1
|
Chernonosova VS, Laktionov PP, Murashov IS, Karpenko AA, Laktionov PP. Comparative gene expression profiling of human primary endotheliocytes cultivated on polyurethane-based electrospun 3D matrices and natural decellularized vein. ACTA ACUST UNITED AC 2020; 15:045012. [PMID: 32143210 DOI: 10.1088/1748-605x/ab7d84] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The formation of a continuous layer of normally functioning endothelium on the lumen surface of small diameter vascular grafts is considered a prerequisite of their long-term functioning without stenosis. Thus, materials supporting not only endothelialization but also the normal functioning state of endotheliocytes are demanded. In this study, we have evaluated the functional state of human umbilical vein endothelial cells (HUVEC) cultivated on the surface of autologous decellularized human umbilical vein and electrospun polyurethane-based matrices by next generation sequencing gene expression profiling. Three types of matrices produced by electrospinning from hexafluoroisopropanol solutions of pure TECOFLEX™ EG-80A polyurethane, polyurethane with gelatin and polyurethane with gelatin and bivalirudin were studied. Cells cultivated on different supports were subjected to RNA-Seq profiling on an Illumina HiSeq platform. The data demonstrated that the structure of 3D matrices and the chemical composition of the fibers have a significant effect on the gene expression profiles of HUVEC. The results suggest that protein-enriched polyurethane-based 3D matrices represent a convenient surface for obtaining a normally functioning endothelial layer.
Collapse
Affiliation(s)
- Vera S Chernonosova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (ICBFM SB RAS), pr. Lavrentieva 8, Novosibirsk 630090, Russia. Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, ul. Rechkunovskaya 15, Novosibirsk 630055, Russia
| | | | | | | | | |
Collapse
|
2
|
Krynauw H, Omar R, Koehne J, Limbert G, Davies NH, Bezuidenhout D, Franz T. Electrospun polyester-urethane scaffold preserves mechanical properties and exhibits strain stiffening during in situ tissue ingrowth and degradation. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2764-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
3
|
Kareem MM, Tanner KE. Optimising micro-hydroxyapatite reinforced poly(lactide acid) electrospun scaffolds for bone tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:38. [PMID: 32253587 DOI: 10.1007/s10856-020-06376-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 03/14/2020] [Indexed: 05/14/2023]
Abstract
HA-mineralised composite electrospun scaffolds have been introduced for bone regeneration due to their ability to mimic both morphological features and chemical composition of natural bone ECM. Micro-sized HA is generally avoided in electrospinning due to its reduced bioactivity compared to nano-sized HA due to the lower surface area. However, the high surface area of nanoparticles provides a very high surface energy, leading to agglomeration. Thus, the probability of nanoparticles clumping leading to premature mechanical failure is higher than for microparticles at higher filler content. In this study, two micron-sized hydroxyapatites were investigated for electrospinning with PLA at various contents, namely spray dried HA (HA1) and sintered HA (HA2) particles to examine the effect of polymer concentration, filler type and filler concentration on the morphology of the scaffolds, in addition to the mechanical properties and bioactivity. SEM results showed that fibre diameter and surface roughness of 15 and 20 wt% PLA fibres were significantly affected by incorporation of either HA. The apatite precipitation rates for HA1 and HA2-filled scaffolds immersed in simulated body fluid (SBF) were similar, however, it was affected by the fibre diameter and the presence of HA particles on the fibre surface. Degradation rates of HA2-filled scaffolds in vitro over 14 days was lower than for HA1-filled scaffolds due to enhanced dispersion of HA2 within PLA matrix and reduced cavities in PLA/HA2 interface. Finally, increasing filler surface area led to enhanced thermal stability as it reduced thermal degradation of the polymer.
Collapse
Affiliation(s)
- Muna M Kareem
- Biomedical Engineering Division, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - K Elizabeth Tanner
- Biomedical Engineering Division, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK.
- School of Engineering and Materials Science and Institute of Bioengineering, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| |
Collapse
|
4
|
Pensa NW, Curry AS, Bonvallet PP, Bellis NF, Rettig KM, Reddy MS, Eberhardt AW, Bellis SL. 3D printed mesh reinforcements enhance the mechanical properties of electrospun scaffolds. Biomater Res 2019; 23:22. [PMID: 31798944 PMCID: PMC6884787 DOI: 10.1186/s40824-019-0171-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022] Open
Abstract
Background There is substantial interest in electrospun scaffolds as substrates for tissue regeneration and repair due to their fibrous, extracellular matrix-like composition with interconnected porosity, cost-effective production, and scalability. However, a common limitation of these scaffolds is their inherently low mechanical strength and stiffness, restricting their use in some clinical applications. In this study we developed a novel technique for 3D printing a mesh reinforcement on electrospun scaffolds to improve their mechanical properties. Methods A poly (lactic acid) (PLA) mesh was 3D-printed directly onto electrospun scaffolds composed of a 40:60 ratio of poly(ε-caprolactone) (PCL) to gelatin, respectively. PLA grids were printed onto the electrospun scaffolds with either a 6 mm or 8 mm distance between the struts. Scanning electron microscopy was utilized to determine if the 3D printing process affected the archtitecture of the electrospun scaffold. Tensile testing was used to ascertain mechanical properties (strength, modulus, failure stress, ductility) of both unmodified and reinforced electrospun scaffolds. An in vivo bone graft model was used to assess biocompatibility. Specifically, reinforced scaffolds were used as a membrane cover for bone graft particles implanted into rat calvarial defects, and implant sites were examined histologically. Results We determined that the tensile strength and elastic modulus were markedly increased, and ductility reduced, by the addition of the PLA meshes to the electrospun scaffolds. Furthermore, the scaffolds maintained their matrix-like structure after being reinforced with the 3D printed PLA. There was no indication at the graft/tissue interface that the reinforced electrospun scaffolds elicited an immune or foreign body response upon implantation into rat cranial defects. Conclusion 3D-printed mesh reinforcements offer a new tool for enhancing the mechanical strength of electrospun scaffolds while preserving the advantageous extracellular matrix-like architecture. The modification of electrospun scaffolds with 3D-printed reinforcements is expected to expand the range of clinical applications for which electrospun materials may be suitable.
Collapse
Affiliation(s)
- Nicholas W Pensa
- 1Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, USA
| | - Andrew S Curry
- 1Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, USA
| | - Paul P Bonvallet
- 2Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Nathan F Bellis
- 2Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Kayla M Rettig
- 1Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, USA
| | - Michael S Reddy
- 3School of Dentistry, University of California at San Francisco, San Francisco, USA
| | - Alan W Eberhardt
- 1Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, USA
| | - Susan L Bellis
- 2Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| |
Collapse
|
5
|
Chernonosova VS, Gostev AA, Gao Y, Chesalov YA, Shutov AV, Pokushalov EA, Karpenko AA, Laktionov PP. Mechanical Properties and Biological Behavior of 3D Matrices Produced by Electrospinning from Protein-Enriched Polyurethane. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1380606. [PMID: 30046587 PMCID: PMC6038672 DOI: 10.1155/2018/1380606] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/16/2018] [Accepted: 05/29/2018] [Indexed: 02/07/2023]
Abstract
Properties of matrices manufactured by electrospinning from solutions of polyurethane Tecoflex EG-80A with gelatin in 1,1,1,3,3,3-hexafluoroisopropanol were studied. The concentration of gelatin added to the electrospinning solution was shown to influence the mechanical properties of matrices: the dependence of matrix tensile strength on protein concentration is described by a bell-shaped curve and an increase in gelatin concentration added to the elasticity of the samples. SEM, FTIR spectroscopy, and mechanical testing demonstrate that incubation of matrices in phosphate buffer changes the structure of the fibers and alters the polyurethane-gelatin interactions, increasing matrix durability. The ability of the matrices to maintain adhesion and proliferation of human endothelial cells was studied. The results suggest that matrices made of 3% polyurethane solution with 15% gelatin (wt/wt) and treated with glutaraldehyde are the optimal variant for cultivation of endothelial cells.
Collapse
Affiliation(s)
- Vera S. Chernonosova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia
- Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk 630055, Russia
| | - Alexander A. Gostev
- Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk 630055, Russia
| | - Yun Gao
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Yuriy A. Chesalov
- Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Alexey V. Shutov
- Lavrentyev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Evgeniy A. Pokushalov
- Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk 630055, Russia
| | - Andrey A. Karpenko
- Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk 630055, Russia
| | - Pavel P. Laktionov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia
- Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk 630055, Russia
| |
Collapse
|
6
|
Intraperitoneal co-administration of low dose urethane with xylazine and ketamine for extended duration of surgical anesthesia in rats. Lab Anim Res 2015; 31:174-9. [PMID: 26755920 PMCID: PMC4707145 DOI: 10.5625/lar.2015.31.4.174] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/28/2015] [Accepted: 12/01/2015] [Indexed: 11/21/2022] Open
Abstract
Procedures involving complex surgical techniques in rats, such as placement of abdominal aortic graft require extended duration of surgical anesthesia, which often can be achieved by repeated administrations of xylazine-ketamine combination. However such repeated anesthetic administration, in addition to being technically challenging, may be associated with potential adverse events due to cumulative effects of anesthesia. We report here the feasibility of using urethane at low dose (~1/10 the recommended anesthetic dose) in combination with a xylazine-ketamine mix to achieve an extended duration of surgical anesthesia in rats. The anesthesia induction phase was quick and smooth with an optimal phase of surgical anesthesia achieved for up to 90 minutes, which was significantly higher compared to that achieved with use of only xylazine-ketamine combination. The rectal temperature, heart rate and respiratory rate were within the physiological range with an uneventful recovery phase. Post surgery the rats were followed up to 3 months without any evidence of tumor or any other adverse effects related to the use of the urethane anesthetic combination. We conclude that low dose urethane can be effectively used in combination with xylazine and ketamine to achieve extended duration of surgical anesthesia up to 90 minutes in rats.
Collapse
|
7
|
Horst M, Milleret V, Noetzli S, Gobet R, Sulser T, Eberli D. Polyesterurethane and acellular matrix based hybrid biomaterial for bladder engineering. J Biomed Mater Res B Appl Biomater 2015; 105:658-667. [DOI: 10.1002/jbm.b.33591] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/12/2015] [Accepted: 11/18/2015] [Indexed: 01/02/2023]
Affiliation(s)
- Maya Horst
- Laboratory for Tissue Engineering and Stem Cell Therapy, Department of Urology; University Hospital Zurich; Zurich Switzerland
- Division of Pediatric Urology; University Children's Hospital; Zurich Switzerland
| | - Vincent Milleret
- Laboratory for Cell and Tissue Engineering, Department of Obstetrics; University Hospital Zurich; Zurich Switzerland
| | - Sarah Noetzli
- Laboratory for Tissue Engineering and Stem Cell Therapy, Department of Urology; University Hospital Zurich; Zurich Switzerland
| | - Rita Gobet
- Division of Pediatric Urology; University Children's Hospital; Zurich Switzerland
| | - Tullio Sulser
- Laboratory for Tissue Engineering and Stem Cell Therapy, Department of Urology; University Hospital Zurich; Zurich Switzerland
| | - Daniel Eberli
- Laboratory for Tissue Engineering and Stem Cell Therapy, Department of Urology; University Hospital Zurich; Zurich Switzerland
| |
Collapse
|
8
|
Limbert G, Omar R, Krynauw H, Bezuidenhout D, Franz T. The anisotropic mechanical behaviour of electro-spun biodegradable polymer scaffolds: Experimental characterisation and constitutive formulation. J Mech Behav Biomed Mater 2015; 53:21-39. [PMID: 26301317 DOI: 10.1016/j.jmbbm.2015.07.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 07/07/2015] [Accepted: 07/16/2015] [Indexed: 01/17/2023]
Abstract
Electro-spun biodegradable polymer fibrous structures exhibit anisotropic mechanical properties dependent on the degree of fibre alignment. Degradation and mechanical anisotropy need to be captured in a constitutive formulation when computational modelling is used in the development and design optimisation of such scaffolds. Biodegradable polyester-urethane scaffolds were electro-spun and underwent uniaxial tensile testing in and transverse to the direction of predominant fibre alignment before and after in vitro degradation of up to 28 days. A microstructurally-based transversely isotropic hyperelastic continuum constitutive formulation was developed and its parameters were identified from the experimental stress-strain data of the scaffolds at various stages of degradation. During scaffold degradation, maximum stress and strain in circumferential direction decreased from 1.02 ± 0.23 MPa to 0.38 ± 0.004 MPa and from 46 ± 11 % to 12 ± 2 %, respectively. In longitudinal direction, maximum stress and strain decreased from 0.071 ± 0.016 MPa to 0.010 ± 0.007 MPa and from 69 ± 24 % to 8 ± 2 %, respectively. The constitutive parameters were identified for both directions of the non-degraded and degraded scaffold for strain range varying between 0% and 16% with coefficients of determination r(2)>0.871. The six-parameter constitutive formulation proved versatile enough to capture the varying non-linear transversely isotropic behaviour of the fibrous scaffold throughout various stages of degradation.
Collapse
Affiliation(s)
- Georges Limbert
- National Centre for Advanced Tribology at Southampton (nCATS), Engineering Sciences, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, UK; Bioengineering Science Research Group, Engineering Sciences, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, UK; Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory 7935, South Africa.
| | - Rodaina Omar
- Cardiovascular Research Unit, Chris Barnard Department of Cardiothoracic Surgery, Faculty of Health Sciences, University of Cape Town, Observatory 7935, South Africa
| | - Hugo Krynauw
- Cardiovascular Research Unit, Chris Barnard Department of Cardiothoracic Surgery, Faculty of Health Sciences, University of Cape Town, Observatory 7935, South Africa
| | - Deon Bezuidenhout
- Cardiovascular Research Unit, Chris Barnard Department of Cardiothoracic Surgery, Faculty of Health Sciences, University of Cape Town, Observatory 7935, South Africa
| | - Thomas Franz
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory 7935, South Africa; Centre for Research in Computational and Applied Mechanics, University of Cape Town, Rondebosch 7701, South Africa; Research Office, University of Cape Town, Mowbray 7701, South Africa
| |
Collapse
|
9
|
Kloskowski T, Jundziłł A, Kowalczyk T, Nowacki M, Bodnar M, Marszałek A, Pokrywczyńska M, Frontczak-Baniewicz M, Kowalewski TA, Chłosta P, Drewa T. Ureter regeneration-the proper scaffold has to be defined. PLoS One 2014; 9:e106023. [PMID: 25162415 PMCID: PMC4146565 DOI: 10.1371/journal.pone.0106023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 07/27/2014] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to compare two different acellular scaffolds: natural and synthetic, for urinary conduit construction and ureter segment reconstruction. Acellular aortic arch (AAM) and poly(L-lactide-co-caprolactone) (PLCL) were used in 24 rats for ureter reconstruction in both tested groups. Follow-up period was 4 weeks. Intravenous pyelography, histological and immunohistochemical analysis were performed. All animals survived surgical procedures. Patent uretero-conduit junction was observed only in one case using PLCL. In case of ureter segment reconstruction ureters were patent in one case using AAM and in four cases using PLCL scaffolds. Regeneration of urothelium layer and focal regeneration of smooth muscle layer was observed on both tested scaffolds. Obtained results indicates that synthetic acellular PLCL scaffolds showed better properties for ureter reconstruction than naturally derived acellular aortic arch.
Collapse
Affiliation(s)
- Tomasz Kloskowski
- Chair of Regenerative Medicine, Department of Tissue Engineering, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
- * E-mail:
| | - Arkadiusz Jundziłł
- Chair of Regenerative Medicine, Department of Tissue Engineering, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Tomasz Kowalczyk
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Maciej Nowacki
- Chair of Regenerative Medicine, Department of Tissue Engineering, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Magdalena Bodnar
- Department of Clinical Pathomorphology, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Andrzej Marszałek
- Department of Clinical Pathomorphology, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Marta Pokrywczyńska
- Chair of Regenerative Medicine, Department of Tissue Engineering, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | | | - Tomasz A. Kowalewski
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Chłosta
- Urology Department, Jagiellonian University, Krakow, Poland
| | - Tomasz Drewa
- Chair of Regenerative Medicine, Department of Tissue Engineering, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
- Urology Department, Nicolaus Copernicus Hospital, Toruń, Poland
| |
Collapse
|
10
|
Xiong L, Chui CK, Teo CL, Lau DPC. Modeling and simulation of material degradation in biodegradable wound closure devices. J Biomed Mater Res B Appl Biomater 2014; 102:1181-9. [DOI: 10.1002/jbm.b.33100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/20/2013] [Accepted: 12/17/2013] [Indexed: 01/13/2023]
Affiliation(s)
- Linfei Xiong
- Department of Mechanical Engineering; National University of Singapore; Singapore Singapore
| | - Chee-Kong Chui
- Department of Mechanical Engineering; National University of Singapore; Singapore Singapore
| | - Chee-Leong Teo
- Department of Mechanical Engineering; National University of Singapore; Singapore Singapore
| | - David P. C. Lau
- Department of Otolaryngology; Raffles Hospital; Singapore Singapore
| |
Collapse
|
11
|
Columbus S, Krishnan LK, Kalliyana Krishnan V. Relating pore size variation of poly (ɛ-caprolactone) scaffolds to molecular weight of porogen and evaluation of scaffold properties after degradation. J Biomed Mater Res B Appl Biomater 2013; 102:789-96. [PMID: 24142458 DOI: 10.1002/jbm.b.33060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 08/23/2013] [Accepted: 09/27/2013] [Indexed: 01/10/2023]
Abstract
The major challenge in designing a scaffold for fabricating tissue engineered blood vessels is optimization of its microstructure for supporting uniform cellular in-growth with good mechanical integrity and degradation kinetics suitable for long-term implantation. In this study, we have investigated the feasibility of varying the pore size of poly(ɛ-caprolactone) (PCL) scaffold by altering the molecular weight of porogen and studied the effect of degradation on morphological characteristics and mechanical properties of scaffolds by correlating to the extent of degradation. Scaffolds with two different pore sizes were prepared by solvent casting and particulate leaching where poly(ethylene glycol) (PEG) porogens having two molecular weights (3400 and 8000) were used and subjected to in vitro degradation in phosphate buffered saline (PBS) upto six months. Microcomputed tomography studies of scaffolds revealed narrower pore size distribution when PEG-3400 was used as porogen and had 78% pores in the 12-24 µ range, whereas incorporation of PEG-8000 resulted in broader distribution with only 65% pores in the same range. Degradation resulted in scaffolds with narrower pore size distribution to have better retention of morphological and mechanical characteristics compared to scaffolds with broader distribution. Gravimetric and molecular weight studies also showed that scaffold degradation in both cases was only in initial stages after 6 months and PCL scaffolds had potential to be recommended for vascular tissue engineering applications.
Collapse
Affiliation(s)
- Soumya Columbus
- Dental Products Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, 695 012, India
| | | | | |
Collapse
|
12
|
Tissue engineering and ureter regeneration: is it possible? Int J Artif Organs 2013; 36:392-405. [PMID: 23645581 DOI: 10.5301/ijao.5000130] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2012] [Indexed: 12/11/2022]
Abstract
Large ureter damages are difficult to reconstruct. Current techniques are complicated, difficult to perform, and often associated with failures. The ureter has never been regenerated thus far. Therefore the use of tissue engineering techniques for ureter reconstruction and regeneration seems to be a promising way to resolve these problems. For proper ureter regeneration the following problems must be considered: the physiological aspects of the tissue, the type and shape of the scaffold, the type of cells, and the specific environment (urine).
This review presents tissue engineering achievements in the field of ureter regeneration focusing on the scaffold, the cells, and ureter healing.
Collapse
|
13
|
Sant S, Iyer D, Gaharwar AK, Patel A, Khademhosseini A. Effect of biodegradation and de novo matrix synthesis on the mechanical properties of valvular interstitial cell-seeded polyglycerol sebacate-polycaprolactone scaffolds. Acta Biomater 2013; 9:5963-73. [PMID: 23168222 DOI: 10.1016/j.actbio.2012.11.014] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 10/20/2012] [Accepted: 11/09/2012] [Indexed: 11/17/2022]
Abstract
The development of living heart valves that grow with the patient is a promising strategy for heart valve replacements in pediatric patients. Despite active research in the field of tissue engineered heart valves there have been limited efforts to optimize the balance between biodegradation of the scaffolds and de novo extracellular matrix (ECM) synthesis by cells and study their consequences on the mechanical properties of the cell-seeded construct. This study investigates the effect of in vitro degradation and ECM secretion on the mechanical properties of hybrid polyester scaffolds. The scaffolds were synthesized from blends of fast degrading polyglycerol sebacate (PGS) and slowly degrading polycaprolactone (PCL). PGS-PCL scaffolds were electrospun using a 2:1 ratio of PGS to PCL. Accelerated hydrolytic degradation in 0.1 mM sodium hydroxide revealed 2-fold faster degradation of PGS-PCL scaffolds compared with PCL scaffolds. Thermal analysis and scanning electron microscopy demonstrated marginal change in PCL scaffold properties, while PGS-PCL scaffolds showed preferential mass loss of PGS and thinning of the individual fibers during degradation. Consequently, the mechanical properties of PGS-PCL scaffolds decreased gradually with no significant change for PCL scaffolds during accelerated degradation. Valvular interstitial cells (VICs) seeded on PGS-PCL scaffolds showed higher ECM protein secretion compared with PCL. Thus the mechanical properties of the cell-seeded PCL scaffolds did not change significantly compared with acellular scaffolds, probably due to slower degradation and ECM deposition by VICs. In contrast, the PGS-PCL scaffolds exhibited a gradual decrease in the mechanical properties of the acellular scaffolds due to degradation, which was compensated for by new matrix secreted by VICs seeded on the scaffolds. Our study demonstrated that the faster degrading PGS component of PGS-PCL accelerated the degradation rate of the scaffolds. VICs, on the other hand, were able to remodel the synthetic scaffold, depositing new matrix proteins and maintaining the mechanical properties of the scaffolds.
Collapse
Affiliation(s)
- Shilpa Sant
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|