dentistry, Jazan University, Jazan 45142, Kingdom of Saudi Arabia
| | - Jinping Xu
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Darnell Kaigler
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sarit B Bhaduri
- Department of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, Toledo, Ohio 43606-3390, United States
- EEC Division, Directorate of Engineering, The National Science Foundation, Alexandria, Virginia 22314, United States
| | - Jos Malda
- Regenerative Medicine Center Utrecht, 3584 CT Utrecht, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3508 TC Utrecht, the Netherlands
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Ut Utrecht, The Netherlands
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
26
|
Lu X, Jiao H, Shi Y, Li Y, Zhang H, Fu Y, Guo J, Wang Q, Liu X, Zhou M, Ullah MW, Sun J, Liu J. Fabrication of bio-inspired anisotropic structures from biopolymers for biomedical applications: A review. Carbohydr Polym 2023; 308:120669. [PMID: 36813347 DOI: 10.1016/j.carbpol.2023.120669] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
The anisotropic features play indispensable roles in regulating various life activities in different organisms. Increasing efforts have been made to learn and mimic various tissues' intrinsic anisotropic structure or functionality for broad applications in different areas, especially in biomedicine and pharmacy. This paper discusses the strategies for fabricating biomaterials using biopolymers for biomedical applications with the case study analysis. Biopolymers, including different polysaccharides, proteins, and their derivates, that have been confirmed with sound biocompatibility for different biomedical applications are summarized, with a special focus on nanocellulose. Advanced analytical techniques for understanding and characterizing the biopolymer-based anisotropic structures for various biomedical applications are also summarized. Challenges still exist in precisely constructing biopolymers-based biomaterials with anisotropic structures from molecular to macroscopic levels and fitting the dynamic processes in native tissue. It is foreseeable that with the advancement of biopolymers' molecular functionalization, biopolymer building block orientation manipulation strategies, and structural characterization techniques, developing anisotropic biopolymer-based biomaterials for different biomedical applications would significantly contribute to a friendly disease-curing and healthcare experience.
Collapse
Affiliation(s)
- Xuechu Lu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Haixin Jiao
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Yifei Shi
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Yan Li
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Hongxing Zhang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Yinyi Fu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Jiaqi Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Qianqian Wang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Xiang Liu
- Institute of Medicine & Chemical Engineering, Zhenjiang College, Zhenjiang 212028, China
| | - Mengbo Zhou
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Jun Liu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| |
Collapse
|
27
|
Huo Y, Bai B, Zheng R, Sun Y, Yu Y, Wang X, Chen H, Hua Y, Zhang Y, Zhou G, Wang X. In Vivo Stable Allogenic Cartilage Regeneration in a Goat Model Based on Immunoisolation Strategy Using Electrospun Semipermeable Membranes. Adv Healthc Mater 2023; 12:e2203084. [PMID: 36789972 PMCID: PMC11469122 DOI: 10.1002/adhm.202203084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/13/2023] [Indexed: 02/16/2023]
Abstract
Tissue engineering is a promising strategy for cartilage defect repair. However, autologous cartilage regeneration is limited by additional trauma to the donor site and a long in vitro culture period. Alternatively, allogenic cartilage regeneration has attracted attention because of the unique advantages of an abundant donor source and immediate supply, but it will cause immune rejection responses (IRRs), especially in immunocompetent large animals. Therefore, a universal technique needs to be established to overcome IRRs for allogenic cartilage regeneration in large animals. In the current study, a hybrid synthetic-natural electrospun thermoplastic polyurethane/gelatin (TPU/GT) semipermeable membrane to explore the feasibility of stable allogenic cartilage regeneration by an immunoisolation strategy is developed. In vitro results demonstrated that the rationally designed electrospun TPU/GT membranes has ideal biocompatibility, semipermeability, and an immunoisolation function. In vivo results further showed that the semipermeable membrane (SPM) efficiently blocked immune cell attack, decreased immune factor production, and cell apoptosis of the regenerated allogenic cartilage. Importantly, TPU/GT-encapsulated cartilage-sheet constructs achieved stable allogeneic cartilage regeneration in a goat model. The current study provides a novel strategy for allogenic cartilage regeneration and supplies a new cartilage donor source to repair various cartilage defects.
Collapse
Affiliation(s)
- Yingying Huo
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Key Laboratory of Tissue EngineeringShanghai200011PR China
- National Tissue Engineering Center of ChinaShanghai200241PR China
| | - Baoshuai Bai
- Research Institute of Plastic SurgeryWeifang Medical UniversityWeifangShandong261053PR China
| | - Rui Zheng
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Key Laboratory of Tissue EngineeringShanghai200011PR China
- National Tissue Engineering Center of ChinaShanghai200241PR China
| | - Yuyan Sun
- Research Institute of Plastic SurgeryWeifang Medical UniversityWeifangShandong261053PR China
| | - Yao Yu
- Research Institute of Plastic SurgeryWeifang Medical UniversityWeifangShandong261053PR China
| | - Xin Wang
- Department of Plastic SurgeryTongren HospitalShanghai Jiao Tong University School of MedicineShanghai Key Laboratory of Tissue EngineeringShanghai200050PR China
- Department of Hand SurgeryNingbo Sixth HospitalNingboZhejiang315042PR China
| | - Hong Chen
- Department of Hand SurgeryNingbo Sixth HospitalNingboZhejiang315042PR China
| | - Yujie Hua
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Key Laboratory of Tissue EngineeringShanghai200011PR China
- National Tissue Engineering Center of ChinaShanghai200241PR China
- Institute of Regenerative Medicine and OrthopedicsInstitutes of Health Central PlainXinxiang Medical UniversityXinxiangHenan453003PR China
| | - Yixin Zhang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Key Laboratory of Tissue EngineeringShanghai200011PR China
- National Tissue Engineering Center of ChinaShanghai200241PR China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Key Laboratory of Tissue EngineeringShanghai200011PR China
- National Tissue Engineering Center of ChinaShanghai200241PR China
- Research Institute of Plastic SurgeryWeifang Medical UniversityWeifangShandong261053PR China
- Institute of Regenerative Medicine and OrthopedicsInstitutes of Health Central PlainXinxiang Medical UniversityXinxiangHenan453003PR China
| | - Xiaoyun Wang
- Department of Plastic SurgeryTongren HospitalShanghai Jiao Tong University School of MedicineShanghai Key Laboratory of Tissue EngineeringShanghai200050PR China
- Department of Hand SurgeryNingbo Sixth HospitalNingboZhejiang315042PR China
| |
Collapse
|
28
|
Jackson CE, Ramos-Rodriguez DH, Farr NTH, English WR, Green NH, Claeyssens F. Development of PCL PolyHIPE Substrates for 3D Breast Cancer Cell Culture. Bioengineering (Basel) 2023; 10:bioengineering10050522. [PMID: 37237592 DOI: 10.3390/bioengineering10050522] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/12/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Cancer is a becoming a huge social and economic burden on society, becoming one of the most significant barriers to life expectancy in the 21st century. In particular, breast cancer is one of the leading causes of death for women. One of the most significant difficulties to finding efficient therapies for specific cancers, such as breast cancer, is the efficiency and ease of drug development and testing. Tissue-engineered (TE) in vitro models are rapidly developing as an alternative to animal testing for pharmaceuticals. Additionally, porosity included within these structures overcomes the diffusional mass transfer limit whilst enabling cell infiltration and integration with surrounding tissue. Within this study, we investigated the use of high-molecular-weight polycaprolactone methacrylate (PCL-M) polymerised high-internal-phase emulsions (polyHIPEs) as a scaffold to support 3D breast cancer (MDA-MB-231) cell culture. We assessed the porosity, interconnectivity, and morphology of the polyHIPEs when varying mixing speed during formation of the emulsion, successfully demonstrating the tunability of these polyHIPEs. An ex ovo chick chorioallantoic membrane assay identified the scaffolds as bioinert, with biocompatible properties within a vascularised tissue. Furthermore, in vitro assessment of cell attachment and proliferation showed promising potential for the use of PCL polyHIPEs to support cell growth. Our results demonstrate that PCL polyHIPEs are a promising material to support cancer cell growth with tuneable porosity and interconnectivity for the fabrication of perfusable 3D cancer models.
Collapse
Affiliation(s)
- Caitlin E Jackson
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK
- Insigneo Institute for In Silico Medicine, The Pam Liversidge Building, University of Sheffield, Sheffield S1 3JD, UK
| | | | - Nicholas T H Farr
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK
- Insigneo Institute for In Silico Medicine, The Pam Liversidge Building, University of Sheffield, Sheffield S1 3JD, UK
| | - William R English
- Norwich Medical School, University of East Anglia, Norwich NR3 7TJ, UK
| | - Nicola H Green
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK
- Insigneo Institute for In Silico Medicine, The Pam Liversidge Building, University of Sheffield, Sheffield S1 3JD, UK
| | - Frederik Claeyssens
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK
- Insigneo Institute for In Silico Medicine, The Pam Liversidge Building, University of Sheffield, Sheffield S1 3JD, UK
| |
Collapse
|
29
|
Chen J, Rong F, Xie Y. Fabrication, Microstructures and Sensor Applications of Highly Ordered Electrospun Nanofibers: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093310. [PMID: 37176192 PMCID: PMC10179621 DOI: 10.3390/ma16093310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
The review summarizes the fabrication, microstructures, and sensor applications of highly ordered electrospun nanofibers. In the traditional electrospinning process, electrospun nanofibers usually have disordered or random microstructures due to the chaotic oscillation of the electrospinning jet. Different electrospinning methods can be formed by introducing external forces, such as magnetic, electric, or mechanical forces, and ordered nanofibers can be collected. The microstructures of highly ordered nanofibers can be divided into three categories: uniaxially ordered nanofibers, biaxially ordered nanofibers and ordered scaffolds. The three microstructures are each characterized by being ordered in different dimensions. The regulation and control of the ordered microstructures can promote electrospun nanofibers' mechanical and dielectric strength, surface area and chemical properties. Highly ordered electrospun nanofibers have more comprehensive applications than disordered nanofibers do in effect transistors, gas sensors, reinforced composite materials and tissue engineering. This review also intensively summarizes the applications of highly ordered nanofibers in the sensor field, such as pressure sensors, humidity sensors, strain sensors, gas sensors, and biosensors.
Collapse
Affiliation(s)
- Jing Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- Southeast University-Monash University Joint Graduate School (Suzhou), Suzhou 215123, China
| | - Fei Rong
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 211189, China
| | - Yibing Xie
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
30
|
Singh A, Muduli C, Senanayak SP, Goswami L. Graphite nanopowder incorporated xanthan gum scaffold for effective bone tissue regeneration purposes with improved biomineralization. Int J Biol Macromol 2023; 234:123724. [PMID: 36801298 DOI: 10.1016/j.ijbiomac.2023.123724] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
In the current work, biomaterial composed of Xanthan gum and Diethylene glycol dimethacrylate with impregnation of graphite nanopowder filler in their matrices was fabricated successfully for their potential usage in the engineering of bone defects. Various physicochemical properties associated with the biomaterial were characterized using FTIR, XRD, TGA, SEM etc. The biomaterial rheological studies imparted the better notable properties associated with the inclusion of graphite nanopowder. The biomaterial synthesized exhibited a controlled drug release. Adhesion and proliferation of different secondary cell lines do not generate ROS on the current biomaterial and thus show its biocompatibility and non-toxic nature. The synthesized biomaterial's osteogenic potential on SaOS-2 cells was supported by increased ALP activity, enhanced differentiation and biomineralization under osteoinductive circumstances. The current biomaterial demonstrates that in addition to the drug-delivery applications, it can also be a cost-effective substrate for cellular activities and has all the necessary properties to be considered as a promising alternative material suitable for repairing and restoring bone tissues. We propose that this biomaterial may have commercial importance in the biomedical field.
Collapse
Affiliation(s)
- Abhishek Singh
- School of Biotechnology, KIIT Deemed to be University, Patia, Bhubaneswar 751024, India
| | - Chinmayee Muduli
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751002, India
| | - Satyaprasad P Senanayak
- Nanoelectronics and Device Physics Lab, School of Physical Science, National Institute of Science Education and Research, An OCC of HBNI, Jatni 752050, India
| | - Luna Goswami
- School of Biotechnology, KIIT Deemed to be University, Patia, Bhubaneswar 751024, India; School of Chemical Technology, KIIT Deemed to be University, Patia, Bhubaneswar 751024, India.
| |
Collapse
|
31
|
Biocompatible pectin-functionalised-halloysite loaded poly(vinyl alcohol) nanocomposite films for tissue engineering applications. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
32
|
Afshar A, Gultekinoglu M, Edirisinghe M. Binary polymer systems for biomedical applications. INTERNATIONAL MATERIALS REVIEWS 2023; 68:184-224. [DOI: 10.1080/09506608.2022.2069451] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 04/08/2022] [Indexed: 01/06/2025]
Affiliation(s)
- Ayda Afshar
- Department of Mechanical Engineering, University College London, London, UK
| | - Merve Gultekinoglu
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, London, UK
| |
Collapse
|
33
|
Yu Q, Shen C, Wang X, Wang Z, Liu L, Zhang J. Graphene Oxide/Gelatin Nanofibrous Scaffolds Loaded with N-Acetyl Cysteine for Promoting Wound Healing. Int J Nanomedicine 2023; 18:563-578. [PMID: 36756050 PMCID: PMC9900644 DOI: 10.2147/ijn.s392782] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/03/2023] [Indexed: 02/05/2023] Open
Abstract
Purpose We aimed to develop an antioxidant dressing material with pro-angiogenic potential that could promote wound healing. Gelatin (Gel) was selected to improve the biocompatibility of the scaffolds, while graphene oxide (GO) was added to enhance their mechanical property. The loaded N-Acetyl cysteine (NAC) was performing the effect of scavenging reactive oxygen species (ROS) at the wound site. Materials and Methods The physicochemical and mechanical properties, NAC releases, and biocompatibility of the NAC-GO-Gel scaffolds were evaluated in vitro. The regeneration capability of the scaffolds was systemically investigated in vivo using the excisional wound-splinting model in mice. Results The NAC-GO-Gel scaffold had a stronger mechanical property and sustainer NAC release ability than the single Gel scaffold, which resulted in a better capacity for cell proliferation and migration. Mice wound-splinting models revealed that the NAC-GO-Gel scaffold effectively accelerated wound healing, promoted re-epithelialization, enhanced neovascularization, and reduced scar formation. Conclusion The NAC-GO-Gel scaffold not only promotes wound healing but also reduces scar formation, showing a great potential application for the repair of skin defects.
Collapse
Affiliation(s)
- Qian Yu
- Research Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, People’s Republic of China
| | - Chentao Shen
- Department of Gastrointestinal Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China,Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Xiangsheng Wang
- Department of Plastic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
| | - Zhenxing Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, People’s Republic of China
| | - Lu Liu
- Department of Gastrointestinal Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China,Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Jufang Zhang
- Department of Plastic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China,Correspondence: Jufang Zhang; Lu Liu, Tel +86-18800293916; +86-13476226821, Fax +86-571-87914773; +86-27-83662640, Email ;
| |
Collapse
|
34
|
Rajora AD, Bal T. Evaluating neem gum-polyvinyl alcohol (NGP-PVA) blend nanofiber mat as a novel platform for wound healing in murine model. Int J Biol Macromol 2023; 226:760-771. [PMID: 36493923 DOI: 10.1016/j.ijbiomac.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Modern-day treatment demands scarless wound healing utilizing scaffolds in the form of nanofiber mats which are tissue and environment-friendly. Neem gum polysaccharide (NGP) in conjugation with Polyvinyl alcohol (PVA) in the form of nanofibers exhibits antimicrobial properties mimicking extracellular matrix for tissue growth. Different grades of nanofibers mats (NFM) were prepared by combining different ratios of NGP and PVA which were later crosslinked using glutaraldehyde vapors (25 % w/v in 0.5 M HCl), and optimized grade G14 exhibited maximum tensile strength with smooth surface morphology, hemocompatible properties, in-vitro biodegradability and antimicrobial action against S. aureus & E. coli. G14 was analytically characterized using different analytical techniques viz. Fourier-transform infrared spectroscopy (FTIR), Thermogravimetric analysis (TGA), which indicated polymer-polymer compatibility. The surface hydrophobicity as detected using Optical contact angle (OCA) confirmed the hydrophobicity of NFM with increased glutaraldehyde vapor for crosslinking when compared to non-crosslinked NFM. Histopathology slides indicated G14 CL-NFM accelerated the wound healing in mice with dense collagen and fibroblasts when compared to control mice suggesting the tissue engineering potential of the prepared device.
Collapse
Affiliation(s)
- Aditya Dev Rajora
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Trishna Bal
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India.
| |
Collapse
|
35
|
Chen Y, Lock J, Liu HH. Nanocomposites for cartilage regeneration. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00018-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
36
|
Cho W, Park Y, Jung YM, Park JH, Park J, Yoo HS. Electrospun Nanofibrils Surface-Decorated with Photo-Cross-Linked Hyaluronic Acid for Cell-Directed Assembly. ACS OMEGA 2022; 7:40355-40363. [PMID: 36385880 PMCID: PMC9647879 DOI: 10.1021/acsomega.2c05322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Hyaluronic acid (HA) was chemically immobilized on the surface of electrospun nanofibrils to form a cell/NF complex. Poly(caprolactone) (PCL) was electrospun into nanofibrous mats that were subsequently aminolyzed into nanofibrils. The aminolyzed nanofibrils were surface-decorated with methacrylated HA via Michael type addtion and by photo-cross-linking. Fourier transform infrared spectroscopy revealed the presence of HA on the surface of the nanofibrils. The thermogravimetric and colorimetric analyses indicate that the degree of HA immobilization could be varied by varying the photo-cross-linking duration. Thus, on increasing the photo-cross-linking duration, the swelling ratios increased gradually, and the surface charge of the decorated nanofibrils decreased. NIH3T3 cells and surface-decorated nanofibrils spontaneously assembled into the cell/NF complex. A higher degree of surface-immobilized HA enhanced cell viability and proliferation compared to nanofibrils without surface-immobilized HA. Thus, we envision that HA-immobilized nanofibrils can be employed as a tissue-engineering matrix to control cell proliferation and differentiation.
Collapse
Affiliation(s)
- Wanho Cho
- Department
of Medical Biomaterials Engineering, Kangwon
National University, Chuncheon 24341, Republic of Korea
| | - Yeonju Park
- Kangwon
Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Young Mee Jung
- Kangwon
Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea
- Department
of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
- KIIT, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ju Hyun Park
- Department
of Medical Biomaterials Engineering, Kangwon
National University, Chuncheon 24341, Republic of Korea
- KIIT, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jongmin Park
- Department
of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
- KIIT, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyuk Sang Yoo
- Department
of Medical Biomaterials Engineering, Kangwon
National University, Chuncheon 24341, Republic of Korea
- Kangwon
Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea
- KIIT, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
37
|
Su Q, Huang Y, Wei Z, Zhu C, Zeng W, Wang S, Long S, Zhang G, Yang J, Wang X. A novel multi-gradient PASS nanofibrous membranes with outstanding particulate matter removal efficiency and excellent antimicrobial property. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Brudnicki PAP, Gonsalves MA, Spinella SM, Kaufman LJ, Lu HH. Engineering collagenous analogs of connective tissue extracellular matrix. Front Bioeng Biotechnol 2022; 10:925838. [PMID: 36312546 PMCID: PMC9613959 DOI: 10.3389/fbioe.2022.925838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Connective tissue extracellular matrix (ECM) consists of an interwoven network of contiguous collagen fibers that regulate cell activity, direct biological function, and guide tissue homeostasis throughout life. Recently, ECM analogs have emerged as a unique ex vivo culture platform for studying healthy and diseased tissues and in the latter, enabling the screening for and development of therapeutic regimen. Since these tissue models can mitigate the concern that observations from animal models do not always translate clinically, the design and production of a collagenous ECM analogue with relevant chemistry and nano- to micro-scale architecture remains a frontier challenge in the field. Therefore, the objectives of this study are two-fold— first, to apply green electrospinning approaches to the fabrication of an ECM analog with nanoscale mimicry and second, to systematically optimize collagen crosslinking in order to produce a stable, collagen-like substrate with continuous fibrous architecture that supports human cell culture and phenotypic expression. Specifically, the “green” electrospinning solvent acetic acid was evaluated for biofabrication of gelatin-based meshes, followed by the optimization of glutaraldehyde (GTA) crosslinking under controlled ambient conditions. These efforts led to the production of a collagen-like mesh with nano- and micro-scale cues, fibrous continuity with little batch-to-batch variability, and proven stability in both dry and wet conditions. Moreover, the as-fabricated mesh architecture and native chemistry were preserved with augmented mechanical properties. These meshes supported the in vitro expansion of stem cells and the production of a mineralized matrix by human osteoblast-like cells. Collectively these findings demonstrate the potential of green fabrication in the production of a collagen-like ECM analog with physiological relevance. Future studies will explore the potential of this high-fidelity platform for elucidating cell-matrix interactions and their relevance in connective tissue healing.
Collapse
Affiliation(s)
- Philip A. P. Brudnicki
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Matthew A. Gonsalves
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | | | - Laura J. Kaufman
- Department of Chemistry, Columbia University, New York, NY, United States
| | - Helen H. Lu
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, United States
- *Correspondence: Helen H. Lu,
| |
Collapse
|
39
|
Shanbehzadeh F, Saei-Dehkordi SS, Semnani D. Fabrication and characterization of electrospun nanofibrous mats of polycaprolactone/gelatin containing ZnO nanoparticles and cumin essential oil and their anti-staphylococcal potency in white cheese. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Muacevic A, Adler JR. Evaluation of the Chemical, Morphological, Physical, Mechanical, and Biological Properties of Chitosan/Polyvinyl Alcohol Nanofibrous Scaffolds for Potential Use in Oral Tissue Engineering. Cureus 2022; 14:e29850. [PMID: 36204260 PMCID: PMC9527563 DOI: 10.7759/cureus.29850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2022] [Indexed: 11/09/2022] Open
Abstract
Background Chitosan is a biocompatible, biodegradable, and non-toxic natural polymer that can be fabricated by different methods for use in dental and biomedical fields. Electrospinning can produce polymeric nanofibrous scaffolds and membranes with desirable properties for use in tissue engineering. The objectives of this study were to investigate several morphological, physical, and biological characteristics of these nanofibrous scaffolds and evaluate their potential use in tissue engineering. Methodology Chitosan/polyvinyl alcohol nanofibrous scaffolds (CS/PVA NFS) in a ratio of 70/30 were fabricated by conventional electrospinning. The scaffolds were evaluated chemically by Fourier transformed infrared spectroscopy (FTIR) and morphologically by the atomic force microscope (AFM) and the field emission-scanning electron microscope (FE-SEM). These scaffolds were also evaluated mechanically by a tensile strength test and several investigations, including water contact angle, swelling ratio, and degradation ratio. Biological evaluations included protein adsorption, cell culture, and cell viability assay. Results The morphological evaluation revealed a homogenous, bead-free mat with an average fiber diameter of 172.7 ± 56.8 nm, an average pore size of 0.54 ± 0.17 µm, and porosity of 74.8% ± 3.3%; the scaffolds showed a tensile strength of 6.67 ± 0.7 Mpa. Scaffolds showed a desired hydrophilic property, as shown by the water contact angle test with a mean angle of 29.5°, while the swelling ratio was 229%, and degradability in phosphate buffer solution after 30 days was 26.9 ± 2.9%. In-vitro cell culture study with adipose tissue mesenchymal stem cells and cell viability and cytotoxicity tests by MTT assay demonstrated well-attached cells with increasing proliferation rate with no signs of cytotoxicity. Conclusions Assessment of the CS/PVA NFS revealed randomly oriented bead-free and porous mats. The scaffolds were stable at aqueous solutions following thermal treatment. They were hydrophilic, biodegradable, and biocompatible, as shown by the cell culture and MTT assay, which suggest that the fabricated scaffolds have the potential to be used in tissue engineering applications either as scaffolds, bio-grafts, or barrier membranes.
Collapse
|
41
|
Suárez DF, Pinzón-García AD, Sinisterra RD, Dussan A, Mesa F, Ramírez-Clavijo S. Uniaxial and Coaxial Nanofibers PCL/Alginate or PCL/Gelatine Transport and Release Tamoxifen and Curcumin Affecting the Viability of MCF7 Cell Line. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193348. [PMID: 36234476 PMCID: PMC9565524 DOI: 10.3390/nano12193348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/31/2022] [Accepted: 09/09/2022] [Indexed: 05/11/2023]
Abstract
Breast cancer is the second cause of cancer death in women worldwide. The search for therapeutic and preventive alternatives has increased in recent years. One synthetic drug for patients with hormone receptor-positive tumours is tamoxifen citrate (TMX). Curcumin (Cur) is a natural compound that is being tested. Both were coupled with nanoscale-controlled and sustained release systems to increase the effectiveness of the treatment and reduce adverse effects. We produced a controlled release system based on uniaxial and coaxial polymeric nanofibers of polycaprolactone (PCL), alginate (Alg) and gelatine (Gel) for the transport and release of TMX and Cur, as a new alternative to breast cancer treatment. Nanofibers combining PCL-Alg and PCL-Gel were fabricated by the electrospinning technique and physicochemically characterised by thermal analysis, absorption spectroscopy in the infrared region and X-ray diffraction. Morphology and size were studied by scanning electron microscopy. Additionally, the release profile of TMX and Cur was obtained by UV-Vis spectroscopy. Additionally, the cytotoxic effect on breast cancer cell line MCF7 and peripheral-blood mononuclear cells (PBMCs) from a healthy donor were evaluated by a Resazurin reduction assay. These assays showed that PCL-TMX nanofiber was highly toxic to both cell types, while PCL-Cur was less toxic.
Collapse
Affiliation(s)
- Diego Fernando Suárez
- Chemistry Department, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Ana Delia Pinzón-García
- Chemistry Department, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Rubén Darío Sinisterra
- Chemistry Department, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Anderson Dussan
- Departamento de Física, Grupo de Materiales Nanoestructurados y sus Aplicaciones, Universidad Nacional de Colombia, Bogotá 110011, Colombia
| | - Fredy Mesa
- Departamento de Física, Grupo de Materiales Nanoestructurados y sus Aplicaciones, Universidad Nacional de Colombia, Bogotá 110011, Colombia
| | - Sandra Ramírez-Clavijo
- Department of Biology, Grupo Ciencias Básicas Médicas, Faculty of Natural Science, Universidad del Rosario, Bogotá 110311, Colombia
- Correspondence:
| |
Collapse
|
42
|
Chen M, Cai C, Bao J, Du Y, Gao H, Liu X. Effect of aliphatic segment length and content on crystallization and biodegradation properties of aliphatic-aromatic co-polyesters. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Anjum S, Rahman F, Pandey P, Arya DK, Alam M, Rajinikanth PS, Ao Q. Electrospun Biomimetic Nanofibrous Scaffolds: A Promising Prospect for Bone Tissue Engineering and Regenerative Medicine. Int J Mol Sci 2022; 23:ijms23169206. [PMID: 36012473 PMCID: PMC9408902 DOI: 10.3390/ijms23169206] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
Skeletal-related disorders such as arthritis, bone cancer, osteosarcoma, and osteoarthritis are among the most common reasons for mortality in humans at present. Nanostructured scaffolds have been discovered to be more efficient for bone regeneration than macro/micro-sized scaffolds because they sufficiently permit cell adhesion, proliferation, and chemical transformation. Nanofibrous scaffolds mimicking artificial extracellular matrices provide a natural environment for tissue regeneration owing to their large surface area, high porosity, and appreciable drug loading capacity. Here, we review recent progress and possible future prospective electrospun nanofibrous scaffolds for bone tissue engineering. Electrospun nanofibrous scaffolds have demonstrated promising potential in bone tissue regeneration using a variety of nanomaterials. This review focused on the crucial role of electrospun nanofibrous scaffolds in biological applications, including drug/growth factor delivery to bone tissue regeneration. Natural and synthetic polymeric nanofibrous scaffolds are extensively inspected to regenerate bone tissue. We focused mainly on the significant impact of nanofibrous composite scaffolds on cell adhesion and function, and different composites of organic/inorganic nanoparticles with nanofiber scaffolds. This analysis provides an overview of nanofibrous scaffold-based bone regeneration strategies; however, the same concepts can be applied to other organ and tissue regeneration tactics.
Collapse
Affiliation(s)
- Shabnam Anjum
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang 110122, China
| | - Farheen Rahman
- Department of Applied Chemistry, Zakir Husain College of Engineering & Technology, Aligarh Muslim University, Aligarh 202002, India
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Dilip Kumar Arya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Mahmood Alam
- Department of Clinical Medicine, China Medical University, Shenyang 110122, China
| | - Paruvathanahalli Siddalingam Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
- Correspondence: (P.S.R.); (Q.A.)
| | - Qiang Ao
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang 110122, China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- Correspondence: (P.S.R.); (Q.A.)
| |
Collapse
|
44
|
Ahmadi S, Shafiei SS, Sabouni F. Electrospun Nanofibrous Scaffolds of Polycaprolactone/Gelatin Reinforced with Layered Double Hydroxide Nanoclay for Nerve Tissue Engineering Applications. ACS OMEGA 2022; 7:28351-28360. [PMID: 35990483 PMCID: PMC9386844 DOI: 10.1021/acsomega.2c02863] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/22/2022] [Indexed: 06/01/2023]
Abstract
Nerve tissue engineering (NTE) is an effective approach for repairing damaged nerve tissue. In this regard, nanoparticle-incorporated electrospun scaffolds have aroused a great deal of interest in NTE applications. In this study, layered double hydroxide (LDH)-incorporated polycaprolactone (PCL)/gelatin (Gel) nanofibrous scaffolds were fabricated by an electrospinning technique. The physicochemical, mechanical, and biological properties of the scaffolds were examined. Also, the phase identification, morphology, and elemental composition were studied using X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy, respectively. The results revealed that the inclusion of LDH nanoparticles into the PCL/Gel scaffold has improved its mechanical strength and elongation at the break, while the degradation rate was enhanced in comparison with the pure PCL/Gel mat. The LDH-enriched electrospun PCL/Gel scaffolds exhibited a considerable impact on cell attachment and proliferation. The gene expression results showed that the neuron-specific (γγ) enolase (NSE) gene expression was significantly decreased in the scaffolds containing 1 and 10 wt % LDH compared to the scaffold without LDH, whereas in the scaffold with 0.1 wt % LDH, a slight increase in expression was observed. It can be deduced that electrospun PCL/Gel scaffolds containing LDH with optimum concentration can be a promising candidate for nerve tissue engineering applications.
Collapse
|
45
|
Valizadeh N, Salehi R, Roshangar L, Agbolaghi S, Mahkam M. Towards osteogenic bioengineering of human dental pulp stem cells induced by incorporating
Prunus amygdalus dulcis
extract in
polycaprolactone‐gelatin
nanofibrous scaffold. J Appl Polym Sci 2022. [DOI: 10.1002/app.52848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Nasrin Valizadeh
- Chemistry Department, Science Faculty Azarbaijan Shahid Madani University Tabriz Iran
| | - Roya Salehi
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Leila Roshangar
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Samira Agbolaghi
- Chemical Engineering Department, Faculty of Engineering Azarbaijan Shahid Madani University Tabriz Iran
| | - Mehrdad Mahkam
- Chemistry Department, Science Faculty Azarbaijan Shahid Madani University Tabriz Iran
| |
Collapse
|
46
|
Zhang Z, Feng Y, Wang L, Liu D, Qin C, Shi Y. A review of preparation methods of porous skin tissue engineering scaffolds. MATERIALS TODAY COMMUNICATIONS 2022; 32:104109. [DOI: 10.1016/j.mtcomm.2022.104109] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
47
|
Hakkı Alma M, Hale Aygün H. X‐Ray Shielding Performance and Characterization of Electrospun PVC/Bismuth(III) Oxide Nanocomposites. ChemistrySelect 2022. [DOI: 10.1002/slct.202202118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mehmet Hakkı Alma
- Department of Forest Industry Engineering Faculty of Forestry University of Kahramanmaras Sutcu Imam Avsar Campus 46100, Onikisubat Kahramanmaras Turkey
| | - Hayriye Hale Aygün
- Department of Design Vocational School of Technical Science University of Kahramanmaras Sutcu Imam Karacasu Campus 46060 Dulkadiroglu, Kahramanmaras Turkey
| |
Collapse
|
48
|
Ghasemzaie N, Hadjizadeh A, Niknejad H. Chitosan nanoparticles encapsulated into PLA/gelatin fibers for bFGF delivery. JOURNAL OF POLYMER ENGINEERING 2022. [DOI: 10.1515/polyeng-2021-0248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Electrospinning is a trendy method because of the ease of use and the high surface-to-volume ratio. The mechanical and biological properties of polylactic acid (PLA) make it one of the most enticing polymers. Gelatin and PLA together are thought to enhance cellular behavior and hydrophilicity of scaffolds. Furthermore, chitosan nanoparticles (CNPs) can be incorporated into PLA fibers to achieve controlled growth factor release. This study utilized PLA–gelatin nanofibrous scaffolds in which CNPs were encapsulated within PLA fibers to achieve a controlled release of basic fibroblast growth factor (bFGF). To produce CNPs, a simple ionic gelation reaction was used. The optimal diameter of CNPs was determined by investigating chitosan to tricalciumphosphatesodium (TPP) ratio and TPP concentration. Using a spectrophotometer, we measured the release rate of bFGF from CNPS and scaffolds. Images from a scanning electron microscope (SEM) were used to assess the effect of various concentrations of PLA and gelatin on fiber diameter. The results showed that PLA–gelatin scaffolds could stimulate the release of growth factors and promote cell proliferation. Using a two-jet electrospinning device to produce PLA–gelatin fibers in combination with CNPs incorporated within PLA fibers to release the bFGF growth factor is the novelty of this study.
Collapse
Affiliation(s)
- Niloofar Ghasemzaie
- Biomaterials and Tissue Engineering Group , Department of Biomedical Engineering, Amirkabir University of Technology , Tehran 1591634311 , Iran
| | - Afra Hadjizadeh
- Biomaterials and Tissue Engineering Group , Department of Biomedical Engineering, Amirkabir University of Technology , Tehran 1591634311 , Iran
| | - Hassan Niknejad
- Department of Pharmacology , School of Medicine, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| |
Collapse
|
49
|
Torrejon VM, Song J, Yu Z, Hang S. Gelatin-based cellular solids: Fabrication, structure and properties. J CELL PLAST 2022. [DOI: 10.1177/0021955x221087602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Although most cellular polymers are made from thermoplastics using different foaming technologies, gelatin and many other natural polymers can form hydrogels and convert them to cellular solids using various techniques, many of which differ from traditional plastic foaming, and so does their resulting structures. Cellular solids from natural hydrogels are porous materials that often exhibit a combination of desirable properties, including high specific surface area, biochemical activity, as well as thermal and acoustic insulation properties. Among natural hydrogels, gelatin-based porous materials are widely explored due to their availability, biocompatibility, biodegradability and relatively low cost. In addition, gelatin-based cellular solids have outstanding properties and are currently subject to increasing scientific research due to their potential in many applications, such as biocompatible cellular materials or biofoams to facilitate waste treatment. This article aims at providing a comprehensive review of gelatin cellular solids processing and their processing-properties-structure relationship. The fabrication techniques covered include aerogels production, mechanical foaming, blowing agents use, 3D printing, electrospinning and particle leaching methods. It is hoped that the assessment of their characteristics provides compiled information and guidance for selecting techniques and optimization of processing conditions to control material structure and properties to meet the needs of the finished products.
Collapse
Affiliation(s)
- Virginia Martin Torrejon
- Media and Communication School, Shenzhen Polytechnic, Shenzhen, China
- Department of Applied Chemistry, School of Science, Xi’an Jiaotong University, Xi’an, China
- Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jim Song
- School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen, China
| | - Zhang Yu
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an, China
| | - Song Hang
- School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
50
|
Singh YP, Dasgupta S. Gelatin-based electrospun and lyophilized scaffolds with nano scale feature for bone tissue engineering application: review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1704-1758. [PMID: 35443894 DOI: 10.1080/09205063.2022.2068943] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The rebuilding of the normal functioning of the damaged human body bone tissue is one of the main objectives of bone tissue engineering (BTE). Fabricated scaffolds are mostly treated as artificial supports and as materials for regeneration of neo bone tissues and must closely biomimetic the native extracellular matrix of bone. The materials used for developing scaffolds should be biodegradable, nontoxic, and biocompatible. For the resurrection of bone disorder, specifically natural and synthetic polymers such as chitosan, PCL, gelatin, PGA, PLA, PLGA, etc. meet the requirements for serving their functions as artificial bone substitute materials. Gelatin is one of the potential candidates which could be blended with other polymers or composites to improve its physicochemical, mechanical, and biological performances as a bone graft. Scaffolds are produced by several methods including electrospinning, self-assembly, freeze-drying, phase separation, fiber drawing, template synthesis, etc. Among them, freeze-drying and electrospinning are among the popular, simplest, versatile, and cost-effective techniques. The design and preparation of freeze-dried and electrospun scaffolds are of intense research over the last two decades. Freeze-dried and electrospun scaffolds offer a distinctive architecture at the micro to nano range with desired porosity and pore interconnectivity for selective movement of small biomolecules and play its role as an appropriate matrix very similar to the natural bone extracellular matrix. This review focuses on the properties and functionalization of gelatin-based polymer and its composite in the form of bone scaffolds fabricated primarily using lyophilization and electrospinning technique and their applications in BTE.
Collapse
Affiliation(s)
- Yogendra Pratap Singh
- Department of Ceramic Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Sudip Dasgupta
- Department of Ceramic Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|