1
|
Patrawalla NY, Raj R, Nazar V, Kishore V. Magnetic Alignment of Collagen: Principles, Methods, Applications, and Fiber Alignment Analyses. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:405-422. [PMID: 38019048 PMCID: PMC11404687 DOI: 10.1089/ten.teb.2023.0222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Anisotropically aligned collagen scaffolds mimic the microarchitectural properties of native tissue, possess superior mechanical properties, and provide the essential physicochemical cues to guide cell response. Biofabrication methodologies to align collagen fibers include mechanical, electrical, magnetic, and microfluidic approaches. Magnetic alignment of collagen was first published in 1983 but widespread use of this technique was hindered mainly due to the low diamagnetism of collagen molecules and the need for very strong tesla-order magnetic fields. Over the last decade, there is a renewed interest in the use of magnetic approaches that employ magnetic particles and low-level magnetic fields to align collagen fibers. In this review, the working principle, advantages, and limitations of different collagen alignment techniques with special emphasis on the magnetic alignment approach are detailed. Key findings from studies that employ high-strength magnetic fields and the magnetic particle-based approach to align collagen fibers are highlighted. In addition, the most common qualitative and quantitative image analyses methods to assess collagen alignment are discussed. Finally, current challenges and future directions are presented for further development and clinical translation of magnetically aligned collagen scaffolds.
Collapse
Affiliation(s)
- Nashaita Y Patrawalla
- Department of Biomedical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida, USA
| | - Ravi Raj
- Department of Biomedical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida, USA
| | - Vida Nazar
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Vipuil Kishore
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, Florida, USA
| |
Collapse
|
2
|
Gao W, Kanagarajah KR, Graham E, Soon K, Veres T, Moraes TJ, Bear CE, Veldhuizen RA, Wong AP, Günther A. Collagen Tubular Airway-on-Chip for Extended Epithelial Culture and Investigation of Ventilation Dynamics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309270. [PMID: 38431940 DOI: 10.1002/smll.202309270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/07/2024] [Indexed: 03/05/2024]
Abstract
The lower respiratory tract is a hierarchical network of compliant tubular structures that are made from extracellular matrix proteins with a wall lined by an epithelium. While microfluidic airway-on-a-chip models incorporate the effects of shear and stretch on the epithelium, week-long air-liquid-interface culture at physiological shear stresses, the circular cross-section, and compliance of native airway walls have yet to be recapitulated. To overcome these limitations, a collagen tube-based airway model is presented. The lumen is lined with a confluent epithelium during two-week continuous perfusion with warm, humid air while presenting culture medium from the outside and compensating for evaporation. The model recapitulates human small airways in extracellular matrix composition and mechanical microenvironment, allowing for the first time dynamic studies of elastocapillary phenomena associated with regular breathing and mechanical ventilation, as well as their impacts on the epithelium. A case study reveales increasing damage to the epithelium during repetitive collapse and reopening cycles as opposed to overdistension, suggesting expiratory flow resistance to reduce atelectasis. The model is expected to promote systematic comparisons between different clinically used ventilation strategies and, more broadly, to enhance human organ-on-a-chip platforms for a variety of tubular tissues.
Collapse
Affiliation(s)
- Wuyang Gao
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Kayshani R Kanagarajah
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, PGCRL Research Tower, Toronto, Ontario, M5G 0A4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Emma Graham
- Department of Physiology and Pharmacology, University of Western Ontario, 1151 Richmond St, London, Ontario, N6A 3K7, Canada
- Lawson Health Research Institute, London Health Sciences Centre, 750 Base Line Rd E, London, Ontario, N6C 2R5, Canada
| | - Kayla Soon
- National Research Council Canada, 75 Bd de Mortagne, Boucherville, Quebec, J4B 6Y4, Canada
| | - Teodor Veres
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
- National Research Council Canada, 75 Bd de Mortagne, Boucherville, Quebec, J4B 6Y4, Canada
| | - Theo J Moraes
- Department of Paediatrics, University of Toronto, 555 University Avenue, Toronto, Ontario, M5G 1×8, Canada
| | - Christine E Bear
- Program in Molecular Medicine, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1 × 8, Canada
- Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Ruud A Veldhuizen
- Department of Physiology and Pharmacology, University of Western Ontario, 1151 Richmond St, London, Ontario, N6A 3K7, Canada
- Lawson Health Research Institute, London Health Sciences Centre, 750 Base Line Rd E, London, Ontario, N6C 2R5, Canada
- Department of Medicine, University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 5C1, Canada
| | - Amy P Wong
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, PGCRL Research Tower, Toronto, Ontario, M5G 0A4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Axel Günther
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada
| |
Collapse
|
3
|
Yunoki S, Kishimoto M, Mandai Y, Hiraoka Y, Kondo E. High-speed spinning of collagen microfibers comprising aligned fibrils for creating artificial tendons. Biomed Mater 2024; 19:045010. [PMID: 38729187 DOI: 10.1088/1748-605x/ad49f6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/10/2024] [Indexed: 05/12/2024]
Abstract
Bundles of engineered collagen microfibers are promising synthetic tendons as substitutes for autogenous grafts. The purpose of this study was to develop high-speed and continuous spinning of collagen microfibers that involves stretching of collagen stream. Our study revealed the 'critical fibrillogenesis concentration (CFC)' of neutralized collagen solutions, which is defined as the upper limit of the collagen concentration at which neutralized collagen molecules remain stable as long as they are cooled (⩽10 °C). Neutralized collagen solutions at collagen concentrations slightly below the CFC formed cord-like collagen gels comprising longitudinally aligned fibrils when extruded from nozzles into an ethanol bath. Dry collagen microfibers with a controlled diameter ranging from 122 ± 2-31.2 ± 1.7 μm can be spun from the cord-like gels using nozzles of various sizes. The spinning process was improved by including stretching of collagen stream to further reduce diameter and increase linear velocity. We extruded a collagen solution through a 182 μm diameter nozzle while simultaneously stretching it in an ethanol bath during gelation and fiber formation. This process resembles the stretching of a melted thermoplastic resin because it solidifies during melt spinning. The mechanical properties of the stretched collagen microfibers were comparable to the highest literature values obtained using microfluidic wet spinning, as they exhibited longitudinally aligned fibrils both on their surface and in their core. Previous wet spinning methods were unable to generate collagen microfibers with a consistent tendon-like fibrillar arrangement throughout the samples. Although the tangent modulus (137 ± 7 MPa) and stress at break of the swollen bundles of stretched microfibers (13.8 ± 1.9 MPa) were lower than those of human anterior cruciate ligament, they were within the same order of magnitude. We developed a spinning technique that produces narrow collagen microfibers with a tendon-like arrangement that can serve as artificial fiber units for collagen-based synthetic tendons.
Collapse
Affiliation(s)
- Shunji Yunoki
- Institute for the Promotion of Business-Regional Collaboration, Hokkaido University, kita-21, Nishi-11, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Masanori Kishimoto
- Biomedical Department, R&D Center, Nitta Gelatin Inc., 2-22, Futamata, Yao City, Osaka 581-0024, Japan
| | - Yoshinobu Mandai
- Biomedical Department, R&D Center, Nitta Gelatin Inc., 2-22, Futamata, Yao City, Osaka 581-0024, Japan
| | - Yosuke Hiraoka
- Biomedical Department, R&D Center, Nitta Gelatin Inc., 2-22, Futamata, Yao City, Osaka 581-0024, Japan
| | - Eiji Kondo
- Centre for Sports Medicine, Hokkaido University Hospital, Kita-14, Nishi-5, Kita-ku, Sapporo 060-8648, Japan
| |
Collapse
|
4
|
Martin CL, Zhai C, Paten JA, Yeo J, Deravi LF. Design and Production of Customizable and Highly Aligned Fibrillar Collagen Scaffolds. ACS Biomater Sci Eng 2021. [PMID: 34506101 DOI: 10.1021/acsbiomaterials.1c00566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ability to fabricate anisotropic collagenous materials rapidly and reproducibly has remained elusive despite decades of research. Balancing the natural propensity of monomeric collagen (COL) to spontaneously polymerize in vitro with the mild processing conditions needed to maintain its native substructure upon polymerization introduces challenges that are not easily amenable with off-the-shelf instrumentation. To overcome these challenges, we have designed a platform that simultaneously aligns type I COL fibrils under mild shear flow and builds up the material through layer-by-layer assembly. We explored the mechanisms propagating fibril alignment, targeting experimental variables such as shear rate, viscosity, and time. Coarse-grained molecular dynamics simulations were also employed to help understand how initial reaction conditions including chain length, indicative of initial polymerization, and chain density, indicative of concentration, in the reaction environment impact fibril growth and alignment. When taken together, the mechanistic insights gleaned from these studies inspired the design, iteration, fabrication, and then customization of the fibrous collagenous materials, illustrating a platform material that can be readily adapted to future tissue engineering applications.
Collapse
Affiliation(s)
- Cassandra L Martin
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Chenxi Zhai
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, United States.,Department of Mechanical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
| | - Jeffrey A Paten
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Jingjie Yeo
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Leila F Deravi
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
5
|
Tonndorf R, Aibibu D, Cherif C. Isotropic and Anisotropic Scaffolds for Tissue Engineering: Collagen, Conventional, and Textile Fabrication Technologies and Properties. Int J Mol Sci 2021; 22:9561. [PMID: 34502469 PMCID: PMC8431235 DOI: 10.3390/ijms22179561] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/15/2022] Open
Abstract
In this review article, tissue engineering and regenerative medicine are briefly explained and the importance of scaffolds is highlighted. Furthermore, the requirements of scaffolds and how they can be fulfilled by using specific biomaterials and fabrication methods are presented. Detailed insight is given into the two biopolymers chitosan and collagen. The fabrication methods are divided into two categories: isotropic and anisotropic scaffold fabrication methods. Processable biomaterials and achievable pore sizes are assigned to each method. In addition, fiber spinning methods and textile fabrication methods used to produce anisotropic scaffolds are described in detail and the advantages of anisotropic scaffolds for tissue engineering and regenerative medicine are highlighted.
Collapse
Affiliation(s)
- Robert Tonndorf
- Institute of Textile Machinery and High Performance Material Technology, Technische Universität Dresden, 01069 Dresden, Germany; (D.A.); (C.C.)
| | | | | |
Collapse
|
6
|
Yin J, Wood DJ, Russell SJ, Tronci G. Hierarchically Assembled Type I Collagen Fibres as Biomimetic Building Blocks of Biomedical Membranes. MEMBRANES 2021; 11:620. [PMID: 34436383 PMCID: PMC8400969 DOI: 10.3390/membranes11080620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022]
Abstract
Wet spinning is an established fibre manufacturing route to realise collagen fibres with preserved triple helix architecture and cell acceptability for applications in biomedical membranes. However, resulting fibres still need to be chemically modified post-spinning to ensure material integrity in physiological media, with inherent risks of alteration of fibre morphology and with limited opportunities to induce fibrillogenesis following collagen fixation in the crosslinked state. To overcome this challenge, we hypothesised that a photoactive type I collagen precursor bearing either single or multiple monomers could be employed to accomplish hierarchically assembled fibres with improved processability, macroscopic properties and nanoscale organisation via sequential wet spinning and UV-curing. In-house-extracted type I rat tail collagen functionalised with both 4-vinylbenzyl chloride (4VBC) and methacrylate residues generated a full hydrogel network following solubilisation in a photoactive aqueous solution and UV exposure, whereby ~85 wt.% of material was retained following 75-day hydrolytic incubation. Wide-angle X-ray diffraction confirmed the presence of typical collagen patterns, whilst an averaged compression modulus and swelling ratio of more than 290 kPa and 1500 wt.% was recorded in the UV-cured hydrogel networks. Photoactive type I collagen precursors were subsequently wet spun into fibres, displaying the typical dichroic features of collagen and regular fibre morphology. Varying tensile modulus (E = 5 ± 1 - 11 ± 4 MPa) and swelling ratio (SR = 1880 ± 200 - 3350 ± 500 wt.%) were measured following post-spinning UV curing and equilibration with phosphate-buffered saline (PBS). Most importantly, 72-h incubation of the wet spun fibres in PBS successfully induced renaturation of collagen-like fibrils, which were fixed following UV-induced network formation. The whole process proved to be well tolerated by cells, as indicated by a spread-like cell morphology following a 48-h culture of L929 mouse fibroblasts on the extracts of UV-cured fibres.
Collapse
Affiliation(s)
- Jie Yin
- Clothworkers’ Centre for Textile Materials Innovation for Healthcare, School of Design, University of Leeds, Leeds LS2 9JT, UK; (J.Y.); (S.J.R.)
- Biomaterials and Tissue Engineering Research Group, School of Dentistry, St. James’s University Hospital, University of Leeds, Leeds LS9 7TF, UK;
| | - David J. Wood
- Biomaterials and Tissue Engineering Research Group, School of Dentistry, St. James’s University Hospital, University of Leeds, Leeds LS9 7TF, UK;
| | - Stephen J. Russell
- Clothworkers’ Centre for Textile Materials Innovation for Healthcare, School of Design, University of Leeds, Leeds LS2 9JT, UK; (J.Y.); (S.J.R.)
| | - Giuseppe Tronci
- Clothworkers’ Centre for Textile Materials Innovation for Healthcare, School of Design, University of Leeds, Leeds LS2 9JT, UK; (J.Y.); (S.J.R.)
- Biomaterials and Tissue Engineering Research Group, School of Dentistry, St. James’s University Hospital, University of Leeds, Leeds LS9 7TF, UK;
| |
Collapse
|
7
|
Malladi S, Miranda-Nieves D, Leng L, Grainger SJ, Tarabanis C, Nesmith AP, Kosaraju R, Haller CA, Parker KK, Chaikof EL, Günther A. Continuous Formation of Ultrathin, Strong Collagen Sheets with Tunable Anisotropy and Compaction. ACS Biomater Sci Eng 2020; 6:4236-4246. [PMID: 32685675 PMCID: PMC7362332 DOI: 10.1021/acsbiomaterials.0c00321] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/26/2020] [Indexed: 01/08/2023]
Abstract
The multiscale organization of protein-based fibrillar materials is a hallmark of many organs, but the recapitulation of hierarchal structures down to fibrillar scales, which is a requirement for withstanding physiological loading forces, has been challenging. We present a microfluidic strategy for the continuous, large-scale formation of strong, handleable, free-standing, multicentimeter-wide collagen sheets of unprecedented thinness through the application of hydrodynamic focusing with the simultaneous imposition of strain. Sheets as thin as 1.9 μm displayed tensile strengths of 0.5-2.7 MPa, Young's moduli of 3-36 MPa, and modulated the diffusion of molecules as a function of collagen nanoscale structure. Smooth muscle cells cultured on engineered sheets oriented in the direction of aligned collagen fibrils and generated coordinated vasomotor responses. The described biofabrication approach enables rapid formation of ultrathin collagen sheets that withstand physiologically relevant loads for applications in tissue engineering and regenerative medicine, as well as in organ-on-chip and biohybrid devices.
Collapse
Affiliation(s)
- Shashi Malladi
- Department
of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S3G8, Canada
| | - David Miranda-Nieves
- Division
of Health Sciences and Technology, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Surgery, Beth Israel Deaconess Medical
Center, Boston, Massachusetts 02115, United States
- Wyss
Institute for Biologically Inspired Engineering of Harvard University, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Lian Leng
- Department
of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S3G8, Canada
| | - Stephanie J. Grainger
- Department
of Surgery, Beth Israel Deaconess Medical
Center, Boston, Massachusetts 02115, United States
| | - Constantine Tarabanis
- Department
of Surgery, Beth Israel Deaconess Medical
Center, Boston, Massachusetts 02115, United States
| | - Alexander P. Nesmith
- Wyss
Institute for Biologically Inspired Engineering of Harvard University, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Revanth Kosaraju
- Department
of Surgery, Beth Israel Deaconess Medical
Center, Boston, Massachusetts 02115, United States
| | - Carolyn A. Haller
- Department
of Surgery, Beth Israel Deaconess Medical
Center, Boston, Massachusetts 02115, United States
| | - Kevin Kit Parker
- Wyss
Institute for Biologically Inspired Engineering of Harvard University, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Elliot L. Chaikof
- Division
of Health Sciences and Technology, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Surgery, Beth Israel Deaconess Medical
Center, Boston, Massachusetts 02115, United States
- Wyss
Institute for Biologically Inspired Engineering of Harvard University, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Axel Günther
- Department
of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S3G8, Canada
- Institute
of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
8
|
Dewle A, Pathak N, Rakshasmare P, Srivastava A. Multifarious Fabrication Approaches of Producing Aligned Collagen Scaffolds for Tissue Engineering Applications. ACS Biomater Sci Eng 2020; 6:779-797. [DOI: 10.1021/acsbiomaterials.9b01225] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Ankush Dewle
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat 382355, India
| | - Navanit Pathak
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat 382355, India
| | - Prakash Rakshasmare
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat 382355, India
| | - Akshay Srivastava
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
9
|
Sohutskay DO, Puls TJ, Voytik-Harbin SL. Collagen Self-assembly: Biophysics and Biosignaling for Advanced Tissue Generation. MULTI-SCALE EXTRACELLULAR MATRIX MECHANICS AND MECHANOBIOLOGY 2020. [DOI: 10.1007/978-3-030-20182-1_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Kaiser NJ, Bellows JA, Kant RJ, Coulombe KLK. Digital Design and Automated Fabrication of Bespoke Collagen Microfiber Scaffolds. Tissue Eng Part C Methods 2019; 25:687-700. [PMID: 31017039 PMCID: PMC6859695 DOI: 10.1089/ten.tec.2018.0379] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/01/2019] [Indexed: 01/06/2023] Open
Abstract
A great variety of natural and synthetic polymer materials have been utilized in soft tissue engineering as extracellular matrix (ECM) materials. Natural polymers, such as collagen and fibrin hydrogels, have experienced especially broad adoption due to the high density of cell adhesion sites compared to their synthetic counterparts, ready availability, and ease of use. However, these and other hydrogels lack the structural and mechanical anisotropy that define the ECM in many tissues, such as skeletal and cardiac muscle, tendon, and cartilage. Herein, we present a facile, low-cost, and automated method of preparing collagen microfibers, organizing these fibers into precisely controlled mesh designs, and embedding these meshes in a bulk hydrogel, creating a composite biomaterial suitable for a wide variety of tissue engineering and regenerative medicine applications. With the assistance of custom software tools described herein, mesh patterns are designed by a digital graphical user interface and translated into protocols that are executed by a custom mesh collection and organization device. We demonstrate a high degree of precision and reproducibility in both fiber and mesh fabrication, evaluate single fiber mechanical properties, and provide evidence of collagen self-assembly in the microfibers under standard cell culture conditions. This work offers a powerful, flexible platform for the study of tissue engineering and cell material interactions, as well as the development of therapeutic biomaterials in the form of custom collagen microfiber patterns that will be accessible to all through the methods and techniques described here. Impact Statement Collagen microfiber meshes have immediate and broad applications in tissue engineering research and show high potential for later use in clinical therapeutics due to their compositional similarities to native extracellular matrix and tunable structural and mechanical characteristics. Physical and biological characterizations of these meshes demonstrate physiologically relevant mechanical properties, native-like collagen structure, and cytocompatibility. The methods presented herein not only describe a process through which custom collagen microfiber meshes can be fabricated but also provide the reader with detailed device plans and software tools to produce their own bespoke meshes through a precise, consistent, and automated process.
Collapse
Affiliation(s)
- Nicholas J Kaiser
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island
| | - Jessica A Bellows
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island
| | - Rajeev J Kant
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island
| | - Kareen L K Coulombe
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island
| |
Collapse
|
11
|
Petrak K, Vissapragada R, Shi S, Siddiqui Z, Kim KK, Sarkar B, Kumar VA. Challenges in Translating from Bench to Bed-Side: Pro-Angiogenic Peptides for Ischemia Treatment. Molecules 2019; 24:E1219. [PMID: 30925755 PMCID: PMC6479440 DOI: 10.3390/molecules24071219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 02/07/2023] Open
Abstract
We describe progress and obstacles in the development of novel peptide-hydrogel therapeutics for unmet medical needs in ischemia treatment, focusing on the development and translation of therapies specifically in peripheral artery disease (PAD). Ischemia is a potentially life-threatening complication in PAD, which affects a significant percentage of the elderly population. While studies on inducing angiogenesis to treat PAD were started two decades ago, early results from animal models as well as clinical trials have not yet been translated into clinical practice. We examine some of the challenges encountered during such translation. We further note the need for sustained angiogenic effect involving whole growth factor, gene therapy and synthetic growth factor strategies. Finally, we discuss the need for tissue depots for de novo formation of microvasculature. These scaffolds can act as templates for neovasculature development to improve circulation and healing at the preferred anatomical location.
Collapse
Affiliation(s)
| | - Ravi Vissapragada
- Department of Gastrointestinal Surgery, Flinders Medical Centre, 5042 Bedford Park, South Australia, Australia.
| | - Siyu Shi
- Department of Medicine Stanford School of Medicine, Stanford, CA 94305, USA.
| | - Zain Siddiqui
- Department of Biomedical Engineering, Newark, NJ 07102, USA.
| | - Ka Kyung Kim
- Department of Biomedical Engineering, Newark, NJ 07102, USA.
| | - Biplab Sarkar
- Department of Biomedical Engineering, Newark, NJ 07102, USA.
| | - Vivek A Kumar
- Department of Biomedical Engineering, Newark, NJ 07102, USA.
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
- Rutgers School of Dental Medicine, Newark, NJ 07103, USA.
| |
Collapse
|
12
|
Tonndorf R, Gossla E, Aibibu D, Lindner M, Gelinsky M, Cherif C. Corrigendum: Wet spinning and riboflavin crosslinking of collagen type I/III filaments (2019
Biomed. Mater.
14
015007). Biomed Mater 2019. [DOI: 10.1088/1748-605x/ab0870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Tonndorf R, Gossla E, Aibibu D, Lindner M, Gelinsky M, Cherif C. Wet spinning and riboflavin crosslinking of collagen type I/III filaments. Biomed Mater 2018; 14:015007. [DOI: 10.1088/1748-605x/aaebda] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Choi JW, Kim JW, Jo IH, Koh YH, Kim HE. Novel Self-Assembly-Induced Gelation for Nanofibrous Collagen/Hydroxyapatite Composite Microspheres. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E1110. [PMID: 28934135 PMCID: PMC5666916 DOI: 10.3390/ma10101110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/15/2017] [Accepted: 09/17/2017] [Indexed: 12/31/2022]
Abstract
This study demonstrates the utility of the newly developed self-assembly-induced gelation technique for the synthesis of porous collagen/hydroxyapatite (HA) composite microspheres with a nanofibrous structure. This new approach can produce microspheres of a uniform size using the droplets that form at the nozzle tip before gelation. These microspheres can have a highly nanofibrous structure due to the immersion of the droplets in a coagulation bath (water/acetone), in which the collagen aggregates in the solution can self-assemble into fibrils due to pH-dependent precipitation. Bioactive HA particles were incorporated into the collagen solutions, in order to enhance the bioactivity of the composite microspheres. The composite microspheres exhibited a well-defined spherical morphology and a uniform size for all levels of HA content (0 wt %, 10 wt %, 15 wt %, and 20 wt %). Collagen nanofibers-several tens of nanometers in size-were uniformly present throughout the microspheres and the HA particles were also well dispersed. The in vitro apatite-forming ability, assessed using the simulated body fluid (SBF) solution, increased significantly with the incorporation of HA into the composite microspheres.
Collapse
Affiliation(s)
- Jae-Won Choi
- Department of Biomedical Engineering, Korea University, Seoul 02841, Korea.
| | - Jong-Woo Kim
- Department of Biomedical Engineering, Korea University, Seoul 02841, Korea.
| | - In-Hwan Jo
- Department of Biomedical Engineering, Korea University, Seoul 02841, Korea.
| | - Young-Hag Koh
- Department of Biomedical Engineering, Korea University, Seoul 02841, Korea.
| | - Hyoun-Ee Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
15
|
Templated Assembly of Collagen Fibers Directs Cell Growth in 2D and 3D. Sci Rep 2017; 7:9628. [PMID: 28852121 PMCID: PMC5575125 DOI: 10.1038/s41598-017-10182-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/07/2017] [Indexed: 02/07/2023] Open
Abstract
Collagen is widely used in tissue engineering and regenerative medicine, with many examples of collagen-based biomaterials emerging in recent years. While there are numerous methods available for forming collagen scaffolds from isolated collagen, existing biomaterial processing techniques are unable to efficiently align collagen at the microstructural level, which is important for providing appropriate cell recognition and mechanical properties. Although some attention has shifted to development of fiber-based collagen biomaterials, existing techniques for producing and aligning collagen fibers are not appropriate for large-scale fiber manufacturing. Here, we report a novel biomaterial fabrication approach capable of efficiently generating collagen fibers of appropriate sizes using a viscous solution of dextran as a dissolvable template. We demonstrate that myoblasts readily attach and align along 2D collagen fiber networks created by this process. Furthermore, encapsulation of collagen fibers with myoblasts into non-cell-adherent hydrogels promotes aligned growth of cells and supports their differentiation. The ease-of-production and versatility of this technique will support future development of advanced in vitro tissue models and materials for regenerative medicine.
Collapse
|
16
|
Silk-fibronectin protein alloy fibres support cell adhesion and viability as a high strength, matrix fibre analogue. Sci Rep 2017; 7:45653. [PMID: 28378749 PMCID: PMC5381220 DOI: 10.1038/srep45653] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/01/2017] [Indexed: 11/08/2022] Open
Abstract
Silk is a natural polymer with broad utility in biomedical applications because it exhibits general biocompatibility and high tensile material properties. While mechanical integrity is important for most biomaterial applications, proper function and integration also requires biomaterial incorporation into complex surrounding tissues for many physiologically relevant processes such as wound healing. In this study, we spin silk fibroin into a protein alloy fibre with whole fibronectin using wet spinning approaches in order to synergize their respective strength and cell interaction capabilities. Results demonstrate that silk fibroin alone is a poor adhesive surface for fibroblasts, endothelial cells, and vascular smooth muscle cells in the absence of serum. However, significantly improved cell attachment is observed to silk-fibronectin alloy fibres without serum present while not compromising the fibres' mechanical integrity. Additionally, cell viability is improved up to six fold on alloy fibres when serum is present while migration and spreading generally increase as well. These findings demonstrate the utility of composite protein alloys as inexpensive and effective means to create durable, biologically active biomaterials.
Collapse
|
17
|
Nguyen TU, Bashur CA, Kishore V. Impact of elastin incorporation into electrochemically aligned collagen fibers on mechanical properties and smooth muscle cell phenotype. Biomed Mater 2016; 11:025008. [PMID: 26987364 DOI: 10.1088/1748-6041/11/2/025008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Application of tissue-engineered vascular grafts (TEVGs) for the replacement of small-diameter arteries is limited due to thrombosis and intimal hyperplasia. Previous studies have attempted to address the limitations of TEVGs by developing scaffolds that mimic the composition (collagen and elastin) of native arteries to better match the mechanical properties of the graft with the native tissue. However, most existing scaffolds do not recapitulate the aligned topography of the collagen fibers found in native vessels. In the current study, based on the principles of isoelectric focusing, two different types of elastin (soluble and insoluble) were incorporated into highly oriented electrochemically aligned collagen (ELAC) fibers and the effect of elastin incorporation on the mechanical properties of the ELAC fibers and smooth muscle cell (SMC) phenotype was investigated. The results indicate that elastin incorporation significantly decreased the modulus of ELAC fibers to converge upon that of native vessels. Further, a significant increase in yield strain and decrease in Young's modulus was observed on all fibers post SMC culture compared with before the culture. Real-time polymerase chain reaction results showed a significant increase in the expression of α-smooth muscle actin and calponin on ELAC fibers with insoluble elastin, suggesting that incorporation of insoluble elastin induces a contractile phenotype in SMCs after two weeks of culture on ELAC fibers. Immunofluorescence results showed that calponin expression increased with time on all fibers. In conclusion, insoluble elastin incorporated ELAC fibers have the potential to be used for the development of functional TEVGs for the repair and replacement of small-diameter arteries.
Collapse
Affiliation(s)
- Thuy-Uyen Nguyen
- Department of Chemical Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA
| | | | | |
Collapse
|
18
|
Aibibu D, Hild M, Wöltje M, Cherif C. Textile cell-free scaffolds for in situ tissue engineering applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:63. [PMID: 26800694 PMCID: PMC4723636 DOI: 10.1007/s10856-015-5656-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/20/2015] [Indexed: 05/12/2023]
Abstract
In this article, the benefits offered by micro-fibrous scaffold architectures fabricated by textile manufacturing techniques are discussed: How can established and novel fiber-processing techniques be exploited in order to generate templates matching the demands of the target cell niche? The problems related to the development of biomaterial fibers (especially from nature-derived materials) ready for textile manufacturing are addressed. Attention is also paid on how biological cues may be incorporated into micro-fibrous scaffold architectures by hybrid manufacturing approaches (e.g. nanofiber or hydrogel functionalization). After a critical review of exemplary recent research works on cell-free fiber based scaffolds for in situ TE, including clinical studies, we conclude that in order to make use of the whole range of favors which may be provided by engineered fibrous scaffold systems, there are four main issues which need to be addressed: (1) Logical combination of manufacturing techniques and materials. (2) Biomaterial fiber development. (3) Adaption of textile manufacturing techniques to the demands of scaffolds for regenerative medicine. (4) Incorporation of biological cues (e.g. stem cell homing factors).
Collapse
Affiliation(s)
- Dilbar Aibibu
- Technische Universität Dresden, Fakultät Maschinenwesen, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik, 01062, Dresden, Germany.
| | - Martin Hild
- Technische Universität Dresden, Fakultät Maschinenwesen, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik, 01062, Dresden, Germany
| | - Michael Wöltje
- Technische Universität Dresden, Fakultät Maschinenwesen, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik, 01062, Dresden, Germany
| | - Chokri Cherif
- Technische Universität Dresden, Fakultät Maschinenwesen, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik, 01062, Dresden, Germany
| |
Collapse
|
19
|
Yaari A, Schilt Y, Tamburu C, Raviv U, Shoseyov O. Wet Spinning and Drawing of Human Recombinant Collagen. ACS Biomater Sci Eng 2016; 2:349-360. [DOI: 10.1021/acsbiomaterials.5b00461] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Amit Yaari
- The
Robert H. Smith Faculty of Agriculture, Food and Environment, and
the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem,
P.O. Box 12, Jerusalem, Israel
| | - Yaelle Schilt
- Institute
of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Carmen Tamburu
- Institute
of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Uri Raviv
- Institute
of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Oded Shoseyov
- The
Robert H. Smith Faculty of Agriculture, Food and Environment, and
the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem,
P.O. Box 12, Jerusalem, Israel
- CollPlant Ltd. 3 Sapir Street, P.O. Box 4132, Ness-Ziona, Israel
| |
Collapse
|
20
|
Ayala P, Caves J, Dai E, Siraj L, Liu L, Chaudhuri O, Haller CA, Mooney DJ, Chaikof EL. Engineered composite fascia for stem cell therapy in tissue repair applications. Acta Biomater 2015; 26:1-12. [PMID: 26283165 PMCID: PMC4584209 DOI: 10.1016/j.actbio.2015.08.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 07/06/2015] [Accepted: 08/12/2015] [Indexed: 01/08/2023]
Abstract
A critical challenge in tissue regeneration is to develop constructs that effectively integrate with the host tissue. Here, we describe a composite, laser micromachined, collagen-alginate construct containing human mesenchymal stem cells (hMSCs) for tissue repair applications. Collagen type I was fashioned into laminated collagen sheets to form a mechanically robust fascia that was subsequently laser micropatterned with pores of defined dimension and spatial distribution as a means to modulate mechanical behavior and promote tissue integration. Significantly, laser micromachined patterned constructs displayed both substantially greater compliance and suture retention strength than non-patterned constructs. hMSCs were loaded in an RGD-functionalized alginate gel modified to degrade in vivo. Over a 7 day observation period in vitro, high cell viability was observed with constant levels of VEGF, PDGF-β and MCP-1 protein expression. In a full thickness abdominal wall defect model, the composite construct prevented hernia recurrence in Wistar rats over an 8-week period with de novo tissue and vascular network formation and the absence of adhesions to underlying abdominal viscera. As compared to acellular constructs, constructs containing hMSCs displayed greater integration strength (cell seeded: 0.92 ± 0.19 N/mm vs. acellular: 0.59 ± 0.25 N/mm, p=0.01), increased vascularization (cell seeded: 2.7-2.1/hpf vs. acellular: 1.7-2.1/hpf, p<0.03), and increased infiltration of macrophages (cell seeded: 2021-3630 μm(2)/hpf vs. acellular: 1570-2530 μm(2)/hpf, p<0.05). A decrease in the ratio of M1 macrophages to total macrophages was also observed in hMSC-populated samples. Laser micromachined collagen-alginate composites containing hMSCs can be used to bridge soft tissue defects with the capacity for enhanced tissue repair and integration. STATEMENT OF SIGNIFICANCE Effective restoration of large soft tissue defects caused by trauma or treatment complications represents a critical challenge in the clinic. In this study, a novel composite construct was engineered and evaluated for stem cell delivery and tissue repair. Laser micromachining was used to fabricate patterned, microporous constructs designed with pores of defined size and distribution as a means to tune mechanical responses, accommodate and protect incorporated cells, and enhance tissue integration. The construct was embedded within an engineered alginate gel containing hMSCs. Upon repair of a full thickness abdominal wall defect in a rat model, the composite construct modulated host innate immunity towards a reparative phenotypic response, promoted neovascularization and associated matrix production, and increased the strength of tissue integration.
Collapse
Affiliation(s)
- Perla Ayala
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Jeffrey Caves
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Erbin Dai
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Layla Siraj
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Liying Liu
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Palo Alto, CA 94305, USA
| | - Carolyn A Haller
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - David J Mooney
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA; School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Elliot L Chaikof
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA.
| |
Collapse
|
21
|
Younesi M, Islam A, Kishore V, Panit S, Akkus O. Fabrication of compositionally and topographically complex robust tissue forms by 3D-electrochemical compaction of collagen. Biofabrication 2015; 7:035001. [PMID: 26069162 PMCID: PMC4489851 DOI: 10.1088/1758-5090/7/3/035001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Collagen solutions are phase-transformed to mechanically robust shell structures with curviplanar topographies using electrochemically-induced pH gradients. The process enables rapid layer-by-layer deposition of collagen-rich mixtures over the entire field simultaneously to obtain compositionally diverse multilayered structures. The in-plane tensile strength and modulus of the electrocompacted collagen sheet samples were 5200-fold and 2300-fold greater than those of the uncompacted collagen samples. Out-of-plane compression tests showed a 27-fold increase in compressive stress and a 46-fold increase in compressive modulus compared to uncompacted collagen sheets. Cells proliferated 4.9 times faster, and the cellular area spread was 2.7 times greater on compacted collagen sheets. Electrocompaction also resulted in a 2.9 times greater focal adhesion area than on regular collagen hydrogel. The reported improvements in the cell-matrix interactions with electrocompaction would serve to expedite the population of electrocompacted collagen scaffolds by cells. The capacity of the method to fabricate nonlinear curved topographies with compositional heterogeneous layers is demonstrated by sequential deposition of a collagen-hydroxyapatite layer over a collagen layer. The complex curved topography of the nasal structure is replicated by the electrochemical compaction method. The presented electrochemical compaction process is an enabling modality which holds significant promise for reconstruction of a wide spectrum of topographically complex systems such as joint surfaces, craniofacial defects, ears, nose, and urogenital forms.
Collapse
Affiliation(s)
- Mousa Younesi
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Anowarul Islam
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Vipuil Kishore
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, United States
- Department of Chemical Engineering, Florida Institute of Technology, Melbourne, FL 32901, United States
| | - Stefi Panit
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Ozan Akkus
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, United States
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States
- Department of Orthopedics, Case Western Reserve University, Cleveland, OH 44106, United States
| |
Collapse
|
22
|
Ahmad Z, Shepherd JH, Shepherd DV, Ghose S, Kew SJ, Cameron RE, Best SM, Brooks RA, Wardale J, Rushton N. Effect of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide concentrations on the mechanical and biological characteristics of cross-linked collagen fibres for tendon repair. Regen Biomater 2015; 2:77-85. [PMID: 26816633 PMCID: PMC4669024 DOI: 10.1093/rb/rbv005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/02/2015] [Accepted: 04/02/2015] [Indexed: 11/28/2022] Open
Abstract
Reconstituted type I collagen fibres have received considerable interest as tendon implant materials due to their chemical and structural similarity to the native tissue. Fibres produced through a semi-continuous extrusion process were cross-linked with different concentrations of the zero-length cross-linker 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) in combination with N-hydroxysuccinimide (NHS). Tensile properties of the fibres were considered, along with imaging of both surface structure and fibrillar alignment. Resistance of the fibres to bacterial collagenase was investigated and fibre sections seeded with human tendon cells for biological characterization, including cell adhesion and proliferation. The work clearly demonstrated that whilst the concentration of EDC and NHS had no significant effect on the mechanics, a higher concentration was associated with higher collagenase resistance, but also provided a less attractive surface for cell adhesion and proliferation. A lower cross-linking concentration offered a more biocompatible material without reduction in mechanics and with a potentially more optimal degradability.
Collapse
Affiliation(s)
- Zafar Ahmad
- Orthopaedic Research Unit, Department of Surgery University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK; Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK; Tigenix Ltd, Cambridge, CB4 0FY, UK
| | - Jennifer H. Shepherd
- Orthopaedic Research Unit, Department of Surgery University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK; Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK; Tigenix Ltd, Cambridge, CB4 0FY, UK
| | - David V. Shepherd
- Orthopaedic Research Unit, Department of Surgery University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK; Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK; Tigenix Ltd, Cambridge, CB4 0FY, UK
| | - Siddhartha Ghose
- Orthopaedic Research Unit, Department of Surgery University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK; Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK; Tigenix Ltd, Cambridge, CB4 0FY, UK
| | - Simon J. Kew
- Orthopaedic Research Unit, Department of Surgery University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK; Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK; Tigenix Ltd, Cambridge, CB4 0FY, UK
| | - Ruth E. Cameron
- Orthopaedic Research Unit, Department of Surgery University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK; Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK; Tigenix Ltd, Cambridge, CB4 0FY, UK
| | - Serena M. Best
- Orthopaedic Research Unit, Department of Surgery University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK; Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK; Tigenix Ltd, Cambridge, CB4 0FY, UK
| | - Roger A. Brooks
- Orthopaedic Research Unit, Department of Surgery University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK; Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK; Tigenix Ltd, Cambridge, CB4 0FY, UK
| | - John Wardale
- Orthopaedic Research Unit, Department of Surgery University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK; Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK; Tigenix Ltd, Cambridge, CB4 0FY, UK
| | - Neil Rushton
- Orthopaedic Research Unit, Department of Surgery University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK; Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK; Tigenix Ltd, Cambridge, CB4 0FY, UK
| |
Collapse
|
23
|
Siriwardane ML, DeRosa K, Collins G, Pfister BJ. Controlled formation of cross-linked collagen fibers for neural tissue engineering applications. Biofabrication 2014; 6:015012. [PMID: 24589999 DOI: 10.1088/1758-5082/6/1/015012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Fibrous scaffolds engineered to direct the growth of tissues can be important in forming architecturally functional tissue such as aligning regenerating nerves with their target. Collagen is a commonly used substrate used for neuronal growth applications in the form of surface coatings and hydrogels. The wet spinning technique can create collagen fibers without the use of organic solvents and is typically accomplished by extruding a collagen dispersion into a coagulation bath. To create well-controlled and uniform collagen fibers, we developed an automatic wet spinning device with precise control over the spinning and fiber collection parameters. A fiber collection belt allowed the continuous formation of very soft and delicate fibers up to half a meter in length. Wet-spun collagen fibers were characterized by tensile and thermal behavior, diameter uniformity, the swelling response in phosphate buffered saline and their biocompatibility with dorsal root ganglion (DRG) neurons and Schwann cells. Fibers formed from 0.75% weight by volume (w/v) collagen dispersions formed the best fibers in terms of tensile behavior and fiber uniformity. Fibers post-treated with the cross-linkers glutaraldehyde and genipin exhibited increased mechanical stability and reduced swelling. Importantly, genipin-treated fibers were conducive to DRG neurons and Schwann cell survival and growth, which validated the use of this cross-linker for neural tissue engineering applications.
Collapse
Affiliation(s)
- Mevan L Siriwardane
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA. Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | | | | | | |
Collapse
|
24
|
Naik N, Caves J, Chaikof E, Allen MG. Generation of spatially aligned collagen fiber networks through microtransfer molding. Adv Healthc Mater 2014; 3:367-74. [PMID: 24039146 PMCID: PMC3938984 DOI: 10.1002/adhm.201300112] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 06/01/2013] [Indexed: 11/05/2022]
Abstract
The unique biomechanical properties of native tissue are governed by the organization and composition of integrated collagen and elastin networks. An approach for fabricating spatially aligned, fiber-reinforced composites with adjustable collagen fiber dimensions, layouts, and distribution within an elastin-like protein matrix yielding a biocomposite with controllable mechanical responses is reported. Microtransfer molding is employed for the fabrication of hollow and solid collagen fibers with straight or crimped fiber geometries. Collagen fibers (width: 2-50 μm, thickness: 300 nm to 3 μm) exhibit a Young's modulus of 126 ± 61 MPa and an ultimate tensile strength of 7 ± 3.2 MPa. As fiber networks within composite structures, straight fiber layouts display orthotropic responses with Young's modulus ranging from 0.95 ± 0.35 to 10.4 ± 0.5 MPa and tensile strength from 0.22 ± 0.08 to 0.87 ± 0.5 MPa with increasing fraction of collagen fibers (1-10%, v/v). In contrast, composites based on crimped fiber layouts exhibit strain-dependent stiffness with an increase in Young's modulus from 0.7 ± 0.14 MPa to 3.15 ± 0.49 MPa, at a specific transition strain. Through controlling the microstructure of engineered collagen fiber networks, a facile means is established to control macroscale mechanical responses of composite protein-based materials.
Collapse
Affiliation(s)
- Nisarga Naik
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center Boston, MA 02115, USA, Wyss Institute of Biologically Inspired Engineering of Harvard University Boston, MA 02115, USA, School of Electrical and Computer Engineering, Georgia Institute of Technology Atlanta, GA 30332, USA
| | - Jeffrey Caves
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center Boston, MA 02115, USA, Wyss Institute of Biologically Inspired Engineering of Harvard University Boston, MA 02115, USA
| | - Elliot Chaikof
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center Boston, MA 02115, USA, Wyss Institute of Biologically Inspired Engineering of Harvard University Boston, MA 02115, USA, Harvard Stem Cell Institute Boston, MA 02115, USA
| | - Mark G. Allen
- School of Electrical and Computer Engineering, Georgia Institute of Technology Atlanta, GA 30332, USA
| |
Collapse
|
25
|
Kumar VA, Martinez AW, Caves JM, Naik N, Haller CA, Chaikof EL. Microablation of collagen-based substrates for soft tissue engineering. Biomed Mater 2014; 9:011002. [PMID: 24457193 DOI: 10.1088/1748-6041/9/1/011002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Noting the abundance and importance of collagen as a biomaterial, we have developed a facile method for the production of a dense fibrillar extracellular matrix mimicking collagen-elastin hybrids with tunable mechanical properties. Through the use of excimer-laser technology, we have optimized conditions for the ablation of collagen lamellae without denaturation of protein, maintenance of fibrillar ultrastructure and preservation of native D-periodicity. Strengths of collagen-elastin hybrids ranged from 0.6 to 13 MPa, elongation at break from 9 to 70% and stiffness from 2.9 to 94 MPa, allowing for the design of a wide variety of tissue specific scaffolds. Further, large (centimeter scale) lamellae can be fabricated and embedded with recombinant elastin to generate collagen-elastin hybrids. Exposed collagen in hybrids act as cell adhesive sites for rat mesenchymal stem cells that conform to ablate waveforms. The ability to modulate these features allows for the generation of a class of biopolymers that can architecturally and physiologically replicate native tissue.
Collapse
Affiliation(s)
- Vivek A Kumar
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA. Wyss Institute of Biologically Inspired Engineering of Harvard University, Boston, MA 02215, USA. Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA 30332, USA
| | | | | | | | | | | |
Collapse
|
26
|
Kumar VA, Caves JM, Haller CA, Dai E, Li L, Grainger S, Chaikof EL. Collagen-Based Substrates with Tunable Strength for Soft Tissue Engineering. Biomater Sci 2013; 1:10.1039/C3BM60129C. [PMID: 24349707 PMCID: PMC3857634 DOI: 10.1039/c3bm60129c] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Through the use of mechanical reinforcement of collagen matrices, mechanically strong and compliant 3D tissue mimetic scaffolds can be generated that act as scaffolds for soft tissue engineering. Collagen has been widely used for the development of materials for repair, augmentation or replacement of damaged or diseased tissue. Herein we describe a facile method for the layer-by-layer fabrication of robust planar collagen fiber constructs. Collagen gels cast in a phosphate buffer were dried to form dense collagen mats. Subsequent gels were layered and dried atop mats to create multilayer constructs possessing a range of tunable strengths (0.5 - 11 MPa) and stiffness (1 - 115 MPa). Depending on processing conditions and crosslinking of constructs, strain to failure ranged between 9 to 48%. Collagen mats were constructed into hernia patches that prevented hernia recurrence in Wistar rats.
Collapse
Affiliation(s)
- Vivek A. Kumar
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
- Wyss Institute of Biologically Inspired Engineering of Harvard University, Boston, MA 02215
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA 30332
| | - Jeffrey M. Caves
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
- Wyss Institute of Biologically Inspired Engineering of Harvard University, Boston, MA 02215
| | - Carolyn A. Haller
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
- Wyss Institute of Biologically Inspired Engineering of Harvard University, Boston, MA 02215
| | - Erbin Dai
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Liying Li
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Stephanie Grainger
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
- Wyss Institute of Biologically Inspired Engineering of Harvard University, Boston, MA 02215
| | - Elliot L. Chaikof
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
- Wyss Institute of Biologically Inspired Engineering of Harvard University, Boston, MA 02215
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA 30332
| |
Collapse
|
27
|
Reese SP, Ellis BJ, Weiss JA. Micromechanical model of a surrogate for collagenous soft tissues: development, validation and analysis of mesoscale size effects. Biomech Model Mechanobiol 2013; 12:1195-204. [PMID: 23400805 DOI: 10.1007/s10237-013-0475-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 01/25/2013] [Indexed: 01/10/2023]
Abstract
Aligned, collagenous tissues such as tendons and ligaments are composed primarily of water and type I collagen, organized hierarchically into nanoscale fibrils, microscale fibers and mesoscale fascicles. Force transfer across scales is complex and poorly understood. Since innervation, the vasculature, damage mechanisms and mechanotransduction occur at the microscale and mesoscale, understanding multiscale interactions is of high importance. This study used a physical model in combination with a computational model to isolate and examine the mechanisms of force transfer between scales. A collagen-based surrogate served as the physical model. The surrogate consisted of extruded collagen fibers embedded within a collagen gel matrix. A micromechanical finite element model of the surrogate was validated using tensile test data that were recorded using a custom tensile testing device mounted on a confocal microscope. Results demonstrated that the experimentally measured macroscale strain was not representative of the microscale strain, which was highly inhomogeneous. The micromechanical model, in combination with a macroscopic continuum model, revealed that the microscale inhomogeneity resulted from size effects in the presence of a constrained boundary. A sensitivity study indicated that significant scale effects would be present over a range of physiologically relevant inter-fiber spacing values and matrix material properties. The results indicate that the traditional continuum assumption is not valid for describing the macroscale behavior of the surrogate and that boundary-induced size effects are present.
Collapse
Affiliation(s)
- Shawn P Reese
- Department of Bioengineering, and Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA
| | | | | |
Collapse
|
28
|
Paten JA, Tilburey GE, Molloy EA, Zareian R, Trainor CV, Ruberti JW. Utility of an optically-based, micromechanical system for printing collagen fibers. Biomaterials 2013; 34:2577-87. [PMID: 23352045 DOI: 10.1016/j.biomaterials.2012.12.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 12/22/2012] [Indexed: 11/19/2022]
Abstract
Collagen's success as the principal structural element in load-bearing, connective tissue has motivated the development of numerous engineering approaches designed to recapitulate native fibril morphology and strength. It has been shown recently that collagen fibers can be drawn from monomeric solution through a fiber forming buffer (FFB), followed by numerous additional treatments in a complex serial process. However, internal fibril alignment, packing and resultant mechanical behavior of the fibers have not been optimized and remain inferior to native tissue. Further, no system has been developed which permits simultaneous application of molecular crowding, measurement of applied load, and direct observation of polymerization dynamics during fiber printing. The ability to perform well-controlled investigations early in the process of fiber formation, which vary single input parameters (i.e. collagen concentration, crowding agent concentration, draw rate, flow rate, temperature, pH, etc.) should substantially improve fiber morphology and strength. We have thus designed, built, and tested a versatile, in situ, optically-based, micromechanical assay and fiber printing system which permits the correlation of parameter changes with mechanical properties of fibers immediately after deposition into an FFB. We demonstrate the sensitivity of the assay by detecting changes in the fiber mechanics in response to draw rate, collagen type, small changes in the molecular crowding agent concentration and to variations in pH. In addition we found the ability to observe fiber polymerization dynamics leads to intriguing new insights into collagen assembly behavior.
Collapse
Affiliation(s)
- Jeffrey A Paten
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
29
|
Uquillas JA, Kishore V, Akkus O. Effects of phosphate-buffered saline concentration and incubation time on the mechanical and structural properties of electrochemically aligned collagen threads. Biomed Mater 2011; 6:035008. [PMID: 21540522 PMCID: PMC3146300 DOI: 10.1088/1748-6041/6/3/035008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A key step during the synthesis of collagen constructs is the incubation of monomeric collagen in phosphate buffer saline (PBS) to promote fibrillogenesis in the collagen network. Optimal PBS-treatment conditions for monomeric collagen solutions to induce gelation are well established in the literature. Recently, a report in the literature (Cheng et al 2008 Biomaterials 29 3278-88) showed a novel method to fabricate highly oriented electrochemically aligned collagen (ELAC) threads which have orders of magnitude greater packing density than collagen gels. The optimal PBS-treatment conditions for induction of D-banding pattern in such a dense and anisotropic collagen network are unknown. This study aimed to optimize PBS treatment of ELAC threads by investigating the effect of phosphate ion concentration (0.5×, 1×, 5× and 10×) and incubation time (3, 12 and 96 h) on the mechanical strength and ultrastructural organization by monotonic mechanical testing, small angle x-ray scattering and transmission electron microscopy (TEM). ELAC threads incubated in water (no PBS) served as the control. ELAC threads incubated in 1× PBS showed significantly higher extensibility compared to those in 0.5× or 10× PBS along with the presence of D-banded patterns with a periodicity of 63.83 nm. Incubation of ELAC threads in 1× PBS for 96 h resulted in significantly higher ultimate stress compared to 3 or 12 h. However, these threads lacked the D-banding pattern. TEM observations showed no significant differences in the microfibril diameter distribution of ELAC threads treated with or without PBS. This indicates that microfibrils lacked D-banding following electrochemical alignment and the subsequent PBS-treatment-induced D-banding by reorganization within microfibrils. It was concluded that incubation of aligned collagen in 1× PBS for 12 h results in mechanically competent, D-banded ELAC threads which can be used for the regeneration of load bearing tissues such as tendons and ligaments.
Collapse
Affiliation(s)
- Jorge Alfredo Uquillas
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907-2032
| | - Vipuil Kishore
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907-2032
| | - Ozan Akkus
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907-2032
| |
Collapse
|
30
|
Caves JM, Cui W, Wen J, Kumar VA, Haller CA, Chaikof EL. Elastin-like protein matrix reinforced with collagen microfibers for soft tissue repair. Biomaterials 2011; 32:5371-9. [PMID: 21550111 DOI: 10.1016/j.biomaterials.2011.04.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 04/05/2011] [Indexed: 10/18/2022]
Abstract
Artificial composites designed to mimic the structure and properties of native extracellular matrix may lead to acellular materials for soft tissue repair and replacement, which display mechanical strength, stiffness, and resilience resembling native tissue. We describe the fabrication of thin lamellae consisting of continuous collagen microfiber embedded at controlled orientations and densities in a recombinant elastin-like protein polymer matrix. Multilamellar stacking affords flexible, protein-based composite sheets whose properties are dependent upon both the elastomeric matrix and collagen content and organization. Sheets are produced with properties that range over 13-fold in elongation to break (23-314%), six-fold in Young's modulus (5.3-33.1 MPa), and more than two-fold in tensile strength (1.85-4.08 MPa), exceeding that of a number of native human tissues, including urinary bladder, pulmonary artery, and aorta. A sheet approximating the mechanical response of human abdominal wall fascia is investigated as a fascial substitute for ventral hernia repair. Protein-based composite patches prevent hernia recurrence in Wistar rats over an 8-week period with new tissue formation and sustained structural integrity.
Collapse
Affiliation(s)
- Jeffrey M Caves
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, 110 Francis Street, Boston, MA 02215, USA
| | | | | | | | | | | |
Collapse
|
31
|
Caves JM, Kumar VA, Martinez AW, Kim J, Ripberger CM, Haller CA, Chaikof EL. The use of microfiber composites of elastin-like protein matrix reinforced with synthetic collagen in the design of vascular grafts. Biomaterials 2010; 31:7175-82. [PMID: 20584549 DOI: 10.1016/j.biomaterials.2010.05.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 05/07/2010] [Indexed: 11/26/2022]
Abstract
Collagen and elastin networks contribute to highly specialized biomechanical responses in numerous tissues and species. Biomechanical properties such as modulus, elasticity, and strength ultimately affect tissue function and durability, as well as local cellular behavior. In the case of vascular bypass grafts, compliance at physiologic pressures is correlated with increased patency due to a reduction in anastomotic intimal hyperplasia. In this report, we combine extracellular matrix (ECM) protein analogues to yield multilamellar vascular grafts comprised of a recombinant elastin-like protein matrix reinforced with synthetic collagen microfibers. Structural analysis revealed that the fabrication scheme permits a range of fiber orientations and volume fractions, leading to tunable mechanical properties. Burst strengths of 239-2760 mm Hg, compliances of 2.8-8.4%/100 mm Hg, and suture retention strengths of 35-192 gf were observed. The design most closely approximating all target criteria displayed a burst strength of 1483 +/- 143 mm Hg, a compliance of 5.1 +/- 0.8%/100 mm Hg, and a suture retention strength of 173 +/- 4 gf. These results indicate that through incorporation of reinforcing collagen microfibers, recombinant elastomeric protein-based biomaterials can play a significant role in load bearing tissue substitutes. We believe that similar composites can be incorporated into tissue engineering schemes that seek to integrate cells within the structure, prior to or after implantation in vivo.
Collapse
Affiliation(s)
- Jeffrey M Caves
- Departments of Surgery, Emory University, Atlanta, GA 30332, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Caves JM, Kumar VA, Xu W, Naik N, Allen MG, Chaikof EL. Microcrimped collagen fiber-elastin composites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2010; 22:2041-4. [PMID: 20544890 PMCID: PMC3213053 DOI: 10.1002/adma.200903612] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Affiliation(s)
- Jeffrey M. Caves
- Department of Biomedical Engineering and Surgery, Emory University/Georgia Institute of Technology, 101 Woodruff Circle, Rm 5105, Atlanta, GA 30322 (USA)
| | - Vivek A. Kumar
- Department of Biomedical Engineering and Surgery, Emory University/Georgia Institute of Technology, 101 Woodruff Circle, Rm 5105, Atlanta, GA 30322 (USA)
| | - Wenjun Xu
- Schools of Electrical and Computer Engineering, Georgia Institute of Technology, 791 Atlantic Dr., MiRC 120, Atlanta, GA 30332 (USA)
| | - Nisarga Naik
- Schools of Electrical and Computer Engineering, Georgia Institute of Technology, 791 Atlantic Dr., MiRC 120, Atlanta, GA 30332 (USA)
| | - Mark G. Allen
- Schools of Electrical and Computer Engineering, Georgia Institute of Technology, 791 Atlantic Dr., MiRC 120, Atlanta, GA 30332 (USA)
| | - Elliot L. Chaikof
- Department of Biomedical Engineering and Surgery, Emory University/Georgia Institute of Technology, 101 Woodruff Circle, Rm 5105, Atlanta, GA 30322 (USA)
| |
Collapse
|