1
|
Signoriello A, Zangani A, Faccioni P, Messina E, Pardo A, Corrocher G, Albanese M, Lombardo G. Use of Deproteinized Bovine Bone in Association with Calcium Sulphate for Alveolar Socket Preservation. J Clin Med 2024; 14:3. [PMID: 39797088 PMCID: PMC11722185 DOI: 10.3390/jcm14010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
Background: The aim of this retrospective study was to compare the histomorphometry of post-extractive sites previously grafted with deproteinized bovine bone, with or without the association of a calcium sulphate preparation. Methods: The retrospective evaluation comprehended patients previously selected and treated for the extraction of one or more mono-radicular teeth, followed by an implant-prosthetic rehabilitation. Post-extractive sites had been randomly assigned to test or control group, respectively, if deproteinized bovine bone was used in association with a calcium sulphate preparation or alone. In both cases, a collagen membrane was employed to cover the grafted area. After four months, a biopsy of regenerated bone was taken from all grafted sites and then processed for histomorphometric analysis. Results: Of 24 samples analyzed 4 months after extraction, vital bone was present in 62.5% of cases for the test group and in 31.25% for the control group. Acellular bone was respectively found in 5% of cases for the test group and in 32.91% for the control group. Both these differences were statistically significant (p < 0.05) between groups. Conclusions: Calcium sulphate in association with deproteinized bovine bone seems to promote proper vital bone formation, with less acellular bone compared to deproteinized bovine bone used alone. Socket preservation procedures with the use of specific osteoconductive materials improve the maintenance of width and height of remaining bone. Findings of the present study offer clinicians a predictable protocol for preserving vital bone in early healing of post-extraction sites, slowing down the resorption process at the same time.
Collapse
Affiliation(s)
- Annarita Signoriello
- Dentistry and Maxillo-Facial Surgery Unit, Department of Surgery, Dentistry, Paediatrics and Gynaecology (DIPSCOMI), University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (A.Z.); (P.F.); (E.M.); (G.C.); (M.A.); (G.L.)
| | | | | | | | - Alessia Pardo
- Dentistry and Maxillo-Facial Surgery Unit, Department of Surgery, Dentistry, Paediatrics and Gynaecology (DIPSCOMI), University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (A.Z.); (P.F.); (E.M.); (G.C.); (M.A.); (G.L.)
| | | | | | | |
Collapse
|
2
|
Mîrț AL, Ficai D, Oprea OC, Vasilievici G, Ficai A. Current and Future Perspectives of Bioactive Glasses as Injectable Material. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1196. [PMID: 39057873 PMCID: PMC11280465 DOI: 10.3390/nano14141196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
This review covers recent compositions of bioactive glass, with a specific emphasis on both inorganic and organic materials commonly utilized as matrices for injectable materials. The major objective is to highlight the predominant bioactive glass formulations and their clinical applications in the biomedical field. Previous studies have highlighted the growing interest among researchers in bioactive glasses, acknowledging their potential to yield promising outcomes in this field. As a result of this increased interest, investigations into bioactive glass have prompted the creation of composite materials and, notably, the development of injectable composites as a minimally invasive method for administering the material within the human body. Injectable materials have emerged as a promising avenue to mitigate various challenges. They offer several advantages, including minimizing invasive surgical procedures, reducing patient discomfort, lowering the risk of postoperative infection and decreasing treatment expenses. Additionally, injectable materials facilitate uniform distribution, allowing for the filling of defects of any shape.
Collapse
Affiliation(s)
- Andreea-Luiza Mîrț
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Gh. Polizu 1–7, 011061 Bucharest, Romania;
- National Center for Scientific Research for Food Safety, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (D.F.); (O.-C.O.)
- National Center for Micro and Nanomaterials, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania;
| | - Denisa Ficai
- National Center for Scientific Research for Food Safety, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (D.F.); (O.-C.O.)
- National Center for Micro and Nanomaterials, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Gh. Polizu 1–7, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Ovidiu-Cristian Oprea
- National Center for Scientific Research for Food Safety, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (D.F.); (O.-C.O.)
- National Center for Micro and Nanomaterials, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Gh. Polizu 1–7, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Gabriel Vasilievici
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania;
| | - Anton Ficai
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Gh. Polizu 1–7, 011061 Bucharest, Romania;
- National Center for Scientific Research for Food Safety, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (D.F.); (O.-C.O.)
- National Center for Micro and Nanomaterials, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| |
Collapse
|
3
|
Dorozhkin SV. Calcium Orthophosphate (CaPO4) Containing Composites for Biomedical Applications: Formulations, Properties, and Applications. JOURNAL OF COMPOSITES SCIENCE 2024; 8:218. [DOI: 10.3390/jcs8060218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The goal of this review is to present a wide range of hybrid formulations and composites containing calcium orthophosphates (abbreviated as CaPO4) that are suitable for use in biomedical applications and currently on the market. The bioactive, biocompatible, and osteoconductive properties of various CaPO4-based formulations make them valuable in the rapidly developing field of biomedical research, both in vitro and in vivo. Due to the brittleness of CaPO4, it is essential to combine the desired osteologic properties of ceramic CaPO4 with those of other compounds to create novel, multifunctional bone graft biomaterials. Consequently, this analysis offers a thorough overview of the hybrid formulations and CaPO4-based composites that are currently known. To do this, a comprehensive search of the literature on the subject was carried out in all significant databases to extract pertinent papers. There have been many formulations found with different material compositions, production methods, structural and bioactive features, and in vitro and in vivo properties. When these formulations contain additional biofunctional ingredients, such as drugs, proteins, enzymes, or antibacterial agents, they offer improved biomedical applications. Moreover, a lot of these formulations allow cell loading and promote the development of smart formulations based on CaPO4. This evaluation also discusses basic problems and scientific difficulties that call for more investigation and advancements. It also indicates perspectives for the future.
Collapse
Affiliation(s)
- Sergey V. Dorozhkin
- Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia
| |
Collapse
|
4
|
Tzagiollari A, Redmond J, McCarthy HO, Levingstone TJ, Dunne NJ. Multi-objective property optimisation of a phosphoserine-modified calcium phosphate cement for orthopaedic and dental applications using design of experiments methodology. Acta Biomater 2024; 174:447-462. [PMID: 38000527 DOI: 10.1016/j.actbio.2023.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
Phosphoserine is a ubiquitous molecule found in numerous proteins and, when combined with alpha-tricalcium phosphate (α-TCP) powder, demonstrates the ability to generate an adhesive biomaterial capable of stabilising and repairing bone fractures. Design of Experiments (DoE) approach was able to optimise the composition of phosphoserine-modified calcium phosphate cement (PM-CPC) demonstrating that the liquid:powder ratio (LPR) and quantity of phosphoserine (wt%) significantly influenced the handling, mechanical, and adhesion properties. Subsequently, the DoE optimisation process identified the optimal PM-CPC formulation, exhibiting a compressive strength of 29.2 ± 4.9 MPa and bond/shear strength of 3.6 ± 0.9 MPa after a 24 h setting reaction. Moreover, the optimal PM-CPC composition necessitated a mixing time of 20 s and displayed an initial setting time between 3 and 4 min, thus enabling homogenous mixing and precise delivery within a surgical environment. Notably, the PM-CPC demonstrated a bone-to-bone bond strength of 1.05 ± 0.3 MPa under wet conditions, coupled with a slow degradation rate during the first five days. These findings highlight the ability of PM-CPC to effectively support and stabilise bone fragments during the initial stages of natural bone healing. The developed PM-CPC formulations fulfil the clinical requirements for working and setting times, static mechanical, degradation properties, and injectability, enabling surgeons to stabilise complex bone fractures. This innovative bioinspired adhesive represents a significant advancement in the treatment of challenging bone injuries, offering precise delivery within a surgical environment and the potential to enhance patient outcomes. STATEMENT OF SIGNIFICANCE: This manuscript presents a noteworthy contribution to the field of bone fracture healing and fixation by introducing a novel phosphoserine-modified calcium phosphate cement (PM-CPC) adhesive by incorporating phosphoserine and alpha-TCP. This study demonstrates the fabrication and extensive characterisation of this adhesive biomaterial that holds great promise for stabilising and repairing complex bone fractures. Design of Experiment (DoE) software was used to investigate the correlations between process, property, and structure of the adhesive, resulting in a cost-effective formulation with desirable physical and handling properties. The PM-CPC adhesive exhibited excellent adhesion and cohesion properties in wet-field conditions. This research offers significant potential for clinical translation and contributes to the ongoing advancements in bone tissue engineering.
Collapse
Affiliation(s)
- Antzela Tzagiollari
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Centre for Medical Engineering Research, Dublin City University, Dublin 9, Ireland
| | - John Redmond
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Centre for Medical Engineering Research, Dublin City University, Dublin 9, Ireland
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Tanya J Levingstone
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Centre for Medical Engineering Research, Dublin City University, Dublin 9, Ireland; Biodesign Europe, Dublin City University, Dublin 9, Ireland; Tissue, Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland; Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland
| | - Nicholas J Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Centre for Medical Engineering Research, Dublin City University, Dublin 9, Ireland; School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom; Biodesign Europe, Dublin City University, Dublin 9, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland; Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland.
| |
Collapse
|
5
|
Dahl S, Klär-Quarz V, Schulz A, Karl M, Grobecker-Karl T. In Vitro Handling Characteristics of a Particulate Bone Substitute for Ridge Preservation Procedures. MATERIALS (BASEL, SWITZERLAND) 2024; 17:313. [PMID: 38255481 PMCID: PMC10817230 DOI: 10.3390/ma17020313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
While particulate bone substitute materials are applied in a variety of augmentation procedures, standardized defects are being used for preclinical testing. This in vitro study evaluated the density and homogeneity of a particulate bone substitute in ridge preservation procedures. Premolars and molars were extracted in ten semimandibles of minipig cadavers. Light body impression material was used for determining the volume of the extraction sites followed by augmentation with particulate material, thereby weighing the graft material needed. Microradiographs and histologic sections were obtained for evaluating the homogeneity and density of the augmentation material. Statistical analyses were based on Shapiro-Wilk tests, Spearman's rho and one sample Wilcoxon test followed by Bonferroni-Holm correction for multiple testing (α = 0.05). Based on 103 single alveoli evaluated, the mean volume determined was 0.120 cm3 requiring a mean amount of graft material of 0.155 g. With only three exceptions, all parameters (volume, mass of augmentation material, density and homogeneity) correlated significantly (p < 0.020). The apical parts of the alveoli showed reduced density as compared to the middle parts (p < 0.001) and the homogeneity of the augmentation material was also lower as compared to the middle (p < 0.001) and cervical parts (p = 0.040). The packing of augmentation material is critical when non-standardized defects are treated.
Collapse
Affiliation(s)
| | | | | | | | - Tanja Grobecker-Karl
- Department of Prosthodontics, Saarland University, 66421 Homburg, Saar, Germany; (S.D.); (V.K.-Q.); (A.S.); (M.K.)
| |
Collapse
|
6
|
Yuan Y, Shen L, Liu T, He L, Meng D, Jiang Q. Physicochemical properties of bone marrow mesenchymal stem cells encapsulated in microcapsules combined with calcium phosphate cement and their ectopic bone formation. Front Bioeng Biotechnol 2022; 10:1005954. [PMID: 36277380 PMCID: PMC9582332 DOI: 10.3389/fbioe.2022.1005954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Calcium phosphate bone cement (CPC) serves as an excellent scaffold material for bone tissue engineering owing to its good biocompatibility, injectability, self-setting property and three-dimensional porous structure. However, its clinical use is limited due to the cytotoxic effect of its setting reaction on cells and difficulties in degradation into bone. In this study, bone marrow mesenchymal stem cells (BMSCs) were encapsulated in alginate chitosan alginate (ACA) microcapsules and compounded with calcium phosphate bone cement. Changes in the compressive strength, porosity, injectability and collapsibility of CPC at different volume ratios of microcapsules were evaluated. At a 40% volume ratio of microcapsules, the composite scaffold displayed high porosity and injectability with good collapsibility and compressive strength. Cell live/dead double staining, Cell Counting Kit-8 (CCK-8) assays and scanning electron microscopy were used to detect the viability, proliferation and adhesion of cells after cell microcapsules were combined with CPC. The results revealed that cells protected by microcapsules proliferated and adhered better than those that were directly combined with CPC paste, and cell microcapsules could effectively form macropores in scaffold material. The composite was subsequently implanted subcutaneously on the backs of nude mice, and ectopic osteogenesis of the scaffold was detected via haematoxylin-eosin (H&E), Masson’s trichrome and Goldner’s trichrome staining. CPC clearly displayed better new bone formation function and degradability after addition of pure microcapsules and cell microcapsules. Furthermore, the cell microcapsule treatment group showed greater osteogenesis than the pure microcapsule group. Collectively, these results indicate that BMSCs encapsulated in ACA microcapsules combined with CPC composite scaffolds have good application prospects as bone tissue engineering materials.
Collapse
Affiliation(s)
- Yafei Yuan
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Lipei Shen
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Tiankun Liu
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Lin He
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Dan Meng
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Qingsong Jiang
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Dorozhkin SV. Calcium Orthophosphate (CaPO4)-Based Bioceramics: Preparation, Properties, and Applications. COATINGS 2022; 12:1380. [DOI: 10.3390/coatings12101380] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Various types of materials have been traditionally used to restore damaged bones. In the late 1960s, a strong interest was raised in studying ceramics as potential bone grafts due to their biomechanical properties. A short time later, such synthetic biomaterials were called bioceramics. Bioceramics can be prepared from diverse inorganic substances, but this review is limited to calcium orthophosphate (CaPO4)-based formulations only, due to its chemical similarity to mammalian bones and teeth. During the past 50 years, there have been a number of important achievements in this field. Namely, after the initial development of bioceramics that was just tolerated in the physiological environment, an emphasis was shifted towards the formulations able to form direct chemical bonds with the adjacent bones. Afterwards, by the structural and compositional controls, it became possible to choose whether the CaPO4-based implants would remain biologically stable once incorporated into the skeletal structure or whether they would be resorbed over time. At the turn of the millennium, a new concept of regenerative bioceramics was developed, and such formulations became an integrated part of the tissue engineering approach. Now, CaPO4-based scaffolds are designed to induce bone formation and vascularization. These scaffolds are usually porous and harbor various biomolecules and/or cells. Therefore, current biomedical applications of CaPO4-based bioceramics include artificial bone grafts, bone augmentations, maxillofacial reconstruction, spinal fusion, and periodontal disease repairs, as well as bone fillers after tumor surgery. Prospective future applications comprise drug delivery and tissue engineering purposes because CaPO4 appear to be promising carriers of growth factors, bioactive peptides, and various types of cells.
Collapse
|
8
|
Biomimetic Citrate-Coated Luminescent Apatite Nanoplatforms for Diclofenac Delivery in Inflammatory Environments. NANOMATERIALS 2022; 12:nano12030562. [PMID: 35159907 PMCID: PMC8838995 DOI: 10.3390/nano12030562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/24/2022] [Accepted: 02/02/2022] [Indexed: 11/16/2022]
Abstract
Luminescent nanoparticles are innovative tools for medicine, allowing the imaging of cells and tissues, and, at the same time, carrying and releasing different types of molecules. We explored and compared the loading/release ability of diclofenac (COX-2 antagonist), in both undoped- and luminescent Terbium3+ (Tb3+)-doped citrate-coated carbonated apatite nanoparticles at different temperatures (25, 37, 40 °C) and pHs (7.4, 5.2). The cytocompatibility was evaluated on two osteosarcoma cell lines and primary human osteoblasts. Biological effects of diclofenac-loaded-nanoparticles were monitored in an in vitro osteoblast’s cytokine–induced inflammation model by evaluating COX-2 mRNA expression and production of PGE2. Adsorption isotherms fitted the multilayer Langmuir-Freundlich model. The maximum adsorbed amounts at 37 °C were higher than at 25 °C, and particularly when using the Tb3+ -doped particles. Diclofenac-release efficiencies were higher at pH 5.2, a condition simulating a local inflammation. The luminescence properties of diclofenac-loaded Tb3+ -doped particles were affected by pH, being the relative luminescence intensity higher at pH 5.2 and the luminescence lifetime higher at pH 7.4, but not influenced either by the temperature or by the diclofenac-loaded amount. Both undoped and Tb3+-doped nanoparticles were cytocompatible. In addition, diclofenac release increased COX-2 mRNA expression and decreased PGE2 production in an in vitro inflammation model. These findings evidence the potential of these nanoparticles for osteo-localized delivery of anti-inflammatory drugs and the possibility to localize the inflammation, characterized by a decrease in pH, by changes in luminescence.
Collapse
|
9
|
Rahimnejad M, Rezvaninejad R, Rezvaninejad R, França R. Biomaterials in bone and mineralized tissue engineering using 3D printing and bioprinting technologies. Biomed Phys Eng Express 2021; 7. [PMID: 34438382 DOI: 10.1088/2057-1976/ac21ab] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/26/2021] [Indexed: 12/29/2022]
Abstract
This review focuses on recently developed printable biomaterials for bone and mineralized tissue engineering. 3D printing or bioprinting is an advanced technology to design and fabricate complex functional 3D scaffolds, mimicking native tissue forin vivoapplications. We categorized the biomaterials into two main classes: 3D printing and bioprinting. Various biomaterials, including natural, synthetic biopolymers and their composites, have been studied. Biomaterial inks or bioinks used for bone and mineralized tissue regeneration include hydrogels loaded with minerals or bioceramics, cells, and growth factors. In 3D printing, the scaffold is created by acellular biomaterials (biomaterial inks), while in 3D bioprinting, cell-laden hydrogels (bioinks) are used. Two main classes of bioceramics, including bioactive and bioinert ceramics, are reviewed. Bioceramics incorporation provides osteoconductive properties and induces bone formation. Each biopolymer and mineral have its advantages and limitations. Each component of these composite biomaterials provides specific properties, and their combination can ameliorate the mechanical properties, bioactivity, or biological integration of the 3D printed scaffold. Present challenges and future approaches to address them are also discussed.
Collapse
Affiliation(s)
- Maedeh Rahimnejad
- Biomedical Engineering Institute, Université de Montreal, Montreal, QC, Canada
| | - Raziyehsadat Rezvaninejad
- Department of Oral Medicine, Faculty of Dentistry, Hormozgan University of Medical Sciences, Hormozgan, Iran
| | | | - Rodrigo França
- Department of Restorative Dentistry, College of Dentistry, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
10
|
Bioactive Calcium Phosphate-Based Composites for Bone Regeneration. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5090227] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Calcium phosphates (CaPs) are widely accepted biomaterials able to promote the regeneration of bone tissue. However, the regeneration of critical-sized bone defects has been considered challenging, and the development of bioceramics exhibiting enhanced bioactivity, bioresorbability and mechanical performance is highly demanded. In this respect, the tuning of their chemical composition, crystal size and morphology have been the matter of intense research in the last decades, including the preparation of composites. The development of effective bioceramic composite scaffolds relies on effective manufacturing techniques able to control the final multi-scale porosity of the devices, relevant to ensure osteointegration and bio-competent mechanical performance. In this context, the present work provides an overview about the reported strategies to develop and optimize bioceramics, while also highlighting future perspectives in the development of bioactive ceramic composites for bone tissue regeneration.
Collapse
|
11
|
Silver-Releasing Micro-/Nanoporous Coating on Additively Manufactured Macroporous Ti-Ta-Nb-Zr Scaffolds with High Osseointegration and Antibacterial Properties. COATINGS 2021. [DOI: 10.3390/coatings11060716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The two major problems of titanium alloy surface of bone/dental implants were the lack of native tissue integration and associated infection. To solve these problems, the development of self-defending implants with intrinsic osteogenic properties has been highlighted, in which titanium alloy surfaces of bone/dental implants are endowed with antibacterial property by silver (Ag) incorporated in biomaterials. In this study, we biofunctionalized the surface of selective laser melting (SLM) manufactured volume-porous Ti-Ta-Nb-Zr scaffolds by using plasma electrolytic oxidation (PEO) as a way to eliminate the peri-operative bacterial load and promote osseointegration. In the experiment, the PEO process operated with three different concentration (1, 1, and 2 g/L) of a AgNO3 solution. As a result, a titanium oxide coating embedded with calcium and phosphorous and Ag was formed by one-step PEO treatment, and a presence of HAp was detected by X-ray diffraction (XRD) and XPS. In addition, Ag ions were found to be released from the scaffolds for at least 28 days, resulting in an effective prevention of bacterial adhesion and a decrease of the number of planktonic bacteria, with no sign of cytotoxicity shown simultaneously. Highly porosity micropores were formed on the surface of scaffolds after oxidation, and the mechanical properties did not show any signs of change. Besides, a strong calcium deposition and osteoconductive effect were found on the surface of PEO-treated Ag scaffolds. To sum up, this study reveals the potential of PEO coatings to biofunctionalize SLM Ti-Ta-Nb-Zr scaffolds with antibacterial agents. The biomaterials developed here, therefore, exploit the biofunctionalized behavior of Ag to offer strong antibacterial behavior and osteogenic promotion without cytotoxicity of Ag against mammalian cells.
Collapse
|
12
|
Abstract
Smart scaffolds based on shape memory polymer (SMPs) have been increasingly studied in tissue engineering. The unique shape actuating ability of SMP scaffolds has been utilized to improve delivery and/or tissue defect filling. In this regard, these scaffolds may be self-deploying, self-expanding, or self-fitting. Smart scaffolds are generally thermoresponsive or hydroresponsive wherein shape recovery is driven by an increase in temperature or by hydration, respectively. Most smart scaffolds have been directed towards regenerating bone, cartilage, and cardiovascular tissues. A vast variety of smart scaffolds can be prepared with properties targeted for a specific tissue application. This breadth of smart scaffolds stems from the variety of compositions employed as well as the numerous methods used to fabricated scaffolds with the desired morphology. Smart scaffold compositions span across several distinct classes of SMPs, affording further tunability of properties using numerous approaches. Specifically, these SMPs include those based on physically cross-linked and chemically cross-linked networks and include widely studied shape memory polyurethanes (SMPUs). Various additives, ranging from nanoparticles to biologicals, have also been included to impart unique functionality to smart scaffolds. Thus, given their unique functionality and breadth of tunable properties, smart scaffolds have tremendous potential in tissue engineering.
Collapse
Affiliation(s)
- Michaela R Pfau
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Melissa A Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA. and Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA and Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
13
|
Pfau MR, McKinzey KG, Roth AA, Graul LM, Maitland DJ, Grunlan MA. Shape memory polymer (SMP) scaffolds with improved self-fitting properties. J Mater Chem B 2021; 9:3826-3837. [PMID: 33979417 DOI: 10.1039/d0tb02987d] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
"Self-fitting" shape memory polymer (SMP) scaffolds prepared as semi-interpenetrating networks (semi-IPNs) with crosslinked linear-poly(ε-caprolactone)-diacrylate (PCL-DA, Mn∼10 kg mol-1) and linear-poly(l-lactic acid) (PLLA, Mn∼15 kg mol-1) [75/25 wt%] exhibited robust mechanical properties and accelerated degradation rates versus a PCL-DA scaffold control. However, their potential to treat irregular craniomaxillofacial (CMF) bone defects is limited by their relatively high fitting temperature (Tfit∼55 °C; related to the Tm of PCL) required for shape recovery (i.e. expansion) and subsequent shape fixation during press fitting of the scaffold, which can be harmful to surrounding tissue. Additionally, the viscosity of the solvent-based precursor solutions, cast over a fused salt template during fabrication, can limit scaffold size. Thus, in this work, analogous semi-IPN SMP scaffolds were formed with a 4-arm star-PCL-tetracryalate (star-PCL-TA) (Mn∼10 kg mol-1) and star-PLLA (Mn∼15 kg mol-1). To assess the impact of a star-polymer architecture, four semi-IPN compositions were prepared: linear-PCL-DA/linear-PLLA (L/L), linear-PCL-DA/star-PLLA (L/S), star-PCL-TA/linear-PLLA (S/L) and star-PCL-TA/star-PLLA (S/S). Two PCL controls were also prepared: LPCL (i.e. 100% linear-PCL-DA) and SPCL (i.e. 100% star-PCL-TA). The S/S semi-IPN scaffold exhibited particularly desirable properties. In addition to achieving a lower, tissue-safe Tfit (∼45 °C), it exhibited the fastest rate of degradation which is anticipated to more favourably permit neotissue infiltration. The radial expansion pressure exerted by the S/S semi-IPN scaffold at Tfit was greater than that of LPCL, which is expected to enhance osseointegration and mechanical stability. The intrinsic viscosity of the S/S semi-IPN macromer solution was also reduced such that larger scaffold specimens could be prepared.
Collapse
Affiliation(s)
- Michaela R Pfau
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Pröhl A, Batinic M, Alkildani S, Hahn M, Radenkovic M, Najman S, Jung O, Barbeck M. In Vivo Analysis of the Biocompatibility and Bone Healing Capacity of a Novel Bone Grafting Material Combined with Hyaluronic Acid. Int J Mol Sci 2021; 22:ijms22094818. [PMID: 34062885 PMCID: PMC8124336 DOI: 10.3390/ijms22094818] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/28/2022] Open
Abstract
The present in vivo study analyses both the inflammatory tissue reactions and the bone healing capacity of a newly developed bone substitute material (BSM) based on xenogeneic bone substitute granules combined with hyaluronate (HY) as a water-binding molecule. The results of the hyaluronate containing bone substitute material (BSM) were compared to a control xenogeneic BSM of the same chemical composition and a sham operation group up to 16 weeks post implantationem. A major focus of the study was to analyze the residual hyaluronate and its effects on the material-dependent healing behavior and the inflammatory tissue responses. The study included 63 male Wistar rats using the calvaria implantation model for 2, 8, and 16 weeks post implantationem. Established and Good Laboratory Practice (GLP)-conforming histological, histopathological, and histomorphometrical analysis methods were conducted. The results showed that the new hyaluronate containing BSM was gradually integrated within newly formed bone up to the end of the study that ended in a condition of complete bone defect healing. Thereby, no differences to the healing capacity of the control BSM were found. However, the bone formation in both groups was continuously significantly higher compared to the sham operation group. Additionally, no differences in the (inflammatory) tissue response that was analyzed via qualitative and (semi-) quantitative methods were found. Interestingly, no differences were found between the numbers of pro- and anti-inflammatory macrophages between the three study groups over the entire course of the study. No signs of the HY as a water-binding part of the BSM were histologically detectable at any of the study time points, altogether the results of the present study show that HY allows for an optimal material-associated bone tissue healing comparable to the control xenogeneic BSM. The added HY seems to be degraded within a very short time period of less than 2 weeks so that the remaining BSM granules allow for a gradual osteoconductive bone regeneration. Additionally, no differences between the inflammatory tissue reactions in both material groups and the sham operation group were found. Thus, the new hyaluronate containing xenogeneic BSM and also the control BSM have been shown to be fully biocompatible without any differences regarding bone regeneration.
Collapse
Affiliation(s)
- Annica Pröhl
- BerlinAnalytix GmbH, 12109 Berlin, Germany; (A.P.); (M.B.); (S.A.)
| | - Milijana Batinic
- BerlinAnalytix GmbH, 12109 Berlin, Germany; (A.P.); (M.B.); (S.A.)
| | - Said Alkildani
- BerlinAnalytix GmbH, 12109 Berlin, Germany; (A.P.); (M.B.); (S.A.)
| | - Michael Hahn
- Institute of Osteology and Biomechanics, Eppendorf University Hospital, University of Hamburg, 20246 Hamburg, Germany;
| | - Milena Radenkovic
- Department for Cell and Tissue Engineering, Faculty of Medicine, University of Niš, 18108 Niš, Serbia; (M.R.); (S.N.)
| | - Stevo Najman
- Department for Cell and Tissue Engineering, Faculty of Medicine, University of Niš, 18108 Niš, Serbia; (M.R.); (S.N.)
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, 18108 Niš, Serbia
| | - Ole Jung
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany;
| | - Mike Barbeck
- Department of Ceramic Materials, Chair of Advanced Ceramic Materials, Institute for Materials Science and Technologies, Technical University Berlin, 10623 Berlin, Germany
- Correspondence: ; Tel.: +49-176-81022467
| |
Collapse
|
15
|
Tan S, Wang Y, Du Y, Xiao Y, Zhang S. Injectable bone cement with magnesium-containing microspheres enhances osteogenesis via anti-inflammatory immunoregulation. Bioact Mater 2021; 6:3411-3423. [PMID: 33842737 PMCID: PMC8010581 DOI: 10.1016/j.bioactmat.2021.03.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 01/06/2023] Open
Abstract
Injectable bone cement is especially useful in minimally invasive surgeries to repair small and irregular bone defects. Amongst different kinds of injectable bone cements, bioactive calcium phosphate bone cement (CPC) has been widely studied due to its biological activity. However, its dense structure and poor biodegradability prevent the ingrowth of living tissue, which leads to undesirable bone regeneration and clinical translation. To address this issue, we prepared bone cement based on Magnesium-containing microspheres (MMSs) that can not only be cured into a 3D porous scaffold but also have controllable biodegradability that continuously provides space for desired tissue ingrowth. Interestingly, magnesium ions released from MMSs cement (MMSC) trigger positive immunomodulation via upregulation of the anti-inflammatory genes IL-10 and M2 macrophage polarization with increased expression of CD206, which is beneficial to osteogenesis. Moreover, the physicochemical properties of MMSC, including heat release, rheology and setting time, can be tuned to meet the requirements of injectable bone cement for clinical application. Using a rat model, we have demonstrated that MMSC promoted osteogenesis via mediation of tissue ingrowth and anti-inflammatory immunomodulation. The study provides a paradigm for the design and preparation of injectable bone cements with 3D porous structures, biodegradability and anti-inflammatory immunoregulation to efficiently promote osteogenesis.
Collapse
Affiliation(s)
- Shenglong Tan
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, 430074, China.,Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.,Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yifan Wang
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, 430074, China.,Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.,Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yingying Du
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, 430074, China.,Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.,Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, 60 Musk Ave, Kelvin Grove, Brisbane, Queensland, 4059, Australia.,Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, Brisbane, Queensland, 4059, Australia
| | - Shengmin Zhang
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, 430074, China.,Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.,Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
16
|
Osteogenic and Anti-Inflammatory Behavior of Injectable Calcium Phosphate Loaded with Therapeutic Drugs. NANOMATERIALS 2020; 10:nano10091743. [PMID: 32899225 PMCID: PMC7558013 DOI: 10.3390/nano10091743] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/25/2020] [Accepted: 09/01/2020] [Indexed: 12/31/2022]
Abstract
Bone fractures related to musculoskeletal disorders determine long-term disability in older people with a consequent significant economic burden. The recovery of pathologically impaired tissue architecture allows avoiding bone loss-derived consequences such as bone height reduction, deterioration of bone structure, inflamed bone pain, and high mortality for thighbone fractures. Actually, standard therapy for osteoporosis treatment is based on the systemic administration of biphosphonates and anti-inflammatory drugs, which entail several side effects including gastrointestinal (GI) diseases, fever, and articular pain. Hence, the demand of innovative therapeutic approaches for locally treating bone lesions has been increasing in the last few years. In this scenario, the development of injectable materials loaded with therapeutically active agents (i.e., anti-inflammatory drugs, antibiotics, and peptides mimicking growth factors) could be an effective tool to treat bone loss and inflammation related to musculoskeletal diseases, including osteoporosis and osteoarthritis. According to this challenge, here, we propose three different compositions of injectable calcium phosphates (CaP) as new carrier materials of therapeutic compounds such as bisphosphonates (i.e., alendronate), anti-inflammatory drugs (i.e., diclofenac sodium), and natural molecules (i.e., harpagoside) for the local bone disease treatment. Biological quantitative analyses were performed for screening osteoinductive and anti-inflammatory properties of injectable drug-loaded systems. Meanwhile, cell morphological features were analyzed through scanning electron microscopy and confocal investigations. The results exhibited that the three systems exerted an osteoinductive effect during later phases of osteogenesis. Simultaneously, all compositions showed an anti-inflammatory activity on inflammation in vitro models.
Collapse
|
17
|
Fast-Versus Slow-Resorbable Calcium Phosphate Bone Substitute Materials-Texture Analysis after 12 Months of Observation. MATERIALS 2020; 13:ma13173854. [PMID: 32882883 PMCID: PMC7503390 DOI: 10.3390/ma13173854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 11/16/2022]
Abstract
The development of oral surgery and implantology has led to the need for better and more predictable materials. Various substitute materials are now used for bone regeneration. The replacement of scaffolding material by new bone tissue is the most important condition. This study aimed to evaluate the effects of the resorbability of bone substitute materials during regeneration to the jawbone. The study included 88 patients during the 12-month follow-up. All the patients had undergone oral surgical procedures using two different substitute materials—Cerasorb (high-rate resorbable (β-tricalcium phosphate)) and Endobone (low-rate resorbable (hydroxyapatite)). Texture analysis was performed in intraoral radiographs, in which regions of interest were established for the bone substitute materials and reference bone. Five texture features were calculated, namely the sum average (SumAverg), entropy (Entropy), and three Harr discrete wavelet transform coefficients. This study revealed that all 5 features described the healing process well. Entropy was decreased in both cases with time; however, in Cerasorb cases, the texture feature values were very close to those of the reference bone after 12 months of healing (p < 0.05). The wavelet transform coefficient at scale 6 also showed that longitudinal objects appeared in implantation sites, similar to trabecular bone (p < 0.05) after 12 months of healing. The slow-resorbing material restored the structure of the alveolar crest better in terms of producing large objects similar to the components of a barrel bone image (wavelet coefficients), but required a longer time for reconstruction. The fast-resorbing material showed a texture image with a similar scattering of structures to that of the reference bone (entropy) after 12 months.
Collapse
|
18
|
Li C, Hao W, Wu C, Li W, Tao J, Ai F, Xin H, Wang X. Injectable and bioactive bone cement with moderate setting time and temperature using borosilicate bio-glass-incorporated magnesium phosphate. ACTA ACUST UNITED AC 2020; 15:045015. [PMID: 31851951 DOI: 10.1088/1748-605x/ab633f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this study, borosilicate bio-glass (BG) was incorporated into magnesium phosphate cement (MPC) for the purpose of developing an injectable and bioactive composite cement with suitable physicochemical and biocompatible performance. Results show that the BG-incorporated MPC possesses an excellent injectability, and can be used to fill in different 3D printed defect models using a syringe with a moderate setting time. Meanwhile, BG can retard the setting time and adjust the exothermic temperature of MPC. When the MPC/BG ratio was 3:1 (MPC3-BG), its corresponding setting time, peak temperature, anti-washout ratio and compressive strength were 9.9 ± 0.7 min, 45.8 ± 1.6 °C, 87%-90% and 13.5 MPa, respectively, which were suitable for injection and bone reparation. Characterizations of MPC3-BG showed that it had a faster degradation rate than MPC and the functional ions of boron and silicon could be released from the dissolution of the composite cement. In vitro and in vivo experiments also demonstrated that MPC3-BG had a stimulatory effect on the cell proliferation and new bone regeneration.
Collapse
Affiliation(s)
- Chen Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Tran NMP, Dang NTN, Nguyen NTP, Nguyen LVH, Quyen TN, Tran PA, Lee BT, Hiep NT. Fabrication of injectable bone substitute loading porous simvastatin-loaded poly(lactic- co-glycolic acid) microspheres. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2019.1566726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Nam Minh-Phuong Tran
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, International University, Vietnam National University- Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam
| | - Nhi Thao-Ngoc Dang
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, International University, Vietnam National University- Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam
| | - Nghi Thi-Phuong Nguyen
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, International University, Vietnam National University- Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam
| | - Long Vuong-Hoang Nguyen
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, International University, Vietnam National University- Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam
| | - Tran Ngoc Quyen
- Institute of Applied Materials Science, Vietnam Academy Science and Technology, Ho Chi Minh City, Vietnam
- Graduate University of Science and Technology Viet Nam, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Phong A. Tran
- Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Byong-Taek Lee
- Department of Biomedical Engineering and Materials, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Nguyen Thi Hiep
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, International University, Vietnam National University- Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam
| |
Collapse
|
20
|
Kesseli FP, Lauer CS, Baker I, Mirica KA, Van Citters DW. Identification of a calcium phosphoserine coordination network in an adhesive organo-apatitic bone cement system. Acta Biomater 2020; 105:280-289. [PMID: 31945507 PMCID: PMC7134197 DOI: 10.1016/j.actbio.2020.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/14/2019] [Accepted: 01/08/2020] [Indexed: 12/22/2022]
Abstract
Calcium phosphate-based bone cements have been widely adopted in both orthopedic and dental applications. Phosphoserine (pSer), which has a natural role in biomineralization, has been identified to possess the functionality to react with calcium phosphate phases, such as tetracalcium phosphate (TTCP) and α-tricalcium phosphate (α-TCP), and form a uniquely adhesive cement. This study investigated the chemical composition and phase evolution of a heterogeneous calcium phosphate (56% TTCP and 15% α-TCP) and pSer cement system with respect to pH. The coordination network of calcium phosphoserine monohydrate was discovered as the predominant crystalline phase of this adhesive apatitic cement system. Furthermore, it was determined that pH has a significant effect on the reaction kinetics of the system, whereby a lower pH tends to accelerate the reaction rate and favor products with lower Ca/P ratios. These findings provide a better understanding of the reaction and products of this adhesive organo-ceramic cement, which can be compositionally tuned for broad applications in the orthopedic and dental spaces. STATEMENT OF SIGNIFICANCE: The application of self-setting calcium phosphate cements (CPCs) in hard tissue regeneration has been a topic of significant research since their introduction to the field 30 years ago. Traditional CPCs, however, are limited by their suboptimal mechanical properties due to their solely inorganic composition. Recently, it was discovered that monomeric phosphoserine (pSer) is capable of serving as a setting reagent for a subset of CPC systems, resulting in an adhesive organo-ceramic composite. Despite its adhesive functionality and biomedical potential, its reaction chemistry and product composition were not well characterized. The present study identifies a calcium phosphoserine coordination network as the primary crystalline phase of this apatitic cement system and further characterizes compositional tunability of the products with respect to pH.
Collapse
Affiliation(s)
- Fioleda P Kesseli
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States.
| | - Caroline S Lauer
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Ian Baker
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Katherine A Mirica
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | | |
Collapse
|
21
|
Vallejos Baier R, Benjumeda Wijnhoven I, Irribarra del Valle V, Millán Giovanetti C, Vivanco JF. Microporosity Clustering Assessment in Calcium Phosphate Bioceramic Particles. Front Bioeng Biotechnol 2019; 7:281. [PMID: 31709245 PMCID: PMC6822304 DOI: 10.3389/fbioe.2019.00281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/04/2019] [Indexed: 01/09/2023] Open
Abstract
There has been an increase in the application of different biomaterials to repair hard tissues. Within these biomaterials, calcium phosphate (CaP) bioceramics are suitable candidates, since they can be biocompatible, biodegradable, osteoinductive, and osteoconductive. Moreover, during sintering, bioceramic materials are prone to form micropores and undergo changes in their surface topographical features, which influence cellular physiology and bone ingrowth. In this study, five geometrical properties from the surface of CaP bioceramic particles and their micropores were analyzed by data mining techniques, driven by the research question: what are the geometrical properties of individual micropores in a CaP bioceramic, and how do they relate to each other? The analysis not only shows that it is feasible to determine the existence of micropore clusters, but also to quantify their geometrical properties. As a result, these CaP bioceramic particles present three groups of micropore clusters distinctive by their geometrical properties. Consequently, this new methodological clustering assessment can be applied to advance the knowledge about CaP bioceramics and their role in bone tissue engineering.
Collapse
Affiliation(s)
- Raúl Vallejos Baier
- Faculty of Engineering and Sciences, Adolfo Ibáñez University, Viña del Mar, Chile
| | | | | | | | - Juan F. Vivanco
- Faculty of Engineering and Sciences, Adolfo Ibáñez University, Viña del Mar, Chile
| |
Collapse
|
22
|
Komang-Agung IS, Hydravianto L, Sindrawati O, William PS. Effect of Polymethylmethacrylate-Hydroxyapatite Composites on Callus Formation and Compressive Strength in Goat Vertebral Body. Malays Orthop J 2018; 12:6-13. [PMID: 30555640 PMCID: PMC6287135 DOI: 10.5704/moj.1811.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Introduction: Percutaneous vertebroplasty (PV) is one of the available treatments for vertebral compression fracture (VCF). Polymethylmethacrylate (PMMA) is the most common bone substitute used in the procedure, but it has several disadvantages. Bioceramic material, such as hydroxyapatite (HA), has better biological activity compared to PMMA. The aim of this study was to find an optimal biomaterial compound which offers the best mechanical and biological properties to be used in PV. Materials and Methods: This was an experimental study with goat (Capra aegagrus hircus) as an animal model. The animals’ vertebral columns were injected with PMMA-HA compound. Animal samples were divided into four groups, and each group received a different proportion of PMMA:HA compound. The mechanical and biological effects of the compound on the bone were then analysed. The mechanical effect was assessed by measuring the vertebral body’s compressive strength. Meanwhile, the biological effect was assessed by analysing the callus formation in the vertebral body. Results: The optimal callus formation and compressive strength was observed in the group receiving PMMA:HA with a 1:2 ratio. Conclusion: A mixture of PMMA and HA increases the quality of callus formation and the material’s compressive strength. The optimum ratio of PMMA:HA in the compound is 1:2.
Collapse
Affiliation(s)
- I S Komang-Agung
- Department of Orthopaedics, Airlangga University, Surabaya, Indonesia
| | - L Hydravianto
- Department of Orthopaedics, Airlangga University, Surabaya, Indonesia
| | - O Sindrawati
- Department of Pathology, Widya Mandala Katholic University, Surabaya, Indonesia
| | - P S William
- *Emergency Room Department, Jombang General Hospital, Jombang, Indonesia
| |
Collapse
|
23
|
Rolvien T, Barbeck M, Wenisch S, Amling M, Krause M. Cellular Mechanisms Responsible for Success and Failure of Bone Substitute Materials. Int J Mol Sci 2018; 19:E2893. [PMID: 30249051 PMCID: PMC6213546 DOI: 10.3390/ijms19102893] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/17/2018] [Accepted: 09/20/2018] [Indexed: 12/13/2022] Open
Abstract
Bone grafts, i.e., autologous, allogeneic or synthetic bone substitute materials play an increasing role in reconstructive orthopedic surgery. While the indications and materials differ, it is important to understand the cellular mechanisms regarding their integration and remodeling, which are discussed in this review article. Osteoconductivity describes the new bone growth on the graft, while osteoinductivity represents the differentiation of undifferentiated cells into bone forming osteoblasts. The best case is that both mechanisms are accompanied by osteogenesis, i.e., bone modeling and remodeling of the graft material. Graft incorporation is mediated by a number of molecular pathways that signal the differentiation and activity of osteoblasts and osteoclasts (e.g., parathyroid hormone (PTH) and receptor activator of nuclear factor κβ ligand (RANKL), respectively). Direct contact of the graft and host bone as well as the presence of a mechanical load are a prerequisite for the successful function of bone grafts. Interestingly, while bone substitutes show good to excellent clinical outcomes, their histological incorporation has certain limits that are not yet completely understood. For instance, clinical studies have shown contrasting results regarding the complete or incomplete resorption and remodeling of allografts and synthetic grafts. In this context, a foreign body response can lead to complete material degradation via phagocytosis, however it may also cause a fibrotic reaction to the bone substitute. Finally, the success of bone graft incorporation is also limited by other factors, including the bone remodeling capacities of the host, the material itself (e.g., inadequate resorption, toxicity) and the surgical technique or preparation of the graft.
Collapse
Affiliation(s)
- Tim Rolvien
- Department of Orthopedics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Mike Barbeck
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Sabine Wenisch
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, 35385 Giessen, Germany.
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany.
| | - Matthias Krause
- Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
24
|
Rheological and Mechanical Properties of Thermoresponsive Methylcellulose/Calcium Phosphate-Based Injectable Bone Substitutes. MATERIALS 2018; 11:ma11040604. [PMID: 29662018 PMCID: PMC5951488 DOI: 10.3390/ma11040604] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/23/2018] [Accepted: 03/27/2018] [Indexed: 12/18/2022]
Abstract
In this study, a novel injectable bone substitute (IBS) was prepared by incorporating a bioceramic powder in a polymeric solution comprising of methylcellulose (MC), gelatin and citric acid. Methylcellulose was utilized as the polymeric matrix due to its thermoresponsive properties and biocompatibility. 2.5 wt % gelatin and 3 wt % citric acid were added to the MC to adjust the rheological properties of the prepared IBS. Then, 0, 20, 30 and 50 wt % of the bioceramic component comprising tetracalcium phosphate/hydroxyapatite (TTCP/HA), dicalcium phosphate dehydrate (DCPD) and calcium sulfate dehydrate (CSD) were added into the prepared polymeric component. The prepared IBS samples had a chewing gum-like consistency. IBS samples were investigated in terms of their chemical structure, rheological characteristics, and mechanical properties. After that, in vitro degradation studies were carried out by measurement of pH and % remaining weight. Viscoelastic characteristics of the samples indicated that all of the prepared IBS were injectable and they hardened at approximately 37 °C. Moreover, with increasing wt % of the bioceramic component, the degradation rate of the samples significantly reduced and the mechanical properties were improved. Therefore, the experimental results indicated that the P50 mix may be a promising candidates to fill bone defects and assist bone recovery for non-load bearing applications.
Collapse
|
25
|
Fernandez de Grado G, Keller L, Idoux-Gillet Y, Wagner Q, Musset AM, Benkirane-Jessel N, Bornert F, Offner D. Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management. J Tissue Eng 2018; 9:2041731418776819. [PMID: 29899969 PMCID: PMC5990883 DOI: 10.1177/2041731418776819] [Citation(s) in RCA: 415] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/24/2018] [Indexed: 12/13/2022] Open
Abstract
Bone replacement might have been practiced for centuries with various materials of natural origin, but had rarely met success until the late 19th century. Nowadays, many different bone substitutes can be used. They can be either derived from biological products such as demineralized bone matrix, platelet-rich plasma, hydroxyapatite, adjunction of growth factors (like bone morphogenetic protein) or synthetic such as calcium sulfate, tri-calcium phosphate ceramics, bioactive glasses, or polymer-based substitutes. All these substitutes are not suitable for every clinical use, and they have to be chosen selectively depending on their purpose. Thus, this review aims to highlight the principal characteristics of the most commonly used bone substitutes and to give some directions concerning their clinical use, as spine fusion, open-wedge tibial osteotomy, long bone fracture, oral and maxillofacial surgery, or periodontal treatments. However, the main limitations to bone substitutes use remain the management of large defects and the lack of vascularization in their central part, which is likely to appear following their utilization. In the field of bone tissue engineering, developing porous synthetic substitutes able to support a faster and a wider vascularization within their structure seems to be a promising way of research.
Collapse
Affiliation(s)
- Gabriel Fernandez de Grado
- INSERM (French National Institute of Health and Medical Research), “Regenerative Nanomedicine” laboratory, http://www.regmed.fr, UMR 1260, Faculté de Médecine, FMTS, F-67085 Strasbourg Cedex
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Ste Elisabeth, F-67000 Strasbourg
- Hôpitaux Universitaires de Strasbourg, 1 Place de l’Hôpital, F-67000 Strasbourg
| | - Laetitia Keller
- INSERM (French National Institute of Health and Medical Research), “Regenerative Nanomedicine” laboratory, http://www.regmed.fr, UMR 1260, Faculté de Médecine, FMTS, F-67085 Strasbourg Cedex
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Ste Elisabeth, F-67000 Strasbourg
| | - Ysia Idoux-Gillet
- INSERM (French National Institute of Health and Medical Research), “Regenerative Nanomedicine” laboratory, http://www.regmed.fr, UMR 1260, Faculté de Médecine, FMTS, F-67085 Strasbourg Cedex
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Ste Elisabeth, F-67000 Strasbourg
| | - Quentin Wagner
- INSERM (French National Institute of Health and Medical Research), “Regenerative Nanomedicine” laboratory, http://www.regmed.fr, UMR 1260, Faculté de Médecine, FMTS, F-67085 Strasbourg Cedex
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Ste Elisabeth, F-67000 Strasbourg
| | - Anne-Marie Musset
- INSERM (French National Institute of Health and Medical Research), “Regenerative Nanomedicine” laboratory, http://www.regmed.fr, UMR 1260, Faculté de Médecine, FMTS, F-67085 Strasbourg Cedex
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Ste Elisabeth, F-67000 Strasbourg
- Hôpitaux Universitaires de Strasbourg, 1 Place de l’Hôpital, F-67000 Strasbourg
| | - Nadia Benkirane-Jessel
- INSERM (French National Institute of Health and Medical Research), “Regenerative Nanomedicine” laboratory, http://www.regmed.fr, UMR 1260, Faculté de Médecine, FMTS, F-67085 Strasbourg Cedex
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Ste Elisabeth, F-67000 Strasbourg
| | - Fabien Bornert
- INSERM (French National Institute of Health and Medical Research), “Regenerative Nanomedicine” laboratory, http://www.regmed.fr, UMR 1260, Faculté de Médecine, FMTS, F-67085 Strasbourg Cedex
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Ste Elisabeth, F-67000 Strasbourg
- Hôpitaux Universitaires de Strasbourg, 1 Place de l’Hôpital, F-67000 Strasbourg
| | - Damien Offner
- INSERM (French National Institute of Health and Medical Research), “Regenerative Nanomedicine” laboratory, http://www.regmed.fr, UMR 1260, Faculté de Médecine, FMTS, F-67085 Strasbourg Cedex
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Ste Elisabeth, F-67000 Strasbourg
- Hôpitaux Universitaires de Strasbourg, 1 Place de l’Hôpital, F-67000 Strasbourg
| |
Collapse
|
26
|
Tansriratanawong K, Wongwan P, Ishikawa H, Nakahara T, Wongravee K. Cellular responses of periodontal ligament stem cells to a novel synthesized form of calcium hydrogen phosphate with a hydroxyapatite-like surface for periodontal tissue engineering. J Oral Sci 2018; 60:428-437. [DOI: 10.2334/josnusd.17-0343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Kallapat Tansriratanawong
- Department of Oral Medicine and Periodontology, Faculty of Dentistry, Mahidol University
- Department of NDU Life Sciences, Nippon Dental University School of Life Dentistry at Tokyo
| | - Pawinee Wongwan
- Department of Oral Medicine and Periodontology, Faculty of Dentistry, Mahidol University
| | - Hiroshi Ishikawa
- Department of NDU Life Sciences, Nippon Dental University School of Life Dentistry at Tokyo
| | - Taka Nakahara
- Department of Developmental and Regenerative Dentistry, Nippon Dental University School of Life Dentistry at Tokyo
| | - Kanet Wongravee
- Department of Chemistry, Faculty of Science, Chulalongkorn University
| |
Collapse
|
27
|
Shu Y, Qiu F, Zhang Y, Cao W, Wu Z, Nian S, Zhou N. Novel vaterite-containing tricalcium silicate bone cement by surface functionalization using 3-aminopropyltriethoxysilane: setting behavior, in vitro bioactivity and cytocompatibility. ACTA ACUST UNITED AC 2017; 12:065007. [PMID: 28784935 DOI: 10.1088/1748-605x/aa84b8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A novel vaterite-containing tricalcium silicate (V-C3S) was grafted by 3-aminopropyltriethoxysilane (APTES), and the amino groups have been successfully fixed on the vaterite-containing tricalcium silicate powder's surface (after grafting the amino group, V-C3S was named A-V-C3S). The setting behavior, mechanical properties, porosity, weight loss and anti-washout properties of the tricalcium silicate (C3S), V-C3S and A-V-C3S bone cement were systematically investigated. The in vitro induction of hydroxyapatite (HAp) formation of C3S, V-C3S and A-V-C3S bone cement was confirmed by x-ray diffraction, Fourier-transform infrared spectroscopy and scanning electron microscopy. The cell viability, cell proliferation and cell attachment were investigated to assess the effects of bone cement on MC3T3-E1 cells. Results showed that the setting time of A-V-C3S bone cement can meet the requirements of a clinical test, with improved anti-washout properties and an appropriate degradation rate. The pH value of the soaking solution was obviously decreased by surface modification. Besides, the morphology and fluorescence photograph results revealed that the A-V-C3S bone cement showed an enhanced biocompatibility effect on the proliferation and attachment of MC3T3-E1 cells. The A-V-C3S bone cement was expected to be a potential bone-substitute material.
Collapse
Affiliation(s)
- Yan Shu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
28
|
Aghyarian S, Bentley E, Hoang TN, Gindri IM, Kosmopoulos V, Kim HKW, C. Rodrigues D. In Vitro and In Vivo Characterization of Premixed PMMA-CaP Composite Bone Cements. ACS Biomater Sci Eng 2017; 3:2267-2277. [DOI: 10.1021/acsbiomaterials.7b00276] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Shant Aghyarian
- Biomaterials
for Osseointegration and Novel Engineering Laboratory (BONE Lab),
Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Elizabeth Bentley
- Biomaterials
for Osseointegration and Novel Engineering Laboratory (BONE Lab),
Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Thao N. Hoang
- Biomaterials
for Osseointegration and Novel Engineering Laboratory (BONE Lab),
Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Izabelle M. Gindri
- Biomaterials
for Osseointegration and Novel Engineering Laboratory (BONE Lab),
Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Victor Kosmopoulos
- Department
of Orthopaedic Surgery, University of North Texas Health Science Center (UNTHSC), Fort Worth, Texas 76107, United States
- Department
of Materials Science and Engineering, University of North Texas, Denton, Texas 76203, United States
| | - Harry K. W. Kim
- Center
for Excellence in Hip Disorders, Texas Scottish Rite Hospital for Children, 2222 Welborn Street, Dallas, Texas 75219, United States
- Department
of Orthopaedic Surgery, UT Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Danieli C. Rodrigues
- Biomaterials
for Osseointegration and Novel Engineering Laboratory (BONE Lab),
Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
29
|
Mastrogiacomo S, Dou W, Koshkina O, Boerman OC, Jansen JA, Heerschap A, Srinivas M, Walboomers XF. Perfluorocarbon/Gold Loading for Noninvasive in Vivo Assessment of Bone Fillers Using 19F Magnetic Resonance Imaging and Computed Tomography. ACS APPLIED MATERIALS & INTERFACES 2017; 9:22149-22159. [PMID: 28635249 PMCID: PMC5510087 DOI: 10.1021/acsami.7b04075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/20/2017] [Indexed: 05/04/2023]
Abstract
Calcium phosphate cement (CPC) is used in bone repair because of its biocompatibility. However, high similarity between CPC and the natural osseous phase results in poor image contrast in most of the available in vivo imaging techniques such as computed tomography (CT) and magnetic resonance imaging (MRI). For accurate identification and localization during and after implantation in vivo, a composition with enhanced image contrast is needed. In this study, we labeled CPC with perfluoro-15-crown-5-ether-loaded (PFCE) poly(latic-co-glycolic acid) nanoparticles (hydrodynamic radius 100 nm) and gold nanoparticles (diameter 40 nm), as 19F MRI and CT contrast agents, respectively. The resulting CPC/PFCE/gold composite is implanted in a rat model for in vivo longitudinal imaging. Our findings show that the incorporation of the two types of different nanoparticles did result in adequate handling properties of the cement. Qualitative and quantitative long-term assessment of CPC/PFCE/gold degradation was achieved in vivo and correlated to the new bone formation. Finally, no adverse biological effects on the bone tissue are observed via histology. In conclusion, an easy and efficient strategy for following CPC implantation and degradation in vivo is developed. As all materials used are biocompatible, this CPC/PFCE/gold composite is clinically applicable.
Collapse
Affiliation(s)
- Simone Mastrogiacomo
- Department
of Biomaterials, Radboud University Medical
Center, P.O. Box 9101, 6500 HB Nijmegen (309), The Netherlands
| | - Weiqiang Dou
- Department
of Radiology and Nuclear Medicine, Radboud
University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Olga Koshkina
- Department
of Tumor Immunology, Radboud Institute for
Molecular Life Sciences (RIMLS), Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | - Otto C. Boerman
- Department
of Radiology and Nuclear Medicine, Radboud
University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - John A. Jansen
- Department
of Biomaterials, Radboud University Medical
Center, P.O. Box 9101, 6500 HB Nijmegen (309), The Netherlands
| | - Arend Heerschap
- Department
of Radiology and Nuclear Medicine, Radboud
University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Mangala Srinivas
- Department
of Tumor Immunology, Radboud Institute for
Molecular Life Sciences (RIMLS), Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | - X. Frank Walboomers
- Department
of Biomaterials, Radboud University Medical
Center, P.O. Box 9101, 6500 HB Nijmegen (309), The Netherlands
| |
Collapse
|
30
|
Henriques Lourenço A, Neves N, Ribeiro-Machado C, Sousa SR, Lamghari M, Barrias CC, Trigo Cabral A, Barbosa MA, Ribeiro CC. Injectable hybrid system for strontium local delivery promotes bone regeneration in a rat critical-sized defect model. Sci Rep 2017; 7:5098. [PMID: 28698571 PMCID: PMC5506032 DOI: 10.1038/s41598-017-04866-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 05/22/2017] [Indexed: 12/11/2022] Open
Abstract
Strontium (Sr) has been described as having beneficial influence in bone strength and architecture. However, negative systemic effects have been reported on oral administration of Sr ranelate, leading to strict restrictions in clinical application. We hypothesized that local delivery of Sr improves osteogenesis without eliciting detrimental side effects. Therefore, the in vivo response to an injectable Sr-hybrid system composed of RGD-alginate hydrogel cross-linked in situ with Sr and reinforced with Sr-doped hydroxyapatite microspheres, was investigated. The system was injected in a critical-sized bone defect model and compared to a similar Sr-free material. Micro-CT results show a trend towards higher new bone formed in Sr-hybrid group and major histological differences were observed between groups. Higher cell invasion was detected at the center of the defect of Sr-hybrid group after 15 days with earlier bone formation. Higher material degradation with increase of collagen fibers and bone formation in the center of the defect after 60 days was observed as opposed to bone formation restricted to the periphery of the defect in the control. These histological findings support the evidence of an improved response with the Sr enriched material. Importantly, no alterations were observed in the Sr levels in systemic organs or serum.
Collapse
Affiliation(s)
- Ana Henriques Lourenço
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135, Porto, Portugal.,Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal
| | - Nuno Neves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135, Porto, Portugal.,Faculdade de Medicina, Universidade do Porto, Serviço de Ortopedia, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Cláudia Ribeiro-Machado
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135, Porto, Portugal
| | - Susana R Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135, Porto, Portugal.,ISEP - Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal
| | - Meriem Lamghari
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135, Porto, Portugal
| | - Cristina C Barrias
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135, Porto, Portugal
| | - Abel Trigo Cabral
- Faculdade de Medicina, Universidade do Porto, Serviço de Ortopedia, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Mário A Barbosa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira n. 228, 4050-313, Porto, Portugal
| | - Cristina C Ribeiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135, Porto, Portugal. .,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135, Porto, Portugal. .,ISEP - Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal.
| |
Collapse
|
31
|
Postembedding Decalcification of Mineralized Tissue Sections Preserves the Integrity of Implanted Biomaterials and Minimizes Number of Experimental Animals. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2023853. [PMID: 28424781 PMCID: PMC5382295 DOI: 10.1155/2017/2023853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/18/2017] [Accepted: 02/28/2017] [Indexed: 01/21/2023]
Abstract
Bone histology of decalcified or undecalcified samples depends on the investigation. However, in research each method provides different information to answer the scientific question. Decalcification is the first step after sample fixation and governs what analysis is later feasible on the sections. Besides, decalcification is favored for immunostaining and in situ hybridization. Otherwise, sample decalcification can be damaging to bone biomaterials implants that contains calcium or strontium. On the other hand, after decalcification mineralization cannot be assessed using histology or imaging mass spectrometry. The current study provides a solution to the hardship caused by material presence within the bone tissue. The protocol presents a possibility of gaining sequential and alternating decalcified and undecalcified sections from the same bone sample. In this manner, investigations using histology, protein signaling, in situ hybridization, and mass spectrometry on the same sample can better answer the intended research question. Indeed, decalcification of sections and grindings resulted in well-preserved sample and biomaterials integrity. Immunostaining was comparable to that of classically decalcified samples. The study offers a novel approach that incites correlative analysis on the same sample and reduces the number of processed samples whether clinical biopsies or experimental animals.
Collapse
|
32
|
Minipig-BMSCs Combined with a Self-Setting Calcium Phosphate Paste for Bone Tissue Engineering. Mol Biotechnol 2017; 58:748-756. [PMID: 27683256 DOI: 10.1007/s12033-016-9974-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Calcium phosphate cements (CPCs) are a new generation of bone repair materials with good biocompatibility for various stem cells. The minipig is a recommended large animal model for bone engineering research. This study aimed to evaluate the feasibility of utilizing CPC scaffolds for the adhesion, proliferation, and osteogenic differentiation of minipig's bone marrow mesenchymal stem cells (pBMSCs). Passage 3 pBMSCs were seeded on the CPC scaffold and cultured with osteogenic culture medium (osteogenic group) or normal medium (control group). The density of viable cells increased in both groups, and pBMSCs firmly attached and spread well on the CPC scaffold. The alkaline phosphatase (ALP) activity in the osteogenic group had significantly increased on day 7 (D7) and peaked on D14. qRT-PCR revealed that mRNA levels of ALP and three osteogenic marker genes were significantly higher on D4, D7, and D14 in the osteogenic group. Alizarin Red S staining showed a significantly higher degree of bone mineralization from D7, D14 to D21 in the osteogenic group. These results indicated that pBMSCs can attach, proliferate well on CPC scaffold, and be successfully induced to differentiate into osteogenic cells. Our findings may be helpful for bone tissue engineering and the studies of bone regeneration.
Collapse
|
33
|
Ostrowski N, Roy A, Kumta PN. Magnesium Phosphate Cement Systems for Hard Tissue Applications: A Review. ACS Biomater Sci Eng 2016; 2:1067-1083. [PMID: 33445235 DOI: 10.1021/acsbiomaterials.6b00056] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the search for more ideal bone graft materials for clinical application, the investigation into ceramic bone cements or bone void filler is ongoing. Calcium phosphate-based materials have been widely explored and implemented for medical use in bone defect repair. Such materials are an excellent choice because the implant mimics the natural chemistry of mineralized bone matrix and in injectable cement form, can be implemented with relative ease. However, of the available calcium phosphate cements, none fully meet the ideal standard, displaying low strengths and acidic setting reactions or slow setting times, and are often very slow to resorb in vivo. The study of magnesium phosphates for bone cements is a relatively new field compared to traditional calcium phosphate bone cements. Although reports are more limited, preliminary studies have shown that magnesium phosphate cements (MPC) may be a strong alternative to calcium phosphates for certain applications. The goal of the present publication is to review the history and achievements of magnesium phosphate-based cements or bone void fillers to date, assess how these cements compare with calcium phosphate competitors and to analyze the future directions and outlook for the research, development, and clinical implementation of these cements.
Collapse
Affiliation(s)
- Nicole Ostrowski
- Swanson School of Engineering, University of Pittsburgh, 815C Benedum Hall, 3700 O'Hara Street, Pittsburgh, Pennsylvania 15261, United States
| | - Abhijit Roy
- Swanson School of Engineering, University of Pittsburgh, 815C Benedum Hall, 3700 O'Hara Street, Pittsburgh, Pennsylvania 15261, United States
| | - Prashant N Kumta
- Swanson School of Engineering, University of Pittsburgh, 815C Benedum Hall, 3700 O'Hara Street, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
34
|
|
35
|
Erndt-Marino JD, Munoz-Pinto DJ, Samavedi S, Jimenez-Vergara AC, Diaz-Rodriguez P, Woodard L, Zhang D, Grunlan MA, Hahn MS. Evaluation of the Osteoinductive Capacity of Polydopamine-Coated Poly( ε-caprolactone) Diacrylate Shape Memory Foams. ACS Biomater Sci Eng 2015; 1:1220-1230. [PMID: 33304994 DOI: 10.1021/acsbiomaterials.5b00445] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recently, a novel shape memory polymer foam based on the photopolymerization of poly(ε-caprolactone) diacrylate (PCLDA) has been developed. These PCLDA foams enter a temporary softened state when briefly treated with warm saline (T saline > T m of PCLDA), allowing them to conform to irregular bone defect "boundaries" prior to shape setting. When coated with a mechanically stable polydopamine (PD) layer, these PCLDA foams have previously been demonstrated to induce hydroxyapatite deposition. In the present study, the osteoinductivity of these "self-fitting" PD-coated PCLDA (PD-PCLDA) materials was evaluated relative to uncoated PCLDA (U-PCLDA) controls using bone marrow-derived human mesenchymal stem cells (h-MSCs). When cultured in the absence of osteogenic media supplements, PD-PCLDA scaffolds expressed similar levels of Runx2, alkaline phosphatase, and osteopontin protein as U-PCLDA scaffolds cultured in the presence of osteogenic media supplements. In addition, PD-PCLDA scaffolds cultured without osteogenic supplements did not significantly promote undesired lineage progression (e.g., adipogenesis or chondrogenesis) of h-MSCs. Cumulatively, these data indicate that PD-PCLDA materials display increased osteoinductivity relative to U-PCLDA substrates. Future studies will examine tethered osteogenic factors or peptides toward augmenting the osteoinductive properties of the PD-PCLDA foams.
Collapse
Affiliation(s)
- Joshua D Erndt-Marino
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Dany J Munoz-Pinto
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Satyavrata Samavedi
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Andrea C Jimenez-Vergara
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Patricia Diaz-Rodriguez
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Lindsay Woodard
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Dawei Zhang
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Melissa A Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States.,Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Mariah S Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
36
|
Dorozhkin SV. Calcium Orthophosphate-Containing Biocomposites and Hybrid Biomaterials for Biomedical Applications. J Funct Biomater 2015; 6:708-832. [PMID: 26262645 PMCID: PMC4598679 DOI: 10.3390/jfb6030708] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/31/2015] [Accepted: 08/01/2015] [Indexed: 12/30/2022] Open
Abstract
The state-of-the-art on calcium orthophosphate (CaPO4)-containing biocomposites and hybrid biomaterials suitable for biomedical applications is presented. Since these types of biomaterials offer many significant and exciting possibilities for hard tissue regeneration, this subject belongs to a rapidly expanding area of biomedical research. Through the successful combinations of the desired properties of matrix materials with those of fillers (in such systems, CaPO4 might play either role), innovative bone graft biomaterials can be designed. Various types of CaPO4-based biocomposites and hybrid biomaterials those are either already in use or being investigated for biomedical applications are extensively discussed. Many different formulations in terms of the material constituents, fabrication technologies, structural and bioactive properties, as well as both in vitro and in vivo characteristics have been already proposed. Among the others, the nano-structurally controlled biocomposites, those containing nanodimensional compounds, biomimetically fabricated formulations with collagen, chitin and/or gelatin, as well as various functionally graded structures seem to be the most promising candidates for clinical applications. The specific advantages of using CaPO4-based biocomposites and hybrid biomaterials in the selected applications are highlighted. As the way from a laboratory to a hospital is a long one and the prospective biomedical candidates have to meet many different necessities, the critical issues and scientific challenges that require further research and development are also examined.
Collapse
|
37
|
Juvonen T, Nuutinen JP, Koistinen AP, Kröger H, Lappalainen R. Biomechanical evaluation of bone screw fixation with a novel bone cement. Biomed Eng Online 2015. [PMID: 26219663 PMCID: PMC4518640 DOI: 10.1186/s12938-015-0069-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Bone cement augmentation is commonly used to improve the fixation stability of orthopaedic implants in osteoporotic bone. The aim of this study was to evaluate the effect of novel bone cements on the stability of bone screw fixation by biomechanical testing and to compare them with a conventional Simplex®P bone cement and requirements of the standards. Methods Basic biomechanical properties were compared with standard tests. Adhesion of bone cements were tested with polished, glass blasted and corundum blasted stainless steel surfaces. Screw pullout testing with/without cement was carried out using a synthetic bone model and cancellous and cortical bone screws. Results All the tested bone cements fulfilled the requirements of the standard for biomechanical properties and improved the screw fixation stability. Even a threefold increase in shear and tensile strength was achieved with increasing surface roughness. The augmentation improved the screw pullout force compared to fixation without augmentation, 1.2–5.7 times depending on the cement and the screw type. The good biomechanical properties of novel bone cement for osteoporotic bone were confirmed by experimental testing. Conclusion Medium viscosity of the bone cements allowed easy handling and well-controlled penetration of bone cement into osteoporotic bone. By proper parameters and procedures it is possible to achieve biomechanically stable fixation in osteoporotic bone. Based on this study, novel biostable bone cements are very potential biomaterials to enhance bone screw fixation in osteoporotic bone. Novel bone cement is easy to use without hand mixing using a dual syringe and thus makes it possibility to use it as required during the operation.
Collapse
Affiliation(s)
- Tiina Juvonen
- Department of Applied Physics, University of Eastern Finland, Kuopio Campus, Kuopio, Finland.
| | | | - Arto P Koistinen
- Department of Applied Physics, University of Eastern Finland, Kuopio Campus, Kuopio, Finland. .,SIB Labs, University of Eastern Finland, Kuopio Campus, Kuopio, Finland.
| | - Heikki Kröger
- Department of Orthopaedics Traumatology and Handsurgery, Kuopio University Hospital, Kuopio, Finland.
| | - Reijo Lappalainen
- Department of Applied Physics, University of Eastern Finland, Kuopio Campus, Kuopio, Finland. .,SIB Labs, University of Eastern Finland, Kuopio Campus, Kuopio, Finland.
| |
Collapse
|
38
|
He Z, Zhai Q, Hu M, Cao C, Wang J, Yang H, Li B. Bone cements for percutaneous vertebroplasty and balloon kyphoplasty: Current status and future developments. J Orthop Translat 2015; 3:1-11. [PMID: 30035034 PMCID: PMC5982384 DOI: 10.1016/j.jot.2014.11.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/16/2014] [Accepted: 11/25/2014] [Indexed: 11/26/2022] Open
Abstract
Osteoporotic vertebral compression fractures (OVCFs) have gradually evolved into a serious health care problem globally. In order to reduce the morbidity of OVCF patients and improve their life quality, two minimally invasive surgery procedures, vertebroplasty (VP) and balloon kyphoplasty (BKP), have been developed. Both VP and BKP require the injection of bone cement into the vertebrae of patients to stabilize fractured vertebra. As such, bone cement as the filling material plays an essential role in the effectiveness of these treatments. In this review article, we summarize the bone cements that are currently available in the market and those still under development. Two major categories of bone cements, nondegradable acrylic bone cements (ABCs) and degradable calcium phosphate cements (CPCs), are introduced in detail. We also provide our perspectives on the future development of bone cements for VP and BKP.
Collapse
Affiliation(s)
- Zhiwei He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qingpan Zhai
- Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Muli Hu
- Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Chengbin Cao
- Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Jihui Wang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Bin Li
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
39
|
Ostrowski N, Lee B, Hong D, Enick PN, Roy A, Kumta PN. Synthesis, Osteoblast, and Osteoclast Viability of Amorphous and Crystalline Tri-Magnesium Phosphate. ACS Biomater Sci Eng 2014; 1:52-63. [DOI: 10.1021/ab500073c] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nicole Ostrowski
- Swanson School of Engineering, Department of Bioengineering, University of Pittsburgh, 3700 O’Hara
Street, Pittsburgh, Pennsylvania 15261, United States
| | - Boeun Lee
- Swanson School of Engineering, Department of Bioengineering, University of Pittsburgh, 3700 O’Hara
Street, Pittsburgh, Pennsylvania 15261, United States
| | - Daeho Hong
- Swanson School of Engineering, Department of Bioengineering, University of Pittsburgh, 3700 O’Hara
Street, Pittsburgh, Pennsylvania 15261, United States
| | - P. Nathan Enick
- Swanson School of Engineering, Department of Bioengineering, University of Pittsburgh, 3700 O’Hara
Street, Pittsburgh, Pennsylvania 15261, United States
| | - Abhijit Roy
- Swanson School of Engineering, Department of Bioengineering, University of Pittsburgh, 3700 O’Hara
Street, Pittsburgh, Pennsylvania 15261, United States
| | - Prashant N. Kumta
- Swanson School of Engineering, Department of Bioengineering, University of Pittsburgh, 3700 O’Hara
Street, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
40
|
Cama G, Gharibi B, Knowles JC, Romeed S, DiSilvio L, Deb S. Structural changes and biological responsiveness of an injectable and mouldable monetite bone graft generated by a facile synthetic method. J R Soc Interface 2014; 11:20140727. [PMID: 25297314 PMCID: PMC4223900 DOI: 10.1098/rsif.2014.0727] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/18/2014] [Indexed: 12/24/2022] Open
Abstract
Brushite (dicalcium phosphate dihydrate) and monetite (dicalcium phosphate anhydrous) are of considerable interest in bone augmentation owing to their metastable nature in physiological fluids. The anhydrous form of brushite, namely monetite, has a finer microstructure with higher surface area, strength and bioresorbability, which does not transform to the poorly resorbable hydroxyapatite, thus making it a viable alternative for use as a scaffold for engineering of bone tissue. We recently reported the formation of monetite cements by a simple processing route without the need of hydrothermal treatment by using a high concentration of sodium chloride in the reaction mix of β-tricalcium phosphate and monocalcium phosphate monohydrate. In this paper, we report the biological responsiveness of monetite formed by this method. The in vitro behaviour of monetite after interaction and ageing both in an acellular and cellular environment showed that the crystalline phase of monetite was retained over three weeks as evidenced from X-ray diffraction measurements. The crystal size and morphology also remained unaltered after ageing in different media. Human osteoblast cells seeded on monetite showed the ability of the cells to proliferate and express genes associated with osteoblast maturation and mineralization. Furthermore, the results showed that monetite could stimulate osteoblasts to undergo osteogenesis and accelerate osteoblast maturation earlier than cells cultured on hydroxyapatite scaffolds of similar porosity. Osteoblasts cultured on monetite cement also showed higher expression of osteocalcin, which is an indicator of the maturation stages of osteoblastogenesis and is associated with matrix mineralization and bone forming activity of osteoblasts. Thus, this new method of fabricating porous monetite can be safely used for generating three-dimensional bone graft constructs.
Collapse
Affiliation(s)
- G Cama
- Biomaterials, Biomimetics and Biophotonics, King's College London Dental Institute, Floor 17, Tower Wing, Guy's Hospital, London Bridge, London SE1 9RT, UK
| | - B Gharibi
- Biomaterials, Biomimetics and Biophotonics, King's College London Dental Institute, Floor 17, Tower Wing, Guy's Hospital, London Bridge, London SE1 9RT, UK
| | - J C Knowles
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 256 Gray's Inn Road, London WC1X 8LD, UK Department of Nanobiomedical Science and BK21 Plus NBM Global Research Centre for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea
| | - S Romeed
- Biomaterials, Biomimetics and Biophotonics, King's College London Dental Institute, Floor 17, Tower Wing, Guy's Hospital, London Bridge, London SE1 9RT, UK
| | - L DiSilvio
- Biomaterials, Biomimetics and Biophotonics, King's College London Dental Institute, Floor 17, Tower Wing, Guy's Hospital, London Bridge, London SE1 9RT, UK
| | - S Deb
- Biomaterials, Biomimetics and Biophotonics, King's College London Dental Institute, Floor 17, Tower Wing, Guy's Hospital, London Bridge, London SE1 9RT, UK
| |
Collapse
|
41
|
Cheng C, Alt V, Pan L, Thormann U, Schnettler R, Strauss LG, Heinemann S, Schumacher M, Gelinsky M, Nies B, Dimitrakopoulou-Strauss A. Application of F-18-sodium fluoride (NaF) dynamic PET-CT (dPET-CT) for defect healing: a comparison of biomaterials in an experimental osteoporotic rat model. Med Sci Monit 2014; 20:1942-9. [PMID: 25317537 PMCID: PMC4210358 DOI: 10.12659/msm.891073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 06/20/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The aim of the current study was to measure and compare the effect of various biomaterials for the healing of osteoporotic bone defects in the rat femur using 18F-sodium fluoride dPET-CT. MATERIAL AND METHODS Osteoporosis was induced by ovariectomy and a calcium-restricted diet. After 3 months, rats were operated on to create a 4-mm wedge-shaped defect in the distal metaphyseal femur. Bone substitution materials of calcium phosphate cement (CPC), composites of collagen and silica, and iron foams with interconnecting pores were inserted. Strontium or bisphosphonate, which are well known for having positive effects in osteoporosis treatment, were added into the materials. Eighteen weeks after osteoporosis induction and 6 weeks following femoral surgery, dPET-CT studies scan were performed with 18F-Sodium Fluoride. Standardized uptake values (SUVs) and a 2-tissue compartmental learning-machine model (K1-k4, vessel density [VB], influx [ki]) were used for quantitative analysis. RESULTS k3, reflecting the formation of fluoroapatite, revealed a statistically significant increase at the biomaterial-bone interface due to the Sr release from strontium-modified calcium phosphate cement (SrCPC) compared to CPC, which demonstrated enhanced new bone formation. In addition, k3 as measured in the porous scaffold silica/collagen xerogel (Sc-B30), showed a significant increase based on Wilcoxon rank-sum test (p<0.05) as compared with monolithic silica/collagen xerogel (B30) in the defect region. Furthermore, ki, reflecting the net plasma clearance of tracer to bone mineral measured in the iron foam with coating of the bisphosphonate zoledronic acid (Fe-BP), was enhanced as compared with plain iron foam (Fe) in the defect region. CONCLUSIONS k3 was the most significant parameter for the characterization of healing processes and revealed the best differentiation between the 2 different biomaterials. PET scanning using 18F-sodium fluoride seems to be a sensitive and useful method for evaluation of bone healing after replacement with these biomaterials.
Collapse
Affiliation(s)
- Caixia Cheng
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg, Germany
| | - Volker Alt
- Department of Trauma Surgery, University Hospital Giessen-Marburg GmbH, Giessen, Germany
| | - Leyun Pan
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg, Germany
| | - Ulrich Thormann
- Department of Trauma Surgery, University Hospital Giessen-Marburg GmbH, Giessen, Germany
| | - Reinhard Schnettler
- Department of Trauma Surgery, University Hospital Giessen-Marburg GmbH, Giessen, Germany
| | - Ludwig G. Strauss
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg, Germany
| | - Sascha Heinemann
- Max-Bergmann-Center of Biomaterials, Institute of Materials Science, Technische Universität Dresden, Dresden, Germany
| | - Matthias Schumacher
- Technische Universität Dresden, Centre for Translational Bone, Joint and Soft Tissue Research, Medical Faculty and University Hospital Carl Gustav Carus, Dresden, Germany
| | - Michael Gelinsky
- Technische Universität Dresden, Centre for Translational Bone, Joint and Soft Tissue Research, Medical Faculty and University Hospital Carl Gustav Carus, Dresden, Germany
| | | | | |
Collapse
|
42
|
Preparation and Characterization of Injectable Brushite Filled-Poly (Methyl Methacrylate) Bone Cement. MATERIALS 2014; 7:6779-6795. [PMID: 28788212 PMCID: PMC5456162 DOI: 10.3390/ma7096779] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/06/2014] [Accepted: 09/15/2014] [Indexed: 11/17/2022]
Abstract
Powder-liquid poly (methyl methacrylate) (PMMA) bone cements are widely utilized for augmentation of bone fractures and fixation of orthopedic implants. These cements typically have an abundance of beneficial qualities, however their lack of bioactivity allows for continued development. To enhance osseointegration and bioactivity, calcium phosphate cements prepared with hydroxyapatite, brushite or tricalcium phosphates have been introduced with rather unsuccessful results due to increased cement viscosity, poor handling and reduced mechanical performance. This has limited the use of such cements in applications requiring delivery through small cannulas and in load bearing. The goal of this study is to design an alternative cement system that can better accommodate calcium-phosphate additives while preserving cement rheological properties and performance. In the present work, a number of brushite-filled two-solution bone cements were prepared and characterized by studying their complex viscosity-versus-test frequency, extrusion stress, clumping tendency during injection through a syringe, extent of fill of a machined void in cortical bone analog specimens, and compressive strength. The addition of brushite into the two-solution cement formulations investigated did not affect the pseudoplastic behavior and handling properties of the materials as demonstrated by rheological experiments. Extrusion stress was observed to vary with brushite concentration with values lower or in the range of control PMMA-based cements. The materials were observed to completely fill pre-formed voids in bone analog specimens. Cement compressive strength was observed to decrease with increasing concentration of fillers; however, the materials exhibited high enough strength for consideration in load bearing applications. The results indicated that partially substituting the PMMA phase of the two-solution cement with brushite at a 40% by mass concentration provided the best combination of the properties investigated. This alternative material may find applications in systems requiring highly injectable and viscous cements such as in the treatment of spinal fractures and bone defects.
Collapse
|
43
|
Endo H, Kawamoto R, Takahashi F, Takenaka H, Yoshida F, Nojiri K, Takamizawa T, Miyazaki M. Evaluation of a calcium phosphate desensitizer using an ultrasonic device. Dent Mater J 2014; 32:456-61. [PMID: 23719008 DOI: 10.4012/dmj.2012-308] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study evaluated the effect of a calcium phosphate desensitizer on the demineralization of bovine dentin by measuring changes in transmitted ultrasonic velocity. Bovine dentin specimens with and without application of desensitizer were immersed in 0.1 M lactic-acid buffer solution (pH 4.75) 10 min twice daily throughout the test period, and stored in artificial saliva solution (pH 7.0) between treatments. The propagation time of longitudinal ultrasonic waves was measured by a pulser-receiver. Data were evaluated using one-way ANOVA followed by Tukey HSD test (α=0.05). The ultrasonic velocity decreased over time in specimens stored in demineralizing solution (3,785-3,462 m/s); however, desensitizer-applied specimens had a significantly higher sonic velocity (3,945-3,990 m/s) than those without application. The calcium phosphate desensitizer appeared to reduce the demineralization of dentin and occluded dentinal tubules.
Collapse
Affiliation(s)
- Hajime Endo
- Department of Operative Dentistry, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Prieto EM, Page JM, Harmata AJ, Guelcher SA. Injectable foams for regenerative medicine. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 6:136-54. [PMID: 24127230 PMCID: PMC3945605 DOI: 10.1002/wnan.1248] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 08/13/2013] [Accepted: 09/17/2013] [Indexed: 12/21/2022]
Abstract
The design of injectable biomaterials has attracted considerable attention in recent years. Many injectable biomaterials, such as hydrogels and calcium phosphate cements (CPCs), have nanoscale pores that limit the rate of cellular migration and proliferation. While introduction of macroporosity has been suggested to increase cellular infiltration and tissue healing, many conventional methods for generating macropores often require harsh processing conditions that preclude their use in injectable foams. In recent years, processes such as porogen leaching, gas foaming, and emulsion-templating have been adapted to generate macroporosity in injectable CPCs, hydrogels, and hydrophobic polymers. While some of the more mature injectable foam technologies have been evaluated in clinical trials, there are challenges remaining to be addressed, such as the biocompatibility and ultimate fate of the sacrificial phase used to generate pores within the foam after it sets in situ. Furthermore, while implantable scaffolds can be washed extensively to remove undesirable impurities, all of the components required to synthesize injectable foams must be injected into the defect. Thus, every compound in the foam must be biocompatible and noncytotoxic at the concentrations utilized. As future research addresses these critical challenges, injectable macroporous foams are anticipated to have an increasingly significant impact on improving patient outcomes for a number of clinical procedures.
Collapse
Affiliation(s)
- Edna M Prieto
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | | | | | | |
Collapse
|
45
|
Cheng N, Wang Y, Zhang Y, Shi B. The osteogenic potential of mesoporous bioglasses/silk and non-mesoporous bioglasses/silk scaffolds in ovariectomized rats: in vitro and in vivo evaluation. PLoS One 2013; 8:e81014. [PMID: 24265840 PMCID: PMC3827187 DOI: 10.1371/journal.pone.0081014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 10/14/2013] [Indexed: 02/02/2023] Open
Abstract
Silk-based scaffolds have been introduced to bone tissue regeneration for years, however, their local therapeutic efficency in bone metabolic disease condition has been seldom reported. According to our previous report, mesoporous bioactive glass (MBG)/silk scaffolds exhibits superior in vitro bioactivity and in vivo osteogenic properties compared to non-mesoporous bioactive glass (BG)/silk scaffolds, but no information could be found about their efficiency in osteoporotic (OVX) environment. This study investigated a biomaterial-based approach for improving MSCs behavior in vitro, and accelerating OVX defect healing by using 3D BG/silk and MBG/silk scaffolds, and pure silk scaffolds as control. The results of SEM, CCK-8 assay and quantitative ALP activity showed that MBG/silk scaffolds can improve attachment, proliferation and osteogenic differentiation of both O-MSCs and sham control. In vivo therapeutic efficiency was evaluated by μCT analysis, hematoxylin and eosin staining, safranin O staining and tartrate-resistant acid phosphatase, indicating accelerated bone formation with compatible scaffold degradation and reduced osteoclastic response of defect healing in OVX rats after 2 and 4 weeks treatment, with a rank order of MBG/silk > BG/silk > silk group. Immunohistochemical markers of COL I, OPN, BSP and OCN also revealed that MBG/silk scaffolds can better induce accelerated collagen and non-collagen matrix production. The findings of this study suggest that MBG/silk scaffolds provide a better environment for cell attachment, proliferation and differentiation, and act as potential substitute for treating local osteoporotic defects.
Collapse
Affiliation(s)
- Ning Cheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, People’s Republic of China.
| | - Yuanqin Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, People’s Republic of China.
| | - Yufeng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, People’s Republic of China.
| | - Bin Shi
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, People’s Republic of China.
- * E-mail:
| |
Collapse
|
46
|
Coathup MJ, Cai Q, Campion C, Buckland T, Blunn GW. The effect of particle size on the osteointegration of injectable silicate-substituted calcium phosphate bone substitute materials. J Biomed Mater Res B Appl Biomater 2013; 101:902-10. [PMID: 23362131 PMCID: PMC4166705 DOI: 10.1002/jbm.b.32895] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 11/20/2012] [Accepted: 12/20/2012] [Indexed: 12/12/2022]
Abstract
Calcium phosphate (CaP) particles as a carrier in an injectable bone filler allows less invasive treatment of bony defects. The effect of changing granule size within a poloxamer filler on the osteointegration of silicate-substituted calcium phosphate (SiCaP) bone substitute materials was investigated in an ovine critical-sized femoral condyle defect model. Treatment group (TG) 1 consisted of SiCaP granules sized 1000-2000 μm in diameter (100 vol %). TG2 investigated a granule size of 250-500 μm (75 vol %), TG3 a granule size of 90-125 μm (75 vol %) and TG4 a granule size of 90-125 μm (50 vol %). Following a 4 and 8 week in vivo period, bone area, bone-implant contact, and remaining implant area were quantified within each defect. At 4 weeks, significantly increased bone formation was measured in TG2 (13.32% ± 1.38%) when compared with all other groups (p = 0.021 in all cases). Bone in contact with the bone substitute surface was also significantly higher in TG2. At 8 weeks most new bone was associated within defects containing the smallest granule size investigated (at the lower volume) (TG4) (42.78 ± 3.36%) however this group was also associated with higher amounts of fragmented SiCaP. These smaller particles were phagocytosed by macrophages and did not appear to have a negative influence on healing. In conclusion, SiCaP granules of 250-500 μm in size may be a more suitable scaffold when used as an injectable bone filler and may be a convenient method for treating bony defects.
Collapse
Affiliation(s)
- Melanie J Coathup
- Division of Surgery and Interventional Science, John Scales Centre for Biomedical Engineering, Institute of Orthopaedics and Musculoskeletal Science, University College London, The Royal National Orthopaedic Hospital, Brockley Hill, Stanmore Middlesex, HA7 4LP, UK.
| | | | | | | | | |
Collapse
|
47
|
Alge DL, Bennett J, Treasure T, Voytik-Harbin S, Goebel WS, Chu TMG. Poly(propylene fumarate) reinforced dicalcium phosphate dihydrate cement composites for bone tissue engineering. J Biomed Mater Res A 2012; 100:1792-802. [PMID: 22489012 DOI: 10.1002/jbm.a.34130] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 12/20/2011] [Accepted: 02/16/2012] [Indexed: 01/13/2023]
Abstract
Calcium phosphate cements have many desirable properties for bone tissue engineering, including osteoconductivity, resorbability, and amenability to rapid prototyping-based methods for scaffold fabrication. In this study, we show that dicalcium phosphate dihydrate (DCPD) cements, which are highly resorbable but also inherently weak and brittle, can be reinforced with poly(propylene fumarate) (PPF) to produce strong composites with mechanical properties suitable for bone tissue engineering. Characterization of DCPD-PPF composites revealed significant improvements in mechanical properties for cements with a 1.0 powder to liquid ratio. Compared with nonreinforced controls, flexural strength improved from 1.80 ± 0.19 MPa to 16.14 ± 1.70 MPa, flexural modulus increased from 1073.01 ± 158.40 MPa to 1303.91 ± 110.41 MPa, maximum displacement during testing increased from 0.11 ± 0.04 mm to 0.51 ± 0.09 mm, and work of fracture improved from 2.74 ± 0.78 J/m(2) to 249.21 ± 81.64 J/m(2) . To demonstrate the utility of our approach for scaffold fabrication, 3D macroporous scaffolds were prepared with rapid prototyping technology. Compressive testing revealed that PPF reinforcement increased scaffold strength from 0.31 ± 0.06 MPa to 7.48 ± 0.77 MPa. Finally, 3D PPF-DCPD scaffolds were implanted into calvarial defects in rabbits for 6 weeks. Although the addition of mesenchymal stem cells to the scaffolds did not significantly improve the extent of regeneration, numerous bone nodules with active osteoblasts were observed within the scaffold pores, especially in the peripheral regions. Overall, the results of this study suggest that PPF-DCPD composites may be promising scaffold materials for bone tissue engineering.
Collapse
Affiliation(s)
- Daniel L Alge
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47908, USA
| | | | | | | | | | | |
Collapse
|
48
|
Xu W, Ganz C, Weber U, Adam M, Holzhüter G, Wolter D, Frerich B, Vollmar B, Gerber T. Evaluation of injectable silica-embedded nanohydroxyapatite bone substitute in a rat tibia defect model. Int J Nanomedicine 2011; 6:1543-52. [PMID: 21845044 PMCID: PMC3152472 DOI: 10.2147/ijn.s19743] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In clinical practice, vertebral compression fractures occur after trauma and osteoporosis. Kyphoplasty is a minimally invasive procedure using bone filler material for the treatment of such fractures. A full synthetic injectable bone substitute (SIBS) was manufactured by means of spray drying. The aim of this study was to characterize the SIBS and to analyze the remodelling process during degradation of the biomaterial and new bone formation after implantation. SIBS is an aqueous suspension of donut-like microparticles. These microparticles consist of nanocrystallites of synthetic hydroxyapatite embedded in amorphous silica gel. After implantation of SIBS in a proximal tibial diaphyseal defect in 52 rats, grafts were harvested for subsequent analysis on different days. Newly formed bone originating from endosteum was observed on day 6. Hematomas in the medullary space and cortical wounds disappeared on day 12. The wound region was completely replaced by a composite of newly formed cancellous bone, extracellular matrix, and SIBS. At day 63 the cortical defect was fully healed by bone, while newly formed bone in the medullary space almost disappeared and was replaced with bone marrow. In conclusion, SIBS demonstrated a unique structure with osteoinductive and bioresorbable properties, which induced fast bone regeneration. Therefore, a clinical application of SIBS for kyphoplasty is promising.
Collapse
Affiliation(s)
- Weiguo Xu
- Institute for Experimental Surgery, University of Rostock, Rostock, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|